
The Clock Language
Preliminary Reference Manual

T.C. Nicholas Graham
York University

graham@cs.yorku.ca

Abst rac t :   This document serves as preliminary
documentation for the Clock language.   Clock is a purely
declarative language supporting the development of
highly interactive graphical user interfaces.  For now, this
document concentrates on the syntax of the language and
the predefined functions the language provides.  The
document is incomplete, and will continue to evolve.

- 1 -



Acknowledgements

Clock was designed and implemented by T.C. Nicholas
Graham and Tore Urnes, with substantial contributions by
Catherine A. Morton and Roy Nejabi.  Other contributers
to the Clock project have been Herbert Damker, Gekun
Song and Eric Telford.

We gratefully acknowledge the financial support of the
ITRC, NSERC, and the Royal Norwegian Research
Council.

- 2 -



Overview

Clock is a declarative language intended for the programming of interactive
systems.  Features of Clock include:

Support for Multimedia
Clock provides high-level support for the traditional media of text and graphics, as
well as the continuous media of sound and video.

Support for multiple users
In Clock, programming a multiuser application is almost as easy as programming a
single user application.  Support is provided for automatic distribution of programs
over a network of workstations.  Built-in concurrency control helps arbitrate
between the concurrent actions of multiple users.  High-level support is provided
for shared and private views in different users’ user interfaces, allowing easy
programming of relaxed WYSIWIS (what you see is what I see) user interfaces.

Visual architecture language
The architecture (or high-level design) of Clock programs is carried out in the visual
ClockWorks programming environment.  ClockWorks makes it easy to visualize
and modify the structure of complex applications.  The architecture consists of
components written in a high-level scripting language.

Simple, constraint-based view updates
Like most modern user interface toolkits, Clock provides constraints to permit
automatic updating of displays in response to user actions.  Constraints simplify the
programming of interactive software by reducing the direct dependencies between
program components.  Clock’s constraints are encoded as functions.

Flexible support for incremental and iterative design of applications
Clock provides high-level support for incrementally developing applications, and
for quickly modifying applications.  This support comes from the use of constraints
to connect application components, and from the high-level support for modifying
applications provided in the visual ClockWorks programming environment.

This document assumes the reader has a reasonable familiarity with functional
programming in the Haskell language.  The details of functional programming are
not covered here.

- 3 -



Hello World

To start our discussion of Clock, we begin with the simple example of a program
that simply displays “Hello world”.

Programs in Clock are developed visually, using the ClockWorks programming
environment.  This environment is invoked under Unix with the command cw.
ClockWorks contains facilities for creating, browsing and editing Clock programs,
for executing programs, and for creating and accessing libraries of predefined
program components.

Programs consist of a set of components organized in a tree structure.  The “hello
world” program consists of one component:

The component itself is programmed textually, in a functional language similar to
Haskell.  The component consists of the single line:

view = Text “Hello world”.

This states that when this program is executed, a window is to appear containing the
text “Hello world”.

- 4 -



In ClockWorks, components are shown as follows:

component
name

toggle
interface

component
class

elide
detail

expand
detail

The name on the top of the component is the component’s name; the name on the
bottom is the component’s class.  Three icons are available for manipulating the
appearance of the component:  the open and close door icons expand and elide
detail; the toggle component is used to show or remove the component’s interface.
Through ClockWorks facilities for expanding and eliding detail, it is possible to
work with complex architectures on displays of normal size.

An Interactive Application

As an example of how to write interactive applications in Clock, the following
program implements a counter.  When the user clicks on the counter, it is
incremented, and the new counter value is displayed.  The architecture for this
program is:

 Consider first the Count component.  Count is an abstract data type (or ADT) that
implements a counter.  Count implements two methods:  count returns the value
of the counter, and incrementCount increments the counter.  count is referred to
as a request  method, since it returns a value.  incrementCount is an update
method, since it modifies the state of the ADT.

- 5 -



The root  component, of class CountView, is responsible for implementing the
interactive behaviour of the program.  This component responds to mouseButton
input (i.e., the mouse clicks the user will make), and uses the count and
incrementCount methods implemented in Count.  Note therefore that arrows
drawn on the left of a component show the methods the component implements,
while arrows drawn on the right show the methods a component uses.

The complete code for the CountView class is:

mouseButton "Down" = incrementCount.
mouseButton "Up" = noUpdate.

view = NumText count.

The view function specifies that this component is to display the current value of
the counter.  The mouseButton function specifies that if the user clicks the mouse
button down over the view of this component, the incrementCount method is to
be invoked.   When the mouse button is released, there is no effect (i.e., noUpdate is
performed.)

In the view function, the current value of the counter is to be displayed as numeric
text.  This function is a form of constraint – that is, whenever the counter value
changes, the view is automatically recomputed to display the correct value.  The
programmer does not need to manually invoke the view function to update the
display when the counter changes value.

The complete code for the Count ADT is:

incrementCount = save (this + 1).
count = this.

initially = save 0.

In this code, the predefined function this refers to the current state of the ADT (i.e.,
the current numeric value of the counter.)  The predefined function save assigns its
argument as the new state of the ADT.  Therefore, the count method simply returns
the current value of the component (this).  The incrementCount method simply
saves the value of the current counter value, plus one (save (this + 1)).

The initially function is invoked when the ADT is created, setting the initial
state to being the number 0.

- 6 -



Programming Model

The example of the counter program shown in the section serves to illustrate
Clock’s programming model.  Clock is based on an extended Model-View-Controller
(MVC) paradigm.  In MVC, programs are split into three components, as shown
below:

updates/requests requests

ViewController

Model

user
inputs

view
updates

notifications

The model represents the underlying state of the application.  The view encodes
how the user interface is to appear on the display.  The controller specifies how
input  is to be handled.  The key to MVC’s power is how these components
communicate.  User inputs are given to the controller.  The controller then
determines how these inputs are to be reflected in terms of modifications to the
model.  The model then announces to the view that the model has changed.  The
view then updates itself, resulting in a new display.  This approach leads to a strong
separation of concerns between the model, view and controller.  The  controller
does not directly communicate with the view, only with the model.  The view is
responsible only for updating the display, and does not need to know the details of
when display updates may arise.

- 7 -



To illustrate how MVC is realized in Clock, consider the counter example from the
last section:

incrementCount = save (this + 1).
count = this.

initially = save 0.

mouseButton "Down" = incrementCount.
mouseButton "Up" = noUpdate. view = NumText count.

Model

ViewController

Here, the Count  ADT implements the mode l , or the data underlying the
application.  The CountView component implements both the controller and the
view.  The controller consists of a function specifying how mouse button input
affects the model – i.e., when the user clicks the mouse button, the counter is
incremented.  The view consists of a function specifying that the current value of
the counter is always to appear on the display.

MVC as implemented in Clock therefore gives a clean separation of concerns
between data abstraction (the model), input handling (the controller), and display
maintenance (the view).

- 8 -



A Multimedia Example

The MVC model also extends to programming multimedia applications.  The
following program implements playback of a video clip from a file. The output of
the program is simply the video as it plays:

The Clock architecture implementing this program is:

Conceptually, a video clip consists of a sequence of frames.  Displaying the video
therefore involves displaying each frame in turn, at some fixed rate.  In the Clock
program, the ADT FrameCounter is used to represent the number of the frame
currently being displayed.  This ADT provides a request frameNumber to report the
number of the current frame, and an update advanceFrame to move to the next
frame.  The complete code of the FrameCounter ADT is:

frameNumber = this.
advanceFrame = save (this+1).

initially = save 0.

The VideoPlayer component is responsible for displaying the current video frame
and for advancing the frames.  As shown in the architecture diagram, the
component uses the methods advanceFrame and frameNumber.

The key issue in displaying video is that the frames must be advanced on a regular

- 9 -



interval – for example, to achieve a frame rate of 10 frames per second, the frame
counter must be updated every 100 ms.  To trigger updates of the frame counter, the
special tick input is used.  tick inputs are issued by the Clock runtime system at
some specified interval.  By intercepting the tick inputs, the VideoPlayer
component can advance the frame on a regular basis, using the code:

tick = advanceFrame.

That is, every time the runtime system generates a tick input, the frame counter is
advanced.

The view of the video player is:

view =
    TickingEvery 100 (
        VideoFrame videoFile frameNumber
    ).

Here, the current video frame is:  VideoFrame videoFile frameNumber.  That is,
the frame frameNumber taken from the video clip contained in the file videoFile.
Whenever the frame number is incremented, the view function is automatically
updated to display the correct frame.

The view function also specifies that the ticking rate of this view is 100 ms.  This
means that the runtime system will deliver a tick input to this component every 100
ms, leading to a 10 frame per second playback.

In summary, the complete code for the VideoPlayer component is:

tick = advanceFrame.

view =
    TickingEvery 100 (
        VideoFrame videoFile frameNumber
    ).

videoFile = homedir + "/ski.mpg".

- 10 -



Architectures as Trees

Clock architectures are typically composed of numerous components, organized in a
tree structure.  Splitting programs into components provides separation of concerns,
information hiding, better potential for reuse, and simplifies modification of
programs.

To show how architectures are split into trees, imagine we wish to draw two buttons
on the display, one labeled with the text “Slower”, and the other with the text
“Faster”.  The output should be:

The architecture for this program is:

The root component (of class SpeedControl) uses the button component (of class
Button) to draw the two buttons.  This architecture specifies that the SpeedControl
component has available a subview called button that can be used in composing its
own view.  The view function of SpeedControl is:

view =
    beside [
        button "Slower",
        space 10,
        button "Faster"
    ].

The view is composed of three parts:  a button labeled “Slower”, a button labeled
“Faster”, and a space of 10 pixels separating them.  (The beside function composes
three views by laying them out horizontally.)

The Button component is implemented as:

- 11 -



view = groovyBox 1 (pad 2 (Text myId)).

That is, the button consists of a grooved box surrounding the textual label of the
button, with a space of two pixels around the text.  The predefined request myId
evaluates to the string parameter given to the button by its parent – for example, if
this button was created with the function button “Faster” , then myId would
evaluate to the string “Faster”.

More precisely, when a component has a subview named, e.g., button , the
component has available a function:

button :: String -> DisplayView

that given a string, returns a view that can be used in creating its own view.  In a
subview component, this string parameter is accessible via the predefined request
myId.

- 12 -



A More Complex Example

As a more complex example, we can combine the last two programs, giving a video
player with variable playback rate.  Whenever the user clicks the “Slower” button,
the playback rate slows by 20 ms per frame; the “Faster” button speeds up playback by
20 ms per frame, to a maximum speed of 20 frames per second.  The new application
looks like:

The architecture implementing this application is:

- 13 -



The revised VideoPlayer component composes the views of the current video
frame (now implemented in the video subview), and the two speed control buttons
(implemented in the speedControl  subview.)  The complete code for the
VideoPlayer is:

tick = advanceFrame.

view = Views [video "", speedControl ""].

The Views constructor allows multiple views to be stacked in 2 1/2 dimensions, so
that the speed control appears on top of the current video frame.

Since the rate at which the frame advances is now variable, we add an ADT
FrameRate, with request frameRate to query the frame rate, and updates speedUp
and slowDown to manipulate the rate.  The complete code for FrameRate is:

slowDown = save (this + 20).

speedUp =
    let newRate = max 50 (this-20) in
        save newRate
    end let.

frameRate = this.

initially = save 100.

That is, the frame rate is initially 1 frame / 100 ms.  Slowing down the frame rate
adds 20 ms to this time.  Speeding up the frame rate reduces the time by 20, to a
maximum speed of 1 frame / 50 ms.

The Video component is responsible for displaying the current video frame.  The
view now specifies that the ticking rate is the current frame rate.  The complete code
for Video is:

view =
    TickingEvery frameRate (
        VideoFrame videoFile frameNumber
    ).

videoFile = homedir + "/ski.mpg".

- 14 -



The Button component is extended to issue a buttonClick update when it is
clicked.  This update carries a parameter of the component’s id, to allow parent
components to identify which button was clicked.  The Button code is:

mouseButton "Down" = buttonClick myId.
mouseButton _ = noUpdate.

view = groovyBox 1 (pad 2 (Text myId)).

buttonClick  updates are handled by the SpeedControl component, which
interprets them by adjusting the frame rate.  The SpeedControl code is:

buttonClick "Faster" = speedUp.
buttonClick "Slower" = slowDown.

view = beside [button "Slower", space 10, button "Faster"].

That is, if the “Faster” button is clicked, the speedUp update is issued to increase the
frame rate.  Similarly, the “Slower” button results in the frame rate being decreased
through the slowDown update.

Therefore, applications with sophisticated functionality can be built by composing
simple components.  The ClockWorks environment allows the high-level structure
(or architecture) of programs to be viewed and manipulated visually.

- 15 -



Visibility and Message Routing

Clock’s scoping rules state that a component may use any request or update methods
appearing above the component in the architecture tree.  Conceptually, when a
component issues a request or update, the request/update message travels up the
tree to the first component with a method by that name.  For example, in the video
player with speed control of the last section, when the Button component issues a
buttonClick  update, the update travels up the tree to the SpeedControl
component.  When the Video  component issues a frameNumber request, the
request travels up the tree to the FrameCounter  ADT.  This is a traditional
delegation routing scheme.

A consequence of this basic rule that messages travel up the tree to the first ancestor
that handles them is that components may only communicate with their ancestors.
For example, it is not possible for a component to send a message to its children or
siblings.

The reason it is possible to have such restrictive scoping rules in Clock is the
presence of constraints used to update views.  For example, when the VideoPlayer
receives a tick input updating the frame counter, it is not possible for it to directly
inform the Video component that a new frame must be displayed – Video is a child
of VideoPlayer.  Instead, VideoPlayer updates the state of the FrameCounter
ADT; Video depends on the value of the frameNumber request, and is automatically
updated in response to the change.

Unimplemented Requests and Updates:
If a component issues an update that is not implemented by one of its ancestors, the
update is ignored.

If a component issues a request that is not implemented by one of its ancestors, the
program terminates with an error message.  Some requests, however, have default
values.  If an unimplemented request has a default value, that value is substituted
as the value of the request.

These rules greatly aid in developing programs in an incremental manner, allowing
programs to be tested before they are completely implemented.  Additionally,
library components may be parameterized through requests with default values,
allowing them to be more easily integrated into programs.

- 16 -



Multiuser Programs

Clock provides high-level support for creating multiuser programs, where users can
share views or customized versions of the same views.  Clock automatically handles
issues of concurrency and distribution so that programmers do not have to worry
about networking or dealing with race conditions.

As a simple example, consider a multiuser version of our counter program.  Here,
two users (called “Nick” and “Tore”) will each have a window displaying a number.
When either user clicks on the number, it is incremented on both user’s displays.

The code for this application is shown below:

users = ["Nick", "Tore"].

view = Views (map oneCounter users).

mouseButton "Down" = incrementCount.
mouseButton "Up" = noUpdate.

screen "Nick" = "graham.cs.yorku.ca:0".
screen "Tore" = "tivoli.cs.yorku.ca:0".

view = Window (myId, screen myId) (NumText count).

The Counters component creates two instances of the counter (oneCounter), one
for each user (“Nick” and “Tore”.)

The view of each CountView component consists of a window containing the
current counter value.  The Window constructor has the type signature:

Window :: (String,String) -> DisplayView -> DisplayView

representing the form:

- 17 -



Window (windowText, screen) windowContents

The windowText  appears in the title bar of the window.  The screen is a string
containing the IP address of the screen on which the window is to appear.  For
example, the string “tivoli.cs.yorku.ca:0” represents the console of the
machine tivoli located at York University.  If the screen is specified as the null string
(“” ), the window is displayed on the screen represented in the DISPLAY
environment variable.

The windowContents is a DisplayView describing what is to appear in the window.

In the counter example, one window will appear on the machine
tivoli.cs.yorku.ca with the title “Tore”, and the other will appear on the
machine graham.cs.yorku.ca with the title “Nick”.

The following diagram demonstrates how this multiuser program works:

Counter data is 
shared by all users

oneCounter “Tore”oneCounter “Nick”

Tore’s view
Nick’s view

When the program executes, the Counters component creates two instances of its
oneCounter  subview, one for “Nick” and one for “Tore”.  Each component
contains the same view function:

view = Window (myId, screen myId) (NumText count).

This function specifies that the display is to consist of a window containing the
current count value, as represented in the Count ADT.  Therefore, both users’
displays show the current count value.  If either user clicks on his own counter, the

- 18 -



value in Count is modified, triggering the update of both users’ displays.

The key points in the design of this multiuser application are:

• Each user’s view is represented as a subview of the Counters component; 
i.e., an instance of the CountView component.

• Since each user’s view is an instance of the same CountView component, 
each user sees the same view on his/her display.

• Each user’s view is presented in a different window.  The Window command
has a screen parameter that allows the specification of where the user’s 
display is located.

• User’s views share data in their ancestor component.  I.e., the data in the  
Count ADT is shared by all users.  This allows all users’ views to be 
automatically updated whenever one user modifies the count.

This means that the view of one user does not have to be aware of how many other
users there are, or where those users are located.  The constraint mechanism of
having each user depend on shared data allows the views of multiple users to be
synchronized automatically.

- 19 -



Multiuser Programs and Session Management

One annoying feature of the last program is that the information about users is
hard-coded.  That is, the program hard-codes:

• How many users there are.
• What machines those users are working on.

If we ever wish to work on a different machine or add a new user, we have to
modify the program.

Clock provides a tool called a session manager1 that allows users to dynamically
enter and leave a session (or program.)  The session manager allows us to write
multiuser programs in a flexible manner, where we do not need to hard code the
number of users, the users’ names or the users’ machines.

When a user runs the session manager, he/she will see a window that looks like:

This window lists all ongoing conferences – for example, the Counter conference
refers to the counter program of the last section.  When the user clicks on the name
of a conference, he/she sees all people currently taking part (i.e., all the current users
in the Counter program.) When the user double-clicks on the name of a conference,
he/she joins it.

Clock programs can be modified to take advantage of the session manager by
including the Session ADT, as shown below:

1 The GroupKit session manager by Roseman and Greenberg at the University of Calgary
- 20 -



mouseButton "Down" = incrementCount.
mouseButton "Up" = noUpdate.

view = Window (userName myId, userScreen myId) (NumText count).

view = Views (map oneCounter allUsers).

The Session ADT implements the updates addUser and removeUser.  These are
invoked by the session manager as users enter or leave the session.  Since the
session manager keeps track of who is in the session, Clock programmers never
need to deal with adding and removing users.  The ADT also implements the
following requests that help in managing session information:

allUsers :: [String]
Gives a list of all current participants in the session.  Each participant is 
assigned a unique string id by the session manager.  allUsers returns the 
unique id’s of all current participants as a list of strings.  allUsers is used in 
the Counters component to create one view per user.

userName :: String -> String
Given the unique id of a participant, returns the participant’s name.  In this 
example, userName is used in CountView to retrieve the name of the 
participant so that it can be included in the title bar of the participant’s 
window.

- 21 -



userScreen :: String -> String
Given the unique id of a participant, returns the participant’s screen.  In this 
example, userScreen is used in CountView to retrieve the name of the 
participant so that the window can be displayed on the participants display.

The code implementing the multiuser counter makes use of these requests,
allowing the application to be coded without hard-coding the number of participants
or the location of their displays.

- 22 -



Relaxed WYSIWIS

The counter program of the last section is an example of a pure WYSIWIS  program.
WYSIWIS stands for “What you see is what I see”, meaning that the views of all
users are completely synchronized.

To appear...

tick = advanceFrame.
motion p = setUserPosition myUserId p.

title = "Video Player :: " + userName myUserId.
view =
    Window (title, userScreen myUserId) (
        Views [
            video "",
            speedControl "",
            telepointers
        ]
    ).

telepointers = Views (map telepointer otherUsers).
otherUsers = subtractFrom allUsers myUserId.

initially = setMyUserId myId.

- 23 -



Context Free Syntax of Clock

componentDef ::= { definition }

definition ::= equation
| typeDefinition
| dataDefinition

equation ::= id { simplePattern }+ = expn .

typeDefinition ::= type typeId = typeSpec .

dataDefinition ::= data constructorId =
    constructorId { typeSpec }
  { | constructorId { typeSpec }} .

expn ::= simpleExpn
| simpleExpn simpleExpn
| debug simpleExpn

simpleExpn ::= id
| literal
| constructorId
| fn { simplePattern }+ -> expn end fn
| if expn then expn

{ elsif expn then expn }
else expn
end if

| case expn of
  { pattern -> expn }+
end case

| let { pattern = expn }+ in expn end let
| [ expn { , expn } ]
| unaryOp simpleExpn
| simpleExpn binaryOp simpleExpn
| ( expn )

- 24 -



simplePattern ::= _

| id
| literal
| constructorId
| [ pattern { , pattern } ]
| ( pattern )

pattern ::= simplePattern
| constructorId { simplePattern }
| simpleExpn : simpleExpn

unaryOp ::= -

binaryOp ::= + | - | * | div | mod

| = | ~= | < | > | <= | >=
| and | or | not
| @ | # | ++

typeSpec ::= Num | String | Bool

| typeId
| [ typeSpec ]
| ( typeSpec { , typeSpec } )

Lexical Rules

numLiteral ::= [0-9]*

stringLiteral ::= " [any char]* "

boolLiteral ::= True | False

id ::= [a-z]* [a-zA-Z0-9_]* [']*

constructorId ::= [A-Z]* [a-zA-Z0-9_]* [']*

typeId ::= [A-Z]* [a-zA-Z0-9_]* [']*

- 25 -



- 26 -



Predefined Functions

List manipulation functions:

take :: Num -> [a] -> [a]

Takes the first n elements of the given list; ie, take 3 [1,2,3,4] = [1,2,3].

: :: a -> [a] -> [a]

The ‘cons’ function places a given element onto the front of a list.

append :: [a] -> a -> [a]

Appends the given value to the end of the given list.

++ :: [a] -> [a] -> [a]

Concatenates two lists.

assign :: [a] -> Num -> a -> [a]

Gives a list where the element at the given position is replaced with the new given 
element.  Ie, assign [10,11,12,13] 2 1001 = [10,1001,12,13].

@ :: [a] -> Num -> a

Returns the value at the given position of the list.  Ie, [10,9,8] @ 2 = 9.  List 
indeces are based at 1.  List indeces out of bounds result in an error.

# :: [a] -> (Num,Num) -> [a]

Returns all elements in the given list between the two given numbers.  Ie, 
[1,2,3,4,5,6] # (2,5) = [2,3,4,5].  If the right index exceeds the left index by 
1, the null list is returned:  ie, [1,2,3] # (1,0) = [].  If either index is otherwise 
out of bounds, an error results.

length :: [a] -> Num

Returns the number of elements in the given list.

- 27 -



Dictionary functions:

A dictionary is a list of key/value pairs.  The dictionary functions make it easy to 
retrieve values from a dictionary given a key.

enterDict :: a -> b -> [(a,b)] -> [(a,b)]

Given a key a,  a value b, and a dictionary, returns a new dictionary where b has 
been entered under key a.  If the key a already exists in the given dictionary, this 
operation overwrites the old value.

lookup :: a -> [(a,b)] -> b

Given a key a, finds the first value b with that key in the dictionary.

lookupPos a -> [(a,b)] -> Num

Given a key a, finds the position of the first occurence of that key in the dictionary.

lookupAll :: a -> [(a,b)] -> [b]

Given a key a, returns the list of all values b with that key in the dictionary.

index a -> [a] -> Num

In a simple list, finds the position of the first occurence of a value in that list.  Ie, 
index 3 [1,3,10,4] = 2.

Combinators:

map :: (a->b) -> [a] -> [b]

Given a function f and a list of elements as, gives the result of applying f to each 
element of as.

fold :: (a->a->a) -> a -> [a] -> a

Given a function f, initial value a0, and list of elements [a1,a2,...,an], returns the 
result of applying  f a0 (f a1 (f a2 (..... (f an-1 an))).

- 28 -



Mathematical functions:

min :: Num -> Num -> Num
max :: Num -> Num -> Num

Return the min/max of the given pair of numbers.

Tuple functions:

fst :: (a,b) -> a
snd :: (a,b) -> b

Return the first/second items of a tuple.

String manipulation functions:

ord :: String -> Num

Returns the ordinal number of the first character of the given string; eg, in ASCII, 
ord ("A") = 65.  The given string must not be null.

chr :: Num -> String

Gives as a string the character value of the given integer.  Eg, ord (65) = "A".

numstr :: Num -> String

Converts an integer into a string.  Eg, numstr 123 = "123".

strnum :: String -> Num

Converts a string into an integer.    Eg, strnum "123" = 123.  The string must 
contain a valid integer; currently this is not checked, so if the string is not valid, a 
segmentation violation style of crash will result.

- 29 -



Date/time manipulation functions:

Date and Time are predefined abstract data types representing a date/time.  These 
functions implement computations based on dates.  Note that in Clock, there is 
currently no way of accessing the current date or time.

textToDate :: String -> String -> String -> Date

Creates a date type from the given day, month and year.  The month must be the 
full English name of the month:  "January", "February", etc.  For example, 
textToDate "10" "January" "1995" gives the date for Jan 10, 1995.

dateToString :: Date -> String

Gives a string representation of a date.
dayOfWeek :: Date -> String

Returns what the weekday is of the current date.

daysInMonth :: Date -> Num

Returns how many days are in the current month.

daysInYear :: Date -> Num

Returns how many days are in the given year.  Does a reasonable job with leap years, 
but not perfect.

tomorrow :: Date -> Date

Gives the date following the given date.

yesterday :: Date -> Date

Gives the date preceding the given date.

stringToTime :: String -> Time

Converts a string to a time.  Time strings can be in two formats:  24 hour, such as 
stringToTime "13:45" or 12 hour, such as stringToTime "1:45 PM".  This 
function is very sensitive to format, and will crash if there is any deviation.

- 30 -



timeToString :: Time -> Num -> String

Returns a string version of the given time.  The time may be in 12 or 24 hour 
format, as specified by the numeric parameter. 

earlier :: (Date,Time) -> (Date,Time) -> Boolean

Determines whether the first of two given dates+times occurs earlier than the 
second.

Environment query functions:

getenv :: String -> String

Given the string name of an environment variable, returns the variable’s value.  Eg, 
getenv “PRINTER” returns the name of the current printer.

homedir :: String

Returns the directory in which this program is located.  This function is useful if the 
program makes use of auxiliary files located in the program directory (e.g., image 
files.)

- 31 -



Views in Clock

Clock provides a simple language from which graphical displays can be constructed.
While the language is simple, the abstraction powers of functional programming
can allow complex displays to be easily constructed.  Currently, the view language
does not support all forms of graphical primitives or layout that would be desirable;
the most glaring problem right now is the lack of any circle or elipse primitives.

This presentation begins by outlining the primitive constructs from which views
are built, and then describes the predefined functions that simplify view
manipulation.

Primitive Constructs

Views are elements of the data type DisplayView.  This data type has the following
definition:

data DisplayView =
    Views [DisplayView]
  | Line Coord Coord
  | Arrow Coord Coord
  | At Coord Coord DisplayView
  | Box DisplayView
  | Text String
  | NumText Num
  | CharText Char
  | BooleanText Bool
  | InstanceOf SubViewName SubViewId

  | BorderStyle Num DisplayView
  | BorderColour Colour DisplayView
  | BorderWidth Num DisplayView
  | FillPattern Num DisplayView
  | FillColour Colour DisplayView

  | Font FontName DisplayView
  | FontColour Colour DisplayView
  | Inverted DisplayView
  | LineWidth Num DisplayView
  | LineStyle Num DisplayView
  | LineColour Colour DisplayView
  | SaveProps DisplayView
  | RestoreProps DisplayView

  | DarkReliefShade Colour DisplayView
  | LightReliefShade Colour DisplayView
  | ReliefWidth Num DisplayView
  | Relief String DisplayView
  | PolyLine [Coord]
  | Pile [(Num, DisplayView)]
  | Image String
  | Crop Coord Coord DisplayView.

Views in Clock are therefore values that are built from data constructors.  For
example, the view Box (Text “Hello world”)  represents the text “Hello world”
drawn with a box around it.

Text, NumText, CharText, BooleanText

These constructors are used to display text.  Text “Hello” displays the text “Hello”.
NumText 123 displays the text “123”.  CharText 65 displays the text “A”.
BooleanText True  displays the text “True”.  The text is drawn in the current font
and current font colour.   For example, Font largeItalicFont (FontColour
red (Text “Hello world”)) draws the text “Hello world” in large, red, italic text.

- 32 -



Fonts are strings in the standard X font description format.  The Unix command
xlsfonts will give you the complete list of X fonts available on your server.  The
file $CLOCKSYS/Source/clocklib/viewUtils gives a list of predefined font
names.  Note that your server may not support all the fonts defined in this file.

Colours have the definition:

type Colour = (Num,Num,Num).

That is, colours are triples consisting of an integer value representing the red, green
and b lue  in tens i t ies  o f  the  des i red  co lour .   The  f i l e
$CLOCKSYS/Source/clocklib/colourUtils gives a list of several hundred
predefined colour names.

Box
A box surrounds whatever its parameter view is.  E.g., Box (Text “Hello”)  draws
a box correctly sized to fit the text “Hello”.  By default, boxes are drawn in black, with
a width of one pixel.  The constructors BorderStyle, BorderColour, BorderWidth,
FillPattern and FillColour permit the attributes of boxes to be adjusted.  For
example,

BorderWidth 3 (
  FillColour yellow (
    BorderColour green (
      Box (Text “Hello”)
    )
  )
)

displays the text “Hello” surrounded by a 3 pixel wide green border, on a yellow
background.  Border styles may be:  solidBorder (default), dashedBorder, or
doubleDashedBorder.  Fill patterns may be:  solidFill (default), hashedFill,
screenDoorFill, or tiledFill.

A t
To place Clock primitives on the display, coordinates must be used.  Coordinates
refer to positions within the current canvas.  The contents of each box construct is
considered to be a separate canvas with its own coordinate space, thus giving Clock a
hierarchical graphics system.  The Coord data type defines the form of coordinates:

type Coord = (Ordinate,Ordinate).
type Offset = Num.
type OrdinateLabel = Num.

- 33 -



data Ordinate =
    XBaseOffset OrdinateLabel Offset | YBaseOffset OrdinateLabel Offset
  | Left Offset  | Bottom Offset | Right Offset | Top Offset
  | XSomewhere | YSomewhere.

The simplest form of coordinate is the absolute coordinate.  The form (Left 0,
Bottom 0)  is used to specify the position 0 units to the left of the lower-left corner
of the coordinate space.  Similarly, the form (Right 0, Top 0) specifies the upper-
right corner of the coordinate space.  This form of absolute coordinate allows
primitives to be located without knowing the position or size of the coordinate
space itself:

(Left 0, Bottom 0)

(Right 0, Top 0)

(Left 10, Bottom 10)
x

x
(Right (-10),
      Top (-10))

Primitives can be positioned with the At constructor.  For example:

At (Left 10, Bottom 10) (Right (-10), Top (-10)) (Box noView)

would display a box whose size would be adjusted to always be 10 pixels from the
border of the canvas.

As a convenience, the functions:

x xpos = Left x.
y ypos = Bottom y.
origin = (x 0, y 0).

are predefined.  These functions allow simpler forms for coordinates that are
expressed in terms of the lower-left corner of the canvas.

Sometimes, the programmer does not know the position of both coordinates for a
primitive.  For example, when positioning text, it is possible to write:

At (x 20, y 13) (XSomewhere, YSomewhere) (Text “Hello”)

This states simply that the lower-left corner of the text is to be positioned at (20, 13)
- 34 -



within the current coordinate space, and the upper-right corner’s position is not
specified.

As a convenience, the function:

stretching = (XSomewhere, YSomewhere).

is defined.  With this form, text can be simply positioned as:

At (x 20, y 13) stretching (Text “Hello”)

Views
The views constructor allows multiple primitives to be placed in the same canvas.
For example,

Views [
   At (x 10, y 10) stretching (Text “Hello”),
   At (x 100, y 10) stretching (Text “there”)
]

places two text primitives in the same canvas.

In specifying the positions of primitives within a Views  construct, primitive
coordinates can also be expressed relative to the positions of other primitives.  For
example, to place two texts on the display separated by 10 pixels, one writes:

Views [
   At (x 10, y 10) (XBaseOffset 1 0, YSomewhere) (Text “Hello”),
   At (XBaseOffset 1 10, y 10) stretching (Text “there”)
]

The XBaseOffset constructor takes two parameters:  the first is a numeric name for
a position on the display.  In this case, the name “1” is used to refer to the X-position
of the right extent of the text “Hello”, wherever that may be.  The second parameter
is an offset (positive or negative) from that position.  Therefore, the text “there” is
positioned at XBaseOffset 1 10 , which is 10 pixels to the right of the rightmost
position of the text “Hello”.

Line, Arrow, PolyLine
These constructors allow lines and arrows to be drawn.  For example,

Line origin (x 10, y 10)

is a line stretching from the origin to the position (10, 10) in the current canvas.

- 35 -



The constructors LineWidth, LineStyle and LineColour allow the attributes of
lines to be set.  Currently, arrows don’t have arrow heads.

PolyLine allows polygons to be built from a list of coordinates.  The current fill
colour is applied to the region contained by the polyline.

Arrow may have unpredictable effects in the current version of Clock.

SaveProps, RestoreProps
SaveProps saves the current state of all properties (line colour, font, fill colour, etc).
RestoreProps restores the last saved set of properties.  For example, to define a
function to draw a green box around a given view, we would write:

greenBox v = SaveProps (BorderColour green (RestoreProps v)).

Ie, we save the properties prior to changing the border colour, and then restore them
before evaluating v.

Image
The Image constructor allows the inclusion of JPEG images in Clock programs.  For
example, Image “foo.jpg” reads the image contained in the file “foo.jpg”.   Images
are first class Clock views; for example, Box (Image “foo.jpg”) draws a box
surrounding the image.

Crop
Crop clips the given view to fit within the given coordinates.  For example,

Crop (x 10, y 10) (x 30, y 30) (Image “foo.jpg”)

displays the portion of the image contained in the region (10,10) -> (30,30).

Relief
Relief allows the current view to be given the 3D style of relief commonly used in
modern toolkits.  The form Relief “raised” v draws v slightly raised over the
surrounding view; Relief “sunken” v draws v slightly sunken.  Relief properties
include the ReliefWidth, the number of pixels wide the relief shading will be, and
DarkReliefShade and LightReliefShade, which are used to specify the colours to
be used in relief shading.

- 36 -



Predefined View Functions

The last section introduced the low level primitives from which all Clock views are
constructed.  In fact, Clock programmers do much of their view construction using
predefined functions that abstract from the detailed level of the primitives.  These
definitions are all contained in the files $CLOCKSYS/Source/clocklib/viewTypes
and $CLOCKSYS/Source/clocklib/viewUtils.  Reading through these files is a
very useful way of finding out how to write sophisticated view functions in Clock.

Coordinates

x :: Num -> Ordinate
y :: Num -> Ordinate

Allow the specification of coordinates relative to the lower-left corner of the current 
canvas.  Eg, (x 10, y 20) is a coordinate.

xOrigin :: Ordinate
yOrigin :: Ordinate

Return the lower left X- and Y-positions of the the current canvas.

origin :: Coordinate

Returns the lower-left coordinate of the current canvas.

mostHigh :: Ordinate
mostRight :: Ordinate
topRight :: Coordinate

Return the positions of the top-right extent of the current canvas.

    stretching :: Coordinate

Returns a coordinate at an unspecified location.

    noView :: DisplayView

- 37 -



Returns no view at all.  Useful in, for example Box noView, a box containing 
nothing.

Layout

    beside :: [DisplayView] -> DisplayView
    above :: [DisplayView] -> DisplayView

Given a list of display views, returns the views laid out horizontally/vertically 
respectively.  For example, beside [Text “a”, Text “b”, Text “c”] would 
display the text “abc”.

    size :: (Num,Num) DisplayView -> DisplayView

Makes the given view into the specified size.  This is useful, for example, in creating 
a box of a specific size without having to specify its position:  Size (10, 10) (Box 
noView).

   group :: DisplayView -> DisplayView

Introduces a new canvas around the given display view.  This allows a complex 
view to be included into a new view which may have a conflicting coordinate space. 

Shadows

    shadow :: Num -> DisplayView -> DisplayView

Draws a drop-shadow around the lower-left of the given view.  The current fill 
colour is used as the colour of the shadow.

whiteShadow :: DisplayView -> DisplayView
blackShadow :: DisplayView -> DisplayView
greyShadow :: DisplayView -> DisplayView
greenShadow :: DisplayView -> DisplayView

Draws shadows of the named colour.

    upperShadow :: Num -> DisplayView -> DisplayView
    whiteUpperShadow :: DisplayView -> DisplayView

- 38 -



Same idea as above, except the shadows are drawn to the upper-right.

Relief Helper Functions

    motifShading :: Bool -> Num -> DisplayView -> DisplayView

Adds a Motif-style border to the given display view.  The numeric parameter 
specifies the width of the shading.  The boolean parameter if True specifies sunken 
relief, if False specifies raised relief.

    groovyBox :: Num -> DisplayView -> DisplayView

Adds a “groovy” box of two times the specified width around the given display 
view.

Padding and Spacing

    pad :: Num -> DisplayView -> DisplayView

Adds a blank border of the specified number of pixels around the given display 
view.

    paddedText :: Num ->  String -> DisplayView

Returns a display view consisting of the string with a blank border of the specified 
number of pixels surrounding it.

    space :: Num -> DisplayView
    hSpace :: Num -> DisplayView
    vSpace :: Num -> DisplayView

Returns a space of the given size in pixels.  This function is useful for spacing out 
items listed in a beside or above function.  space returns a square space; hSpace and 
vSpace have height and width of 1 pixel respectively.

- 39 -



    spaceApart :: [DisplayView] -> [DisplayView]

Inserts a two-pixel wide space between each element of the given list of views.

    largeSpaceApart :: [DisplayView] -> [DisplayView]

Inserts a ten-pixel wide space between each element of the given list of views.

Grabbing

By default, input is directed to the component whose view is under the tracking 
symbol.  Ie, clicking input is directed to whatever is clicked.  Sometimes, it is 
desirable to explicitly grab inputs when some condition is met.  This grabbing is 
specified in the view language.  For example, the typical implementation for a 
button is:

    view =
        if isDepressed then
            GrabbingMouseButton (Box (Text myId))
        else
            Box (Text myId)
        end if.

Here, whenever the button is depressed, all next mouse button inputs will be sent to 
the button until it is released.  This means that if the user clicks on a button and 
then moves the mouse before releasing, the button “up” input will still be sent to 
the button.

The grabbing directives are:

    GrabbingMouseButton :: DisplayView -> DisplayView

Grabs subsequent mouse button inputs.

    GrabbingMouseMotion :: DisplayView -> DisplayView

Grabs subsequent mouse motion and relative motion inputs.

    GrabbingMouse :: DisplayView -> DisplayView

Grabs subsequent mouse button, motion and relative motion inputs.  This directive 
has the same effect as GrabbingMouseButton and GrabbingMouseMotion 
combined.

- 40 -



    GrabbingKeyboard :: DisplayView -> DisplayView

Grabs subsequent keyboard inputs.

The grabbing directives are stack-based:  if a component grabs a resource currently 
belonging to another component, it takes the resource.  When the second 
component releases the resource, its ownership reverts to the first.

- 41 -



User Inputs

Clock supports a number of predefined user inputs to allow access to events
generated by the mouse and keyboard input devices.  To access these inputs, an
update function must be placed in the event handler taking the input.

Mouse Button
By default, mouse button input is directed to the nearest enclosing event handler
over which the mouse is clicked.

    mouseButton :: String -> UpdateEvent

Registers that a mouse click has been performed over the view of the event handler
taking the mouseButton input.  The string parameter can be “Down”, indicating the
mouse button has been depressed, or “Up”, indicating the mouse button has been
released.  On multi-button mice, all buttons generate the mouseButton input; there
is no way of distinguishing which button was depressed.

Mouse Motion
By default, mouse motion events are directed to the event handler whose view
most tightly encloses the postion at which the mouse motion occurs.  The
granualarity of mouse motion events is dependent on the windowing system; in
most systems, moving the mouse rapidly causes motion events to be dropped,
possible also leading to enter events being missed.

    enter :: UpdateEvent

Indicates the mouse has entered over the view of the event handler taking this
update.

    leave :: UpdateEvent

Indicates that mouse was over the view of the event handler taking this update, but
now is not.

    motion (Num,Num) :: UpdateEvent

Indicates that mouse is now located at the given coordinate within the view of the
event handler taking the update.  The coordinate system of this event handler is
used, so the coordinate (0,0) indicates the lower-left corner of the view.

- 42 -



    relMotion (Num,Num) :: UpdateEvent

Indicates that the mouse has moved by the given number of pixels in the X and Y
direction since the last relMotion update was given.

Keyboard
Keyboard input is directed to the last event handler to grab keyboard input.   If
nobody has grabbed the keyboard, inputs are discarded.

    key :: Num -> UpdateEvent

Indicates that a key has been depressed.  The parameter represents the ordinal of the
key clicked.

    arrowKey :: String -> UpdateEvent

Indicates that one of the arrow keys has been depressed.  The string parameter
indicates which arrow key, and can have values of “Left”, “Right”, “Up” or
“Down”.

    editKey :: String -> UpdateEvent

Indicates that a special key has been depressed.  The string parameter indicates
which key was depressed, and can have values of “Tab”, “Backspace”, “Delete”,
“Escape” or “Return”.

    functionKey :: String -> UpdateEvent

Indicates that a function key has been depressed.  The string parameter indicates
which function key, and can have values of “1” through “35”.

- 43 -



Predefined Updates

The following updates are predefined in the language.  There are currently no 
predefined requests.

All or Nothing

    all :: [UpdateEvent] -> UpdateEvent

In order to permit update functions to return more than one update, the all update 
groups a list of updates into a single update.  All updates are performed, in no 
specified order.

    noUpdate :: UpdateEvent

The update noUpdate indicates that no update is to be performed.  This is 
equivalent to all [].

- 44 -



Known Problems

Clock is still an experimental system, and has a number of known bugs and
shortcomings.  These will hopefully be resolved over time.

Layout
There is a known bug in the layout routine that sometimes causes views to be
allocated more space than they should.  The cases under which this occurs are hard
to describe precisely.  So far, only I have actually come up with an example that
triggers this error.

Type Checking
There is no type checker currently, so most type errors will result in “segmentation
violation” or “bus error” types of crashes.  Note that in functional languages, type
errors include type mismatches on operations, and providing too many or too few
parameters to functions or constructors.  Tracking down type errors is not actually
all that hard – use the trace option in cw to locate the component and function in
which the crash occurs, and use the ‘debug’ function to check that you are indeed
getting the values you expect at various points.

2.5 D
Currently, 2.5 D layout is supported through an awkward and inefficient
mechanism.  This is due for a total overhaul.  In the current system, if you try
placing objects in a layered manner, you may get unpredictable results.

Output
There is no way in Clock of drawing circles, elipses, or splines.

Reals
Clock currently provides no support for real numbers.  The Num type is currently
integer.

External Interface
There is currently no way of accessing code written in other languages or the
environment in general.

- 45 -



Loading Libraries
Currently, when you load a library in ClockWorks, you get access to the class
definitions in the library, but not to the actual code of the library components.  If you
run programs using library components, you will get error messages of the form:

    Clint (Fatal Error):  Cannot open '/cs/u/graham/EClock/Programs/temp/Depressed'

To create links to the code of the library components, you must:

• cd to the project directory
• perform the command:   cplib libraryName

For example, if the project is called ‘MyProject’, and the library name is ‘Buttons’,
then type:

• cd $CLOCKSYS/Programs/MyProject
• cplib Buttons

It is often convenient to include $CLOCKSYS/Programs in your cdpath.

- 46 -


