

Relational Views as a Model for Automatic
Distributed Implementation of Multi-User

Applications

T.C. Nicholas Graham and Tore Urnes ∗

York University
4700 Keele St., North York

Canada M3J 1P3
graham@cs.yorku.ca urnes@cs.yorku.ca

Abstract

Multi-user applications support multiple users performing a related
task in a distributed context. This paper describes Weasel, a system
for implementing multi-user applications. Weasel is based on the re-
lational view model, in which user interfaces are specified as relations
between program data structures and views on a display. These rela-
tions are specified in RVL, a high-level, declarative language. Under
this model, an application program and a set of RVL specifications are
used to generate a multi-user application in which all issues of network
communication, concurrency, synchronization, and view customization
are handled automatically. These programs have a scalable distribution
property, where adding new participants to a session does not greatly
degrade over-all system performance. Weasel has been implemented,
and was used to generate all examples in this paper.

CR Categories: D.2.2 (Software Tools and Techniques for User Inter-
faces); D.1.1 (Applicative Programming); D.3.4 (Compilers and Run-
time Environments)

General Terms: Human Factors, Languages

Additional Keywords: Multi-User Applications, Automatic Distributed
Implementation. Semi-Replicated Architecture

∗Extended version of the paper appearing in Proceedings of Computer Supported Co-
operative Work, CSCW’92, November 1992.

1

1 Introduction

Multi-user applications support multiple users performing some related task
in a distributed context. Examples of multi-user applications include group-
ware systems, which provide computer support to group activities [9]. Multi-
user applications are hard to implement due to a competing set of require-
ments [6, 9, 14, 20, 21]:

Evolutionary design: user interfaces supporting cooperative work cannot be
designed a priori, but must evolve based on experimentation;

Customizability: Sometimes all users should see the same thing on their
display; users should also be able to customize these views without
modifying those of other participants;

Mixed Control: Sometimes one or more users should control the session;
sometimes the application should take charge; sometimes both should
execute concurrently;

Distributed Implementation: Applications must run efficiently in a dis-
tributed context; they should be scalable so that new participants
joining a session do not significantly slow down over all performance.

In the Weasel system, we have developed tool and language support for
creating multi-user applications that moves a significant distance toward
meeting these goals. In particular, Weasel allows the automatic distributed
implementation of multi-user applications: the programmer must provide a
central application program, written in a traditional imperative program-
ming language, and a set of view specifications, written in the declarative
language RVL. From these specifications, the Weasel system creates a dis-
tributed implementation, where issues of network communication, concur-
rency, synchronization, and customization are handled automatically. This
automation simplifies the programming of multi-user applications, making
them easier to prototype and evolve. Weasel supports a wide range of di-
rect manipulation user interfaces based on buttons, menus and dynamic
creation and layout of display objects. Weasel has been implemented to run
on a network of Unix workstations, and was used to produce all examples
in this paper.

One of the main advantages of Weasel over earlier systems for producing
multi-user applications (e.g. [3, 21]) is that systems generated by Weasel
have a scalable distribution property – that is, that adding new participants

2

const maxCities := 4
const maxProducts := 10

type productInfo : array 0 .. maxProducts of
 record
 productName : string
 units : int
 end record

type cityRec :
 record
 cityName : string
 products : productInfo
 end record

var cities : array 1 .. maxCities of cityRec

Relation 1

Relation 2

Figure 1: An inventory program as a pair of relational views. Users may
click on a city, and view or modify product and order information for that
city.

3

into a session does not significantly slow down the performance of the system
as a whole. This scalability comes from the use of a novel semi-replicated
distribution scheme. Section 3.1 shows timing results that demonstrate that
a participant in a 10-person session waits only 50% longer for updates than
a participant in a single-person session. Applications generated by Weasel
are fast enough to use, but not yet fast enough for a production environ-
ment. Many optimizations are planned, but in the meantime Weasel is an
interesting tool for rapid prototyping.

The paper is organized in two major sections. The next section intro-
duces the relational view model (upon which Weasel is based), and the
relational view language that is used to specify views. Section 3 then de-
scribes the mapping of relational views onto a network of workstations, and
empirically evaluates the performance of systems generated by Weasel.

2 The Relational View Model

The motivation behind the relational view model of user interface construc-
tion is that user interfaces should be specified completely separately from
application programs. As is widely cited [12], the main advantage of this
dialogue independence is that user interfaces can evolve over time without
impacting an operational application program. This strict separation brings
the side-benefit that user interfaces can be easily distributed over a network,
forming the basis of the Weasel implementation.

Under the relational view model, application programs are written in a
traditional imperative language (in our case, Turing [15], a modular, Pascal-
like language). The user interface consists of a set of views, graphical dis-
plays of data, which the user can manipulate directly using various input
devices such as a mouse and keyboard. Every view is bound to the ap-
plication program via a relation: whenever the program data changes, the
picture is automatically updated to reflect the change, and whenever the
user modifies the view through direct manipulation, the program data is
automatically updated to reflect the change. These relations are specified in
a special language called RVL, the Relational View Language, as described
in section 2.1.

The paper contains various examples of relational views. Figure 1 shows
an inventory program, where users at various sites can access order and in-
ventory information by clicking a city on a map. The two views are specified
by two different relations, each with the same data structure in the program.

4

Each user receives the same views, but customized, so that if one user clicks
on a different city, the other users’ views do not change.

Figure 2 shows a card-file name and address data base. Here, clicking
on a letter moves to that position in the data base. Those letters for which
there is no card are greyed-out. The data in the cards themselves can be
edited by direct manipulation.

Figure 7 shows a tic-tac-toe game for two players. A strict turn sequence
is observed, and both players view the current version of the board. The tic-
tac-toe board is a WYSIWIS (What You See Is What I See) view [28], where
a modification to the board by one player causes an identical modification
to the other player’s board.

Differing from the popular active values approach [27], relational views
are not bound to individual variables, but to entire data structures, as de-
limited by Turing’s module construct. Section 2.2 shows how this approach
provides an implicit synchronization between the application and the user
interface, so that updates only take place at sensible times.

Certain parts of a viewed data structure belong truly to the application,
while other parts are used only to control the display. For example, in
the inventory program, the inventory levels are part of the application data
structure, whereas the current city that the user has selected is part of the
display data state (figure 6). In a multi-user context, these display variables
are automatically replicated so that each user receives a customized view.
Section 2.3 shows how this customization is achieved.

The following three sections describe the relational view language, how
relations are bound to data structures in the program, and how relations
are customized in a multi-user context.

2.1 The Relational View Language

Relational views are specified in the Relational View Language (RVL), a
version of the GVL output language [4], extended to handle input. RVL
specifications are functions from data structures in the application to display
views. These functions can be annotated with Garnet-style interactors [18]
to allow input. RVL is a powerful functional language based on a small
set of primitive functions such as lines, arrows, boxes, circles and text, and
providing abstraction through function definitions. The language supports
limited geometric constraints, and automatic tree and graph layout. Since
programmers do not have to worry about state, control flow, or layout, RVL
has a specificational flavour.

5

Cond isSelected
checkBox (isSelected)

toggle (firstChoice, text1, text2)
δ (firstChoice, text1) : annotatedCheckBox

δ ("not !!firstChoice :: boolean", text2)
 : annotatedCheckBox

δ isSelected : checkBox δ annotation : displayString

annotatedCheckBox (isSelected, annotation)

Calls

Calls

Figure 2: A name and address card file as a relational view: clicking a letter
moves to that position in the file; the text of cards may be modified by direct
manipulation, updating the underlying data structure.

Figure 3: A Toggle Box – Part of the User Interface of figure 1

Figure 4: Specification of a Toggle Box

6

city (currentCity)

δ "cities (!!currentCity).cityName
 :: string" : logo

δ ("productDisplaySelected :: boolean",
 "Product Infomation",
 "Order Information") : toggle button

δ currentCity : info

Figure 5: Application of the Toggle Box

Figure 4 shows an example RVL specification for a part of the inventory
program of figure 1. In this example we use a visual syntax for RVL, as
defined in [4]. Work is currently underway to develop a visual editor for a
variant of the RVL language [26]; in the meantime, a textual version of RVL
is used.

This specification is used to display a toggle box that selects between
two projections of information: either Product Information, giving inventory
information for that city, or Order Information, showing outstanding orders
between two cities. The current selection is indicated with a checkmark.
Clicking the mouse anywhere on the checkboxes or text changes from one
view to the other. The toggle box itself is shown in figure 3.

The togglebox is specified as a set of three functions that map the cur-
rent state of the application to a picture on the display, where the correct
projection is checked. The checkbox itself is specified with the function
checkBox, which takes a single parameter isSelected. This parameter is a
boolean value from the application that determines whether this box should
be checked or not. The function is programmed using a cond construct: if
isSelected is true, the picture on the left is displayed, and if false, the picture
on the right is displayed.

To place a text label beside a checkbox, the function annotatedCheckBox
is used. This function takes two parameters, isSelected to determine whether
this box should be checked or not, and annotation, which is the text label.
The checkbox is drawn by applying the checkBox function to the parameter
isSelected: this is accomplished with the syntax:

δ isSelected : checkBox

which can be read as: “display isSelected as a checkBox”. The text label is

7

displayed with the built-in function displayString. The grey boxes surround-
ing function calls indicate where the resulting picture is to be placed; these
boxes are sized to fit, so in this case, the text label appears immediately to
the right of the checkbox.

The full toggle box is then specified with the toggle function. The pa-
rameters to toggle indicate whether the first or second choice is to be used,
and specify the two text annotations. The two lines are displayed one above
the other, using the annotatedCheckBox function. In the upper line, the
firstChoice parameter is used to indicate whether the box is to be checked
or not. In the lower line, firstChoice is negated, so that the lower line is
checked whenever the upper line is not. This shows how specifications can
make use of expressions in the underlying programming language (in this
case Turing): the expression

“not !!firstChoice :: boolean”

is to be evaluated as a Turing expression. The “:: boolean” part is the type
of the expression; the “!!firstChoice” notation allows the embedding of an
RVL parameter in a Turing expression.

2.1.1 Turning Views into Relations

The toggle function is a general function independent of any data structure
in the application program. This generality provides the power of RVL:
graphical techniques can be encapsulated in functions that are completely
independent of any context. To use the functions, they must be applied
to some data structure. Figure 5 shows how this is accomplished. Here, a
specification for the entire relation of figure 1 is shown. The function city
takes one parameter, specifying which city the user has currently selected.
The function logo is used to display the city name in a fancy style, while
information about the city is generated with the info function (not defined
in this paper). The product/order information toggle box is displayed with
the following application of the toggle function:

δ (“productDisplaySelected :: boolean,
“Order Information” ,
“Product Information”) : toggle button

Here, productDisplaySelected is an application variable indicating whether
the user has selected the product or order display. The function call is an-
notated with the button directive: this states that the result of the function,

8

that is the graphical representation of the toggle box, should be defined
as a button. The button is implicitly bound to the first parameter of the
function call, the application variable productDisplaySelected. Whenever the
button is clicked, the sense of productDisplaySelected is changed: i.e., if the
variable has the value true, it becomes false, and vice versa. Whenever the
value of productDisplaySelected changes because of a button click, the view
is automatically regenerated, causing the check mark to move to the other
box.

Thus, toggle by itself is only a function from the data state of the applica-
tion to the display state. By adding the button interactor to an application
of toggle, it becomes a relation: direct manipulation of the screen image of
the toggle box can effect changes in the data state, just as changes in the
data state can effect changes in the display view.

There are a series of such annotations to allow input, inspired by the
interactor concept of Garnet [18, 19]. The interactive interactor allows direct
editing of text or numeric data on the display. The count interactor is
another kind of button that increments (or decrements) an integer counter
every time it is clicked. The signature interactor is another kind of button;
when clicked, it writes an integer uniquely identifying this participant into
an integer variable.

2.2 Binding Views to an Application

Under the relational view model, application programs are not just passive
entities awaiting user input, but may perform computation in their own
right. For example, in the inventory program of figure 1, the program might
be initiating orders and monitoring production levels at the same time as
providing views to users. Such an organization is called mixed-control be-
tween the application and the user interface [12]. Mixed control can lead
to difficult synchronization problems: the application should not update a
value at exactly the same time as the regeneration of a view depending on
the value; user-input should not cause a change in a value at exactly the
same time as it is being used by the application program.

This synchronization is achieved automatically, by considering views to
be related to entire data structures, not just to individual variables. A
data structures can be encapsulated in a module. A module defines an ab-
stract data type, that is, a data structure and a set of operations on the
data structure. This means that the only code that has direct access to
the data structure must be within the module. The body of the module is

9

View 1

View 2

city
relation

city
relation

currentCity
= Karlsruhe

Local
Context

currentCity
= Toronto

Local
Context

Inventory
Levels

Shared
Context

Figure 6: The same relation can be used to generate two different views by
parameterizing each relation by a local context.

then treated as a critical region, so that only one view or the application
program may modify the module state at a time. The application program-
mer may then assume two guarantees which make it appear as if he/she is
programming in a purely sequential environment:

• Whenever a module operation is executing, the data structure is im-
mutable; that is, user actions will be buffered until the module oper-
ation is complete;

• No view based on a module will be updated while a module operation
is executing; that is, the programmer does not have to worry about
temporarily bringing the module into a bad state that could cause the
generation of an incorrect view.

The one new possibility with which a programmer must contend is that
between calls to a module, the state of that module may change. Therefore,
the programmer may not assume that a query operation provided by a
module will deliver the same result twice in a row. In the examples we have
created up to now, this restriction has not proved to cause difficulties.

2.3 Customization of Views

Customization is required in multi-user applications for two purposes. First,
as in the inventory program of figure 1, different users may see the same

10

currentTurn
 = Player 1;
board = [2,_,1,
 ,2,,
 1,_,1]

tic tac toe
Relation

tic tac toe
Relation

View of Player 1

View of Player 2

Shared
Context

Figure 7: A Tic-tac-toe game as a relational view

view, but wish to specialize them locally. In the inventory example, all
users’ views are maintained by the same city relation (figure 6), but should
be able to view different cities. We call this form transparent customization,
since it should happen automatically. Secondly, relations may be bound
to the central data structure differently according to who the user is. In
the tic-tac-toe game, this allows two users to see the same board, but to
receive different messages indicating whether it is their turn or not (figure 7).
This form is called signature customization, meaning that the relation is
implicitly parameterized by the signature (or name) of the particular client.
Signature customization provides the basis for programming collaboration
awareness [7], where participants are made aware of the activities of other
members of a group.

2.3.1 Transparent Customization

Transparent customization is provided automatically through the mecha-
nism of binding views to application programs.

One of the primary goals of the relational view model is to separate the
specification of the user interface completely from the application program
itself. This separation becomes blurred when variables are introduced into
the application data structure that are only there to control the display. For
example, in the inventory program of figure 1, the inventory levels belong

11

Cond "turn = signature :: boolean"
drawBoardSquare (pos)

δ pos : item signature δ pos : item

truly to the application, while the currently selected city is a variable that
is introduced to help manage the display.

In order to regain the desired separation, a special interface section is
introduced into any module that is to be displayed. In this section all dis-
play variables must be declared, separately from the application variables.
Display variables may not be viewed or modified in the application pro-
gram itself; they are only available for use in RVL specifications. To the
RVL specification, there is no difference between display and application
variables: they are both available for viewing and modification. This split
makes user interfaces easier to modify, since display variables can be added
or removed with no danger of impacting the application itself in any way.

The key to transparent customization is that these display variables are
automatically replicated for each display (figure 6). In the inventory pro-
gram, each user receives his/her own version of the current city, whereas the
central inventory information is shared among all views. Following the ter-
minology of Ellis et al. [9], this local state is called the local context, whereas
the central data structure is called the shared context.

Figure 8: The squares on a tic-tac-toe board are sensitive to input only if it
is this player’s turn.

2.3.2 Signature Customization

Figure 7 shows a tic-tac-toe game as a relational view. Here, players take
turns clicking on squares to indicate their moves. The underlying data struc-
ture is a 3×3 array representing the board state, and a variable representing
whose turn it is. In this game, each player’s view is customized in three ways,
depending on whose turn it is: firstly, each player receives a message telling
him/her either to make a move or to wait for the other player; secondly, the

12

view of the active player is sensitive to input, whereas that of the waiting
player is not; thirdly, when player one clicks on a square, an “O” is to be
displayed, whereas player two’s actions generate an “X”. All this customiza-
tion is to be achieved even though the same specification is used for both
players.

One simple RVL mechanism accomplishes all three of these tasks, as
shown in figure 8. This function draws one square of the board, displaying
either an “X”, an “O”, or a blank square as appropriate. The parameter
pos indicates which element of the underlying data structure is to be used
to draw the position.

To make a square sensitive to input, it is tagged with the signature
interactor:

δ pos : item signature

This displays the position pos as an item (i.e., a square with an “X”, “O”, or
blank), and states that when the square is clicked, the signature of this user
is to be written into pos. Each participant (i.e., each player) automatically
receives a unique integer signature, thus providing a means of recording
which player clicked which square, even though the same RVL specification
is used for all players.

This signature is also available for use in expressions. To test whether
it is this player’s turn or not, the expression:

cond “turn = signature :: boolean”

is used. Here, turn is an application variable indicating whose turn it is, and
signature is a predefined parameter whose value is the unique signature of
this view. This cond construct therefore chooses whether or not to apply the
signature interactor to this square, depending on whether it is this player’s
turn. A similar cond expression is used to notify the player whether he/she
should play or wait.

According to Patterson et al. [21], this ability to support signature cus-
tomization is one of the defining differences between multi-user applications
and groupware.

3 Distributed Implementation of Relational
Views

13

•••
Executing
Application

Server Machine

Client Machine n

Client Machine 1

Relational
View 1

Relational
View n

Figure 9: Distributed Organization of Relational Views

In a network of workstations, Weasel programs are organized following a
client/server model (figure 9). The application program runs on a central
workstation called the server. Each user works on a client workstation,
which communicates with the server to access and modify application data.

Two goals form the key to this distributed implementation:

• Put as much useful computation as possible on the client machines;

• Keep the network traffic to a minimum.

The bottleneck of a client/server organization is that adding new clients
increases the load on the server and the network. Eventually, the server or
network becomes overloaded, and performance degrades unacceptably for
all clients. By putting more computation on the client machines, scalability
is aided, since each added client takes away from the total work to be done.
We call this scheme semi-replication, since the main application remains on
the server machine, while all code and data related to the user interface is
replicated to the client machines. It is also critical to keep network traffic
low, since network communication is slow; too much reliance on the network
can lead to a system that is scalable, but too slow to be useable.

Figure 10 shows how the computation is split between client and server.
The application program itself executes on the server, while the entirety of
the view computation occurs on the client. The heart of the client compu-
tation is the RVL interpreter. Given an RVL specification, this maps the

14

RVL
Interpreter

Local
Context

Local DS
Updates

Display

User Updates

NETWORK

ViewData Structure
Values

Data Structure
Updates

Server Machine Client Machine

Executing
Application

Local DS
Values

Figure 10: Semi-Replicated Distribution of Relational Views

current version of the application data state to a display view. The inter-
face between the client and server is on the level of expression evaluation:
whenever a Turing expression is reached in the RVL specification, a message
is sent to the server, asking for the value of the expression. The expression
value is returned, and interpretation of the RVL specification can continue.

Typical RVL specifications contain few expressions, so this interface re-
quires little network communication. The cost of adding new clients is also
small: since the entire user interface computation occurs on the client, the
only cost that a new client introduces is an increased traffic of expressions
to be evaluated. Since this number of expressions is small, large numbers of
clients execute only minimally slower than smaller ones (section 3.1).

As an optimization, all display variables (section 2.3.1) are represented
locally on the clients (figure 10). We call this data state the local context.
This optimization allows many views to be computed without reference to
the server whatsoever. As an additional optimization, the RVL interpreter
performs expression caching so that the same expression does not get eval-
uated over the network twice in one view generation. We are examining ex-
tending expression caching to the local context, so that re-evaluation would
not occur between view generations either.

The main disadvantage of Weasel’s interface between client and server is
that communication is synchronous: that is, whenever a client requests an
expression, it must wait for a response before continuing. There are various
possible optimizations to turn much of this synchronous communication into

15

3.0

2.5

2.0

1.5

1.0

0.5

0.0
1 2 3 4 5 6 7 8 9 1 0 1 2 1 4 1 6 1 8 2 0 2 2

Number of Clients

an asynchronous form, where computation can continue once a message has
been sent. We are now examining reimplementing RVL using a form of
parallel graph reduction [22] to allow computation on the client machines to
continue while network requests are pending.

One of the pleasant advantages of semi-replicated distribution is that
the system is robust to failure. The server never waits for clients, so a client
crash cannot cause the server to hang. Clients depend on the server only
for expression values – the state of the interface itself is represented locally.
Therefore, if the server crashes, the clients can wait until the server returns
to functional operation, and continue with their interface state preserved.

The current Weasel implementation has some rough edges, and therefore
cannot yet be considered to be production quality. Some aspects of RVL
need improvement. Ongoing modifications include the introduction of true
second-order functions, and the introduction of interactive display views
as true first-class values in the language. The Weasel implementation is
described in detail in [10, 31].

3.1 Evaluation of Implementation

Figure 11: Normalized Cost of Updating One Client View as a Function of
Number of Clients

16

In order to determine whether our means of distribution is effective or not,
we performed some simple timings on a network of Sun workstations at York
University. We used a SparcStation 10/30 workstation with 64MB memory
as the Weasel server, and a collection of 22 SparcStation 10/20 stations as
clients. Our testing was intended to determine the cost of bringing new
users into a group session: specifically, it was hoped that bringing in new
users would only minimally slow down the performance of the users already
taking part in the session.

As an example program, we used a modified version of the inventory
program from figure 1. All optimizations were removed from the program
in order to give the most pessimistic results possible. In particular, all data
was represented on the server rather than some being represented locally,
and every view on every machine was calculated from scratch every time an
update was made. These pessimizations served to maximize the exchange
of data required to generate a new view.

We first used the server and just one client, measuring the amount of
time required to update the display following a modification. We then suc-
cessively added new clients, each one on a different machine. Each new
client received the same view as the first one, so that an update of any one
view triggered a recomputation of the views on every machine. In the final
case, with 22 machines and two views per machine, this meant a total of 44
views being updated simultaneously.

At each stage, we measured the time that the first client had to wait
during view generation, thus providing a measure of the degradation of
performance witnessed by this client as other participants join the session.1

The timings were performed in real time, and 10 measurements were taken
and averaged for each new client. These timing results were normalized2 so
that an update in a one client system has a cost of 1, the results of which
are shown in figure 11.

These figures show that the time per client to update views does rise as
new clients are introduced, but that the increase is modest: in a 10 client
session, clients take approximately 1.5 times as long to make updates as in a
1 client session; in a 20 client session, this number increases to approximately
2.5 times longer.

As a comparison, we tested the scalability of a centralized version of the

1The other clients all experienced approximately the same times, so that updates were
practically simultaneous on all machines.

2The average time on a 1 client system was 0.7 seconds with a standard deviation of
0.03 seconds over 10 trials.

17

20.0

15.0

10.0

5.0

0.0
1 2 3 4 5 6 7 8 9 1 0 1 2 1 4

Centralized

Semi-Replicated

Number of Clients

Figure 12: Cost of updating one client view in a centralized view computa-
tion model; the Weasel semi-replicated architecture is shown for comparison

program. In this version, all views are computed on the server, and X is used
to display the views remotely on other machines; this is the approach used
in the RENDEZVOUS system [21]. Figure 12 shows that when executed on
the same server as in the distributed case, this version has an approximately
linear cost increase as new clients are introduced, where the normalized
cost of ten clients (10.3) is ten times the cost of one client (1.0). The
semi-replicated version is also shown for comparison. With the particular
configuration of machines used, semi-replication outperforms the centralized
version for any number greater than two clients.

From these figures we can conclude that the Weasel form of distribu-
tion demonstrates quite reasonable scalability, especially compared to the
centralized form of computation used in some other systems. In terms of ab-
solute speed, the current Weasel implementation is fast enough to be usable,
but not fast enough to be production quality. The optimizations listed in
this section show promise for achieving sufficient speedup without sacrificing
scalability.

18

4 Related Work

In this section we relate our work to other tools for developing multi-user
applications. We start by comparing the relational view model to other
attempts to link applications and user interfaces. Next, we focus on the
Weasel implementation and how its architecture relates to those of other
systems for implementing multi-user applications.

4.1 Connecting Application and User Interface

The relational view model builds from earlier work in the conceptual view
model of output [11]. The output component of RVL is based on the GVL
language [4], extended with interactors motivated by the Garnet system [19].

Several other systems [14, 19, 32] use constraints to achieve the same
effect as Weasel’s relational views. In these systems, certain objects are
predefined as being display objects. Display objects can be related to data
in the application using explicit logical constraints. The constraints must
always be maintained, so modifications in either the application or the dis-
play data automatically trigger updates in the other. Constraints are a much
more general system than relational views: any constraint may be written
over any data value of any object. Relational views make a clear separation
between display maintainence (as accomplished by the RVL specifications),
and the application program. It is this clear separation that makes it pos-
sible to create an effective distributed implementation.

The Trip-2 system [29] is also a realization of the relational view model.
In this system, relations are specified in Prolog rather than RVL. Prolog
is far more general than RVL, but the authors report severe performance
difficulties.

The RENDEZVOUS system [14, 20, 21] also provides high-level support
for creating groupware and multi-user applications, and was perhaps the
single biggest influence on our work. This system provides declarative sup-
port for output, implicit concurrency through Garnet-style constraints, and
distribution based on the X Window System [25].

RENDEZVOUS is based on the Abstraction-Link-View (ALV) architec-
ture model [13]. In this model, the application data state (the Abstrac-
tion), and the display data state (the View) are programmed explicitly in
an object-oriented style. Constraints (the Link) are used to keep the two
consistent. ALV is similar to our relational view model, in that the con-
straints specify a relation between view and application, and that this rela-

19

tion is automatically maintained by the system. The relational view model
is somewhat higher-level than ALV, in that the view state is automatically
inferred from an RVL specification, whereas in ALV it must be programmed.
ALV, on the other hand, gives the programmer more control over the rela-
tion between application and display, potentially leading to more efficient
incremental display updating.

4.2 Architectures for Multi-User Applications

There are two basic architecture alternatives to consider when implementing
interactive multi-user applications. The first alternative is the centralized
architecture which is basically a client-server architecture where a single
instance of the multi-user application is shared by all users. The second
alternative is called a (fully) replicated architecture. Under this architecture
a copy of the multi-user application is replicated to each user, typically
executing locally on the user’s workstation.

Shared window system researchers have investigated benefits and draw-
backs of the two basic architectures [5, 17]. Analyses can also be found
in for example [7] and [8, pp 456–457]. Briefly, the advantage of using a
centralized architecture is its simplicity in terms of implementation. This
is due to the fact that only one copy of the multi-user application exists.
The major drawback of a centralized architecture is, as we demonstrated in
section 3.1, the rapidly increasing response times experienced by all users
as the number of users increases. This is because a centralized architecture
is unable to employ a larger number of processors as the number of users
increases.

The fully replicated architecture, on the other hand, offers a response
time which is fairly independent of the number of users. The reason being
that all responses are generated on the (local) workstations on which the
users are working. However, fully replicated architectures are notoriously
difficult to implement correctly. The critical issue is to maintain consistency
across all the application replica. Consider the race condition inherent in
situations where concurrent input is allowed and WYSIWIS views must
be maintained. If user A and user B make almost simultaneous inputs,
then A’s application copy will receive A’s input before B’s input while B’s
copy will see the reverse order. The problem is, of course, that interactive
systems must react instantaneously to input, so traditional (e.g. distributed
database) solutions to this problem will typically be too slow. In addition to
synchronization problems of the kind just indicated, replicated architectures

20

further complicate matters by executing semantic operations multiple times,
once for each application copy. This can lead to great problems, for example
when doing file I/O in a replicated architecture setting.

Full replication also leads to difficulties when bringing late-comers into
a group session [16, 3]. Since there is no globally available state, fully-
replicated systems may have to keep a full history of actions performed
in order to allow a late-comer to derive the state currently held by other
participants.

The Weasel system combines the centralized and replicated appraoches
into an architecture we have called semi-replicated. The motivation is to have
the benefits of the two basic architectures while avoiding the drawbacks. As
shown in section 3, we have replicated the view generation process to each
of the client workstations, i.e. responses are generated locally as in the fully
replicated architecture. However, as in the centralized case, we still have
a single copy of the application and hence neither need to consider sophis-
ticated synchronization schemes nor multiple time execution of semantic
operations. Semi-replication solves the late-comer problem, since all shared
information is available from the server machine. In Weasel, latecomers are
handled completely automatically. It should be noted that even though we
have significantly improved response times relative to those of a centralized
architecture, a fully replicated architecture would probably offer even faster
responses.

The Multi-user Suite [7] group, independently from our work, developed
an architecture similar to the semi-replicated Weasel architecture. The idea
behind the Multi-user Suite framework for implementing multi-user appli-
cations is to use editing of shared data structures as a model for multi-user
interfaces. The views that can be generated in Multi-user Suite are basi-
cally text-only views, and users are expected to interact with applications by
executing long transactions which are explicitly committed. Consequently,
view updates are performed less frequently than in applications generated
by Weasel where users interact by direct manipulation. This, in turn, means
that delays resulting from fetching global context data is less of a problem
in Multi-user Suite.

The RENDEZVOUS system [21] described above uses a centralized ar-
chitecture. A single application process and a set of view generation pro-
cesses, one for each user, execute on a single workstation. The centralized
version of Weasel described in section 3.1 has the same architecture. This
means that multi-user applications generated by RENDEZVOUS suffer from

21

scalability problems3.
Groupkit is toolkit [23] for developing groupware. Groupkit provides

a simple and elegant specification language suitable for rapid prototyping.
Applications are based on a replicated architecture, and hence have good
performance; however, the potential exists for synchronization problems to
occur. Groupkit provides no general solution for handling latecomers, re-
quiring sometimes complex hand-coding to solve the problem.

A system called Group Interaction Environment (GroupIE) [24] is an
object-oriented4 toolkit offering development and run-time support for dis-
tributed multi-user (group) applications. An object-oriented, layered distri-
bution support and management system takes care of distribution issues. It
offers services like object migration (e.g. relocation of in-demand interaction
objects at local workstations), remote method calls, and naming and loca-
tion support. The GroupIE architecture is more flexible than the Weasel
architecture since it can change dynamically. It is unclear how synchroniza-
tion issues are handled in the GroupIE system.

5 Conclusions

The computer support of cooperative work involves the programming of
multi-user applications which aid a group of people in working together on
some task. Such programs are difficult to create because of the conflicting
demands of rapid prototyping, concurrency and distribution.

This paper has presented Weasel, a system for programming multi-user
applications. Through declarative view specifications in the Relational View
Language, normal, imperative application programs can be turned auto-
matically into programs that run in a distributed environment. The paper
showed how issues of concurrency, synchronization, and customization of
views are handled automatically in Weasel. Timing results demonstrated
that the implementations generated by Weasel have a scalable distribution
property, where adding new users to a session does not severely impact the
performance of the system as a whole.

Much future work remains with Weasel, in terms of optimizing the im-
plementation, and increasing the flexibility and functionality of the RVL

3The RENDEZVOUS group along with for example [2, 30] advocate the use of an
architecture similar to that of Weasel as a good underlying architecture for interactive
multi-user applications. It is unclear whether these authors have experimented with a
semi-replicated architecture in a multi-user setting.

4The GroupIE system is implemented in Smalltalk-80.

22

specification language. One interesting line we are persuing now is how to
automatically distribute parts of the application program itself to the clients,
so that communication is further reduced.

Acknowledgements

Weasel was implemented by the authors, James R. Cordy, and Stefan Hügel.
Thanks are due to Prasun Dewan, Saul Greenberg and Thomas Rüdebusch
for making their systems available to us. This work was partially funded
by NSERC, NTNF, the ESPRIT Basic Research Action 3147 (the Phoenix
project), and NTH, Norway.

References

[1] Baecker, R.M. Readings in Groupware and Computer-Supported Cooperative
Work, Assisting Human-Human Collaboration. Morgan Kaufmann Publishers,
ISBN 1-55860-241-0, 1993.

[2] Beaudouin-Lafon, M. and Karsenty, A. Transparency and Awareness in Real-
Time Groupware Systems. In Proceedings of the Fifth Annual Symposium on
User Interface Software and Technology, (Monterey, California, Nov. 15–18),
pages 171–180. acm press, 1992.

[3] Chung, G., Jeffay, K., and Abdel-Wahab, H. Accomodating latecomers in
shared window systems. IEEE Computer, Project Overviews, 26(1):72–74,
January 1993.

[4] Cordy, J.R. and Graham, T.C.N. GVL: Visual specification of graphical out-
put. Journal of Visual Languages and Computing, 1992.

[5] Crowley, T., Milazzo, P., Baker, E., Forsdick, H., and Tomlinson, R. MMConf:
An Infrastructure for Building Shared Multimedia Applications. In F. Halasz,
editor, Proceedings of the Third Conference on Computer-Supported Cooper-
ative Work (Los Angeles, Ca., Oct. 7–10) (also in [1]), pages 329–342. ACM
Press, 1990.

[6] Dewan, P. and Choudhary, R. Primitives for programming multi-user in-
terfaces. In Proceedings of the Fourth Annual Symposium on User Interface
Software and Technology, pages 69–78. ACM, acm press, November 1991.

[7] Dewan, P. and Choudhary, R. A high-level and flexible framework for imple-
menting multiuser user interfaces. ACM Transactions on Information Systems,
10(4):345–380, October 1992.

[8] Dix, A., Finlay, J., Abowd, G., and Beale, R. Human-Computer Interaction.
Prentice Hall, ISBN 0-13-458266-7, 1993.

23

[9] Ellis, C.A., Gibbs, S.J., and Rein, G.L. Groupware: Some issues and experi-
ences. Communications of the ACM, 34(1):38–58, January 1991.

[10] Graham, T.C.N. Conceptual views of data structures as a programming aid.
Technical Report 88-225, Department of Computing and Information Science,
Queen’s University at Kingston, August 1988.

[11] Graham, T.C.N. and Cordy, J.R. Conceptual views of data structures as a
model of output in programming languages. In Proceedings of the Twenty-
Second Annual Hawaii International Conference on System Sciences, January
1989.

[12] Hartson, H.R. and Hix, D. Human-computer interface development: Concepts
and systems. ACM Computing Surveys, 21(1):5–92, March 1989.

[13] Hill, R.D. The abstraction-link-view paradigm: Using constraints to connect
user interfaces to applications. In ACM SIGCHI 1992, pages 335–342, April
1992.

[14] Hill, R.D. Languages for construction of multi-user multi-media synchronous
(MUMMS) applications. In B. A. Myers, editor, Languages for Developing
User Interfaces. Jones and Bartlett, 1992.

[15] Holt, R.C. and Cordy, J.R. The Turing programming language. Communica-
tions of the ACM, 31(12):1410–1423, December 1988.

[16] Lauwers, J.C. and Lantz, K.A. Collaboration Awareness in Support of Col-
laboration Transparency: Requirements for the next Generation of Shared
Window Systems. In Proceedings of CHI’90 (also in [1]), pages 303–311. ACM
Press, 1990.

[17] Lauwers, J.C., Lantz, K.A., and Romanow, A.L. Replicated Architectures
for Shared Window Systems: A Critique. In Proceedings of the Conference
on Office Information Systems, Cambridge, MA (also in [1]), pages 249–260.
ACM Press, April 1990.

[18] Myers, B.A. Ideas from Garnet for future user interface programming lan-
guages. In B. A. Myers, editor, Languages for Developing User Interfaces.
Jones and Bartlett, 1992.

[19] Myers, B.A., Giuse, D.A., Dannenberg, R.B., Vander Zanden, B., Kosbie, D.S.,
Pervin, E., Mickish, A., and Marchal, P. Garnet: Comprehensive support for
graphical, highly interactive user interfaces. IEEE Computer, pages 71–85,
November 1990.

[20] Patterson, J.F. Comparing the demands of single and multi-user applications.
In Proceedings of the Fourth Annual Symposium on User Interface Software
and Technology, pages 87–94. ACM, acm press, November 1991.

24

[21] Patterson, J.F., Hill, R.D., Rohall, S., and Meeks, W.S. Rendezvous: An
architecture for synchronous multi-user applications. In Proceedings of the
Third Conference on Computer-Supported Cooperative Work, pages 317–328.
ACM, October 1990.

[22] Peyton Jones, S.L., Clack, C., and Salkild, J. High-performance parallel graph
reduction. In Proceedings of PARLE 89, pages 193–206, 1989.

[23] Roseman, M., Yitbarek, S., and Greenberg, S. Groupkit reference manual: A
guide to its architecture, interprocess communication, and programs. Included
in the public domain Groupkit distribution, available by anonymous ftp from
ftp.cpsc.ucalgary.ca under pub/grouplab/software, December 1993.

[24] Rüdebusch, T.D. Development and Runtime Support for Collaborative Ap-
plications. In H.-J. Bullinger, editor, Proceedings of the Fourth International
Conference on Human-Computer Interaction, Stuttgart, Germany, Human As-
pects of Computing, pages 1128–1132, Amsterdam, 1991. Elsevier Science Pub-
lishers.

[25] Scheifler, R.W. and Gettys, J. The X window system. ACM Transactions on
Graphics, 5(2):79–109, 1986.

[26] Song, G. Mixing visual and textual programming in functional languages. Mas-
ter’s thesis, York University, North York, Canada, August 1994. (expected).

[27] Stefik, M.J., Brobow, D.G., and Kahn, K.M. Integrating access-oriented pro-
gramming into a multi-paradigm environment. IEEE Software, pages 10–18,
January 1986.

[28] Stefik, M.J., Foster, G., Bobrow, D.G., Kahn, K.M., Lanning, S., and Such-
man, L. Beyond the chalkboard: Computer support for collaboration and
problem solving in meetings. Communications of the ACM, 30(1):32–47, Jan-
uary 1987.

[29] Takahashi, S., Matsuoka, S., Yonezawa, A., and Kamada, T. A general frame-
work for bi-directional translation between abstract and pictoral data. In Pro-
ceedings of the ACM Symposium on User Interface Software and Technology,
November 1991.

[30] Taylor, R.N. and Johnson, G.F. Separation of Concerns in the Chiron-1 User
Interface Development and Management System. In Proceedings of INTERCHI
’93, Human Factors in Computing Systems, pages 367–374. ACM Press (and
Addison Wesley, ISBN 0-201-58884-6), 1993.

[31] T. Urnes. A relational model for programming concurrent and distributed user
interfaces. Master’s thesis, Norwegian Institute of Technology, University of
Trondheim, 1992.

25

[32] Vander Zanden, B.T., Myers, B.A., Giuse, D., and Szekely, P. The importance
of pointer variables in constraint models. In Proceedings of the Fourth Annual
Symposium on User Interface Software and Technology, pages 155–164. ACM,
acm press, November 1991.

26

