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Abstract

Component-based programming refers to a system in which applications are built
by creating frameworks of software components which interact with each other.
Component-based programming has the potential to overcome many of the problems
currently associated with the development of interactive applications.   The most important
aspect of a component-based application is its component structure or architecture.  These
structures become large and complex as applications grow.  Developers are not able to
manage this complexity without appropriate tool support.

This thesis makes use of Clock, a component-based system designed for the
creation of interactive applications.  In Clock, programs are structured as a hierarchy of
components.  A detailed task analysis of the Clock programmer was conducted to identify
the requirements for the development of a programming tool to support the task of creating
and manipulating Clock architectures.  The first version of the ClockWorks (the new Clock
Programming Environment) has been implemented and tested with its users.  It provides
graphical representation and direct manipulation of Clock architecture structures.

Results of user testing and evaluations of ClockWorks illustrate that it has met
seven of the ten requirements identified.  It has been successful in assisting developers in
the task of creating and managing Clock architecture structures.  The ideas used in the
creation of ClockWorks could be modified so that they could apply to other component-
based programming systems.
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Chapter 1: Introduction

The component-based style of programming has the potential to overcome
problems commonly associated with the development of interactive computer software.
However, component-based systems have generally been unable to realize this potential.
Component-based programming involves building applications as frameworks of reusable
software components [Nierstrasz et al. 1992].  As programs grow, these frameworks
become complex and difficult to manipulate and understand.  It is possible to overcome this
difficulty of component-based programming by providing appropriate software
development tools.

To demonstrate this point, a programming environment has been developed for
Clock, a component-based system which supports the development of interactive software
[Graham 1992].  The design of this environment was based on requirements identified
through an evaluation and task analysis of the Clock system.  The resulting program
development environment, called ClockWorks, has been tested and shown to meet its
requirements.

This chapter will first explain the difficulties associated with developing interactive
software and how the features of component-based programming can overcome these
problems.  It will then explain the problems associated with component-based
programming and discuss how these problems can be overcome.  The final sections will
explain the goals of this thesis and provide a summary of this document.

1.1  Interactive Software
Since the use of interactive software is widespread, attention must be given to

supporting its development.  Research has shown that software which is easy to use and
learn is generally difficult to develop [Myers 1993].

A survey conducted by Brad Myers and Mary Beth Rosson [Myers and Rosson
1992] drew some conclusions about the average amount of code and development time
spent on the user interface portion of the systems surveyed.  Some of the results of this
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survey are summarized in the following tables.  Figure 1.1 illustrates the percentage of
resources such as time and source code which were taken by the user interface of the
systems.   Figure 1.2 shows what percentage of the systems surveys were developed with
each kind of software development tool.

Resource Percent Taken by User Interface

Code 45 %

Design time 45 %

Implementation time 50 %

Maintenance time 37 %

Figure 1.1 Percentage of software development resources taken by the user interface portion of applications.
[Myers and Rosson 1992]

Development Tool Percentage of systems surveyed

Toolkit 34 %

User Interface Management System 27 %

Interface Builder 14 %

No tools 26 %

Figure 1.2 Percentage of systems surveyed which used each kind of development tool. [Myers and Rosson
1992]

Common problems reported by the developers surveyed included:
• getting users’ requirements
• writing help text
• achieving consistency
• learning how to use the tools
• getting acceptable performance
• communicating among various parts of the program

The results of this survey illustrate that the tools commonly used for the development of
interactive software do not adequately meet the needs of developers.

This section will first discuss what makes interactive software difficult to develop.
It will then go on to explain some factors which are required in order to successfully
develop interactive software.

1.1.1 Problems Associated With The Development of Interactive Software
The difficulties associated with developing interactive software fall into two

categories.  These will be discussed in this section.
The first category includes problems associated with specific aspects of interactive

software.  In an interactive application, the user should control the order in which tasks are
performed and should, therefore, not be forced to perform a series of required tasks in a
specific order.  The program should be able to communicate with the user through
graphical representations which can display semantic feedback in response to user actions.
Interactive software usually allows users to interact through input devices such as mice,
pens, or touch screens.  The concept of software development and the tools to support it
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have evolved to overcome these new requirements [Myers 1992].  New software
development tools such as Toolkits, user interface development systems or interface
builders have been used for the creation of interactive software.

The second category includes problems associated with specific tools meant to
support interactive software development.  Toolkits provide libraries of interaction
techniques, routines, and classes which can be used to construct interactive software.
Toolkits often contain so much information that they are difficult to learn and to use.  User
interface development systems are an attempt to integrate collections of tools, toolkits and
libraries for the development of interactive software.  The problem with such systems is
that they are large, slow, difficult to develop and difficult to port between systems [Myers
1992].  Application or interface builders provide graphical editors through which the
developer may specify the appearance of the user interface.  While these tools are useful for
allowing graphical specification of the interface, they limit the developer’s choice of
interface.

Knowing these difficulties will not necessarily help find a solution.  A list of the
requirements of interactive software is needed to have a useful perspective from which to
propose a solution.

1.1.2 Requirements for the Development of Interactive Software
The goal of interactive software is to satisfy the needs of the user community by

matching user tasks with the user interface of applications.  Interactive software should be
both easy to use and easy to learn.   Strategies for program design and development have
evolved in response to these new usability requirements.  Programs which must satisfy the
needs of a community of users cannot be defined, designed and developed in the traditional
linear fashion because of the difficulty in determining the needs of the user community .  In
linear software development models, user testing does not occur until the program has been
almost completely designed and implemented [Hartson and Hix 1989].  Modifications at
this stage of development are very costly.

Developers of interactive software must include the users in the design phases, and
users must be able to test the system as soon as possible after the initial interface design.  In
iterative design methodologies, the user community evaluates the design which is then
modified and re-evaluated until the user community is satisfied.  In some cases, a prototype
of the system is built and tested with the users in the same fashion.  In either case, the user
community should be able to see what the system will look like and ensure that it will
satisfy their needs before it is fully implemented.  Many  interactive applications are
developed incrementally so that portions of the interface can be tested as they are
implemented.

An additional complexity added to program design and implementation is the
definition of the user interface portion of the code.  This requires the ability to define
graphical structures and direct manipulation style interaction.

There are also certain features which are now considered a standard part of any
interactive application.  These features include the ability to undo, abort, or cancel
commands, and facilities for on-line help and information.

All of these factors contribute to the problem of developing usable, interactive
applications which support the needs of their intended user community.  The best way to
ensure that such requirements are met is to provide development tools which address these
issues.

Since interactive software has become an essential part of the computer software
industry, development tools and methodologies need to be reorganized to support the
requirements of this new style of software.  Component-based software development is a
new idea which is currently attempting to meet these requirements.
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1.3  Component-Based Software Development
Component-based software development is a term which is loosely defined to

include any system which involves building applications as a framework of previously
defined software components [Nierstrasz 1992].  For the purpose of this thesis, the term
will be defined more precisely.  This definition is based upon a study and comparison of
several different component-based systems.  Several of these systems are discussed in
Chapter 3.

1.3.1  An Explanation of Component-based Software Development
In component-based software development, applications are built as frameworks of

software components which communicate with each other.  These frameworks are usually
called architectures.

A component is some functional part of an application.  Each component has a
specific purpose and can be defined with some interface through which it communicates
with other components and the user.  Depending upon the particular component-based
system being used, components are used to define different aspects of applications such as
interaction techniques (buttons, menus etc.) or data structures.

For example, a component could be used to represent a button.  The definition of
this component would define its appearance as well as its interface with other components
(see Figure 1.3).  The button receives the message that it has been pressed, and in
response, it tells its state component to change and sends a message that it has been
pressed.  This message would trigger the action associated with the button.

Status
setPressed

setReleased (pressed or 
released)

(from Button)

Button

pressed setPressed

doAction

(to Status component)

(from user)

setReleased

(to another component)

Figure 1.3 A Button component and Status component.  The Status component holds the state of the
button.  Messages are represented as arrows.

A hierarchy of components can be used to define a more complex part of an
application.  For example, a dialog box or screen might be defined a collection of
components each representing a different functional part of the user interface.  In this way,
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complicated components are defined in terms several more specific components.  The
developer can define each component separately and then join them in a hierarchy to build
an application.

Component-based programming systems generally provide some architectural
model which is the basis for how components are structured to create applications.  The
construction of an application consists of defining components and connecting them to
form an architecture.  Applications can be created incrementally by defining and testing
each component separately before connecting them.

Libraries of previously-defined components can be maintained so that applications
can be constructed without the need to define every component from scratch.  One of the
main advantages of component-based programming is its ability to support software reuse.

1.3.2 How Component-based Programming Can Overcome Problems
Associated with Interactive Software Development

Component-based programming has the potential to overcome many of the
problems associated with the development of interactive software.

Each component responds to its own events and triggers events when necessary.
Input from the user is handled directly by the component which is defined to accept that
input.  Therefore, the user of an application controls the order in which tasks are
performed.  The application can handle input events in any order.

One way in which a component can respond to input from the user is by changing
its state or appearance.  A component can also tell other components to change their state or
appearance.  This facilitates the implementation of semantic feedback.

Component-based programming is ideal for supporting the major requirement of the
developers of interactive software - the need to support the tasks of their users.
Components can be implemented and tested outside the context of the entire application.
With this feature, interactive software can be developed incrementally.  Modifications can
be made before the entire application has been built.

Component-based programming systems are ideal for rapid prototyping.
Developers can quickly define simple versions of their components, or small parts of their
applications which can be executed and tested with users.  Applications can be easily
modified by swapping components or modifying their definitions.

Component-based programming is modular.  Components can be replaced,
removed, or modified with very little impact on the rest of the component hierarchy.

Component-based programming systems have features which make them ideal for
developing interactive applications.  However, without adequate support for managing the
complexity of the component structures which define applications, component-based
programming systems are too difficult to use.  This prevents them from realizing their
potential.

1.3.3 Problems Currently Associated With Component-Based Programming
The most important part of any application built with a component-based

programming system is the architecture structure.  This structure defines the way in which
the application’s components are connected and the way in which they communicate with
each other.  The benefits listed in the previous section depend on the ability of the software
developer to understand and manipulate this structure.

The architecture structure of a component-based application models a large amount
of information.  As applications grow larger, this structure becomes larger and more
complex.  The problem with component-based programming is that an application does not
have to be very large before its architecture structure is difficult to understand and manage.
When this happens, the developer will have a hard time manipulating the program.
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If component-based programming systems do not provide programming tools
which help developers manage the complexity of their program’s architecture structures,
the benefits of this style of programming are lost. 

One of the main goals of component-based programming is to take advantage of its
potential to support software reuse.  In order to attain this goal, component-based
programming systems must provide adequate tool support for developers:

“effective reuse of software presupposes the existence of tools to support
the organization and retrieval of components according to application
requirements, and the interactive construction of running applications from
components ... since the design of reusable frameworks is an iterative,
evolutionary process, it is necessary to manage software and software
information in such a way that designs and implementations can evolve
gracefully.” [Nierstrasz 1992]

It is believed that component-based programming has the potential to be an ideal
method for building interactive applications and that this potential can be realized by
providing the appropriate development tools.

1.4.  Goals
The goal of this thesis was to define a software development environment to help

developers of component-based applications manage the complexity of their program
architecture structures.  The ClockWorks is a tool which allows developers to build and
manipulate the architecture structures which define Clock applications.  The first version of
ClockWorks has been implemented and tested with its users.  Conclusions have shown that
it has managed to overcome many of the problems which were associated with the ability to
manage program architecture structures.

Although ClockWorks was developed specifically for the Clock system, the
techniques and ideas used for its design and implementation are applicable to other
component based systems.  The similarities between Clock and other component-based
programming systems will be discussed in chapter 3.

Care has been taken to ensure that the environment meets the needs of its users. The
Clock Methodology was designed specifically to support the development of interactive
software with the Clock system.  This methodology was used to develop ClockWorks for
two reasons: first, to determine how useful this methodology is for creating effective
interactive software, and second to gain a better understanding of this methodology.  This
understanding is important because it is the basis for all programs developed with the Clock
system.  ClockWorks supports part of this methodology as is  explained in Chapter 2.

1.5.  Outline
This section gives an overview of the chapters of this thesis as well as a summary

of the various stages involved in this work.
Chapter 2 introduces the Clock system and the Clock program development

methodology. Clock is a component-based programming system which defines a specific
architectural model which is used to construct interactive software. Chapter 3 sets the
context of this research by describing related work.  Several component-based
programming systems are briefly described in order to provide a basis for comparing them
with Clock.  This section also describes several software development tools which
provided some ideas used in the development of ClockWorks.
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Chapter 4 describes how the requirements for ClockWorks were defined.  An
evaluation of the existing Clock system and a detailed task analysis of its developers was
conducted.  The results illustrated that many problems with Clock were associated with
developer’s inability to understand and work with program architecture structures.  Chapter
5 describes how ClockWorks was designed specifically to support the requirements
identified in chapter four.  Chapter 6 describes some of the internal details of the
implementation of ClockWorks.  Chapter 7 presents the results of user testing and
evaluation which took place throughout the development of ClockWorks.  Chapter 8 draws
conclusions for this thesis, explains its implications, and describes future plans for the
programming environment of the Clock system.
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Chapter 2: A Description of Clock

Clock is a component-based programming system supported by a methodology  for
the development of interactive applications.  There are currently many obstacles which
prevent Clock from being a successful system for creating interactive applications.
However, it is still in the development stages and has the potential to be an effective
system.

The current version of Clock is a prototype.  To create an application, developers
declare and define each component class to be used.  The program’s architecture is then
defined in the Clock architecture language.  Components in Clock are organized according
to an architectural model,  and defined in a functional programming language.

There are no interactive tools through which developers can create Clock programs.
All components are declared and defined in text files.  The architecture structure is also
defined in a text file.  The Clock compiler reads these files to create an application.  A tool
called Clock View can be used to read the architecture file and display it graphically.  This
tool was designed to support the documentation of Clock programs and not as a
development tool.

Without interactive development tools, the Clock system is difficult to use and to
learn.  Architecture structures are difficult to understand and manipulate.  ClockWorks has
been designed specifically to overcome these problems.

The Clock methodology is well understood and based upon other successful
interactive software development methodologies [Hartson and Hix 1989]. ClockWorks
was designed using this methodology for two reasons:  first, to prove that successful
interactive applications can be built with the Clock methodology, and second to gain
experience with the methodology so that ClockWorks can better support the tasks of its
users.

In this chapter, the development of an Interactive Calendar program will be
explained in terms of the Clock program development methodology.  In this way, both the
Clock system and its methodology will be clearly illustrated.

2.1 Clock Methodology
Figure 2.1 illustrates the structure of the Clock development methodology.
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User Needs 
Analysis

User Interface 
Design

Task-Oriented 
Specification

Architecture 
Specification

Prototype 
Implementation

guidelines

heuristic evaluationuser testing

cognitive 
walkthrough

Figure 2.1 The Clock Methodology.  The steps indicated in this diagram are performed sequentially,
however, arrows indicate iterative loops where the results of user testing could lead to modifications to the
program’s user interface design.

The methodology begins with user needs analysis to identify the type of application
the users require.  The user interface of the application is designed from these
requirements.  This design is the most important stage in the Clock methodology as the
user interface is the most important part of any interactive program.  The users must be able
to learn and use the application.  Their satisfaction depends upon the quality of the user
interface design.  It is for this reason that all the iterative loops in this methodology result in
modifications to the User Interface Design.

The task oriented specification is the stage in which the user interface design is
formally evaluated through a cognitive walkthrough.    Once the user interface design is in
an acceptable state, the architecture of the application can be defined.  It is this stage of the
methodology which will be supported by the Clock program development methodology.

It is possible to combine architecture specification with prototype implementation in
the Clock system.  The application can be defined incrementally.  Throughout the
implementation, the application can be tested and the design may be modified in response to
this testing.

The following sections will explain each phase of this methodology in more detail
by illustrating the development of an Interactive Calendar program.
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2.2 User Needs Analysis
The first phase in the Clock methodology is the User Needs Analysis. The goal of

this phase is to become familiar with the users, their environment, and their tasks.  The
most important part of this phase is the task analysis.

The task analysis breaks the user’s tasks into a hierarchical structure of goals, sub-
goals and individual tasks [Carey et al. 1989].  The hierarchical task analysis for the
Interactive Calendar is illustrated in Figure 2.2.

{Select a Year

Select a Month

View Next Month
View Previous Month

Tasks:

Sub-goal
View a Year

{Select a Year

View Next Year

View Previous 
Year

Tasks:

{Select a Year

Select a Week

View Next Week
View Previous Week

Tasks:

Main Goal
View Calendar 

Information

Sub-goal
View a Month

Sub-goal
View a Week

Task Analysis:
Interactive Calendar

Select a Month

Figure 2.2  Hierarchical task analysis for the Interactive Calendar.  The lowest level of this hierarchy defines
individual tasks performed by the user.

Results from this task analysis are used to define the requirements of the application
being developed.  Each task is evaluated to document information which may be relevant to
the system being developed.  Relevant information might include the frequency at which
this task is performed, or current problems associated with this task  [Booth, 1989].  The
tasks analysis is conducted by the developer and the user community to ensure that it is
correct and complete.
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2.3 User Interface design
The user interface design is based on the requirements defined in the user needs

analysis.  This design should be represented so that the users can understand what the
proposed system will look like and how it will be used.   They have the opportunity to
comment on the design and participate in its fine-tuning. This process is called participatory
design. Modifications required by the users can be made easily and inexpensively because
no implementation has begun.

The user interface can be designed and evaluated according to user interface
guidelines.  These guidelines provide information about how user interfaces should be
designed.

The User Interface design of the Interactive Calendar was sketched using a
computerized drawing program.  The design sketch of the month view screen is shown in
figure 2.3.   Since it was a fairly simple application, these drawings along with some very
simple explanations were fairly self-explanatory.
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Select a specific month by 
selecting it along bottom of 
the screen.  Currently 
selected month will appear 
inside an oval.

Apr

21

Current date will appear 
inside an oval

Click on Arrow keys to 
move forward
or backwards 1 year or 
month

1993

April

Click on expand icon 
beside any week to see
the week at a glance

1993April

M      T        W       T        F        S        S

1
Week

2

3

4

5

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 22 23 24

25 26 27 28 29 30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

21

Month View

1

Figure 2.3 Design sketch of the  month view screen of the interactive calendar program.  The complete user
interface design for this application included sketches for the week and year view screens as well.

2.4 Task oriented specification
The task oriented specification is a detailed, methodical evaluation of the user

interface design which is performed from the perspective of the user.
The task oriented specification makes use of a language for representing user

interactions with the computer.  This language is called User Action Notation (UAN)
[Hartson et al. 1990].  Every goal, sub-goal and task identified as part of the User Needs
Analysis is represented in this language.   The UAN description of the task “View a
Month” from the hierarchical task analysis of the Interactive Calendar is shown in figures
2.4 and 2.5.
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Tasks in UAN are represented in a chart with several columns.  The first column
lists the user actions using special symbols.  User actions are written in the order they are
to be performed.  Unless otherwise specified, each task should be performed to completion
before the next one is begun.  Special UAN symbols have been defined to indicate more
complex sequencing of tasks, such as tasks that can interrupt each other.  The second
column explains the semantic feedback provided by the interface in response to a specific
user action.

Task: View Calendar Information

User Action Interface Feedback Interface State

(View (year) OR

View (month) OR

View (week))*

Figure 2.4. UAN Description of task  View Calendar Information   This task represents the main goal at
the highest level of the hierarchical task analysis.  The tasks are separated by OR because any one of the
tasks may be performed, they do not need to be performed in order.  The * symbol indicates that the tasks in
the parentheses may be repeated any number of times.   There is no information in the other columns
because the detail of these tasks would be expanded elsewhere.  The values year, month, and week are
parameters of the tasks and represent the year, month or week the user would like to view.
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Task: View (month)

User Action Interface Feedback Interface State

if Screen=YEAR

SelectMonth(month) MonthScreen(month) Screen = MONTH

CurrentMonth = month

end if

if Screen=WEEK

~[GoBack] t [GoBack]!

s [GoBack]-!

MonthScreen(CurrentMonth)

Screen = MONTH

ShuffleMonth(month)

end if

if Screen = MONTH

ShuffleMonth(month)

end if

(ViewNextMonth OR

ViewPrevMonth)*

Figure 2.5  UAN description of task View(month)   The t symbol represents the task of pressing the mouse
button while the s symbol represents the task of releasing the mouse button.  Since the user can be in any
one of the three screens defined as part of the Interactive Calendar, an interface state variable called Screen
will always hold the name of the currently active screen (YEAR, MONTH, or WEEK).  The state variable
CurrentMonth holds the value of the currently selected month.  These state variables are set in response to
user actions.  This task is described from the perspective of either of the three screens.  In the interface
feedback column, the Macro MonthScreen(month) indicates that at this point, the month screen will be
activated to display the specified month.  The tasks ShuffleMonth(month) , ViewNextMonth ,
ViewPrevMonth and SelectMonth would each have their own UAN descriptions.

The process of creating a complete UAN description of a user interface is an
excellent way of evaluating the user interface for consistency, completeness, and usability.
The UAN description matches the hierarchical task analysis.  In this way, the UAN will
clearly identify any tasks which are not supported by the user interface.  The UAN can also
identify inconsistencies in the interface design which may confuse the user and make the
system more difficult to learn or use.  The UAN might also expose errors or gaps in the
user interface.

This evaluation, along with the comments from the users will allow a developer to
create a good, and acceptable user interface.  There should be no need to make major
modifications to the design once implementation has begun.  Once the user interface is
acceptable to the users, implementation can begin.  The next two stages of this
methodology are specific to the Clock system.

The task-oriented specification is the last part of the Clock methodology which is
done from the perspective of the user of the system being built.  Before the developer can
go on with implementation, a transition must be made from the user perspective to the
developer perspective.  The UAN leads naturally to this transition.  The detailed
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information about the user interface state which is included in the UAN can be used to
begin the process of breaking the user interface design into components which can be
connected to form a Clock Architecture.  A rigorous approach to developing Clock
architecture structures from UAN specifications was defined by Damker [Damker 1992].

2.5 Architecture design
The Clock Model describes how programs are broken down and constructed from

components in the Clock system.
There are two types of components in Clock, event handlers and request handlers.

Event handlers define some functional component in terms of its response to events, its
appearance, and its communication with other components.  A request handler holds a data
structure and defines its initial value and its response to events.

A program is represented as a hierarchical tree built from components.  Each node
in the tree is a single event handler with a any number of request handlers attached to it.
The architecture definition for the month view screen of the interactive calendar is shown in
Figure 2.6. A graphical representation of this structure is shown in Figure 2.7.
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subview monthView =
eh monthView : MonthView

subview monthShuffle =
eh monthShuffle : Shuffle

rh id : Id
subview control =
eh rightArrow : Button

            rh id : Id
            rh status : Status
         end eh
      end eh
      subview yearShuffle =
      eh yearShuffle : Shuffle
         rh id : Id
         subview control =
         eh leftArrow : Button
            rh id : Id
            rh status : Status
         end eh
          end eh
      subview weeks =
      eh weeks : Weeks
         rh id : Id
         subview days =
         eh days : Days
            rh id : Id
            rh status : Status
         end eh
         subview weekSelectors =
         eh weekSelectors : Button
            rh id : Id
            rh status : Status
         end eh
      end eh
      subview monthBar =
      eh monthBar : MonthBar
         subview month =
         eh month : Button
            rh id : Id
            rh status : Status
         end eh
      end eh
end eh

Figure 2.6 Architecture Description of the Month View screen.  In the original Clock system, the
architecture was defined in the Clock Architecture Language.
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Figure 2.7 Graphical Representation of the Architecture Structure  This picture is produced by the Clock
View Tool.  Request handlers are drawn to the right of event handlers.  Nodes with no request handlers
showing have been closed so that the request handlers are hidden from view.

The month view screen is made up of four different components which are the
subviews of the MonthView event handler at the top level of this architecture.

The month bar allows the user to select the month by pressing a button.  It creates
one Button event handler for each month.  The MonthBar event handler receives input from
its children whenever one of them is pressed.  It then sends an event to indicate which of its
children was pressed so that the current month can be set accordingly.

The Weeks event handler creates the five weeks drawn on the screen to form a
month.  The MonthView event handler creates five instances of its weeks subview.  Each
week is made up of two subviews, its days and its week selector button.  Each day
displays its own date on the screen, the week selectors are Buttons which allow the user to
switch to the week view screen.  These components interact with a request handler which
computes the date of a day given its week, month, and year.  This request handler is
attached to the parent of MonthView.

The last two subviews of the month view screen are both Shuffle components.  The
Shuffle component is used to move forward or backward through the years or months. It is
made up of two Buttons, one causes the Shuffle to increase the current year or month while
the other causes it to decrease the current year or month.  The Shuffle interacts with request
handlers which store the current year and month.  These request handlers are attached to the
parent of MonthView.

In this section of the architecture tree, there are two different request handlers.  The
Id stores a string which is used as an identifier.  In cases where several instances of a
subview are created, each one is passed a different value which makes them unique.  This
value is saved in the Id request handler for components that need access to their identifier.
In this case, any component which draws a label on the screen, saves this label in its Id
request handler.  The Status request handler is part of the definition of a button.  It holds a
Boolean value to indicate whether the button is in a pressed or released state.
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A tool called Clock View,  is able to read a file containing the architecture
description (see Figure 2.4). It can then display the tree graphically (figure 2.5).  This tool
was designed to assist in the documentation and explanation of Clock programs rather than
to assist developers.  It does not allow the developer to modify the architecture of the
program.

There are three types of events which are used to allow components to communicate
with each other.  Inputs come either from the user (mouse or keyboard input) or they are
passed from one event handler component to another.  Requests are sent by event handlers
in order to retrieve a value from a request handler.  Updates are sent from event handlers in
order to modify the value stored in a request handler.  Updates can also be sent to event
handlers as inputs.  The complete architectural detail for a Shuffle component is shown in
figure 2.8.
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Figure 2.8  Full detail of the Shuffle component.   In this representation, the inputs, requests and updates
are drawn as arrows going into or coming out of the other components.  Arrows on the left side are handled
by the component, and arrows on the right side are used or sent by the component.  An arrow with 2 heads
is a request, an arrow with a single head is an update or input.  Inputs are simply updates which are handled
by event handlers.

Most of the requests and updates are used within a component group, allowing an
event handler to interact with its own request handlers.  Each arrow is drawn once from the
component which makes the input request or update, and once into each component that
receives it.

The Status request handler takes the request isSelected.  This request is sent by an
event handler to determine whether it should draw itself in a selected or unselected state.
The select and unSelect updates handled by the Status request handler set its value to
selected or unSelected.

The Id request handler takes the request myId which asks for its value.  This is
used by the event handler components to draw their label on the screen as well as to
identify themselves to other components.  The setMyId update handled by the Id request
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handler is called when the event handler is created and  is used to set the Id to the value
passed to the subview when it is created.

The remaining inputs, updates and requests are used to define the way the
components interact with each other.  The Button event handler takes an input from the
mouse button and as a result makes the update doAction.  When this update is called, the
button sends the value of its Id as an argument.  This update triggers the function which is
associated with the button.  The doAction update sent by each button is received as an input
by the Shuffle event handler.  In response to this input, the Shuffle sends either an increase
or decrease update.  The choice depends on the Id which is sent as a parameter to the
doAction input .

When the Shuffle component makes an increase or decrease update, it sends its Id
along with it.  These updates are handled by request handlers which store the current year
and month.  Depending on the Id sent from the Shuffle component as part of the increase or
decrease updates, either of these request handlers will change its value.  Clock will then
update any component which makes requests to these values.  These components are re-
drawn at this time.

Components in the architecture tree are instances of component classes.  Each class
has a declaration.  Figure 2.9 shows the declaration file for the Button event handler.
Figure 2.10 shows the declaration file for the Id request handler.

Each individual input, request, and update is defined as a function in the Clock
language.  Each of these functions should have a type signature to indicate the type of its
arguments and the type returned by the function.  Figure 2.11 shows the type signatures
for several updates and requests.

A Clock architecture specification consists of a description of the architecture
structure, a declaration for each component class, as well as a type signature for each input,
update, and request.  Once the architecture design is complete, each component can be
defined in the Clock Language.

% class declaration: Event handler Button
ehClass Button

inputs mouseButton
requests myId, isSelected
updates setMyId, select, unSelect, doAction

% class declaration: Event handler Shuffle
ehClass Shuffle

subviews leftArrow, rightArrow
inputs doAction
requests myId, year, week, month
updates increase, decrease, setMyId

Figure 2.9 Button event handler declaration.  Each line in the declaration contains a list of names.
Subviews are the names of an event handler’s children.  Each of these children can be instantiated with event
handlers of any class.  The last lines are the names of the inputs accepted by the class and the requests and
updates sent by this component.
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% Class declaration: request handler Id
rhClass Id
    requests myId
    updates setMyId

% Class declaration: request handler Status
rhClass Status

requests isSelected
updates select, unSelect

Figure 2.10  Id request handler declaration.  Each request handler class declaration lists the names of the
requests and updates which it handles.

request myId :: String
request isSelected :: Bool

update select :: UpdateEvent
update unSelect :: UpdateEvent
update setMyId :: String -> UpdateEvent

Figure 2.11 Request and update type signatures.  All inputs and updates are declared as updates.  They
always return the type UpdateEvent which is pre-defined in Clock.  The updates select and unSelect have no
arguments, but the update setMyId takes one argument of type String.  These type declarations are generally
included with the declarations for each class.

2.6 Implementation
The fourth phase in the Clock methodology is the implementation (see figure 2.1).

Once the architectural model of a Clock application or some part of a Clock application is
complete, the implementation is fairly simple.  Each component class is simply defined in
the Clock language.  Clock is a functional language, so each component’s definition
consists of a collection of functions.  Each input, request, or update received by a
component is handled by a function.  Figure 2.12 shows the event function which
responds to the doAction update received by the Shuffle component.

The initially function defines any actions to be done when the component is created.
The invariant function is included so that the appearance of a specific component is always
consistent with its state.  The invariant function usually depends upon state values for the
components which are stored in request handlers.  The invariant function is always true, so
when the value of a request handler is changed, the invariant function may change the
appearance of the component.  The initially and invariant functions for the Shuffle
component are shown in Figure 2.13.

The view function defines the appearance of the event handler component.  The
view function for the Shuffle component is shown in Figure 2.14.

A request handler component defines a function for each update and request that it
handles.  Since each request handler holds a data structure, they each have a state whose
type is declared when the request handler is defined.  Figure 2.15 and 2.16 show the
definitions of the Id and Status request handlers.

A standard update function takes the request handler’s state as a parameter and
returns the new state.  Other parameters are defined by the developer.  The name of an
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update function is the name of the update it handles plus “Updt”.  Therefore the function
which handles setMyId is called setMyIdUpdt.

A standard request function takes the state as a parameter and returns whatever
value was requested.  The name of a request function is always the same as the request it
handles plus “Req”.  Therefore the function which handles the myId request is called
myIdReq.

doActionUpdt "<<" =
decrease myId.

doActionUpdt ">>" =
   increase myId.
doActionUpdt _ =
   noUpdate.

Figure 2.12 Event function for the doAction update handled by the Shuffle component.  The definition of
this function has three equations,  each corresponding to a different argument.  The third equation acts as a
default which is called if the doAction function cannot match its argument to the patterns in the first two
equations.  If doAction is called with the argument ‘>>‘, it then calls the update increase, if the argument is
‘<<‘  then the decrease update is called.

initially n =
   setMyId n.
invariant =
   noUpdate.

Figure 2.13 The initially and invariant functions of the Shuffle component.  The argument to the initially
function (here called n) is passed to the component when it is created.  On creation, the Shuffle component
tells its Id request handler to set its Id to n.  The invariant function is not used in the Shuffle component, so
it calls the pre-defined update noUpdate which does nothing.
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theLabel =
   if streq myId "Year" then
      NumText year
   elsif streq myId "Week" then
      Text "Week"
   else
      Text month
   end if.

view =
   At origin stretching (
      above [
         beside [
            space 20,
            Font veryLargeBoldItalicText (
               theLabel
            )
         ] ,
         beside [
            control "<<",
            control ">>"
         ]
      ]
   ) .

Figure 2.14 View function of the Shuffle component.  In this example, the view function calls another
function called theLabel.  This function has been defined for convenience and it is not one of the functions
required to define an event handler.  This function creates the label which is part of the Shuffle component.
The Id of the Shuffle component will either be “year” or “week”.  If it is “Year”, then the label will be
numeric and the pre-defined Clock function NumText will be used to create it.  If the id is “Week”, then the
label is text and the pre-defined Clock function Text will be used to create it.  The view function places a
label above its subviews  using a pre-defined Clock function  above.  The label places 20 spaces beside
theLabel .  The label is drawn using the font veryLargeBoldItalicText.  The subviews are created by calling
a function which is the name of the subview and sending it a particular argument.  The Shuffle component
has one subview (control).  It creates two instances of this subview and puts them beside each other with
the pre-defined Clock function beside.  The entire component is drawn starting at the origin, its size is
defined as stretching.  This means that it will be drawn large enough to hold all of its graphical elements.
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% Request handler definition: Id
type State = String.

setMyIdUpdt _ t = t.

myIdReq s = s.

initially = "noId".

Figure 2.15 Clock definition of the Id request handler. The state is the actual data structure stored in the
request handler.  The Id request handler holds a string identifier, so its type is String.  The setMyId function
takes a string, which is the value to set the Id.  The  update function does not use its first argument because
its result does not depend on the current value of the request handler.  It simply sets the request handler’s
state to the value of its second argument.   The myId function returns the state of the request handler in
response to the request.    The initially function is called when a request handler is created.  It has no
parameters and simply returns the state of the request handler.  In this case, the initial value of the Id request
handler is set to  “noId”.

% Request handler definition: Status
data State = Selected | NotSelected.

selectUpdt   _ = Selected.
unSelectUpdt _ = NotSelected.

isSelectedReq s =
   case s of
        Selected    -> True
      | NotSelected -> False
    end case.

initially = NotSelected.

Figure 2.16 Clock definition of the Status request handler.  The state of the Status request handler is a
specially defined type which has only two values: Selected or NotSelected.   The functions which handle the
select and unSelect updates set the state to Selected or UnSelected.  The function which handles the
isSelected request, returns a Boolean value.  It returns either True or False depending upon the value of the
request handler.  When the Status request handler is created, it is NotSelected.

When a Clock application is run, the component classes are instantiated.  Event
handlers respond to inputs by making updates.  Whenever an event handler makes an
update, the update travels up the tree to the appropriate component.  The function which
responds to this update is triggered.  The effects of the update then trickle back down the
tree.  Any event handler which makes a request to that request handler is re-computed.  Its
view and invariant functions are triggered.

Figure 2.17 shows the Interactive Calendar application running under the Clock
system.
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Figure 2.17 The month view screen of the Interactive Calendar Program.

When creating Clock applications, the developers generally work incrementally,
creating individual components and then connecting them to form entire applications.  Once
the application has been implemented, it can be given to the users to be evaluated and
tested.  Several methods for conducting user testing were evaluated by Jeffries [Jeffries et
al. 1991].  Apple computer publishes a set of guidelines for developing applications.
These guidelines include a list of ten steps for setting up and conducting user observations
[Gomell 1990].  Any of these methods may be used to test the user interface once it has
been implemented.  Results of these tests could lead to modifications to the user interface
design and updates to the application.
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2.7 Conclusion
The Clock methodology was designed specifically for the creation of Clock

programs.  The design of ClockWorks will follow the steps of this methodology to ensure
that it meets the needs of its users.

The Clock system has the potential to make interactive applications easier to
develop.  Applications can be developed quickly and easily.  They can also be modified by
changing the components used to create the program’s architecture.  Libraries of reusable
components can be designed and accessed by developers.

As will be shown in the next chapter, the current version of the Clock system has
not proven to be very successful in its goal of making interactive applications easy to
develop.  This is mainly due to the lack of adequate tools to support the creation and
modification of the architecture structure.
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Chapter 3: Related Work

Although the ClockWorks system developed for this project was designed and
implemented specifically for Clock, its scope is not limited to Clock.  A study of several
component-based programming systems has revealed that they all have similar
requirements for their development tools.  Section 3.1 will explain these component-based
programming systems.

There are several program development tools whose goals are similar to those of
ClockWorks.  These systems are concerned with helping developers manage and
understand complex software structures.  These systems will be discussed in section 3.2.

3.1 Component-based Programming Systems
In this section, four different component-based programming systems will be

described and compared with Clock in terms of their architecture structure and their
development tools.  The purpose of this section is to place the Clock system in the context
of other component-based systems and to illustrate that ideas used in the development of
ClockWorks would also apply to other component-based systems.

3.1.1 The Abstraction Link View Model
The Abstraction Link View (ALV) system  is an architecture and programming

method for building interactive, multi-user applications [Hill 1992].  Its architecture model
is designed so that applications can separate shared application details from those which are
unique for each user.

In ALV, an application is made up of three different kinds of components.
Abstraction components hold abstract information such as data structures and the functions
which manipulate them.  View components define the graphical representation of  an
associated abstraction.  A view component can be modified by the user through direct
manipulation.  The view components maintain a copy of any view-specific information
which is stored in their associated abstraction components.  Link components maintain
consistency between the views and abstractions.  The link components contain bundles of
constraints which are evaluated each time the user manipulates the view or the abstraction
component is modified.

Figure 3.1 illustrates how ALV is used to create an interactive application.
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LinkLink Link
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Application
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View ViewView

Figure 3.1 Model of an ALV application. [Hill 1992]  An application usually has one abstraction
component which is made up of several views.  Since ALV is designed for multi-user applications, the
abstraction is shared between all users, and there is generally one view for each user.  Each view is
connected to the application through its own link component.

Each view can be made up of a hierarchy of view components.  A view component
may maintain its own copy of information from the abstraction which it needs to compute
its view.  This allows a view component to modify its appearance without waiting for the
associated event to be sent all the way to the abstraction.

The ALV model is similar to Clock in its structure.  Currently, Clock cannot work
with multi-user applications, but there are plans to update Clock for this purpose in the
future.

Abstraction components are similar to request handlers in Clock.  They hold and
manipulate the program’s data.  Event handlers are similar to ALV view components.  The
main difference is that view components actually copy the data they need from the
abstraction, while event handlers get their required data from request handlers.  ALV
defines a link component which manages communication between components, while
Clock uses updates, requests and inputs for this purpose.

The ALV programming environment provides an editor and debugger for coding
and running components.  Future plans for ALV include a tool for non-programmers which
would provide reusable components in a library.  The developer could select abstraction
and view components from these libraries and connect them by drawing the link as
constraints between them.
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3.1.2 Garnet
Garnet [Myers 1990, 1992] is a system designed to make user interfaces easier to

build.  Garnet has only one kind of component which is called an object.  Objects are made
up of slots which hold data and methods which manipulate the data.

Objects contain all the information required to define an interface component.  Data
slots may define the location, size, appearance, and state of the component.  Initial values
of slots may be set or inherited from a related object.  Method slots perform functions
related to the objects.

In Garnet, interaction between the user and objects is defined through interactors.
Interactors, which define a specific style of interaction, can be attached to the object to give
it a way to accept input.

Constraints are used to define the relationships between objects.  Constraints may
make the value in a data slot dependent upon a value in another data slot.  The slots
corresponding to the appearance of the component can be constrained to rely on values
stored in other slots which correspond to the object's state.  Figure 3.2 shows an example
of how a button object could be structured in Garnet using a simplified syntax.

Sample Text

text = “Sample Text”
xpos = 100
ypos = 200
length = 80
height = 20

xpos = buttontext.xpos-1
ypos =  buttontext.ypos-1
length =  buttontext.length+2
height =  buttontext.height+2

buttonText buttonBox

Figure 3.2 Button object  and an illustration of how it could be modeled in Garnet.  In this example, a
Garnet button object is created from a text object and a box object.  The dimensions of the box are
constrained to the dimensions of the text so that the box will always be drawn around the text.  To create a
real button, an interactor would be attached to the button object.  The button interactor would allow the
object to accept input and trigger a callback function which would correspond to the action.  Note that this
example is used to explain how objects are modeled in Garnet.  The example is very simplified and is not
meant to be an example of actual Garnet syntax.  This example was used in a university course on
Interactive System Design to illustrate the idea behind Garnet, rather than its syntax.

Although Garnet is quite different from Clock and other component-based systems,
it can be used in a similar fashion.  In Garnet there is no architectural model upon which
applications must be structured.  Developers can use any architectural model they prefer.  It
is possible, for instance, to simulate the Clock architectural model in Garnet.

In Garnet, an event handler can be simulated by an object which will contain all the
information required to define an interface component.  Slots can be defined for each
function which defines an event handler in Clock. In Garnet, a draw method is defined
to compute the appearance of an object.    This method is called by the graphics system
whenever an object needs to be re-drawn.  When the object is instantiated, it is drawn
according to the data given in its slots.  In Garnet, an aggregate can be used to group
graphical objects into collections, so they can be instantiated much the same way as the
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Clock views which are defined as a group of subviews.  In both systems, these re-drawing
functions are never called directly by the programmer.

The data slots of objects can be used to hold the information which is stored in
request handlers in Clock.  The value of a data slot may be retrieved by the name of the slot
much like a variable's value can be obtained by its name.  The value of a slot may be set or
changed by using its name and assigning it a value much like a variable is assigned a value.
Method slots hold functions or methods.  These methods may be used to implement
messages sent to objects.  Data slots can simulate Clock request handlers as well as
requests, and updates.

Garnet’s constraint system can be used to make the value in a data slot dependent
upon a value in another object’s data slot.  In this way, the slots corresponding to the
appearance of the component can be constrained to rely on values stored in other slots
which correspond to the state.  This is similar to the Clock invariant function.

The Garnet system provides a number of tools which support the tasks involved
with development of a Garnet program.  There are two complete widget sets which contain
pre-defined objects or collections of objects.  An interface builder and a dialog box creator
are provided to assist in the graphical layout of objects and object hierarchies.  Constraints
are managed with a spreadsheet tool.  Garnet has a very elaborate programming
environment, which includes a tool called Lapidary which generates components from
direct manipulation descriptions of the user interface.

3.1.3 Model View Controller
The Model View Controller (MVC) paradigm is an architectural model for

developing interactive software in Smalltalk [Krasner and Pope 1988]. An MVC
application is made from  three kinds of components: models, views and controllers.
Model components contain application code and data representing the system state.  Model
components are made up of Smalltalk objects.  View components maintain the screen
display.  Controller components interact with the user.  Figure 3.3 illustrates how
applications are structured in MVC.
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Model

ViewControllerUser Input Display Output
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Figure 3.3 MVC Program Structure.   In MVC, an application has a single Model component which can be
made up of one or more view-controller pairs.  Messages from the user are accepted by the controller
component and passed either to the view or to the model.  Changes to the model are broadcast to each view-
controller pair.

In MVC, controller components handle input events like the request handlers in
Clock, except that they pass the events on to the model component which stores the
application’s data structures and functions.  The model component is similar to a collection
of Clock event handlers without view functions.  An MVC model component manages a
collection of view components which define the way in which the various parts of the
model are represented to the user.

The MVC environment provides several tools which assist in low level
programming tasks.  Workspaces, editors and a browser allow text manipulation.  The
inspector tool provides a list box which contains the names of values of variables
associated with an object.

3.1.4  Presentation Abstraction Control
In the Presentation, Abstraction, Control (PAC) model,  an interactive system is

constructed as a hierarchy of interactive objects [Coutaz, 1987a, 1987b, 1989].  Interactive
objects are made up of three different kinds of components.  Presentation components
define and display a graphical representation of the object.  Abstraction components store
data associated with the object.  Control components maintain the link between Presentation
and Abstraction components.  Control components also maintain links between objects in
the architecture.

Figure 3.4 illustrates the PAC architecture of a simple Pie chart which allows the
user to change the size of the divisions by direct manipulation or by directly entering a
numeric value.
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Figure 3.4 The PAC architecture structure of a Pie Chart. [Coutaz 1989]   Each interactive object has a
presentation component (P), an abstraction component(A) and a control component (c)  The Root object in
this tree represents the entire pie chart.  Its detail is delegated to its children.  The left child controls the text

editor and the right child controls the pie chart.  The control component of each object connects the
abstraction to the presentation.  Events from the user enter this structure from the bottom and are received

by the controller components at the lowest levels.  These controllers update their own information and then
pass the event up to the control component at the next highest level.  Events from the application would
enter this structure from the top level and be handled by the control component at the highest level.  This

control component would then pass the event down the tree to the components which need it.

The PAC model is very similar to Clock.  Abstractions are similar to request
handlers,  the Presentation components are similar to event handlers, and the control
components are similar to the inputs, requests and updates used in Clock.  The main
difference is that in PAC data elements in abstraction components are duplicated in the tree,
while in Clock, request handlers are placed at a position in the tree which allows them to be
accessed by children at a lower level.

When the PAC model was being designed, plans for its programming environment
included tools to edit and debug an application as well as graphical editors to allow the
developer to specify the appearance of objects and the application.  There was nothing in
the research conducted for the PAC system to indicate that it had any plans to build
development tools designed specifically to assist developers in creating and manipulating
the architecture model.

3.1.5 Summary
In general, these systems are similar to Clock in that they provide a framework for

structuring the functional components which make up an interactive system.  The structures
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are hierarchical in nature and intuitively graphical, so these systems would benefit from a
graphical method to represent the structure and allow direct manipulation by the developer.
None of the systems studied provide  tools which support this kind of representation  and
manipulation of the program’s structure.

3.2 Software Development Tools
ClockWorks was designed to visually represent component architectures in the

same way that developers draw and understand them.  Developers should be able to work
with pictures wherever pictures are the best way to express their ideas.

This section presents several software tools that share this focus with ClockWorks.
Their goal is to provide graphical representation and manipulation of complex concepts
such as high-level program design, or complex data structures.

3.2.1 Garden
The Garden system is an environment which supports conceptual programming

[Reiss 1987].  Conceptual programming allows developers to build programs from the
same conceptual models they use to understand them.  These conceptual models are often
graphical.  For example, most developers draw a linked list data structure as a series of
boxes connected by arrows.  A tree is a series of boxes or circles connected in a
hierarchical structure.  Most programming styles or systems force developers to translate
ideas from their conceptual model into something which can be represented in a text-based
language.  The goal of the Garden system is to make this translation easier by allowing
developers to create graphical, high-level specifications of their conceptual models.  These
specifications are refined incrementally until an executable program has been defined.

The Garden approach is similar to that of ClockWorks.  The architecture model of a
component-based program is actually a conceptual model of the program’s structure.  In
component-based systems, this model becomes a part of the finished application.  It would
therefore be very useful to have a programming environment in which this conceptual
model could be represented and manipulated graphically.

When Garden was being created, plans for its implementation stressed the
requirement that  programmers be able to view complex or large program designs from
various perspectives and at varying levels of detail.  This was one of the major
requirements of ClockWorks.

Additional plans for Garden include support for prototype evaluation and animated
execution.  A high-level program design created by Garden will be executable and a
debugging tool will provide an animated view during program execution so that the
program can be understood while it is running.  These features will allow programmers to
experiment with and modify their designs.

These features would also be useful to Clock developers.  In Clock, a simple set of
defaults can be designed for each type of component so that the architecture will be
executable at all stages of its development.  A graphical representation of the architecture of
a Clock application could be used as the basis for a tool to animate the execution of a Clock
program.

3.2.2 Software Landscape
The software Landscape is an environment for illustrating the relationships between

program components [Penny 1993].  The term component has a broader definition in the
context of the Landscape.  It is the term used to describe any graphical software entity such
as designs, modules, classes or versions.
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The goal of the software landscape is to assist developers in understanding the
structure of large scale software systems as they are being built or modified.  The notation
defined by the landscape programming tool defines how to connect these graphical
software entities with non-graphical software entities such as source code.  This connection
is formally defined.

By using the Software Landscape, the developer is able to draw pictures
representing the high level details and structures of large software systems.  This assists
developers in planning, understanding, and maintaining their software.  A significant
amount of the information required for software development is contained in easy to
understand pictures which allow the developer to see varying levels of detail.  Figures 3.5
and 3.6 illustrate example Landscape diagrams.
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Figure 3.5 Screen capture of the landscape view of the Object Oriented Turing help system.  This figure
was  taken from the Object Oriented Turing Environment [Mancoridis, Holt, Penny 1993].  Each object in
this Landscape diagram is a help file.
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Figure 3.6 Screen capture of the landscape view of the MiniTunis operating system. This figure was taken
from the Object Oriented Turing Environment [Mancoridis, Holt, Penny 1993].   Each object in this
Landscape diagram is a Turing class.

The software Landscape creates a graphical representation any structure of
components used to define any aspect of software development.  It allows developers to
create pictures of their program structures so that they can be easily understood and
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manipulated.  Ideas from the Software Landscape can be used to design tools for creating,
manipulating and understanding the architecture structure of component-based programs.

3.2.3 PegaSys
The PegaSys (Programming Environment for the Graphical Analysis of Systems)

program development system was designed to replace and overcome problems associated
with traditional program documentation techniques such as flowcharts and dataflow
diagrams [Moriconi and Hare 1985].  The goal of PegaSys is to replace these traditional
methods with an automated tool with which developers can work directly with pictures
which represent program components and concepts.  Using this tool, programmers could
specify a high level program design as a series of components communicating and
interacting with each other.  These diagrams could be incrementally refined to the point
where code could be associated with each component.

Both PegaSys and ClockWorks are an attempt to create representations of complex
programs.  These representations should be easy to follow and understand so that
programs could be easily developed and maintained.

In PegaSys, a program is designed as a hierarchy of components.  Components are
represented by pictures.  Each component can be refined to include more detail.  These
refinements are performed incrementally until the program's design is complete.  Once
design is complete, code is written and associated with the lowest level in the hierarchy.

As PegaSys was not built with component-based programming in mind, the
resulting system is quite different from ClockWorks.  The focus of research and
development of PegaSys has been on creating a formally defined graphical language and a
formally defined set of actions which verify the correctness of each refinement.

3.2.4 Summary
The programming systems described here all have goals similar to those of

ClockWorks.  Complex program structures should be represented in such a way that
developers are able to understand and work with them.    With this kind of support,
developers will be better able to design and manage their software projects.  Also, this style
of programming tool can lead to more advanced programming support for prototype
execution or animated execution views.

3.3 Conclusion
In understanding the various component based programming systems and

comparing them to Clock, it becomes clear that all have certain similarities.  In particular,
each system defines some concept of a component.  The components are attached to form a
structure upon which an interactive application is built. ClockWorks is intended to help
programmers manage the complexity of their program architectures in the Clock system.
Since component based programming systems use an architectural model to structure
components, ideas from ClockWorks apply to other component based systems.

The goal of ClockWorks is to help programmers understand and manipulate the
architecture structure of their Clock programs.  The program development systems studied
share this goal.

The remaining chapters will describe how ClockWorks was designed, developed
and tested.
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Chapter 4: Identifying the Requirements of
ClockWorks

This chapter will explain the methods used to identify the requirements of
ClockWorks.  It has already been explained (in Chapter 1) that component-based
programming systems require tools to help developers manage the complexity of their
program architecture structures.  In this chapter, this requirement is refined to provide a
more detailed list of requirements.

The first step in the Clock programming methodology (as described in Chapter 2) is
the user needs analysis.  Its goal is to identify the tasks of the users and define exactly what
they require.  Since the development of ClockWorks made use of the Clock methodology,
the first step of its development was User Needs Analysis.

Section 4.1 explains the first stage of the identification of the needs of Clock users.
This was a survey of a group of students who used Clock in a university-level course on
user interface development.  Their reactions helped to narrow down the problems users had
learning and using the Clock system.

The user survey provided some interesting conclusions, but they were too general
to lead to specific requirements.  A detailed task analysis of the Clock programmer was
conducted to gain a more precise understanding of the tasks involved in developing a Clock
application as well as the problems commonly associated with these tasks.  The results of
this task analysis were reviewed by the Clock users and modified according to their
comments.  The task analysis is described in section 4.2.

The results of the task analysis led to the definition of the requirements of
ClockWorks.  Section 4.3 is a list of the ten requirements identified for ClockWorks.

4.1 User survey
A version of Clock was used as part of a fourth year university level course called

Interactive System Design.  The students used the Clock-Turing system.  This is a version
of Clock in which components are defined in Turing rather than in the Clock functional
programming language.  At the end of this course, a survey was conducted to determine
how a group of users reacted to the Clock system.  Its goal was to analyze Clock on the
basis of how easy it was to learn and use.  The results of this survey are summarized
below.  Section 4.1.1 explains the users comments about the Clock View tool while section
4.1.2 explains their reaction to the entire Clock system.

Eighteen students completed the survey.  Of these, half had no previous experience
programming interactive systems, and half had some experience with systems like
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Macintosh, MS Windows and X.  Those with experience felt that Clock was more difficult
to learn and to use than these other systems.

4.1.1 Response to the Clock View Tool
The first section of the user survey was to determine the student’s reaction to the

Clock View tool.  The Clock View tool (CV) is used to display Clock architectures.  Its
initial purpose was to create documentation for Clock programs.  It interprets the
Architecture file and displays the event handlers and request handlers as a tree.  It does not
display any information about requests, updates, and inputs.  Figure 4.1 is an architecture
diagram produced by the Clock View Tool.

Figure 4.1 Architecture of the Month View screen of the Interactive Calendar.  This picture was produced by
the Clock View Tool.

Most of the users surveyed found the CV tool helpful.  About half had some trouble
getting started, but most found they had no trouble after they had used it for a short time.

With respect to the usefulness of CV, the users’ reports were mixed.  About half
the students found the tool useful in designing their program’s component structure, and
understanding the flow of inputs, requests, and updates, while half reported that it was not
useful.  About half the students reported that CV did not display enough information about
the component structure to be very useful, while half had the opposite opinion.

The problem with the CV tool is that it wasn’t designed to be a programming tool
and therefore, it does not do enough.  The CV tool provides no verification of the
architecture structure, and will display an incomplete or incorrect architecture as long as its
definition is syntactically correct.  Since CV does not display any inputs, requests, or
updates, developers cannot use it to understand these important aspects of their architecture
structure. Developers tend to move from the architecture design into implementation and
then discover that their architecture was incorrect. The CV tool was intended only to view
Clock architectures, so it cannot be used to manipulate them in any way.  These problems
become more evident in the rest of the survey.
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The CV tool allows developers to view the general structure of event handlers and
request handlers.  The students' response to this tool indicates that it may have been useful
if only it could support more of their tasks in creating and manipulating Clock architectures.

4.1.2 Response to the Clock System
This section will describe the results of the second part of the survey.  Its goal was

to identify the student’s reaction to the Clock system in general.
Almost all users reported that they did not find the Clock system easy to use after

some experience with it.  Most agreed that implementation was frustrating, and that they
had problems with the implementation even after the architecture design was complete.

These reports can lead to the conclusion that the Clock system does not have
adequate support for program implementation.  However, these problems all lead back to
the architecture design.  Given a complete and correct Clock architecture, implementation
would involve the simple task of coding the functions which define each component.
However, since the CV tool allows programmers to proceed to implementation with an
incomplete or incorrect architecture design, the task of implementation also involves
making corrections and modifications to the architecture design.  This extra work could be
eliminated if the tools supporting architecture design were more complete.

Several of the students commented on this problem when asked what they found to
be the most difficult part of the Clock system.

“Architecture specification seems to be the most critical part for
implementation and I found it frustrating when the architecture "looks OK"
but when we actually came to implementation and when changes are
needed, we have to access a lot of files to make those changes...”

“Architecture errors mostly not found until run-time, not in compilation. “

“Why would one want to draw the tree structure by hand and then see the
same on the screen? ”

“The transfer from Arch to implementation was not very clear at the
beginning, at the end was obvious, a little too late.”

When asked what they found most difficult about the Clock system, several
students complained about implementation problems, one calling the implementation “a
certain headache”.  Others reported having trouble understanding the relationships between
event handler and request handler classes, and understanding the flow of inputs, updates
and requests in the architecture tree.

There were many complaints about unclear feedback from the Clock system,
incomprehensible error messages and lack of documentation.  Some users also complained
about slow and inefficient performance.  These problems are caused by the current
implementation of the Clock system, which is only a prototype.  These problems will be
addressed when the Clock system is updated.  Therefore, they were not used for this
project.

The user survey helped support the conclusion that the Clock system would be
greatly improved if it had more tool support specifically geared towards managing the
complexity of Clock architecture structures.
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4.2 Task Analysis
The results of the survey were useful in identifying the root of the problems

associated with the Clock system.   However, its results were too general to be used to
identify concrete, specific requirements for ClockWorks.  In order to accomplish this
definition of requirements, a detailed task analysis was conducted.

The Interactive Calendar program which was described in chapter 2 was
implemented as a case study so that the task analysis could be carried out.  Throughout its
development, a detailed list of tasks was kept.

The list of tasks produced from this program was arranged in a hierarchy which
began with a main goal of creating an interactive application  This goal was broken into
sub-goals which were then divided into the specific tasks performed to carry them out.
Figure 4.2 illustrates the highest level of this hierarchy starting from the main goal.

Each sub-goal is one of the stages in the Clock methodology which was described
in Chapter 2.  The Architecture Design and Implementation sub-goals were expanded fully.
Since ClockWorks only deals with these two stages of the Clock Methodology, the other
sub-goals were not expanded.  The full task hierarchy for the Architecture Design and
Implementation sub-goals is shown in Figure 4.3 and 4.4 respectively.  Appendix A
contains the complete description for each task in these hierarchies.
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User
Testing

Architecture
Design

Implementation
Task Oriented
Specification

User 
Interface
Design

Create an
Interactive

Application

User needs 
analysis

Figure 4.2 Highest level of the Hierarchical task analysis of the creation of interactive applications with
Clock.  This hierarchy begins with the main goal.  This goal has then been broken down into sub-goals
which correspond to the steps of the Clock methodology.

Architecture Design

Design tree structure

Declare component classes

Create architecture file

Evaluate architecture design

• Verify position of a request handler
• Verify position of an event handler
• Verify declarations
• Verify flow of requests
• Verify flow of inputs
• Verify flow of updates

{
• Include a required file
• Build architecture model in text
• Modify architecture model’s textual description
• verify architecture file syntax
• find error in architecture file
• correct syntax of architecture file

{
• Declare an event handler
• Declare a request handler
• Verify syntax of declarations
• correct syntax of declarations
• Modify declarations{
• Add an event handler
• Add a request handler
• Design flow of inputs
• Design flow of requests
• Design flow of updates
• Reuse a component

{

Figure 4.3 Complete hierarchy of sub-goals and tasks for the Architecture Design sub-goal.  The lowest
level of this hierarchy lists the individual user tasks associated with each sub-goal.
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Implementation

Define event handlers

Define request handlers

Get application running

Debug running application

Modify application

• Define an event function
• Define an invariant function
• Define an initially function
• Define a fiew function
• Define type for an input{

• Fine tune view function
• Detect run-time errors
• Modify code
• Recompile code{
• Define new components
• Remove existing components
• Modify existing components{

• Declare a type for the state
• Define initially function
• Define request function
• Define update function
• Define type for a request
• Define type for an update

{
• Compile Clock code
• Check syntax of code
• Decipher error messages
• Find an error in code
• Correct syntax errors
• Modify code

{

Figure 4.4 Complete hierarchy of sub-goals and tasks for the Implementation sub-goal.  The lowest level of
this hierarchy lists the individual user tasks associated with each sub-goal.

The task analysis was refined and finalized after it had been evaluated by a group of
Clock users.  Since the task analysis was written from the perspective of a single Clock
user,  it was modified so that it more closely matched the method used by all Clock
programmers.  There were similarities and differences in the way the various users
developed a task analysis:

Everyone used a hand drawing to construct the basic structure of the architecture.
The difference was in the amount of detail represented on the hand drawing.  Some drew
only the basic event handler structure, others added request handlers, and some attempted
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to add requests, inputs, and updates.  All users agreed that the hand drawing became too
difficult to follow after a certain amount of complexity was added to it.

The Clock View tool was used for several different purposes by the users.  Some
didn’t use the tool, others used it to verify the syntax of the architecture file, and some used
the tool to view the structure and edit the code for each component.

All users reported using incremental development.  They would work on the
implementation of a specific part of the application and then add other pieces to it.  All users
wrote very simple view functions for all components which were refined after the
application was running.

The case study was an effective way to determine exactly how a Clock program is
built using the current system.  The task analysis lead to certain conclusions about the
current Clock system.  Several problems were uncovered which  were to be overcome in
ClockWorks:

Given that the architecture structure is of vital importance to the creation of a Clock
program, the current level or support for tasks relating to this structure's design is
inadequate.

Currently there can be as many as three different representations of the architecture
structure: the hand-drawing, the text file and the picture produced by the CV tool.  None of
these representations clearly present the information necessary to understand the entire
architecture design of a large Clock program.  The three representations have to be verified
to ensure that they are consistent with each other and with the User Interface design.

The current tools do not verify the paths of requests, updates and inputs in the
architecture structure until compile or run time.  It is beneficial to have these paths verified
before the implementation is begun.  Although this verification can be done manually, it is
difficult because of the poor quality of the architecture's representation.  Programmers
often chose not to perform this verification.  The result of this is that structural errors in the
architecture are found at a stage in development when they are more difficult to change.

The design and implementation of a Clock program is an iterative process.  Tasks
may be repeated throughout the development of an application.  The design of the
architecture may be modified at any time during the implementation or run-time verification
of the program.  It is this style of modification which causes problems throughout the main
goal of implementing a Clock program.  To use this style of modification, the programmer
must be able to understand precisely how the application works.  Without a precise and
complete representation of how the program functions, it is very difficult to make
modifications.  The hand-drawn architecture representation quickly becomes too difficult to
follow, especially  if some time has passed since it was created.  The CV tool does not
show enough information to explain how the program functions.

The task analysis also identified several problems which were specific to the current
implementation of the Clock system.  These problems included difficulty understanding
error messages, inconvenient limitations with the Clock language,   as well as poor
performance.  These problems are well understood and will be addressed when the
implementation of the Clock system and its compiler are modified.  These modifications are
planned for the Clock system, but they are beyond the scope of this thesis.

4.3 Requirements of ClockWorks
Conclusions drawn from the user survey and the task analysis were used to define a

set of ten precise requirements for ClockWorks.
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1.  Hide textual details of component class declarations and architecture
definition.

The user will no longer need to deal with the architecture file and the component
class declarations.  Many problems in the original Clock system were caused by problems
understanding and debugging these files.
2.  Provide full graphical representation of the architecture structure.

ClockWorks will allow Clock architecture structures to be created and modified by
direct manipulation.  Many of the problems encountered by the users were caused because
they could not understand the structure of their program’s architecture.  This was due to the
fact that the architecture had to be completely represented in a textual language before the
Clock View tool could illustrate it.
3.  Allow direct manipulation of the architecture structure.

To avoid the difficulties of working with the multiple files required to define the
architecture structure, users should be able to manipulate the graphical representation of this
structure directly.
4.  Represent all necessary architecture detail.

Input, request, and update objects will be able to be added and represented in the
graphical representation of the architecture.  The architecture picture created by the Clock
View tool did not display information about inputs, requests, and updates.  It was therefore
difficult for developers to understand this aspect of their program.
5.  Allow Detail to be Abstracted or Hidden

ClockWorks will allow varying levels of information to be displayed for each
component.  As the architecture structure grows more complex, the amount of information
displayed for each component takes up a great deal of screen space.  Since users generally
work on a single component or group of components at a time, it makes sense that they
should be able to hide the information which is not important to their current task.  At the
same time, they should be able to display all the detail of the component they are working
on.
6.  Provide a completely integrated programming environment.

The user will be able to compile and run their applications from within the
environment.  ClockWorks will be integrated to support all of the users’ tasks without
forcing them to exit it for any reason.
7.  Provide access to reusable components.

One of the main goals of component-based programming is to allow developers to
create components which can be reused in several projects.  The Clock system already has
library directories to hold reusable components.  ClockWorks should allow developers to
access these libraries and use the pre-defined components in their applications.  Also, they
should be able to add components to their own libraries.
8.  Provide support for architecture verification.

ClockWorks will verify errors in the architecture as it is built.  One of the major
problems encountered by the users was that the Clock View tool did not verify the
architecture.  It was possible that many architecture errors were identified at compile or run-
time.  This forced the users to modify the architecture design at inconvenient times.
9.  Allow  components to be grouped to form a single group component.

ClockWorks should provide way for users to select a portion of their program’s
architecture and group it into a single component.  This will assist users in managing the
detail of their program’s structure and also hide detail which is not necessary to understand
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the group in the context of the architecture structure.  This feature will also allow
developers to reuse entire architecture sub-trees.
10.  Provide simple code generation

ClockWorks should generate generic code for components when they are added so
that the architecture will be able to be executed as a prototype version of the application
being developed.  This feature will allow developers to execute and test individual
components.  It will ensure that the developers never overlook a function which needs to be
defined for a component.  Since the architecture will always be in an executable state,
Clock developers will easily be able to verify that the structure they have chosen will work.
They will also be able to conduct user evaluations of the applications by using the prototype
created.

4.4 Conclusions
ClockWorks does not actually need to support all of the tasks identified in the task

analysis.  This is a consequence of adding support for graphical manipulation of the
architecture structure.  Several of the tasks identified are eliminated by ClockWorks, and
some new tasks are added. Tasks relating to the creation of the component class
declarations and the architecture file as well as tasks relating to architecture verification
were eliminated.  Graphical editing tasks, such as cut, copy, and paste were added.

Problems with the current version of the Clock system can be divided into two
categories.  In the first category are problems associated with understanding Clock
architectures.  These problems will be overcome by ClockWorks.  The second category
includes problems associated with the current implementation of the Clock system.  This
category includes problems with incomprehensible error messages, language limitations,
and poor performance.  In the future, a new implementation of the Clock system is
planned.  This will include a new compiler and/or interpreter which will eliminate many of
these problems.  ClockWorks will not change the actual implementation of the Clock
system.  Instead, it will be a tool which is added on top of the Clock system.

The following chapters describe the design and implementation of ClockWorks.
The ten requirements defined here were used to create the user interface design of
ClockWorks.  They were also used as goals for the evaluation and user testing of the first
version of ClockWorks.
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Chapter 5: The User Interface Design of
ClockWorks

The task analysis of the Clock programmer helped draw conclusions about the task
of developing an interactive program with ClockWorks.  It was decided that problems
associated with the current prototype implementation of the Clock system would not be
addressed in ClockWorks.  The main focus of ClockWorks is to overcome problems
associated with the creation, manipulation and overall comprehension of the architecture
structure of Clock programs.

Component based programming systems require some form of tool support which
allows developers to manage the complexity of their program architecture structures.  Ten
more specific requirements were identified for the Clock system in chapter four.  This
chapter will illustrate how the user interface was designed specifically to support these
requirements.

Section 5.1 explains the prototype instance model which is an important concept
used in ClockWorks.  Section 5.2 explains how ClockWorks was designed to meet each of
the ten requirements identified in Chapter four.

5.1 The Prototype Instance Model
ClockWorks is based upon the concept of a  prototype-instance model [Myers

1992].  In the Clock system, event handlers and request handlers are declared as classes.
Instances of these classes are used to construct a program’s architecture.  Originally, each
class had a declaration which listed the names of its attributes (subviews, inputs, requests,
and updates).  These declarations have been eliminated in ClockWorks.

In ClockWorks, a class is declared by placing an event handler in the architecture
tree, then adding its attributes to it.  The declaration of a class is integrated within the
architecture tree.  The class is modified by manipulating any instance of it.  Every request
handler and event handler in the tree is both a class and an instance of a class.
Modifications to one instance of a class will be reflected in all instances of that class.  With
this concept, component classes can be declared and instantiated within a single architecture
diagram.

5.2 User Interface Design
In the following explanation, the user interface design of ClockWorks is explained

in terms of the requirements identified in chapter four.
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1. Hide textual details of component class declarations and architecture
definition

In the original Clock system, the architecture is written in the Clock architecture
language (Figure 5.1).  This textual description of the architecture is then combined with a
declaration for each component class (Figure 5.2).  The Clock View tool reads an
application’s architecture file and displays the general structure of event handlers and
request handlers (Figure 5.3).



49

subview monthView =
eh monthView : MonthView

subview monthShuffle =
eh monthShuffle : Shuffle

rh id : Id
subview leftArrow =
eh leftArrow : Button

         rh id : Id
         rh status : Status

end eh
subview rightArrow =
eh rightArrow : Button

            rh id : Id
            rh status : Status
         end eh
      end eh
      subview yearShuffle =
      eh yearShuffle : Shuffle
         rh id : Id
         subview leftArrow =
         eh leftArrow : Button
            rh id : Id
            rh status : Status
         end eh
         subview rightArrow =
         eh rightArrow : Button
            rh id : Id
            rh status : Status
         end eh
      end eh
      subview weeks =
      eh weeks : Weeks
         rh id : Id
         subview days =
         eh days : Days
            rh id : Id
            rh status : Status
         end eh
         subview weekSelectors =
         eh weekSelectors : Button
            rh id : Id
            rh status : Status
         end eh
      end eh
      subview monthBar =
      eh monthBar : MonthBar
         subview month =
         eh month : Button
            rh id : Id
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            rh status : Status
         end eh
      end eh
end eh

Figure 5.1 The Clock Architecture Language.

% Button Event Handler Class
ehClass Button

inputs mouseButton
requests myId, isSelected
updates setMyId, select, unSelect, doAction

% Id Request Handler Class
rhClass Id
    requests myId
    updates setMyId

Figure 5.2 Component Class Declarations.

Figure 5.3 Architecture Tree Drawn by Clock View Tool.

ClockWorks hides the detail of the component class declarations and the textual
representation of the architecture from the user.  Instead, ClockWorks  opens an empty
architecture window upon which the developer can build an architectural model for the
project being developed.  The architecture is represented and manipulated through a picture.
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2. Provide full graphical representation of the architecture structure
A node in the architecture tree consists of an event handler component, any number

of request handler components, and the inputs, requests, and updates sent and received by
the components making up the node.  Event handler and request handler components are
drawn as boxes on the screen.  Event handlers have two labels.  The first label is the name
of the subview being filled by that component and the second label is the name of the event
handler class associated with the component.  All event handlers (except the root of the
tree) have a line connecting them to their parent in the tree.  Request handlers are boxes
attached to the bottom of event handlers.  Each request handler has one label displaying its
class name.  Figure 5.4 illustrates how components are represented in ClockWorks.

subview name

Class name

Event Handler

Class name

Request Handler 

Figure 5.4 Components in ClockWorks .

The term interface is used to refer to the inputs, requests, and updates (iru events)
received and sent by a component.  These are attached to the left or right side of the box
which represents the component with which they are associated.  Iru events received by a
component are drawn on the left side, while those sent by the component are drawn on the
right.  Figure 5.5 illustrates how iru objects are drawn, and Figure 5.6 shows how the
Shuffle component (explained in Chapter 2) is represented in ClockWorks.



52

Event 
Handler

Component

request

input update

update
request

Request
Handler

Component

Figure 5.5 Interface Events (inputs, requests and updates)  in ClockWorks.  Requests are always represented
as an arrow with two heads and a label which is the name of the request.  Since updates and inputs are
essentially equivalent in Clock, they are both represented by an arrow with one head and a label which is the
name.
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Figure 5.6 The Shuffle Component.  This component is explained in chapter 2.

3.  Allow direct manipulation of the architecture structure
To avoid the difficulties of working with the multiple files required to define the

architecture structure, users should be able to manipulate the graphical representation of this
structure directly.

All of the commands used by the developer are listed in menus at the top of the
architecture window.  There are eight menus (File, Edit, Detail, Class, Component, Group,
Library, Test).  Each one contains a different category of commands.  Figure 5.7 illustrates
all of the commands available in the menus.  Commands listed in italics have not been
implemented in the first version of ClockWorks.  The class and instance menus will be
explained in this section while the other menus will be explained in the section devoted to
the requirement they support.
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F i l e Edit D e t a i l C l a s s Ins tance Group Library T e s t
Open
Project

Remove Open Rename Add request
handler

Group /
Ungroup

Add to
Library

Compile

Close
Project

Cut Close Duplicate Replace Run

Save
Project

Copy Interface/
hide
interface

Add
subview

Quit Paste From Add Root
Root Add request

Add update
Add input
IRU
Declaration

Figure 5.7 Menu Commands of ClockWorks.

The class menu contains all commands which will affect the class declaration of the
currently selected component.  The actual class declaration is hidden from the user of
ClockWorks.  Classes are declared by manipulating an instance of the class.

The rename command is used to change the name of a class.  It works slightly
differently for each type of object.  In each case, a dialog box appears asking for a new
name.

There are two possible name changes which can be made for an event handler
component.  Changing the class name will give every instance of this class a new name.
Changing the subview name will give every instance of this subview a new name.  The
subview name is part of the class declaration of the parent of the currently selected event
handler.  Therefore, changing the subview name will modify every instance of the parent’s
class.

Renaming a request handler will give every instance of this class a new name.
Renaming an input, request or update object will give every instance of this object a new
name.

The duplicate command is used to create a new class with the same declaration as
the currently selected component.  The class may then be modified without affecting the
original class.  The duplicate command can also be used to create a new input, request, or
update object which has the same definition as the original one.

The add subview command adds a new event handler as a subview of the currently
selected event handler.  If there is no architecture tree defined, the add subview command
creates the root of the tree.  When a new event handler is added, the user will be required to
enter a subview name and a class name for the event handler.  The user may select a
previously defined class or create a new class by entering a new name.

The add root command will create a new event handler as the parent of the root of
the architecture tree.  It will add the first node in the tree, if no tree has been previously
defined.

The add request and add update commands are used to add a request or an update to
the currently selected event handler or request handler.  Note that requests and updates are
sent by event handlers and received by request handlers.  A special update which is
received by an event handler is called an input.  The add input command allows an input to
be added to the currently selected event handler.

When adding inputs, requests, or updates, the user will be required to enter a name
for the object.  A user may select a previously defined name or enter a new name. Inputs
and updates also require a list of types for the arguments taken by the object.  If the object
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takes no arguments, this field may be left blank or the type Void may be entered.  Each
request requires a type for the value it returns and a list of types for the arguments it takes.

The IRU Declaration command brings up a dialog box which allows the user to
modify the type declarations for an iru object.  Note that all iru objects with the same name
must have the same types defined.  Therefore, the IRU Declaration command will affect all
instances of the selected input, request or update (iru) object.

The Component menu contains all the commands which affect the definition of an
instance of a component in the architecture.

The add request handler command allows the user to add a request handler to the
currently selected event handler.  The user will be prompted to enter the class name for the
request handler.  This name may be selected from a list of request handler classes which are
already defined, or the user may enter a new name to create a new request handler class.

The replace command allows you to replace the currently selected object with
another one of the same type.  An event handler can only be replaced with another event
handler which has the same subviews.  Request handlers can be replaced with any request
handler class.  The replace command has no effect on iru objects.

In the first version of ClockWorks, the edit menu contains only the remove
command.  The user can choose to remove (or delete) the currently selected object.  If an
event handler is removed, the entire subtree rooted at that event handler is removed from
the tree.  If a request handler, update, input, or request is removed, there is no effect on the
rest of the tree.

In future versions of ClockWorks, users will be able to select a connected group of
components from the architecture tree.  The edit menu will then contain the traditional cut,
copy, and paste commands.  The addition of these commands will give the users more
freedom to work with the architecture tree.  The cut command will allow a group of
components to be removed from the tree at once.  The copy command will allow users to
select and copy a section of the tree.  The paste command will allow the users to attach a
section of tree in another position.

4.  Represent all Necessary Architecture Detail
ClockWorks has defined a way to graphically represent every kind of element

which can be part of a program’s architecture.  There are five distinct types of elements
which are: event handlers, request handlers, inputs, requests, and updates.

With all of these details displayed, the users will be able to see the structure of the
components making up their programs as well as the way in which these components
communicate.

5.  Allow Detail to be Abstracted or Hidden
Once an architecture structure gets to be a significant size, the amount of detail

associated with it is too difficult to follow.  The user of ClockWorks can choose the
amount of detail displayed for each component in the architecture structure. With this
feature, the developer will not be overwhelmed with the amount of detail associated with a
large Clock architecture.   The commands which are part of the detail menu allow the user
to hide or abstract information for components.

The detail menu contains all the commands which affect the amount of detail
represented for architecture components.

The open command is the same as a double click on a component.  It increases the
level of detail for a component.  The close command decreases the level of detail.  Figure
5.8 illustrates the various levels of detail for each type of object in ClockWorks.  Figure
5.9 shows the appearance of an event handler component at various detail levels.
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Event
Handler

Request
Handler

Group

OPEN  t

HIDDEN HIDDEN

default NORMAL NORMAL NORMAL

RH EDIT RH

EDIT VIEW

CLOSE s

Figure 5.8 Detail Levels for Clock components.  This table illustrates how the detail level for each type of
component is changed with the open and close commands.  The open command increases the level of detail
to the next level (down the table), while the close command decreases the level of detail (up the table).
Since the open and close commands do not apply to iru objects, they are not included in this table.  Note
that group objects are not included in the first version of ClockWorks.  The default for each type of object
is the NORMAL state.

button

ButtonEH

NORMAL

Event Handler Component

button
HIDDEN RH

button

ButtonEH

Status

Id

This event handler 
has 2 request 

handlers.

button

ButtonEH

RH

This event handler 
has no request 

handlers.

Figure 5.9 Event handlers at various detail levels.  The HIDDEN state indicates that the sub-tree rooted at
this object is hidden.  The object in the HIDDEN state will have only a single label which is the name of
the subview instantiated in that component.  The RH state indicates that the request handlers attached to the
given object are displayed.  If there are no request handlers attached to the object, a small extension is added
to the bottom to indicate to the user what state the object is in.  The EDIT state indicates that the editor is
open for the object.  ClockWorks uses the editor indicated in the EDITOR environment variable.  The
default editor is XEdit.

The term interface is used to refer to the various inputs, requests, and updates
attached to an event handler or request handler.  This information can be turned on or off
by selecting the interface/hide interface menu command.  This command works as a toggle.
If the interface is already on, this command turns it off.  If the interface is off, this
commands turns it on.

The From command operates on the currently selected event handler component.  It
makes this event handler the root of the displayed architecture.  Only the sub-tree rooted at
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this event handler will be displayed.  The Root command is the opposite of the From
command.  It resets the tree to its original root.

6. Provide a completely integrated programming environment
In the original Clock system, the developer worked from the command line in a

UNIX environment calling each tool separately and maintaining a list of text files which
defined the application being developed.  One goal of the ClockWorks was to create a fully
integrated tool which will support all phases of the architecture design and implementation
of a program.  It is hoped that the general design of ClockWorks will help to make the
Clock system easier to learn and to use.  Commands in the file menu allow users to access
their architecture file while commands in the test menu allow the project to be compiled or
run.

The file menu contains the commands which allow programs to be opened, closed,
and saved.  Also, it contains the command to exit ClockWorks.  The open project
command prompts the user for the name of a project.  If the project already exists, its
architecture is opened, otherwise a new project is created with the given name.  The close
project command allows the user to close the current project without quitting ClockWorks.
The user has the option to save the project before closing or close without saving.  If the
project does not have a name, the user will have to specify a name before saving.  To save
the architecture file, the user chooses the save project option.  If the project has not been
given a name, the user will be asked for a name which has not already been used for
another project. To exit from ClockWorks, the user will choose the quit command.  The
user will be given the option to save before quitting or to quit without saving.  If the project
does not have a name, the user will have to specify a name before the project can be saved.

The test menu contains the commands to compile and run the program being
developed.  The compile command simply issues the command ‘updatearch’ for the project
being developed.  The ‘updatearch’ command was used to compile Clock programs in the
original Clock system.  In the first version of ClockWorks, compiler errors are displayed
on the terminal from which ClockWorks was run.  Once the implementation of the Clock
system has been updated, these error messages will be printed in a scrolling message
window which will appear directly below the window which displays the architecture
drawing.

The run command simply issues the Clock command ‘go’ for the project being
developed.  The application will then run alongside ClockWorks.  Again, error messages
are displayed on the terminal from which ClockWorks was run.

7.  Provide access to reusable components
One of the main goals of component-based programming is to allow developers to

create components which can be reused in several projects.  The Clock system already has
library directories to hold reusable components.  There is a system library which contains
declarations and code for components which can be accessed by all Clock users.  In
addition, each Clock user has a local library to which components can be added.
ClockWorks will allow developers to access these libraries and use the pre-defined
components in their applications.  They will also be able to add components to their own
local library of components.

This feature allows any Clock programmer to create standard interface components
such as buttons, editfields, and scroll bars store them in a library.  With a large enough
library of components, it is possible that an entire application could be built  from
previously-defined components.
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8. Provide support for architecture verification
ClockWorks will verify errors in the architecture as it is built.  One of the major

problems reported by Clock users was the lack of support for architecture verification.
Errors in the architecture were often not found until implementation was begun.
ClockWorks has two features designed to overcome these problems.  These features were
not implemented as part of the first version of ClockWorks.

As each input, request or update is added to the architecture, ClockWorks will
search the tree for the component which either handles it or makes it.  If the source or
destination of the iru object cannot be found, it will be drawn with a question mark.  With
this feedback, the user will be able to immediately tell if an iru object has been declared that
is either not used or not handled in the tree.

By clicking on an iru object, ClockWorks will search the tree for the component
which is its source or destination.  If this component is found, it will be highlighted so that
the developer will be able to locate it.

9.  Allow  components to be grouped to form a single group component
With the grouping feature, the developer will be able to select a node or group of

nodes from the architecture structure and group them so that they appear as one node in the
tree.  This has three advantages.

First, once the developer has completed the internal details of a particular section of
the architecture, these internal details can be hidden.  Once the section is functioning
correctly, there is no need to see the requests, updates, and inputs which are sent and
received within the group.  When the interface of a group component is shown, only
requests, updates, and inputs which are sent to or from components outside the group are
displayed.

Second, the developer may define a particular program component and group it into
a single architecture node once it is complete.  Any node in the tree can be instantiated with
this group.  For example, the developer may define a section of the architecture which
represents a scroll-bar.  Once it is functioning, the scroll-bar architecture can be grouped
into a single component which functions as a scroll-bar.  If the developer needs another
scroll-bar in some other section of the architecture, it can easily be added by instantiating a
single subview with the group component.  Without this feature, the scroll-bar would have
to be reconstructed one component at a time.

The third advantage is that developers will be able to reuse entire sub-trees of an
architecture rather than only a single component.  A group component can be selected and
added to a library.

The addition of the grouping feature requires some minor modifications to the
current implementation of Clock so that it will recognize a group as a new kind of
component.  A group component will look similar to an event handler and its definition will
be similar.  Users will be able to attach subviews, request handlers, inputs, requests, and
updates to group components.  The difference between a group and an event handler is that
the internal details of a group include an actual architecture structure.  Figure 5.10 shows
how the shuffle component  defined in figure 5.7 would appear as a group.  Once a group
is created, it can be modified the same way event handlers are modified.
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Figure 5.10 The Shuffle group component.  When the interface of a group is turned on, only those inputs,
requests, and updates which are sent or received from outside the group are displayed.  This gives enough
information to understand how to place the group in the context of the architecture structure.  Group
components will be drawn with a thick border to distinguish them from event handlers.

When a group is opened (with a double click or by selecting open from the detail
menu), the internal details of the group will be displayed.  The user will not be able to
modify the definition of the group unless it is ungrouped.

10.  Provide simple code generation
Each component class is defined in Clock as a series of functions which are called

in response to events.  An advanced feature of ClockWorks was designed to assist in the
creation of executable prototype versions of applications.  As a new component class is
being created and modified, ClockWorks will generate default code for the functions which
define it.  This feature will assist the developer in three ways.

First, the architecture of the application will always be in an executable state.  The
developer can therefore test the application before it has been completely implemented.
Modifications to the architecture can be made before they become costly.

Second, the developer will be able to fill in the details of a single component or
group of components in the tree without the added complexity of having to define all the
components before a single one can be tested.  This will allow the developer to work on the
definition of one component while not having to worry about how other components are
defined.  In this way, an application can be implemented incrementally.

Third, ClockWorks will assist the developer in creating a correct architecture
because it will fill in all the required functions for each component based on how the
architecture of that component has been defined.  The developer will be able to see each
function which must be defined in order for the component to work properly.  It is less
likely that the developer will get deeply into the implementation and compilation stages of
application development and still discover details which were overlooked in the architecture
design.

It is hoped that this support for code generation will assist the developer in the task
of developing interactive applications with the Clock system.  It simply fills in default
values which must be included in the definition of each component class in order for it to
run.  ClockWorks will attempt to automate as much of the development process as
possible.

5.3 Conclusion
The design presented in this chapter is the final design after evaluation and

modifications were complete.  The design went through many different forms throughout
the entire development cycle (including implementation and user testing).  The results of
these evaluations are discussed in chapter 7.  Appendix B illustrates the UAN description
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of the tasks supported by ClockWorks.  Most major modifications were made very early in
design when it was still on paper and very easy to modify.  Modifications made during
implementation involved smaller details such as the order or name of menu commands.

The user interface design is the conclusion of a number of development steps which
involved evaluation of the existing system and analysis of the user tasks to be supported.
From this point, the development of ClockWorks moves its focus from design to
implementation.  Unfortunately, the existing version of Clock does not support enough
features to allow ClockWorks to be developed in Clock.  Therefore, the implementation
stages will not as closely follow the steps of the Clock methodology.
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Chapter 6: Implementation

The evaluations which took place throughout the design of ClockWorks all lead to
the conclusion that it would fulfill the requirements identified for it.  However, without
actually using the system, these points cannot be proven.  In order to be able to conduct
more formal user testing, ClockWorks was implemented and tested with its users.  With a
working version of ClockWorks, formal user testing was performed in order to prove that
the design would adequately support the tasks required by the users and make component-
based programming an easier and more effective way to build interactive applications.

This chapter will describe several important aspects of the implementation of the
first version of ClockWorks.  Since ClockWorks was designed to be easy to learn and use,
the implementation had to deal with many of the complexities which are being hidden from
the users.

ClockWorks was implemented in C using Motif widgets to build its interface.
Clock is not yet powerful enough to be used to create its own programming environment.

6.1 Interface with Clock
ClockWorks was designed to interface with Clock by creating all the information it

needs to compile and run an application.  In the original Clock system, users produced an
Architecture file written in the Clock Architecture language (see figure 5.1), as well as the
declarations and functional code for each component class used.  The Architecture file and
the component class declarations are combined and translated to form a new architecture file
which is written as a list of constraints.  The compiler takes the Architecture constraints and
the component class definitions and creates the executable file Arch.x.  The architecture file
uses the architecture constraints to run the program.  Figure 6.1 illustrates this structure.

ClockWorks simplifies this structure.  It creates the Architecture constraints file
directly from user interactions with a graphical architecture structure.  Figure 6.2 illustrates
how ClockWorks fits into the Clock System.
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Figure 6.1 Structure of the Original Clock System.
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The Clock Programming Environment as part of the Clock system
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Figure 6.2 ClockWorks as part of the Clock System.

The Clock system can have new development tools added to it very easily as long
as the architecture constraints file and the component class definitions are created.  Since
ClockWorks does not interface with the compiler directly, it will not be affected by changes
or updates to the Clock compiler which are planned in the near future.

When ClockWorks needs to create a new project, compile a project, or run a
project, it simply issues the same commands the user originally used for these tasks.  When
a new project is given a name, ClockWorks runs the mkarch command which creates the
directory for the project in the developer’s Clock directory.  When the compile command is
chosen from the test menu, ClockWorks saves the architecture file and calls the updatearch
command.  When the run command is chosen from the test menu in ClockWorks, the go
command is executed.

ClockWorks creates the files which are used by the system to compile and execute
the programs.  It does not directly interact with the compiler and will therefore not be
affected by updates or modifications to the compiler.

The user is no longer required to produce detailed textual descriptions of component
classes and the architecture structure.  The user interacts only with a graphical
representation of the program’s structure.  In the future, new tools will be created to assist
the developer in creating the functional code which defines the component classes.  These
new tools can be added to the Clock system and work with ClockWorks.  Chapter 8
discusses some of the future plans for the Clock system.
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6.2 Screen Layout
The main screen of ClockWorks is a compound Motif widget which controls a

menu-bar, a work area, and a message window.   As the basis of ClockWorks, it was the
first thing implemented.  Figure 6.3 shows the main window of ClockWorks with the
architecture of the interactive calendar program displayed in the work area.

ClockWorks

Figure 6.3 The Main Window of ClockWorks with the Architecture of the Interactive Calendar displayed.

All the commands available to the user are contained in a menu bar on the top of the
main screen.

The architecture is drawn on a large canvas.  A portion of this canvas is visible in
the scrolling window which makes up the work area of the main screen.  ClockWorks is
able to display more information than the Clock View tool.  When shown in full detail, a
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node takes up a large part of the canvas.  Nodes are drawn as small as possible in order to
allow as much of the architecture as possible to fit into the scrolling window.

The message window is provided for a future implementation of the Clock system
and its compiler.  It will be used to display messages to the user concerning the compilation
and running of the program.  However, the message window is not currently used or
displayed in ClockWorks.  Messages from the compiler are displayed on the user’s X
terminal.

All of the user’s tasks may be performed from the main window.  However, some
commands bring up a second window.  Any command which requires the user to enter
textual information for a component such as its name, class, or type signature, causes a
dialog box to be displayed.  The information is entered into text fields in the dialog box and
the user presses a button to complete the command.  When the user pushes the OK button
all of the data entered is verified.  The information is not connected to a component until the
OK button has been pushed and the dialog box is dismissed.  The dialog box is not
dismissed unless all the information entered is valid.  An attempt has been made to provide
error messages which indicate the error which has been made.

There are only three different dialog boxes used in ClockWorks.  There is one for
each type of architecture element.  These types are event handler, request handler, and iru
events (input, request and update).  Each dialog box allows the user to enter all the
information associated with the element  being declared.  Several commands require only
part of this information.  When these commands are used, the dialog box is modified so
that it only allows the appropriate information to be entered.  Figures  6.4, 6.5 and 6.6
illustrate the dialog boxes used for event handlers, request handlers, and iru events
respectively.  These figures show the full dialog boxes which allow all the information to
be entered.  Each dialog has a list of the previously defined component classes or iru
objects.  These are the names of the objects already defined for the current architecture as
well as the names of objects defined in both the system library and the user’s own local
library of reusable components.
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Figure 6.4 Event Handler Declaration Dialog Box.  This dialog box allows the user to enter a class name
and a subview name.  The names of previously defined classes appear in the listbox.  Developers may use
any of the pre-defined names to instantiate an event handler, or they may choose a new name to define a new
request handler class.
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Figure 6.5 Request Handler Declaration Dialog Box.  This dialog allows the user to enter a class name for
the request handler.  The names of previously defined request handler classes appear in the listbox.
Developers may use any of the pre-defined request handlers classes to instantiate a request handler, or they
may enter a new name to define a new request handler class.
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Figure 6.6 Input, Request and Update Declaration Dialog Box.  This box is specifically for request objects.
The dialog box for update and input objects does not include a field for the returns type.  Each iru event
needs a name, and a list of parameter types.  Request events also require the type to be returned.  The names
of previously defined iru events appear in the list box.  Users may choose any of these names, or they may
choose a new name to define a new iru event.

An editor is opened whenever a user decides to open a component for editing.
ClockWorks chooses the editor which is in the environment variable EDITOR.  The editor
has its own window and runs as a separate process so that the architecture may be modified
while an editor is open, and so that more than one component can be edited at a time.

Whenever a Clock program is run, its window is opened as a separate process.
The architecture can be manipulated while the application is running, although changes will
not affect the running application.  It must be compiled and run again.

6.3 Incremental Implementation
ClockWorks  was almost always in an executable state throughout its

implementation.  This was done to facilitate user testing and to make the process of
implementation easier.  The implementation process went through four distinct phases
before the first version was complete.

The first phase of the implementation was to provide a tool with which a picture of
an architecture tree could be built.  Although this first phase did not assign any meaning to
the picture, it gave the users an idea of how the interface could be used to build Clock
architectures.
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In the second phase of implementation, the functionality to open existing
architecture constraint files was added.  In the original Clock system, these constraint files
were built by the CV tool.  Once ClockWorks could open these files, the users were able to
open the architecture structures of their existing Clock projects.  They could then evaluate
ClockWorks’ method of displaying architecture trees.

In the third phase of implementation, commands were added so that the users could
save architecture structures from ClockWorks.  Once this functionality was added, Clock
programs could be compiled and run from within ClockWorks.

The fourth phase of implementation involved adding the prototype instance model
and the internal details through which component classes were declared.  Once this phase
was complete, the users were able to build new architectures, or modify existing ones.
From this point on, the users were able to use ClockWorks to create Clock applications.

The remaining sections of this chapter will deal with some of the internal details of
the implementation of ClockWorks.

6.4 Architecture Structure
For the sake of clarity, the term object will be used to refer to the elements which

are displayed in the architecture drawing.  These objects are event handlers, request
handlers, and iru events (input, request, update).

A single data structure called tObject is defined to hold all the information for one
architecture object.  All objects are stored in the same data structure.  Several of the fields
are defined differently depending on which type of object is being defined.  A type field
identifies what kind of object is stored in a particular instance of the tObject structure.  The
objects are connected through pointers to form the linked structures used in ClockWorks.
There are four different linked structures in ClockWorks.

This section will explain the important fields in the tObject data structure.  This data
structure is an important part of ClockWorks.

6.4.1 Name Information
Every instance of the tObject structure has five fields used for names.

• The hName field holds a unique identifier which is used to distinguish between
instances of architecture objects.  The hName field is always hidden from the user as it
is used only by the Clock compiler.

• The name field holds the  subview name of an event handler.  Note that this subview
name is the name of the subview being filled by the particular event handler class. The
name field is not used for request handlers or iru objects.

• The class field holds the class name of a particular event handler or request handler.  It
also holds the name of an iru object.

• The cName and cClass fields hold the same information as the name and class fields.
These two name fields are stored in a format which allows the names to be displayed on
the screen.  The cName and cClass fields are always kept consistent with the name and
class fields.

6.4.2 Graphical Information
The fields of the tObject data structure which store graphical information are used to

display the architecture structure in the work area of the main screen.  The architecture
structure is a tree which the user builds from the architecture objects available.  The root of
this tree is a global variable called RealRoot.

Each event handler in the tree stores the graphical information for all the objects in
the node centered around it.  However, each component sets its own width and height.
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The height of an iru object is constant and its width varies with the length of its
label (see figure 6.7).

reallyreallyLongName shortName

Figure 6.7 The Size of an input, request or update Object.

The width of a request handler is always the same as the width of the event handler
it is attached to.  When its interface is turned off, the height of a request handler is constant.
However, when the interface is turned on, its height varies according to how many iru
objects are attached to it.  Each iru object attached to an event handler or a request handler,
adds a constant amount of height to it.  See figure 6.8 for an illustration of the sizes of
request handlers.

RequestHandler

Request Handler 
with Interface 

turned off

RequestHandler

request
update

Request Handler 
with interface 

turned on

Figure 6.8 The Size of a Request Handler Component.

The size of an event handler depends upon the sizes of the request handlers and iru
objects which are attached to it.  Please refer to figure 6.9 and the description below for an
explanation of how the graphical information for an event handler (and a tree node) is
stored.
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Figure 6.9 Size Computation for an Architecture Tree Node.

The width of the node has three parts, the width of the box, the width of the iru
objects displayed to the left of the entire node, and the width of the iru objects displayed on
the right side of the entire node.  The width field of an event handler holds the sum of these
three widths.  This width is used in the layout algorithm to ensure that no tree nodes
overlap each other on the screen.  The fields rextra and lextra hold the width of the left and
right irus respectively.  The rextra and lextra fields are affected by all the iru objects
currently displayed in the node which is based on the event handler.

The event handler and all the request handlers attached to it are represented as
boxes.  Each of these boxes has the same width.  This width is stored in the event handler
which forms the basis for the node.  This width is set so that the box is wide enough to
contain the longest name to be drawn inside the box.

The height of an event handler has 2 parts, the height of the event handler object
and the height of the entire tree node which is based on the event handler.  The height of the
event handler depends upon the number of iru objects attached to it.  Each iru attached to an
event handler adds a constant amount to its height.  The height of an event handler is
constant if its interface is not turned on.  The ext (extent) field of an event handler object
holds the entire height of the node based upon the event handler.  This value is the height of
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the event handler plus the height of each request handler attached to it.  The ext field is used
by the layout algorithm to ensure that the nodes do not overlap when the tree is drawn.

6.4.3 Pointers
The tObject data structure is used to build four different linked structures which are

used by ClockWorks.  Each structure is pointed to by a global variable.  The variable
RealRoot points to the architecture structure which is created by the user and displayed on
the screen.  The variable tempEH points to a list of event handler classes which have been
defined for the current project.  The variable tempRH points to a list of request handler
classes which have been defined for the current project.  The variable tempIRU points to a
list of iru objects which have been defined for the project.

ClockWorks uses with a prototype instance model, which was explained in chapter
5.  The model implies that the user works only with instances of classes.  To modify a
class, the user manipulates an instance of it.  This is the model that the user sees.
However, ClockWorks has to be able to clearly distinguish between a class and an instance
of a class.  Therefore, it keeps separate lists which contain the class declarations for each
class defined by the user in the architecture structure.  These lists are called the class
declarations structures and they are hidden from the user.

Each object has a number of pointers which connect it with the architecture structure
and the class declaration structures.  These connections are what puts an object into context
and gives the architecture its meaning.

Objects in the architecture structure are connected to the class declaration structures
through a pointer called myClass.  Each object in the architecture sets this pointer to point
to its class declaration in the class declaration structures.  Whenever the user modifies a
class through an instance of it in the architecture structure, the class is changed in the class
declaration structure.  This change is then broadcast to all instances of this class in the
architecture structure.

Each object, whether in the class declaration structures or in the architecture
structure, has the same pointers.  These pointers are used differently for each type of
object.

In the architecture structure, an event handler  has a pointer to its parent and
pointers connecting it with four linked lists. Figure 6.10 illustrates the pointer structure of
event handler objects in both the architecture structure and the tempEH class declaration
structure. The parent of an event handler is always an event handler.  The rh pointer
connects an event handler with the request handlers attached to it.  This list is linked
through the rh pointer.  The child pointer connects the event handler with its children or
subviews.  This list is linked  through the sibling pointer.  The iru pointer connects the
event handler with the iru objects attached to it.  This list is linked through the iru pointer.
The sibling pointer places the event handler in its position within its parent’s list of
children.

An event handler appearing in the class declaration structure for event handlers uses
only two of these pointers.  The child pointer connects the event handler declaration with a
list of its subviews.  This list is linked through the sibling pointer.  The iru pointer connects
the event hander declaration with a list of the iru objects attached to it.  This list is linked
through the iru pointer.  Note that the child and iru objects attached to an event handler
declaration do not actually represent objects.  They are only used to store a list of the names
of the children and irus attached to an event handler class.
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Figure 6.10 Storage of Event Handler Objects.

In the architecture structure, a request handler (figure 6.11) uses its parent pointer
to point to the event handler it is attached to.  The iru pointer connects the request handler
with the iru objects attached to it.  This list is linked through the iru pointer.  The rh pointer
places the request handler within the context of its parent’s list of request handlers.  In the
class declaration structure, the iru pointer points to a list of irus which are attached to this
request handler class.  This list is connected through the iru pointer.
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Figure 6.11 Storage of Request Handler Objects.

An iru object (figure 6.12) uses its parent pointer to point to the request handler or
event handler it is attached to.  When an iru object appears in a class declaration structure,
none of its pointers are connected.  Note that Clock does not actually declare classes for iru
objects.  However, there cannot be two different iru objects with the same name, so a class
declaration structure is required to ensure that all instances of an iru actually have the same
information.
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Figure 6.12 Storage of Input, Request and Update objects.

6.5 Layout Algorithm
The layout algorithm used in ClockWorks was developed by Sven Moen [Moen

1990].  Generally, it computes an outline around each node and subtree and computes the
position of each node so that they are as close together as possible, but still displayed as a
tree.  The way the tree is stored, each node points to a number of other components, but is
only pointed to by one other node.  The layout algorithm stores a node’s position as an
offset from the position of the node which points to it.  Therefore, to draw the tree,
ClockWorks simply traverses through each node, computes its position according to the
given offset, and draws it on the screen.  A node in the tree is displayed by drawing the
event handler, the request handlers if they are to be displayed, and the iru objects if they are
to be displayed.

6.6 Conclusion
The actual implementation of the first version of ClockWorks led to many

interesting conclusions.
An experienced Clock user was able to play with ClockWorks and get a feel for its

interface long before it was finished.  This was due to the incremental style of
implementation used.  ClockWorks was almost always in an executable state.

The incremental implementation was encouraging because it was constantly being
tested by one of the users who was very interested in seeing ClockWorks and  anxious to
use it to develop Clock applications.

The next chapter will explain the results of the user testing conducted for
ClockWorks.
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Chapter 7: Evaluation of ClockWorks

Component-based programming has the potential to be ideal for the creation of
interactive applications. However, this potential cannot be realized without adequate
program development support.  Since the program architecture structures which form the
basis of component-based applications are complex and difficult to work with,
development tools for component-based programming must provide support for managing
these structures.   The development of ClockWorks was an experiment to demonstrate that
the addition of a development tool designed specifically to support the creation and
manipulation of program architecture structures could help overcome the difficulties
associated with component-based programming.

The tasks and requirements identified for ClockWorks illustrated that developers
had trouble understanding and working with their program’s architecture structures.  The
resulting programming environment was built around the purpose of supporting user tasks
specifically related to the comprehension and construction of these architecture structures.

This chapter presents the results of the evaluation and user testing of ClockWorks.
The purpose of these evaluations was to determine how well ClockWorks met its goal of
supporting the task of managing the complexity of Clock architecture structures.  More
specifically, the goal of the formal user testing was to evaluate how well ClockWorks
supported the requirements identified in chapter 4.  Version one of ClockWorks
successfully supported the first seven of these requirements, the last three will be supported
in a future version.

There has been some form of evaluation performed at each stage of the development
of  ClockWorks to ensure that the requirements were properly supported.

The user interface design (described in chapter 5) was demonstrated to the users
through sketches and examples.  It went through several modifications in response to user
feedback.   The final evaluation of the user interface design was  a cognitive walk-through
to locate redundancy, unnecessary complexity, or missing tasks.   These evaluations are
explained in detail in section 7.1

The incremental implementation of ClockWorks (described in chapter 6) allowed
users to work with the various commands and features as they were added.  In this way,
the commands and interface was refined and modified as its development progressed.  This
evaluation is described in section 7.2.

The Interactive Calendar (described in chapter 2) was re-implemented with
ClockWorks to make a comparison between the original Clock development support and
ClockWorks.  This is described in section 7.3.
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Once the first version of ClockWorks was complete, formal user testing was
performed to determine whether or not it succeeded in its goals.  In general, the results of
user testing have shown that the first seven requirements identified in chapter 4 have been
successfully supported in ClockWorks.  All the users surveyed commented that they will
use ClockWorks to develop Clock programs in the future.  The results of the formal user
testing are explained in detail in section 7.4.

7.1 Evaluation During Requirements Specification and Design
It is important to evaluate the user interface design before implementation begins.

Evaluation will help in the discovery of missing task support or missing detail in the
design.  It will also give the users another opportunity to participate in the design.  Without
evaluation these details might not be discovered until implementation is begun and
modifications would be costly.

ClockWorks underwent two levels of testing before any implementation was
begun.  The design described in chapter 4 is the final design of ClockWorks after all of
these evaluations took place.

7.1.1 User Evaluation
The user interface design of ClockWorks was explained to the users through

sketches and examples.  Comments from the users provided general ideas about how the
design could be improved.

The initial version of the user interface design was far more complex than the final
version.  Some necessary details about certain aspects were not included,  some features
were not intuitive or overly complex. Through user feedback, ClockWorks was made more
precise and easier to use.  These discussions with the users were also very helpful in
gaining a better understanding of the Clock system and the way its users work with it.

The design underwent many changes throughout the period of user evaluation.
This design-evaluation loop went through several iterations before the user interface design
was subjected to more rigorous evaluation.  The user evaluation provided the feedback
necessary to decide whether or not the design was feasible and whether it was ready to
implement.

7.1.2 Task Oriented Specification
The user feedback did not give enough precise information to determine whether or

not the user interface design would support all of the tasks indicated in the user needs
analysis.

The Task Oriented Specification phase of the Clock Methodology (see chapter 2)
provided the necessary detailed analysis.  In this step, the user interface was formally
evaluated by representing each of the tasks identified in the task analysis in a language
called User Action Notation (UAN) [Hartson et al. 1990, 1992].  The result of this step
was a detailed, formally defined description of how each user task could be carried out with
ClockWorks.  This was all within the context of the original task hierarchy.  The UAN
descriptions of these tasks are included in Appendix B.

The task of performing the UAN description of the user interface provided a useful
idea of what it would be like to use ClockWorks.  It made redundancy and unnecessary
complexity obvious.  Also, it clearly illustrated that there were some tasks which were not
supported well or were not supported at all in the design.

The UAN description  helped to get the user interface design ready for
implementation.  Problems with the user interface design could be clearly seen once it was
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represented this way.  The added information included with the UAN helped in planning
how the implementation would be carried out.  It provided important details such as
interface feedback and internal state.  These details may have been overlooked in the initial
design, but they were necessary once the implementation was started.

While the user evaluation provided general opinions and ideas about the user
interface design, the task oriented specification forced more specific detail into the design in
preparation for implementation.

7.2 User Evaluation during Implementation
ClockWorks was implemented incrementally so that it was almost always in an

executable state.  One of the users worked with the partially-completed program to give
immediate feedback about each command as it was implemented.  This user feedback  can
be grouped into three categories:

Comments in the first category related to the user interface.  The menu commands
were renamed and reorganized in response to user comments.  Most problems with the user
interface were minor and were easily overcome.

The second category of comments were suggestions of new features or commands
which could be added.  The ideas for these additions came from using ClockWorks and
recognizing things which would make it more powerful or better to use.  For example, the
commands to rename, replace or duplicate an object were not part of the original task
analysis or the initial list of requirements.  These commands were added during
implementation.  Another new feature was the ability to hide local or internal input, request
and update events attached to an event handler when its request handlers were hidden.  This
helps the user manage the complexity of the architecture structure.

The third category of user comments during implementation were reports of bugs
and commands which were not working properly.  These did not involve any design
modifications.  However, these reports were very helpful in eliminating bugs from the
program.

Over all, user comments throughout implementation resulted in several important
modifications to the user interface design of ClockWorks.

7.3  The Interactive Calendar Program
The first part of the final testing of was to implement the interactive Calendar

program (described in chapter 2) with ClockWorks.  The architecture structure of this
application was completely redone with the ClockWorks although the same code was used
to define each component.

This test had two goals:  first, it was to ensure that the ClockWorks was as bug-free
as possible, and second it was an experiment to compare the old style of developing a
Clock program with the new style defined by ClockWorks.

The Interactive Calendar was the first application to be built with ClockWorks. The
definition of the architecture structure took very little time.  The graphical representation of
this architecture was so easy to understand that it clearly identified some problems with the
initial architecture structure.  The architecture was simplified and improved.

In general, the entire process of developing a Clock program has been simplified by
ClockWorks.  It is now much easier to see the potential of the Clock system for the creation
of interactive applications.  The importance of the architecture structure is more evident.  It
is easier to create a complete and correct architecture before writing the code for the
components.  There is less chance of discovering architecture errors during compilation and
execution.  However, in the event that these errors occur, they are much easier to find with
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ClockWorks.  The graphical representation of the inputs, requests, and updates provides an
easy way to verify the architecture structure and locate problems.  The implementation of
the Interactive Calendar program clearly illustrated the benefits of ClockWorks.

7.4 Formal User Testing
The first version of ClockWorks was tested using a set of guidelines for user

observation and testing [Gomoll and Nicol 1990].  Before user testing began, a group
meeting was held in which the first version of ClockWorks was demonstrated. The users
were also asked to read the documentation for ClockWorks.

In preparation for the test, a small Clock application was designed and partially
implemented.  The Coins application was designed to count loose change (quarters,
nickels, dimes and pennies).  The initial version of this application is illustrated in Figure
7.1 and its architecture structure can be seen in figure 7.2. The incomplete program given
to the users consisted of four numeric fields.  There were two buttons associated with each
field - one to increase the number and one to decrease it.   Each field corresponds to a
different kind of coin.  The users were asked to complete this application by adding two
new features. The first new feature was to add functionality to keep track of and display the
total amount of money (in cents).  For instance, if there are 2 quarters, 1 dime, and 3
nickels, and 2 pennies then the total should be 77 cents.  The second new feature was to
add a reset button to reset all numeric fields to 0.  Figure 7.3 is an example of the
completed application.  The architecture of the completed application is displayed in figure
7.4.
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Figure 7.1 The Incomplete Coins application.  The number of each type of coin is increased or decreased by
pressing the arrow buttons below it.
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Figure 7.2 Architecture of the incomplete Coins application.  The top event handler  Number  creates four
instances of its subview coins.  Each subview is a Shuffle event handler set up to increase or decrease a
Counter in response to the doAction input from the Button event handler.



82

Figure 7.3  The complete Coins application after the total and reset features have been added.
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Figure 7.4 The architecture structure of the complete Coins application.  The new reset subview added to
the Number event handler controls the reset feature.  The new request handler Total is updated each time the
user changes the number of any type of coin.

Tests were conducted individually.  Each user was given an hour to work on the
tasks.  The modifications to the application were made with ClockWorks.  The purpose of
this experiment was to observe the users interacting with ClockWorks.  The users were
asked to ‘think aloud’ so that their interactions with ClockWorks could be understood
clearly.

The tasks were chosen so that they would require the addition of at least one of
every type of architecture object (request handler, event handler, input, request, and
update).  Also, since the tasks involved modifying an existing application rather than
starting a new one, the users had the added task of understanding an existing architecture
structure.

The formal user testing was carried out after the first version of ClockWorks was
completed.  Its goal was to see how well users were able to interact with the system and to
determine how well the requirements were supported.
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7.4.1 User Observation
The four users who participated in the formal user testing had experience using the

original Clock system.  Of these, one had experience using ClockWorks throughout its
development, and three had only been briefly introduced it as preparation for the user
testing.

Several conclusions about ClockWorks and its design were drawn after observing
the users and listening to them ‘think aloud’ while carrying out the assigned tasks.

ClockWorks stresses the importance of the architecture structure.  The users were
not accustomed to this emphasis.  Formerly, Clock developers were forced to find their
own method for understanding this architecture structure.  Most developers made use of a
hand-drawn architecture picture, but the level of architecture detail represented on these
pictures varied for different users.  Some users chose not to draw inputs, requests, and
updates as part of the architecture structure.  They had some trouble associating these
objects with the architecture structure in ClockWorks.  The initial reaction of these users
was to open the editor for each component and try to understand its interface with other
components by reading its functional code definition.  However, since ClockWorks
represents all the inputs, requests, and updates within its proper context in the architecture
structure, there is no need to open the code for any component to understand how it
interacts with other components.  It is possible to fully comprehend an architecture
structure without looking at any code.

Initially, three of the four users opened the code for components before realizing
that the information could be displayed in the architecture picture.  Of these, two quickly
realized that it was not necessary to use the code to understand components.  They quickly
closed the editors and used the interface detail to understand the architecture.  These three
users went on to make all the necessary changes to the architecture structure before
modifying any Clock code.

One person used the code to understand and modify the interface for each
component without using interface detail contained in the architecture structure.  This led to
compilation problems caused by the fact that the architecture definition did not match the
code for each component.  In the original Clock system, the architecture structure was so
difficult to manage that developers often just went directly to the coding stages for each
component once the initial structure of event handlers and request handlers was defined.
Once the code was defined, these developers went back and filled in the interface portion of
the component class declarations to correspond to the code for each component.  I t  i s
interesting to note that this user completed fewer modifications to the application than the
other users in the same amount of time.

ClockWorks gives developers a very structured way to create Clock applications.  It
therefore takes some time for developers to become accustomed to the new environment if
they used a different method for defining their programs with the original system.
 The three users who had only a small amount of experience with ClockWorks were
slow getting started. This was caused by the fact that ClockWorks was new to them and by
the fact that they had not used the Clock system for several months.  Part of their confusion
was remembering how Clock architecture structures functioned.  In all cases, once they had
used ClockWorks for a short time, they were able to proceed with their modifications with
little trouble.

From the observations of users interacting with ClockWorks, it became clear that
some minor modifications to its user interface would make it easier to use and to learn.

Every user experienced some confusion with the Open and Close commands which
are defined to open or close a new level of detail for a component.  In a future version, this
feature could be made less confusing if it was replaced by individual commands to open or
close each level of detail.  The interface/hide interface command could be used as a model
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for a collection of new commands: hide/show request handlers, and hide/open sub-tree.  A
separate command could be used to invoke the editor.

Most users commented that the process of selecting a component then selecting a
command from one of the menus was a burden.  They would like to see a way to make this
process faster.  A new version might include a way to access various commands for the
components in a single action.

The semantic feedback used to indicate the level of detail displayed for components
was not useful.  For instance, three of the users did not understand the small rectangle
displayed under and event handler to indicate that it had no request handlers.  ClockWorks
did not contain any semantic feedback to indicate that components had no interface.  This
caused some confusion as users repeatedly selected the show interface command thinking
that it did not work the first time.  ClockWorks also provides no indication that the editor
for a component is open.  In a future version, color or graphics could be used to indicate
such information.

In general, the users were successful in carrying out the assigned tasks with
ClockWorks.  They were able to understand and modify the Clock application.  Two of the
four users completed all the required tasks.  One completed all the architecture
modifications but didn’t modify the code, and one completed half of the required tasks
before running out of time.

After using ClockWorks for a short time, the users were able to use it without any
outside help.  None of the users used any tool other than ClockWorks to perform the tasks
nor did they make use of any hand drawings or sketches of the architecture structure.  The
next section provides a summary of the users' reactions to ClockWorks.

7.4.2 Final User Feedback.
Once the users had completed the tasks specified in the formal user test, they were

asked to comment on how well each requirement was supported by ClockWorks.  The
users agreed that the first seven requirements identified in chapter 4 were supported by
ClockWorks.  There were some minor complaints about the user interface.  Specifically,
there should be some improvement in the commands used to hide and display the detail of
the various components.  In general, the comments made by the users were similar to the
conclusions drawn from the user observation.  They can be summarized into three
categories:

The first  category includes small changes to the interface which would make it
easier to use and to learn.  These comments included minor problems with the user
interface of ClockWorks which could be modified easily.

The second category includes comments about requirements which were not
supported in ClockWorks.  Most users felt that ClockWorks would be even better if it
supported the last three requirements identified in chapter four.  These are: support for
architecture verification, support for component grouping, and simple code generation.
These and other features will be added to a future version of ClockWorks.

The third category includes comments which were related to the Clock compiler
which is currently being re-written.  ClockWorks only supports tasks relating to the
creation and manipulation of the architecture structure of Clock programs.  Future versions
will be integrated with the new Clock interpreter when it is finished.  When this
modification is made, messages from the Clock system and the interpreter will be displayed
in a scrolling window under the architecture drawing.
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7.5 Conclusions
Generally, once user testing is complete, the new information should be used to

modify the user interface design of an application so that the problems uncovered can be
overcome.  Modifications to version one of ClockWorks were not made as part of this
thesis due to lack of time.

The graphical representation of the architecture structure provides a clear
understanding of the structure of Clock applications.  This allows programs to be defined
easily, and it also helps developers create better and more efficient architecture designs and
improve existing designs.

The ability to comprehend architecture structures has several implications.
Architecture structures can be easily modified by adding or replacing components.  Pre-
defined components are represented in such a way that their interface can be understood.
This makes their integration into the architecture structure easier and more convenient.

ClockWorks can be used to build components and add them to the library.  Once an
adequate library of interaction techniques has been defined, a Clock application can be built
entirely from pre-defined components.  Once the group components have been added to the
Clock system, software reuse will be even more convenient.

In general, the users felt that ClockWorks made the development of Clock
Programs easier.  The architecture structures are easier to understand and modify.  Every
user tested said they would rather use version one of ClockWorks than the original Clock
system.  This proves that ClockWorks was successful in its goal making the Clock system
easier to learn and to use.
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Chapter 8: Summary and Conclusions

8.1 Summary
Research has shown that the component-based style of programming has the

potential to overcome some of the difficulties often associated with the development of
interactive software and software reuse.  However, component-based systems are too
difficult to use if they do not provide tool support to help developers manage the
complexity of the architecture structure of their programs.  These architecture structures
define how the components are joined to form an application.  Although they provide a
high-level structure for the program, they also contain a great deal of information, all of
which is important to the a proper understanding of the application being built.  Without
this understanding, developers were be unable to deal with large applications, or make
modifications to existing applications.

Clock is a component-based programming system in which components are defined
using a functional language.  Like many other component-based systems, Clock defines a
model upon which its applications are structured.  Clock components are connected into a
hierarchical structure which breaks an interactive application into its individual components.
The Clock system has many advantages for the development of interactive applications.
Once the architecture structure has been defined, the individual components can be easily
defined with very little code.  This feature makes Clock an ideal tool for rapid prototyping.
Modifications to applications can be made by modifying or replacing individual
components.  A library of pre-defined components can be created to allow programs to be
built with very little coding.

The disadvantage of the Clock system was that it had no effective development
tools to support the creation and manipulation of program architecture structures.
Developers were not able to take advantage of the benefits of the Clock system because it
was too difficult to manage the architecture structures of programs.  These structures very
quickly became too large and complex to manage.

A task analysis of the Clock programmer identified lack of tool support as the root
of its problems.  A set of requirements for program support was identified and
ClockWorks was designed.  The first version of ClockWorks has been implemented and
tested with a group of Clock programmers.  Results of this testing indicate that
ClockWorks has overcome the problems originally associated with the Clock system.

8.1 Implications
ClockWorks provides graphical representation and direct manipulation of Clock

architecture structures.   This allows programmers to easily understand and manage the
complexity of their program architectures.  The Clock system can now be used to create
larger applications.  Also, applications developed with the Clock system can now be
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designed to be more efficient. The graphical representation of the architecture structure
clearly identifies problems or redundancies in the architecture structure.  The completion of
the first version of ClockWorks has had the following implications:
• Developers can display the architecture structure of their programs in a way which will

be intuitive and easy to follow no matter how large their application becomes.
• The graphical representation of the architecture structure gives programmers a better

understanding of how the Clock system works.  This makes the Clock system easier to
learn.  It also helps developers create better and more efficient Clock applications.

• ClockWorks makes it easier for developers to find errors in the architecture structure of
their applications.  Once support for architecture verification has been added to a future
version of ClockWorks, developers will have less difficulty creating correct architecture
structures.

• ClockWorks allows developers to give the design of their architecture structures more
consideration.  Developers can now modify their architecture structure easily.
Developers will be able to make modifications to their program design in response to
user feedback.  The resulting applications will provide better support for user tasks.

• ClockWorks allows applications to be developed incrementally.  Developers can create
rapid prototypes of applications or specific portions of applications.  These prototypes
can be tested and refined as the application is constructed.  This gives developers of
interactive software the ability to modify and refine applications in response to user
feedback.  The resulting applications will more precisely support  user tasks.  Rapid
prototyping and incremental implementation will be even more convenient once support
for code generation has been added to ClockWorks.  With this feature, developers will
be able to create executable prototypes without writing any code.

• ClockWorks assists developers in designing components which can easily and
conveniently be reused.  Also, it  makes the process of reusing a component more
convenient.  The graphical representation of each component clearly indicates the
interface through which it communicates with other components.  This information
makes it easier for a developer to connect a pre-defined component to an existing
architecture.  Once support for group components has been added to ClockWorks,
developers will be able to reuse entire architecture structures or sub-trees.

•   ClockWorks provides graphical support to assist developers in managing the
complexity of the architecture structure of applications built using a component-based
programming system.  Since component-based programming systems stress the
importance of the structure of components connected to build an application, the ideas
used in the creation of the Clock programming environment could be adapted for use
with other component-based systems.

8.3 Conclusions
The goal of this thesis was to define a software development environment to help

developers of component-based applications manage the complexity of their program
architecture structures.  ClockWorks is a tool which allows developers to build and
manipulate the architecture structures which define Clock applications.  The first version of
ClockWorks has been implemented and tested with its users.  Conclusions have shown that
it has managed to overcome many of the problems which were associated with the ability to
manage Clock architecture structures.

Although ClockWorks was developed specifically for the Clock system, the
techniques and ideas used for its design and implementation are applicable to other
component based systems.  The main similarity between Clock and the other component-
based systems studied was that applications are built as structures of software components.
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The components are defined separately and structured to form an application.
ClockWorks’ support for the creation and manipulation of Clock architecture structures
could be adapted for use with other component-based systems.

Care has been taken to ensure that the environment met the needs of its users.  The
results of the formal user testing have shown that seven of the ten requirements identified in
chapter 4 have been met.

8.4 Future Plans for the Clock System
The following list indicates some of the future plans for improving the Clock

System:
• A graphical editor is currently being developed which will allow developers to mix

textual and graphical languages to specify Clock view functions [Song 1994].  This
tool will be integrated in a future version of ClockWorks.

• A future version of ClockWorks will add support for code generation.  With this
feature, default code will be generated when components are defined.

• A future version of ClockWorks will include support for architecture verification.
ClockWorks will automatically verify input, request and update events when they are
added to the architecture.  Semantic feedback will be used to notify the developer when
the source of destination of such events cannot be resolved.

• A future version of the Clock system will add support for group components.  These
components will be used to represent architecture trees or sub-trees as a single
component.  This feature will make software reuse more effective and convenient.
These changes will also be added to a future version of ClockWorks.

• An interpreter for Clock functional language is currently being written.  It is hoped that
this interpreter will help overcome some of the performance problems currently
associated with the Clock system.
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Appendix A: Task Analysis of the Clock
Programmer

This appendix contains the complete description of tasks created as part of the task analysis
described in chapter 4.  The task hierarchy corresponds to figures 4.2, 4.3 and 4.4.

Main Goal:  To develop an interactive application.
The entire development of an interactive application is an iterative process.  Some users
choose to work on the entire application design and implementation, while others design
and implement the various components separately.

Sub-Goal: User Needs Analysis
The user needs analysis is an evaluation of users and their needs.  Each task
currently performed by the user is analyzed in order to determine which will be
addressed by the application to be developed.
Sub-Goal: User Interface Design
The result of this sub-goal is a drawing or prototype of the user interface of the
application to be developed.
Sub-Goal: Task oriented specification
This sub-goal analyses the UI design with respect to the user and the tasks indicated
in the user needs analysis.
Sub-Goal: Architecture Design
This sub-goal is to produce a complete, architectural design for the application to be
developed.

Sub-Goal: Design tree structure
This sub-goal makes use of the UI design completed earlier.  The tree
structure is a hierarchical model of the components which make up the
application and the way in which they communicate.
The application's architecture structure is initially designed on a large piece
of paper.  This hand drawing becomes cluttered as each level of detail is
added and as modifications are made.  It can become difficult or impossible
to follow.  One solution to this problem is to work only on a small part of
the tree at a time.  Sections of the main diagram can be separated thus
allowing more detail to be added to the hand-drawn architecture design.
Some users chose not to add certain levels of detail to their architecture
design at all.  Instead, this portion of the design is done as they begin to
create the declaration files for the various components.  However, for large
applications, this is not a feasible solution.  Some representation of this
detail is needed in order to understand the design once it has been created.
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This understanding is necessary for modifications or additions to the
original design which are made frequently.

Task: Add an event handler:
An event handler represents the behavior and appearance of some
functional component of the program being designed.  It may be
made up of a collection of event handlers.  The entire application is
represented as a hierarchical structure of event handlers based on the
UI design sketches.  Lower levels represent smaller details.  The
highest level (root) represents the entire application.
There are no concrete rules which defines exactly how the
component structure should be arranged or which components
should be broken down into smaller components.  However, there
are some guide-lines:
In general, any part of the UI which performs some function can be
considered a separate component.  Text labels are not considered
separate components because they don't perform any functions in
the application.  However, buttons have a specific function, so they
are always separate components.
If there is a part of the UI which appears and functions as a separate
component, then it should be a separate component with its detail
one level down the tree.  For example, a scrollbar is a separately
functioning part of an application.  The component called scrollbar is
further divided into its own functional components: the arrow
buttons and the sliding thumb.
An event handler can be  used to group a collection of child
components of the same class.  For example, a menu of commands
is represented as a list of buttons.  A component called Actions is the
parent and the various buttons are its children.
Task: Add a request handler
A request handler is used to hold the data needed by the application.
It handles both requests for the data it holds as well as updates to the
data.  A request handler must be placed above the components
which depend on it.  It should be placed as low as possible in the
tree to avoid excessive redrawing while the application is running.
There is no specific method defined to indicate how request handlers
should be added to the tree.  There are several possible ideas to give
guidance to this task.
Some request handlers come from the connection to computation
column of the UAN description generated in the task oriented
specification sub-goal of system development.  Most such request
handlers are placed at a high level in the architecture tree because
they are closely related to computation.
Request handlers pertaining to the state of the UI generally can be
related to the 'connection to computation' column of the UAN
description.
Components or sub-trees of components which are being reused
from another application will have the same or similar request
handlers as they did in their original application.  These request
handlers help to define the functionality of a component. For
example, a button always has an Id to identify the function it
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performs, and a Status which indicates the state of the button (either
selected or unselected).
Task: Design flow of inputs
Inputs are handled by event handlers.  They either come from the
user or from a lower-level event handler.
Working from the lowest level in the tree, inputs can be drawn onto
the hand drawing of the architecture structure by connecting event
handler components or indicating user input with arrows or labels.
Some users do not add this level of detail to their hand-drawing.
Input events from the user include mouse button, or keyboard
activity.  Inputs from event handlers are generally translated into
updates.  For example, when several event handler components are
represented by the same class, they may each cause a different
update to occur.  To do this, the class sends an input up the tree with
an id indicating the action it represents.  Another component will
handle this input and send an appropriate update.
Task: Design flow of requests
A request is sent from an event handler whenever it requires a value
held in, or computed by, a request handler.  Requests can only
move up the tree.
Working with the hand-drawing of all or part of the architecture,
requests can be drawn in as labeled arrows connecting event
handlers to request handlers.  Another option is to list the names of
requests made beside an event handler component.  Some users do
not add this level of detail to their hand-drawing.
Task: Design flow of updates
Updates are sent from event handlers whenever they need to set or
change a value held by a request handler.  Updates can only move
up the tree.
Working from the hand drawing of the architecture or part of it,
updates can be drawn as labeled arrows connecting event handlers to
request handlers.  Another option is to list the names of updates
made beside an event handler component.  Some users do not add
this level of detail to their hand-drawing.
Task: Reuse a component
Components which have been defined previously in another
application or which are part of a library of reusable components can
be added to the architecture tree.
Care must be taken to make this component fit into the tree properly.
Some modifications to surrounding components or to the reused
component may be necessary.

Sub-Goal: Declare component classes
The object of this sub-goal is to produce the component class declarations
which are used by the architecture file.  These declarations may be part of
the architecture file or they may be in separate files which are included in the
architecture file when it is translated by Clock.
The declaration of component classes can be done in stages as the
architecture structure is defined.  Initial versions of these files containing
only the class name for request handlers, and the class name and the
subviews for event handlers can be used to run the CV tool and view the
architecture structure.
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Comments can be included in these files to make the system easier to follow
as they became increasingly large.

Task: Declare an event handler
In this task, the event handler declarations are produced.  By
convention, each event handler class has its own file which has the
same name as the event handler class, only beginning with a lower-
case letter and ending with a .ehc extension.
The declaration includes the class name, and  lists of subviews,
inputs taken, requests made, and updates made for the event handler
class.
Keywords used in this file are: ehClass (declares the name of the
class), subviews (lists all subviews), inputs (lists input events
received by this class), requests (lists requests sent by this class),
and updates (lists updates sent by this class).
The pseudo-code for each event handler can be included in comment
lines in the event handler declaration.  This task has two purposes.
First, it assists the task of verifying the completed architecture
design.  Second, it is a method of filling in the inputs, requests, and
updates lists of the event handler class.
Task: Declare a request handler
In this task, the request handler declaration files are produced.  By
convention, each request handler class has its own file which has the
same name as the request handler class, only beginning with a
lower-case letter and ending with a .rhc extension.
The declaration includes the class name, and lists of requests and
updates handled by this class.
Keywords in this file are: rhClass (declares the name of the class),
requests (lists all requests taken) and updates (lists all updates
taken).
Task: Verify syntax of a component class declaration
The CV tool can be used to verify the syntax of the component class
declarations.
Task: Correct syntax of a component class declaration
To correct a syntax error in a component class declaration, the file is
edited with any text editor.  Declaration files cannot be edited from
within the CV tool.
Task: Modify a component class declaration
Modifications to component class declarations are done with any text
editor.

Sub-Goal: Create architecture file
An architecture file will be produced.  This file includes all the necessary
component class declarations and the textual definition of the architecture
design.

Task: Include a required file
If a component class has been declared in a separate file,  this file
must be included in the architecture file using a #include directive.
Declaration files which come from Clock libraries are included in the
architecture file with a #library directive.  The first two library files
included should always be StdUpdates.ct and StdRequests.ct.
These files include all the standard requests and updates used in the
clock system.
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The order in which component class declaration files are included in
the architecture file is important.  The best method is to include the
request handler classes before the event handler classes.  A
commonly occurring problem is that a file will refer to a request or
update which is defined in a later file.  This condition generates a
warning message indicating that a request or update has not been
declared.
Task: Build architecture model in text
A textual definition of the architecture or part of the architecture, is
created based on the hand drawing of its design.  This file can be
created with any text editor.  The CV tool cannot be run until this file
is created and syntactically correct.
The architecture file can be created in stages as the architecture
model is being designed.  An initial version of the architecture file
can be written without request handlers.  It is produced after the
initial versions of the event handler class declaration files have been
created.  This initial architecture contains only the event handler
classes and it shows the composition of the subviews used in the
system.
Task: Modify architecture model textual description
Any text editor can be used to modify the architecture file.  It cannot
be modified from within the CV tool.
Task: Verify architecture file syntax
The syntax of the architecture file can be verified by running the CV
tool.  Error messages refer only to the translated version of the
architecture file.  This translated version includes all the component
class declarations so that the error message does not indicate which
file contains the error.
Task: Find an error in architecture file
When the CV tool is run, it stops at the first error it encounters and
indicates the text surrounding the error.  The error message refers
only to the translated version of the architecture file
(.processedProgs/Architecture.ct) which includes all the text from
the declaration files as well as the Architecture file.  There are
several ways to find the error.
Sometimes the text provided in the error message is sufficient to find
the error.  If not, the line number of the error in the translated file is
provided.  By looking at this section of the translated file, more of
the text which caused the error can be used to determine its location.
Also, by looking at the lines above the error, the first line beginning
with an ehclass or rhclass indicates the component class declaration
which caused the error.  The declaration file for this class usually
contains the error.
Task: Correct a syntax error in architecture file
Once the error is located, it can usually be corrected by simple text
editing.  However, more serious errors may require more complex
correction such as a change to the structure of the architecture
design.
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Sub-goal: Evaluate Architecture Design
Task: Verify position of a request handler
Request handlers should be placed as low as possible in the tree to
prevent unnecessary redrawing of the screen.  However, the request
handler must be above any event handlers which send it requests or
updates.  The CV tool displays all the request and event handlers as
coded in the architecture text file.
The picture created by the CV tool can be verified against the hand-
drawing of the architecture design.
Task: Verify position of an event handler
The position of an event handler can be verified in several ways.
The position of an event handler can be checked against the UI
design to ensure that all functional components have been included.
The architecture text file can be checked against the hand-drawn
architecture design to ensure that the text accurately corresponds to
the design.  The CV tool can be used to display the event handlers in
the architecture text file.
Task: Verify component class declarations
Each request handler declaration is checked to ensure that it includes
a declaration for every request and update it handles.  Also, each
request and update should have a request or update declaration and a
type signature.  This checking is not done by the CV tool.  It is
verified at compile time.  Before compilation, the declarations must
be checked manually, one at a time.
Task: Verify flow of requests
Requests are made whenever an event handler requires a value from
a request handler.  Requests must flow up the tree.  The CV tool
does not show the flow of requests.  These must be verified using
either the component class declarations, or the hand drawn
architecture structure.
Task: Verify flow of inputs
Inputs flow from the user to event handlers or from one event
handler to another.  They must flow up the tree.  The CV tool does
not show the flow of inputs.  These must be verified using either the
component class declarations, or the hand-drawn architecture
structure.
Task: Verify flow of updates
Updates flow between request handlers and event handlers.  They
must flow up the tree.  The CV tool does not show the flow of
updates.  These must be verified using either the component class
declarations, or the hand-drawn architecture structure.

Sub-Goal: Implementation
Implementation involves the actual coding of the components, compilation of the
code, error checking and correcting, as well as a level of run-time checks done by
the programmer to ensure that the program is working correctly.  It also includes
modifications made to the program after it has been implemented.
Since development is an incremental process, the application may be implemented
in stages.
Code for components which have been reused from other applications or from a
library of reusable components should be linked or copied to the current directory.
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This code may require modifications to allow it to function properly within the
current application.

Sub-Goal: Define event handlers
Task: Define an event function
Each input taken by an event handler is defined with an event
function.
Task: Define the invariant function
The invariant function defines a condition which is always true.  It is
used to ensure that the view or state of a component remains
consistent.  Not all event handlers need an invariant function, but it
must always be defined.  The invariant function must be defined as
noUpdate it if is not needed.
Task: Define the initially function
The initially function is called once when an event handler is being
created.  It has a single parameter which is the string passed to the
subview when it is created.  The initially function is used to set up
initial values for an event handler.
Not all event handlers need an initially function, however it must
always be defined.  The initially function must be defined as
noUpdate if it is not needed.
Task: Define the view function
In the initial implementation, the view functions are only done in
rough form.  Views are set up to stretch from the origin.  They are
initially set up above or beside each other.  Once the code is
running, the view function is modified and refined to correspond to
the UI design.
Task: Declare each input taken as an update with a type
signature
An input is treated as an update, so it needs an update declaration
and a type signature.
The main problem with this task is that it is not always necessary.  If
an update is sent as an input to an event handler has already been
declared elsewhere, then another declaration would cause an error.
However, if it has not been declared, an error will occur.

Sub-Goal: Define a request handler
Task: Declare a type for the state
The state is the data being represented by the request handler.
Task: Define the initially function
The initially function defines the initial value for the request
handler's state.  It has no parameters.
Task: Define a request function
A request function has the same type as the request it handles except
that it has an additional first parameter which is the request handler's
state.  For example, the request myId has type
myId :: String
whereas the function to handle the request has the type
myIdReq :: State -> String
The name of a request function is the same as the request it handles
with an additional Req on the end.  For example, the function to
handle the myId request is called myIdReq.
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Task: Define an update function
An update function has the same type as the update it handles except
that it has a additional first parameter which is the request handler's
state.  For example, the update setMyId has type
setMyId :: String -> String,
whereas the update function has the type
setMyIdUpdt :: State -> String -> String.
The name of an update function is the same as the update it handles
with an additional Updt on the end.  For example, the function to
handle the setMyId update is called setMyIdUpdt.
Task: Declare a request taken by request handler and  its
type.
Each request handled by a request handler must be declared with a
request statement with a type signature.
This task causes a bit of confusion if it is unfamiliar.  The type
defined for a request in the request declaration is not the same as the
type defined for the function which handles it.  The type given in
this declaration illustrates how the request will be called.  The
request function always has an additional first parameter which is
the state of the request handler.
Also, the request and the request function have different names.  For
example, the request myId is handled by a function called myIdReq.
Task: Declare an update taken by request handler and  its
type
Each update handled by a request handler must be declared with an
update statement with a type signature.
This task causes a bit of confusion if it is unfamiliar.  The type
defined for an update in the update declaration is not the same as the
type defined for the function which handles it.  The type given in
this declaration illustrates how the update will be called.  The update
function always has an additional first parameter which is the state
of the request handler.
Also, the update and the update function have different names.  For
example, the update setMyId is handled by a function called
setMyIdUpdt.

Sub-Goal: Get application running
This goal is to get some version of the application compiled and running.

Task: Compile the Clock Code
Run updatearch once all the component classes have been defined.
Task: Check the syntax of the code
Syntax errors are detected during code compilation.  However, each
module can be looked over before compilation to ensure it is correct.
Task: Decipher error message
This task causes major problems because the error messages are not
often incomprehensible.  However, you can often tell if it is a syntax
error or something more serious.
Task: Find error in code
Most of the error messages generated by Clock indicate indirectly
which file contains the error.  It indicates the gtml file which caused
the error.  The name of the gtml is similar enough to the name of the
Clock file to see which Clock file contains the error.  For example,
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if the Clock file is called MyId , then the gtml file will be
.processedprogs/gMyId.gtml.
In some cases, the error occurs in a file apparently unrelated to any
Clock files.  If this happens, the best strategy is to look in the file
indicated at the given line number and determine from the code
written there which file contains the error.
The main problem is that most error messages are not helpful in
determining anything but which Clock file contains the error.  From
this point, you have to look at the actual Clock file and find the error
without guidance.
Task: Correct syntax errors by editing files
Specific details of this task depend upon the text editor being used to
create and modify files.
Task: Modify a portion of the code

Sub-Goal: Debug the running application
Task: Fine-tune a view function
In this task, the view functions are fine-tuned according to the UI
design.  The running program can be used to determine which
changes to make.  The application must be recompiled after each
adjustment.  The UI design can be used to compute exactly which
changes to make in the view functions.
Task: Detect run-time errors
Run-time errors can be detected only by running the program and
trying out all the components and functions.
Task: Modify a portion of code
This task primarily involves text editing which depends upon the
editor being used to create and edit files.
Task: Recompile code
Code is recompiled by issuing an updatearch command.  This
command recompiles only code which has been modified since the
last compilation.

Sub-Goal: Modify the application
The biggest problem with modifying a Clock program is that the
components are often inter-related in ways which cannot be seen by looking
at the architecture design produced by the CV tool.  When making
modifications, care must be taken not to break the application.

Task: Define new components
When a new component is defined, it must be able to interact with
the existing application without breaking it.
Task: Remove an existing component
To remove a component, care must be taken to modify any
components connected to it.
Task: Modify existing components
Components can be modified by changing the functions which
define them, or by changing their position in the architecture
structure.

Sub-Goal: User Testing
This sub-goal is to evaluate the current version of the interactive application.  Since
the entire development is an iterative process, modifications may be made after the
application has been tested and evaluated.
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Appendix B: User Action Notation for ClockWorks

These UAN descriptions illustrate how the tasks identified in the task analysis (chapter 4)
can be performed with ClockWorks.  They correspond exactly to the task hierarchies
illustrated in figures 4.2, 4.3 and 4.4.  ClockWorks has eliminated many of the tasks
identified.  In these cases, a note has been added to the UAN description.

The following tasks have been added to the process of developing a Clock application
because ClockWorks has changed the way in which Clock applications are developed.
These tasks were added to ClockWorks as it was being implemented and therefore did not
occur as part of the original task analysis:
• replace <component>
• duplicate <component>
• open <project>
• close <project>
• save <project>
• quit
• add <object> to library
Since these tasks did not appear as part of the original task analysis, their UAN description
has not been included here.

Section 2.4 contains an explanation of User Action Notation.

Main Goal: Develop and Interactive Application
User Action Notes

user needs analysis not supported by environment

(user interface design not supported by environment

task oriented specification)+ not supported by environment

(architecture design expanded below

÷ implementation)+ expanded below

user testing not supported by environment
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Sub-Goal: Architecture Design
User Action Notes

(design tree structure ( addEH | addRH | addUpdt | addInpt | addReq )*

÷ declare component classes this is done automatically by the new environment

(addEH | addRH | addUpdt | addInpt | addReq )*

÷ create architecture file this is done automatically by the new environment

÷ evaluate architecture design) many tasks can be used to achieve this goal

Sub-Goal: Implementation
User Action Notes

((define an event handler)+ open <ehObject> <edit>

edit <ehObject>

÷ (define a request handler)*) open <rhObject> <edit>

edit <ehObject>

(get application running many tasks can be used to achieve this goal

÷ debug running application many tasks can be used to achieve this goal

÷ modify code)+ many tasks can be used to achieve this goal

Sub-Goal: Design tree structure
User Action Notes

((add an event handler)+ addEH

÷ (add a request handler)* addRH

÷ design flow of inputs addInpt

÷ design flow of requests addReq

÷ design flow of updates)* addUpdt
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Sub-Goal: Declare component classes
User Action Notes

declare an event handler done automatically by environment when user adds
an event handler and gives it a name

addEH

declare a request handler done automatically by environment when user adds
a request handler and gives it a name

addRH

verify syntax of component class declarations done automatically by environment

correct syntax of component class declarations since declarations are created by the environment,
there should be no need to correct the syntax

modify component class declarations user does not directly modify the component class
declaration files, as they are automatically generated
by the environment

( addUpdt | addReq | addInpt | addEH )*

Sub-Goal: Create the architecture file
User Action Notes

((include required files done by environment automatically according to
class names chosen by developer

| include component class declarations)+ done by environment automatically according to
class names chosen by developer

(build architecture text)+ textual version of architecture is hidden from the
user and created automatically

(modify architecture)* user is not permitted to modify text directly,
architecture is modified by direct manipulation

(verify architecture file syntax)* since environment creates the architecture file, the
syntax is error free

(find an error in architecture file)* syntax is generated correctly by environment

(correct an error in architecture file)*)+ architecture file is generated automatically and will
not contain errors



105

Sub-Goal: Evaluate architecture design
User Action Notes

verify position of request handlers by looking at architecture the in various modes
provided, the user will be able to verify the position
of request handlers

verify position of  event handlers by looking at architecture in the various modes
provided, the user will be able to verify the position
of event handlers

verify component class declarations component class declarations will be hidden from
the user, modifications to any part of architecture
design will be done by direct manipulation

verify flow of requests various display modes can be used to verify flow of
requests

verify flow of inputs various display modes can be used to verify flow of
inputs

verify flow of updates various display modes can be used to verify flow of
updates

Sub-Goal: Define an event handler
User Action Notes

event function no change

invariant function no change

initially function no change

view function no change

define type for inputs defineType<inptObject>

Sub-Goal: Define a request handler
User Action Notes

Define type for request handler state no change

initially function no change

request functions no change

update functions no change

define type for requests defineType<reqObject>

define type for updates defineType<updtObject>
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Sub-Goal: Get application running
User Action Notes

compile choose <special><compile>

Check syntax no change

decipher error message no change

find error no change

correct syntax no change

modify code open <component><edit>

edit <component>

Sub-Goal: debug running application
User Action Notes

fine tune view function no change

detect run-time errors no change

modify code open <component> <edit>

edit <component>

compile code choose <compile> <special>

Sub-Goal: Modify application
User Action Notes

(define new object | (addEH | addRH | addInpt | addReq | addUpdt )*

remove a component | remove <object>

modify component )* (addInpt | addReq | addUpdt | edit<component> )*

Task: AddEH
User Action Interface Feedback Connection to

Computation

select <ehObject> <ehObject> ! add <ehObject> to selected list

choose <class> <add subview> event handler dialog appears see figure 6.4

name ehClass <new eh> as in task as in task
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Task: AddRH
User Action Interface Feedback Connection to

Computation

select <ehObject> <ehObject> ! add <ehObject> to selected list

choose <Component> <add
request handler>

request handler dialog box appears see figure 6.5

name rhClass <new rh> as in task as in task

Task: AddInpt
User Action Interface Feedback Connection to

Computation

select <ehObject> <ehObject>! add <ehObject> to selected list

choose <class> <add input> input, request, update declaration
dialog box appears

see figure 6.6

inptName <inptObject> as in task as in task

defineType <inptObject> as in task as in task

Task: AddReq
User Action Interface Feedback Connection to

Computation

( select <ehObject> <ehObject>! add <ehObject> to selected list

choose <class> <add request> input, request, update declaration
dialog box appears

see figure 6.6

reqName <reqObject> as in task as in task

defineType <reqObject) as in task as in task

| (select <rhObject> <rhObject>! add <rhObject> to selected list

choose <class> <add request> input, request, update declaration
dialog box appears

see figure 6.6

reqName <reqObject> as in task as in task

defineType <reqObject>) as in task as in task
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Task: AddUpdt
User Action Interface Feedback Connection to

Computation

( select <ehObject> <ehObject>! add <ehObject> to selected list

choose <class> <Add Update> input, request, update declaration
dialog box appears

see figure 6.6

updtName <updtObject> as in task as in task

defineType <updtObject>) as in task as in task

| ( select <rhObject> <rhObject>! add <rhObject> to selected list

choose <class> <add update> input, request, update declaration
dialog box appears

see figure 6.6

updtName <updtObject> as in task as in task

defineType <updtObject> as in task as in task

Task: Name ehClass
User Action Interface Feedback Connection to

Computation

if <ehDialog> not active: MainScreen is displayed
(currently)

see figure 6.3

select <ehObject> <ehObject>! add <ehObject> to selected list

choose <class> <rename> event handler dialog box appears see figure 6.4

end if eh name dialog is displayed
(currently)

see figure 6.4

( ~<name> ts | <name> !

<name> appears in <editBox>

( ~<editBox> ts ) cursor appears in <editBox>

type <name> )) echo characters in <editBox>

~ <OK> ts <OK>!-!

rh name dialog goes away

MainScreen is displayed

see figure 6.3
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Task: Name rhClass
User Action Interface Feedback Connection to

Computation

if rh name Dialog not active: MainScreen is displayed
(currently)

see figure 6.3

select <rhObject> <rhObject>! add <rhObject> to selected list

choose <class> <rename> request handler dialog appears see figure 6.5

if rh Name dialog is active request handler  dialog is
displayed (currently)

see figure 6.5

( ~<name> ts | <name> !

<name> appears in <editBox>

( ~<editBox> ts ) cursor appears in <editBox>

type <name> )) echo characters in <editBox>

~ <OK> ts <OK>!-!

request handler name dialog goes
away

MainScreen is displayed

see figure 6.3

Task: DefineEH <ehObject>
User Action Interface Feedback Connection to

Computation

setLevel <ehObject> <edit> <ehObject> code is displayed in
text editor

edit <ehObject> specific to chosen text editor

Task: DefineRH <rhObject>
User Action Interface Feedback Connection to

Computation

setLevel <rhObject> <edit> <rhObject> code is displayed in
text editor

edit <rhObject> specific to chosen text editor

Task: Show SrcDest <iruObject>
User Action Interface Feedback Connection to

Computation

select <iruObject> src/dest !-!
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Task:  Open <object>
User Action Interface Feedback Connection to

Computation

( ~<object> tsts) | open object to next level

if already open to highest level,
do nothing

see figure 5.8 for an explanation
of levels

( select <object> <object> ! add <object> to selected list

choose <edit> <open> ) open object to next level

if already open to highest level,
beep

see figure 5.8 for an explanation
of levels

Task: Close <object>
User Action Interface Feedback Connection to

Computation

select <object> <object> ! add <object> to selected list

choose <edit> <close> object closes to next level.  if
already at lowest level, do
nothing

see figure 5.8 for an explanation
of levels

Task: select <object>
User Action Interface Feedback Connection to

Computation

if not selected <object>: <object> -! (currently) <object> is not in selected list

~ <object> ts object ! add <object> to selected list

Task: unSelect <object>
User Action Interface Feedback Connection to

Computation

if selected <object>: <object> ! (currently) <object> is part of selected list

( ~ <object> ts | <object> -! remove <object> from selected
list

~ <blank space> ts ) <object>-! and

<all selected objects> -!

remove all selected objects from
selected list
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Task: defineType <iruObject>
User Action Interface Feedback Connection to

Computation

if input, request, update
declaration dialog not active:

MainScreen is displayed see figure 6.3

select <iruObject> <iruObject>!

<src or dest of iruObject>!

choose <class> <IRU
declaration>

input, request, update declaration
dialog box appears

see figure 6.6

if input, request, update
declaration dialog active:

input, request, update declaration
dialog is displayed

see figure 6.6

~ <type editfield> ts cursor appears in type edifield

type <type signature> echo typing

~ <OK> <OK> !-!

name-type dialog goes away

MainScreen appears

see figure 6.3

Task: selectGroup
User Action Interface Feedback Connection to

Computation

 <shift> t

(( select <object> )+ <object> ! add <object> to selected list

 (unSelect <object>)* ) <object> -! remove <object> from selected
list

<shift> s

Task: unSelect group
User Action Interface Feedback Connection to

Computation

~ <anywhere> ts if clicked on blank space:

all object unselected

if clicked on <new object>:

all objects unselected

<new object> selected

update selected list to reflect
changes
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Task: Group
User Action Interface Feedback Connection to

Computation

select<groupObject> as in task as in task

choose <group><group> selection becomes a single group
object

update tree structure to reflect
changes

Task: UnGroup <groupObject>
User Action Interface Feedback Connection to

Computation

select <groupObject> <groupObject> ! add <groupObject> to selected list

choose <group><ungroup> group object becomes original
portion of architecture

update tree structure to reflect
changes

Task: choose <menu> <item>
User Action Interface Feedback Connection to

Computation

~ <menu> t <menu> pops down

~ <item> <item> !

^ <item> -!

<menu> pops up

perform task associated with this
menu item

Task: inptName <inptObject>
User Action Interface Feedback Connection to

Computation

if iru declaration dialog not
active:

MainScreen is displayed see figure 6.3

select <inptObject> <inptObject>!

<src or dest of inptObject>!

add <inptObject> to selected list

choose <class> <rename> iru declaration dialog appears see figure 6.6

if iru dialog is active: iru dialog is displayed (currently) see figure 6.6

( ~<name> ts | name appears in name box

( ~ <name edit> ts cursor appears in <name edit>

type <name> )) echo characters

~ <OK> ts <OK> !-!

iru dialog goes away

MainScreen activated

see figure 6.3
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Task: reqName <reqObject>
User Action Interface Feedback Connection to

Computation

if iru declaration dialog not
active:

MainScreen is displayed see figure 6.3

select <reqObject> <reqObject> !

<src or dest of reqObject)!

add <reqObject> to selected list

choose <class> <rename> input, request, update dialog
appears

see figure 6.6

if iru declaration dialog is active: input, request, update dialog is
displayed (currently)

see figure 6.6

( ~<name> ts | name appears in name box

( ~ <name edit> ts cursor appears in <name edit>

type <name> )) echo characters

~ <OK> ts <OK> !-!

iru dialog goes away

MainScreen activated

see figure 6.3

Task: updtName <updtObject>
User Action Interface Feedback Connection to

Computation

if iru dialog not active: MainScreen is displayed see figure 6.3

select <updtObject> <updtObject> !

<src or dest of updtObject> !

add <updtObject> to selected list

choose <class> <rename> input, request, update dialog
appears

see figure 6.6

if iru dialog is active: input, request, update dialog is
displayed (currently)

see figure 6.6

( ~<name> ts | name appears in name box

( ~ <name edit> ts cursor appears in <name edit>

type <name> )) echo characters

~ <OK> ts <OK> !-!

iru dialog goes away

MainScreen is activated

see figure 6.3
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Task: ehName
User Action Interface Feedback Connection to

Computation

if event handler dialog not active: MainScreen is displayed see figure 6.3

select <ehObject> <ehObject> ! add <ehObject> to selected list

choose <class> <rename> event handler dialog appears see figure 6.4

if event handler dialog is active: event handler dialog displayed see figure 6.4

~ < nameEdit> ts cursor appears in name edit

type <name> echo characters

~<OK> ts <OK>!-!

event handler dialog goes away

display MainScreen

see figure 6.3

Task: SetLevel <object> <level>
User Action Interface Feedback Connection to

Computation

( open <object> | <object> will be displayed in the
next  highest level

see figure 5.8 for an explanation
of levels

close <object> )* <object> will be displayed at the
next lowest level

see figure 5.8 for an explanation
of levels

until <level> reached

Task: Remove <object>
User Action Interface Feedback Connection to

Computation

select <object> <object> ! add <object> to selected list

choose <edit> <remove> object deleted from tree and tree
repaired to fill in the gap

restructure tree to fill in gap


