Tools for Implementing Groupware:
Survey and Evaluation
by
Tore Urnes and Roy Nejabi
Technical Report No. C5-94-03
1994

Department of Computer Science
York University
North York, Ontario
Canada M3J 1P3

Contents

1 Introduction

1.1 Defining Groupware e e e
1.2 Why Groupware Development is Difficult 000
1.2.1 Interaction Technology Lo
1.2.2 Distribution Technology o oo
1.2.3 Network Technology
1.3 The Selected Tools o o e e
1.3.1 GrouplE e e
1.3.2 GroupKito e
1.3.3 Suite . . . oL e
1.3.4 Weasel o L o e
1.3.5 Other tools e
1.4 Related Work oL o e

2 Tool Evaluation Description

2.1 Evaluation Design L e
2.2 Evaluation Criteria oL e
2.2.1 Goals of Groupware tools Lo o
2.2.2 The Selected Criteria L e
2.3 Other Criteria o e

3 Evaluation Results

3.1 GrouplEo e
3.1.1 A Generic Model for Distributed Teamwork
3.1.2 Example Applicationso
3.1.3 Evaluation e
3.1.4 Conclusion L e

3.2 Groupkit . ..o 28

3.2.1 Session Management Lo e e e e 28
3.2.2 Multi-user Widgets oL e 30
3.2.3 Example Applicationso 31
3.2.4 Evaluation e 32
3.2.5 Conclusion L e 33

3.3 Suite . .o e 34
3.3.1 Flexible Coupling 34
3.3.2 Single-User Code Reuse 36
3.3.3 Example Applicationso e 38
3.3.4 Evaluation 40
3.3.5 Conclusion L e 41

3.4 Weasel . . . o o 41
3.4.1 The Relational View Model 41
3.4.2 Example Applicationso e 45
3.4.3 Evaluation e 47
3.4.4 Conclusion L e 48

4 Conclusion 50
4.1 Tool Comparison o v it e e e e e e e 50
4.2 Lessons for Tool Designers e 50
4.3 Acknowledgments L Lo e 51

1 Introduction

This report presents the results of an effort to evaluate a set of existing tools for developing group-
ware. Qur evaluation approach has been to put ourselves in the position of groupware developers
and actually use the tools to develop groupware. The evaluation is based on a set of criteria which
helped us measure the level of support each tool provided for important development issues and

activities.

The topic selected for our project was motivated by a perceived need for a more in-depth analysis
of and comparison between existing groupware development tools. In addition, we both hoped to
be able to do work in the area of groupware tools and felt that hands-on experience using existing

tools would be valuable.

This section starts by defining what groupware is. The major part of this introductory section
attempts to motivate the need for tools to develop groupware by presenting an overview of technical
issues involved in groupware applications. A short survey of the groupware tools chosen as the
subjects of our project follows next. This introductory section will end with a discussion of related

work.

The rest of this report is organized as follows: Section 2 will describe our approach to evaluating
the selected groupware tools. The criteria used throughout the evaluation will be motivated and
presented. Section 3 then presents our actual evaluation results for each of the tools. Finally,

section 4 will summarize the results and discuss conclusions that we have drawn from our work.

1.1 Defining Groupware

Groupware falls into a relatively new research field called computer-supported cooperative work
(CSCW). Dix et al. [22, Ch. 13] explain that CSCW 7is about groups of users — how to design
systems to support their work as a group and how to understand the effect of technology on their
work patterns”. A major area within CSCW is the provision of computer systems to support group

work. Such systems are called groupware.

In his book of readings [2, Intro. Part I], Baecker cites a number of definitions of the term ”group-
ware”. A good definition is attributed to Malone: ”information technology used to help people
work together more effectively”. Some authors emphasize the point that there is more to group-
ware than technical issues like distribution and communication technology. Baecker attributes the

following quotation to Dyeson:

More than a way of coding or building applications, groupware is a way to define,

structure, and link applications, data and the people who use them.

To this date, two main classes of groupware have been identified: asynchronous and synchronous.
The former class, consisting of for example e-mail and organizational memory systems, is clearly the
most successful. However, the tools considered in this report all provide development support for
synchronous groupware. Synchronous groupware is often called desktop conferencing applications;
examples include collaborative writing/drawing/design tools, group decision support systems, and

games. In this report, the term “groupware” primarily refers to synchronous groupware.

It should also be noted that we are mostly concerned with collaboration aware [43] groupware in
this report. Collaboration aware groupware applications are “aware” that they are being used by
a group of users, i.e. they contain functionality for handling issues that emerge when a group
of users interact through networked computers. A class of groupware tools called shared window
systems [30] is used to automatically generate collaboration transparent groupware applications
from existing window-based single-user applications. Collaboration transparent applications are

unaware that they are being used by multiple, simultaneous users.

1.2 Why Groupware Development is Difficult

The following overview of technical issues that are related to groupware aims at motivating the
need for tools to develop groupware and at familiarizing the reader with terminology and issues

appearing throughout the remainder of this report.

Compared to the task of developing applications for a single user, developing groupware is more
difficult. For a start, groupware developers face all the problems experienced by single-user appli-
cation developers. Due to the nature of the type of groupware applications we consider here, these
problems are similar to those inherent in human-computer interface development [48]. Groupware
developers must also solve additional problems. First, they must handle input from and output
to multiple users plus coordination and collaboration among them. Secondly, groupware systems
are inherently distributed systems posing such non-trivial problems as synchronization and net-
work latency. Finally, the lack of "production quality” groupware tools means that developers
have to settle with single-user tools (e.g. graphics toolkits), resulting in developers trying to work

themselves around single-user biases of the tools.

Several authors have attempted to organize the technical issues that serve as a foundation for
groupware applications. Ellis et al. [24] suggest that groupware relies on the approaches and con-
tributions of the following four disciplines (in addition to social theory): distributed systems (oper-

ating systems and data bases), network communication (bandwidth, connectivity, and multimedia

protocols), human-computer interaction, and artificial intelligence (intelligent agents). Baecker [2,
intro. part I] mentions human-computer interaction, networking and communication, operating
systems and data base systems, windowing systems and environments, audio and video technol-
ogy, and artificial intelligence as the areas of computer science within which groupware developers
require expertise. In his dissertation, Riidebusch [64, ch. 2] organizes groupware-specific technical
issues into four levels of abstraction (in decreasing order of abstraciton level): human-computer

interaction, concurrency control, distribution, and communication.

In this short overview of technologies underlying synchronous groupware, we have chosen to only

use three broad categories:

o Interaction technology. This category includes all technologies that are involved in human-
human and human-computer interaction. Typical examples are window systems, 1/O de-
vices, discrete (graphics, text) and continuous (audio, video) media, window coupling, and

workspace management.

e Distribution technology. This is where we consider different architectures and approaches to

consistency management (i.e. access and concurrency control).

o Network technology. This category deals with transportation of data between different hard-

ware components. Capacity, connectivity, and protocols are issues of concern here.

1.2.1 Interaction Technology

Groupware supports collaboration by allowing computers to mediate interactions (i.e. communi-
cation) between a group of users. Bowers and Rodden [6] describe how this computer-mediated
interaction (or multi-user interfaces) evolved from traditional HCI, how its role is completely dif-

ferent from that of HCI, and how the physical work environment has great impact on it.

Many early groupware systems where realized by using shared window systems [30] to turn existing
window-based single-user applications into multi-user applications. Shared window systems often
rely on server-based window systems like the X window system. In a server-based window system
input and output events travel between the window server and the client applications, providing
an entry point for multiplexing of output and demultiplexing of input. Kernel-based systems are
more problematic because they require a replicated architecture in order to be suitable for shared

window systems [11].

Groupware could benefit from changes being made to current window system technology; Lauw-

ers and Lantz [43] suggest a number of improvements (e.g. support for migrating window state,

telepointers, and transparent windows for annotation). Freeman [26] looks at how current window
systems are single-user biased and presents his view on how window systems might evolve in the

future, including how device drivers might better support groupware.

Continuous, digital media like audio and video have great potential for improving the effectiveness
of groupware [69]. One distinguished feature of continuous media in a groupware setting is the fact
that different media streams must be synchronized. Media synchronization is the enforcement of
temporal relationships [32]. Two media streams may be temporally related in thirteen different
ways [74]. There have been some proposals for collaborative multimedia models. Vin et al. [73]
present a hierarchical model consisting of the three layers stream, session, and conference. Tem-
poral relationships (or constraints) are defined by setting stream attributes. SuiteSound [56][19,
“Multimedia Support” sidebar] is a realization of an object-based model where multimedia is incor-
porated by creating flow and filter objects. Rhyne and Wolf [55] suggest that shared event histories
may serve as a framework for multimedia synchronization. Hill [35] advocates that declarativeness

is a desirable property of any approach to specifying mixed continuous media in groupware.

Interaction coupling is an important issue in groupware. Coupling refers to the degree that events
observed by a user are the results of actions performed by other users [16]. Strict What- You-See-Is-
What-1-See (WYSIWIS) [68] coupling is the most extreme version where every action performed by
any user is immediately observable by the other users. Strict WYSIWIS is often too restrictive [67],
and much work has been put into coming up with interaction infrastructures that support more
customizable interaction coupling (e.g. [51, 17, 37, 3]). The dialogue independence model (i.e. log-
ically separating the functional core from the user interface) that is the foundation of user interface

management systems is often used in order to simplify flexible interaction coupling schemes.

Groupware applications normally present users with a set of windows, many of which are shared.
Workspace management is the provision of facilities to take care of issues like distinguishing shared
windows from private ones, identify all windows belonging to the same application, among other
things [43]. Two metaphors have been proposed to ease workspace management [67]: one is based

on stampsheets, the other extends the rooms metaphor.

1.2.2 Distribution Technology

Responsiveness is a major concern in groupware systems where users are geographically distributed.
The response times are influenced by the choice of protocols for communication, consistency, and
synchronization [47], which are in turn influenced by the choice of architecture. The simplest archi-
tecture alternative is the centralized one. It generally provides poor performance. Shared window

system researchers [11, 44] have proposed to use a fully replicated architecture (i.e. reduce net-

work communication to an absolute minimum) in order to achieve minimized response times. This
approach gives good performance but at the cost of considerable consistency and synchronization
problems. Other researchers [28, 17, 3] suggest that a semi-replicated architecture is a good solution
which manages to keep both communication, consistency, and synchronization costs at a low level.
Others [58, 65] advocate that full-fledged distributed systems support should be incorporated into
groupware tools. It is also interesting to note that the distributed systems community, e.g. the

ISIS toolkit [5], starts to take groups into account.

Issues related to the choice of architecture are scalability and robustness. Ahuja et al. [1] compare
the performance of centralized and replicated architectures. Graham and Urnes [28] report that
performance measurements have shown that a semi-replicated architecture scales much better than

a centralized one.

Distribution entails that multiple users are given the opportunity to interact simultaneously. This
creates a potential for race conditions, i.e. attempts to make conflicting updates to shared data (i.e.
potentially bringing the groupware application out of synch). Concurrency or access control are
the solutions to this problem. There are two types of concurrency control approaches: pessimistic

and optimistic.

Floor control is the most common pessimistic approach. It uses the notion of a token to restrict
the number of simultaneous users that can perform actions. Floor control assumes that all shared
data objects are “owned” by one permission granting body. Greenberg et al. [31] extends this
notion in the GroupDraw program by letting the different users “own” different objects and be
in charge of granting access permissions. That is, concurrency control is made more distributed
and non-conflicting actions are allowed to take place simultaneously. Another distributed concur-
rency control algorithm is the dOPT algorithm [23]. This is an efficient algorithm for replicated

architectures. It is based on state vectors that are passed between replica as actions are performed.

An optimistic concurrency control algorithm is described in [50].

1.2.3 Network Technology

Cerf [8] gives a good overview of general network communication issues. Discussions of how current
network technology satisfies the communication requirements of groupware applications can be
found in [47] and [58]. As digital, continuous media are beginning to be incorporated into groupware
applications, networks will face tougher bandwidth requirements. Fox [25] explains what these

requirements are and how compression techniques can help reduce them.

One issue that is of particular concern to groupware is network latency. Big latency means that

network feedthrough is poor, i.e. transportation delays exhibit considerable, unpredictable variance.
Dix et al. [22, ch. 13] briefly explain why latency should be reduced as much as possible. The
source of the problem is that many of today’s data transport protocols (e.g. TCP) are focused
on providing optimal reliability. To better accommodate transportation of continuous media data
over wide areas, new protocols that sacrifice reliability to achieve predictable, short transmission
delays are needed [45].

1.3 The Selected Tools

Here, we present a short survey of the groupware tools that were chosen as the subjects of our
project. All of them are non-commercial systems resulting from research efforts in academia. The

order of presentation is according to alphabetical ordering of tool names.

1.3.1 GrouplE

The group interaction environment (GrouplE) [64, 66, 65], is a "generic environment offering high-
level development and run-time support for cooperative applications”. It is a tool implemented on
top of Smalltalk-80 (extended with distribution support) at the University of Karlsruhe in Germany.
The development support is in the form of a library of reusable Smalltalk classes, i.e. Grouplk is
object-oriented. The application domain of GrouplE is support for effective team work. GrouplE

is structured according to three notions:

o Interaction. Group members work together by means of interactions. Interactions can be
explicit or implicit, synchronous or asynchronous, and be either of type text or graphics (in
principle also animation, audio or video). Interaction handling in GrouplE includes address
resolution (according to role, sub group name, etc) and interaction adaptation (automatic,

graceful degrading of interaction resource demands as dictated by available hardware).

e Coordination. In order to put restrictions on the interactions that can take place, coordi-
nation support is needed. Coordination can be basic (e.g. turn taking) or complex (relies
on knowledge of task structures; checking and guiding are key factors). Coordination con-
trol takes team and task descriptions together with coordination policy constraints as input.

Coordination checking is performed by intercepting interactions.

e Distribution. GrouplE is built on top of a distributed system based on a proxy model. It has
support for naming and replication transparency. Both interaction handling and coordination
control are implemented in a distributed way and rely on close communication with the

distribution manager.

GrouplE applications have the following structure:

84—» T/. > 4—»8

Presentation | = — |\ s Presentation

Semantic Distribution Semantic

. : | object object | .
nteraction : i Support i : nteraction
handling replica replica ; handling

1.3.2 GroupKit

GroupKit [63, 60] is a toolkit for developing real-time work surfaces, i.e. shared visual environments.
GroupKit is built on top of Tecl/Tk [52] (with Unix socket front-end extension) by researchers at
the University of Calgary, Canada. Examples of groupware applications implemented by GroupKit
are multi-user sketching, drawing, and brainstorming tools. Important aspects of the GroupKit

toolkit are:

e Groupware applications generated by GroupKit have a replicated architecture [44]. The run-

time infrastructure of GroupKit provides elaborate conference (or session) management.

o Multi-user widgets that try to address the special user interface technology needs of groupware

applications.

e Flexibility through open protocols [61]. The GroupKit session manager implementation is

based on open protocols which facilitates flexibility in realizing different session management

policies.

The GroupKit run-time system is organized as follows:

: entral registrar ;
Registrar client Registrar client

Application replica Application replica

1.3.3 Suite

Researchers at Purdue University have developed a "high-level and flexible framework for support-

ing the construction of multi-user user interfaces” called Suite [17, 18]. The framework is based

10

on the generalized editing model, "which allows users to view programs as active data that can
be concurrently edited by multiple users”. It is structured according to the Seeheim model [29];
dialogue control is specified by (declaratively) issuing calls to dialogue managers, while application
code is specified using C (programmers write callbacks which maintain consistency and take care
of semantic feedback). Suite offers an object-based approach for structuring applications. The ob-
jects are heavy-weight (an object is an executable C program) and persistent. User interfaces are
basically text only, i.e. the intended application domain is multi-user editing of highly structured
text (no support for direct manipulation of graphical objects). Generated groupware applications

have a hybrid, semi-replicated architecture. Major features of Suite include:

¢ Elaborate coupling model. Suite is a fairly closed system in the sense that user interface issues
are specified at a very high level. This allows dialogue managers to offer generic functionality
to end-users that enables them to dynamically customize the coupling of their windows with

regard to other users’ windows.

o A broad range of collaboration schemes can be specified with relative ease in Suite. Collabo-

ration transparent applications can incrementally be made more collaboration aware.

The following diagram shows how the major entities in a Suite application are related:

Application
pc?bject
allbac
Presentation Call Call Presentation
hei hei... |<«g—p| Dialogue Dialogue | g hei hei...

man r
manager W anage

s N

1.3.4 Weasel

The Weasel system [28, 72] was developed partly at Queen’s University, Canada, and partly at
GMD at the University of Karlsruhe in Germany. Weasel is based on a model underlying most
UIMSs: the base application code is completely separated from the user interface code. In the case
of Weasel, the particular instance of this model is called the relational view model. The idea is
that application data structures and user interface views are linked by relations. These relations
map application data onto graphical views and vice versa. A special purpose, purely functional
(i.e. very high-level and declarative) language called RVL is used to specify the relations. RVL

offers easy customization of views for different users and limited support for collaboration aware

11

constructs for realizing collaboration/coordination schemes. Applications are specified using the
Turing plus language. User interfaces are generated automatically from the RVL specifications.
All issues concerning distribution, communication, and synchronization are handled automatically
by Weasel. Generated (groupware) applications have a semi-replicated architecture and have been
proven to scale well as the number of simultaneous users increases [28]. The multi-user version of

the relational view model may be sketched as follows:

Functional
core

View View
T
Am: ‘W

f—e @) @ <

1.3.5 Other tools

The four groupware development tools presented above are not the only existing ones. Here, we

briefly comment on those tools which were not selected.

We had hoped to be able to obtain a copy of the Rendezvous system [38], perhaps the most
impressive groupware tool developed to this date, but that could not be accomplished (Rendezvous
is neither a system originating from academia nor a commercial system). Rendezvous was developed

by researchers at Bellcore.

Another interesting system originating from Lancaster University, England, is the MEAD multi-
user interface prototyping environment [4, sidebar 2]. Unfortunately, this could not be delivered to

us within time to be considered in our project.

The ConversationBuilder [42] is a tool we decided not to consider, given our main focus on syn-

chronous groupware. It is a tool for structuring asynchronous communication.

1.4 Related Work

To the best of our knowledge there exist no “hands-on” evaluation of recent groupware tools. A
survey of groupware tools focusing on conceptual issues has been written by Dewan [16]. Here a large
number of tools are categorized into being either database systems, distributed systems, message
servers, shared object systems, shared window systems, multi-user toolkits, multi-user UIMSs, or
multi-user user interface generators. Omne aspect of Dewan’s evaluation is to consider a single
example application (collaborative editing and testing of programming modules) and compare how

this application probably could have been implemented by the tools in each category. This project

12

extends the work of Dewan by actually using the tools for developing groupware. OQur evaluation
approach is also potentially more objective because we do not use a single trial application program
as the basis of our evaluation. Of the tools we have selected, GroupKit and multi-user Suite are

included in Dewan’s survey.

In his paper comparing the programming demands of single-user and multi-user applications, Pat-
terson [54] proposes a list of three “dimensions” of programming complexity that are of special
concern to multi-user application programmers. The three dimensions are: concurrency, abstrac-
tion, and roles. We take this work one step further by incorporating the needs of groupware
programmers into a set of evaluation criteria and evaluating the subject tool relative to those

criteria.

Some groupware tool authors provide short comparisons between groupware tools when they discuss
related work. Hill [38] briefly compares Rendezvous to, among others, Suite, GroupKit, and Weasel.

Riidebusch considers Rendezvous, Suite, and other tools/systems in his dissertation [64].

13

2 Tool Evaluation Description

This section explains various aspects of the tool evaluations we have performed. The actual details

concerning the evaluation results of each tool can be found in section 3.

It should be apparent from the brief introductory presentation of the tools selected for evaluation,
that they are very different with respect to the kind of groupware applications they provide devel-
opment support for. The tools are, in other words, biased. Therefore, we needed to pay careful
attention to the evaluation criteria that provided the basis of our analysis. Specifically, we aimed

at choosing criteria that were as neutral as possible in light of the different biases of the tools.

We further took the fact that the tools are biased into account, when selecting example prototype
applications to implement using each of the tools. Specifically, we choose example applications
from the categories that the authors of the tools had in mind when they designed the tools, e.g.

for Suite, we implemented applications where users edit structured text.

The first part of this section will describe our tool evaluation approach in general terms. The

remaining part will present the tool evaluation criteria.

2.1 Evaluation Design

We have performed the tool evaluation primarily by rating each tool with respect to a set of evalua-
tion criteria. Our basis for rating the tools is obtained partly from reading existing documentation
and publications about the tools and partly from experience gained after implementing simple

prototypical groupware applications through tool usage.

Our evaluation approach made us make two choices:

1. What are the criteria relative to which we will rate the tools.

2. What example applications are we going to implement.

We initially came up with a large number of evaluation criteria, but chose a subset of eleven to be
used in the actual evaluation. This was mainly due to the time limitation that is always inherent in
a project of this kind. All the chosen criteria are what we call programmer-centered, i.e. the major
issue is to what extent does a tool help the groupware developer in realizing groupware applications.
In other words, our evaluation approach has been to put ourselves in the position of groupware
developers and try measuring (relative to the criteria) the level of support each tool provided for
important development activities and issues. The chosen criteria are motivated and presented in

section 2.2.

14

Section 2.3 briefly presents criteria that where not included in the evaluation framework.

As already indicated, we have used as a general guideline when selecting example applications to
implement that we should try to stay within the application domain the tool designers had in
mind when designing the tools. However, whenever we perceived a lack of support for essential

functionality in a tool, attempts were made to investigate such issues further.

In addition to consider example applications developed by ourselves, we have also looked at the
source code of applications developed by others using the tools in questions (often implemented by

the tool authors themselves).

Even though we did not implemented any groupware applications of what could be considered large
size, we still feel our knowledge basis was sufficient for performing the evaluation presented in this

report.

2.2 Evaluation Criteria

Before starting to consider specific criteria, we have to get an idea of what the needs of group-
ware developers are. These needs are typically reflected in the stated goals of existing groupware

development tools. We therefore start by considering such goals.

2.2.1 Goals of Groupware tools

In [35], Hill considers the needs of programmers building user interfaces for what he calls Multi-
User Multi-Media Synchronous (MUMMS) applications (a synchronous groupware application is a
special case of a MUMMS application, i.e. a MUMMS application aimed at supporting real-time
group interaction). A general issue considered by Hill is the programming model underlying tools
for developing MUMMS applications. Properties of the programming model will inevitably need
to become apparent during the course of development and it is therefore an important goal that
the model is well-adapted to the implementation tasks needed to realize the target applications.
Another general issue of importance is ”quick and easy change” of implementations. Having small
changes to the interface of a MUMMS application resulting in small changes to the implementation,
is a goal. Hill further discusses a large number of ”requirements” for development support for
MUMMS applications. These are the principles that have been considered necessary or desirable

to follow in order to achieve the goals of the Rendezvous system [38].

In section 1.3.3 we briefly introduced the Suite framework. Based on experience from working on

the Suite framework, Dewan [14] proposes a long list of principles for developing multi-user user

15

interface development environments (UIDEs). Of more interest to us here are the "four fundamental

goals of a UIDE” that he states in order to motivate his principles:

1. Domain-independence. One should support the development of general applications and not

only a particular domain such as conferencing tools.

2. Automation. Low-level detail should be handled automatically and should not need to be

specified explicitly.
3. Flexibility. Applications should be easy to tailor to different users.

4. Iterative design. It should be possible to develop multi-user user interfaces incrementally.

Roseman and Greenberg [60] also propose design "requirements” for groupware tools. They are the
designers behind GroupKit, which was briefly described in section 1.3.2. An issue advocated by
Roseman and Greenberg is that groupware should be personalizable [59] in order to help getting
users to accept groupware. Though this is not stated explicitly, it is apparent that supporting

personalizable groupware is a goal for groupware tools.

In addition to the above mentioned goals, some work has also been done in order to investigate
what programming complexities are of special concern to groupware developers [54]. As we already
mentioned in section 1.4, these complexities are perceived to go along three dimensions: concur-
rency, abstraction, and roles. Concurrency is needed to ensure that users are not preempted from
having continuous access to an application. Abstraction means the logical separation of the code
of a groupware application into the functional core and the user interface part. Development of
synchronous groupware is thought to benefit from abstraction. Users take on (sometimes several
different) roles in groupware settings. Access rights are often dictated by the roles of the different

users. Evidently, groupware tools should strive to aid programmers in tackling such complexities.

We also found three surveys on groupware design issues [24, 51, 15] helpful when trying to get an

impression of groupware developers’ needs.

Finally, some results from a closely related field: Researchers working on developing tools for single-
user user interfaces suggest that the following are desirable features of programming languages for
implementing such systems [40]:

o Efficient runtime execution.

e Fast translation or compilation.

e Portability to, and availability on, a wide range of platforms.

16

e Facilities to support reuse.

e Strong typing (and other mechanisms for early error detection and prevention).

2.2.2 The Selected Criteria

We are now in a position to motivate and present the criteria relative to which we will compare the
groupware tools we have selected for our investigation. The criteria have been loosely organized

into four categories:
Rapid prototyping

Due to the many technical, psychological, and sociological issues that have to be taken into account
when developing groupware (e.g. [24, 57]), groupware development is a highly experimental process.
To aid this experimental process, support for rapid prototyping is needed. The idea is that rapid
prototyping will allow groupware developers to perform usability evaluations by deploying working
prototypes at early stages, and hence provide a basis for making early critical decisions about the
application being developed. Based on the results of experimentation, a new iteration of the cycle

of prototyping, deployment, and evaluation may be performed [9].

We have identified four criteria that allow us to gauge the extent to which groupware tools support

rapid prototyping.

1. Tterative development. This criterion is central to rapid prototyping. We are interested in how
well a tool supports making (major) changes to a prototype version of an application. Such

major changes will typically involve iterating the stages of the design process [22, chapter 5].

2. Incremental development. We want to investigate how convenient it is to implement just a
subset of an application and still be able to experiment with the partial implementation. Also,
it is often the case that groupware developers need to make small changes to applications,
e.g. some adjustment to the appearance of a user interface view. It is important that small

changes to a groupware application result in small changes to the implementation [35].

3. Reuse. Reusing existing code can speed up the development process. We want to investigate

the support for reuse a tool provides.

4. Reuse of single-user code. All the subject groupware tools are based on tools for supporting
development of single-user applications with interactive user interfaces. Therefore, it is in-
teresting to measure the support for easy inclusion of existing single-user code in groupware

applications.

17

Underlying design paradigm

According to Hill [35], properties of the conceptual programming model of a groupware tool will
inevitably become apparent during the course of development. It is therefore important that the
programming model is well-adapted to the implementation task. This observation leads to in the

following criterion:
5. Matching between the conceptual programming model and implementation task.

Another issue related to the underlying design paradigm of groupware tools is what kind of abstrac-
tions are provided by the programming language(s) required/offered by a tool. The abstractions
provided by a programming language are intended to hide the low level details of, for example, the
underlying hardware. Groupware developers have to tackle many low level issues dealing with repli-
cation and consistency maintenance [44], concurrency control [23], and managing devices involved
in human-computer and human-human interaction. An important question is how well suited the

programming language abstractions are for this type of low level issue:
6. Matching between language abstractions and groupware related low level issues.

Language issues
The criteria related to the programming language(s) a tool offers are:
7. Easy to learn. This criterion reflects how easy it was to learn to use a tool. Documentation
is an important aspect here.

8. Declarativeness. Generally, it is desirable to have as high a level of specification as possible.
In particular, we want the specification language(s) to be as declarative as possible so that

we only have to worry about what we want and on so much how to achieve it.

9. Expressiveness. Normally, there is a trade-off between declarativeness and expressiveness.
This criterion tries to measure whether too much expressiveness has been sacrificed in order

to achieve high-level programming.

Session

Olson et al. define a session as “a period of time when two or more members of a group are
working together synchronously” [51]. By session management, we mean the activities a groupware

application has to perform when creating a session, allowing participants to enter and leave a

18

session, and tearing down a session. Some researchers advocate that session management should be
an independent entity, normally provided by the groupware tool [60, 53]. In other words, groupware

developers should not have to worry about session management. This leads to our next criterion:
10. Session management support.

Another important issue somewhat related to the session is the overall performance of the generated
groupware applications. Even though this issue is not directly related to development support, we
have chosen to include it as a criterion in our evaluation. One should, however, keep in mind that
we only want to “measure” in a very subjective fashion what we think about the performance, i.e.

we will not perform actual timing measurements.
11. What is the perceived performance of the generated groupware applications.

Note that the criteria in the rapid prototyping and language issues categories focus mainly on
more general tool issues. The underlying design paradigm and session criteria attempt to be
more groupware specific. In particular, the three dimensions of programming complexity of special
concern to groupware developers discussed by Patterson [54] are covered by the two underlying

design paradigm criteria.

2.8 Other Criteria

We feel that the eleven criteria we motivated and presented in the previous section provide us with
a proper framework to rate the development support offered by each of the subject groupware tools.
The chosen criteria are not the only possible ones, however. Here, we take a look at other criteria

that where considered but left out because of time restrictions.

Two criteria which can be used to judge the quality of the generated groupware applications are
scalability and robustness [22, ch. 13, pp 461-466]. The scalability criterion measures the rate
at which overall performace deteriorates as either the number of interacting users increases or the
level of activity increases. It should be noted that synchronous groupware applications will typically
have a small number of simultaneous users (except, perhaps, for groupware that supports electronic
meeting and decision rooms). Due to the nature of synchronous groupware applications (one user’s
actions will almost always trigger a series of corresponding actions in the displays of the other

users), even a very small number of simultaneous users can pose serious performance problems [36].

It is generally more difficult to develop robust groupware applications as compared to developing

robust single-user applications. The main reasons being the larger number of (often different)

19

hardware and software components involved, the more complex algorithms that are needed for
many tasks, and the higher level of non-determinism (i.e. unforseen sequences of events) that is
a consequence of having a large number of simultaneous interactions taking place. A robustness
criterion would attempt to establish a perceived “crash” frequency, the extent to which “crashes”
are handled gracefully, whether localized faults have localized effects, what possibilities there are

for recovering from error conditions, and possibly other aspects.
The following criteria would have fit under the underlying design paradigm category above.

What support a tool offers for developing personalizable groupware, i.e. flexibility, is an important
criterion. One of the defining properties of groupware, and also what makes groupware powerful [51],
is the ability to tailor, in software, groupware to the needs of the different users. Roseman and

Greenberg [61] present a number of arguments supporting the need for flexible groupware.

Another notion that is central to groupware is coupling [15] or linking [51] as it is also called.
Groupware tools should allow programmers to easily specify how different entities should be coupled.
A familiar example of tight coupling is WYSIWIS interaction, i.e. the user interface object are
kept identical accross the displays of all users. Note that the ability to specify different degrees of

less tight coupling is basically a prerequisite for having flexible groupware.

20

3 Evaluation Results

This section presents our evaluation results. We have chosen to treat each tool individually (another
possibility would have been to organize the section according to the evaluation criteria). Section 4,
the conclusion section, will attempt to view our results in a broader context and make comparisons

between the tools.

Within the context of each of the tools being subject to our investigation, things are organized
as follows: First, the brief survey in the introductory section is augmented with a more thorough
presentation of issues that are novel or important about the tool in question. Then, the example
applications that were developed using the tool will be presented. Next we will describe our
evaluation by simply going through the criteria and give our rating. Finally, strong and weak

points are summarized.
The order of presentation is the same as that used for the tool survey in section 1.3
As described in section 2.1, our evaluation has been performed by rating each tool relative to a set
of evaluation criteria. A rating is given as one of the following marks:
e none. This means that a tool either does not support or performs very poorly with respect

to a criterion.

e ok. The tool provides some support within the context of the criterion, but this support is

minimal.
e good. We found that the criterion is supported well by the tool.

o very good. The tool made extra efforts to provide support for the criterion.

The evaluation results are summarized in figure 1.

3.1 GrouplE

GrouplE (Group Interaction Environment) [64] has been developed at the University of Karlsruhe,
Germany. The main motivation behind GrouplE was to demonstrate the usefulness of a conceptual
model for supporting teamwork in a distributed setting. That is, one might say that GrouplE pro-
vides development support for groupware applications that fall within a generic model of distributed

teamwork.

We will now present the teamwork model that GrouplE supports.

21

GrouplE | Groupkit | Suite Weasel
Rapid Prototyping
lterative dev. XX X X XX
Incremental dev. | XX T xx T x T X T
Generalreuse | XX | TTTTx T X T X T
Single-user reuse | | o T TTTTTxTTTITT XXX T
Design Paradigm
Task/model match XX X XX XXX
Tasklang. match| xx | 777x T X XY
Language Issues
Easy to learn X XXX X X
Declarativeness | XX |70 T X XY
Expressiveness | XX | XX YT T X T
OEessIon
Session Management o XXX X 0
Performance | . x T US> S I X T
0 =none x = ok XX = good XXX = very good

Figure 1: Summary of groupware tool evaluations

22

3.1.1 A Generic Model for Distributed Teamwork

Most groupware systems only provide basic coordination. The purpose of basic coordination
is to keep the groupware application in question in a consistent state, typically through ac-
cess/concurrency control. On the other hand, complex coordination aims at enhancing the ef-
fectiveness of collaborations. Practically all groupware systems that realize complex coordination
are asynchronous and provide text as only interaction medium. One of the major goals of the
work behind the teamwork model that is to be presented is to look at complex coordination in

synchronous, multi-medial groupware applications.

The fundamental idea behind the teamwork model is that a set of users form a team. Team
members can interact with each other in arbitrary ways through a shared work surface. This is
called teamwork and its purpose is to perform some task. Due to the nature of teamwork, it
can sometimes be executed more effectively if the team member interactions are coordinated with

respect to the task at hand.

In order to specify a formal, generic model of teamwork in a distributed setting, precise models of
team member interactions, team structures, task structures, and coordinations are needed. We will
only present these models informally here. The full formal treatment of these issues can be found
in [64, chapter 3].

The interaction model has an interaction as the fundamental entity. Interactions are actions per-
formed by team members in the context of teamwork. The interaction model is object-oriented.
This means that actions are actually operations performed on objects. In other words, team mem-
bers interact by manipulating shared objects. This is only part of the picture, though. FEvery
interaction must satisfy properties dictated by an interaction context that is associated with it.

The interaction context specifies three properties or attributes of an interaction:

o Visibility. Who are the team members that should observe the interaction taking place.

e Synchronism. For each of the team members to whom the interaction is visible, there is
kept a private copy of the synchronism attribute. The synchronism attribute specifies time
constraints on the delay between initiating an interaction and the time it takes before other
team members observe the interaction. It also specifies how often other team members should
receive “updates” on interactions that stretch out in time. Finally, the synchronism attribute
also specifies how an interaction should be mapped to other team members. Possible mapping
approaches are: syntactical (i.e. communicate everything “as is”), semantical (i.e. only
communicate the “result” of the interaction), and descriptional (i.e. only communicate that

the interaction is taking place, nothing else).

23

Interaction

Action Interaction Context _per team member

Object Operation Visibility Synchronism Mode

(text, graphics
and other media)

Time Frequency Mapping

Figure 2: The interaction model upon which the teamwork model of GrouplFE rests.

e Mode. The mode of an interaction is either implicit or explicit. Briefly, implicit interaction
means that the important thing is to make team members aware of the operations that are
taking place. Explicit interaction, on the other hand, focuses on bringing the object that is
the subject of the interaction to the attention of team members. Roughly, implicit interaction

is more work oriented, while explicit interaction is more conversation oriented.

Figure 2 summarizes the interaction model. The objects in the interaction model are called team

objects.

The team model puts forward the notion that a team is an instance of a team description. The team
description reflects the structure of the team in that it specifies what are the “paths” of interaction
among team members. The notion of a placeholder is central for obtaining team description that
are as general as possible. Placeholders eliminate the need for referring to explicit team members
in team descriptions. A placeholder is an instance of a team role. Team descriptions therefore
identify all the paths of interaction that exist between the different team roles (or placeholders). A

placeholder is either a single team member or a subteam of the team in question.

The task model is similar in spirit to the team model in that a task is an instance of a task
description. Entities that are part of a task description are the team objects that are involved in the
task, the subtasks making up the task in question and the task roles that are associated with a task.
The central issue in a task description is a set of task restrictions. Task restrictions are predicates
(pre- and post-conditions and invariants that actions must satisfy) that are formulated over the
above mentioned entities. The task restrictions reflect the structure of the task and represent the
required basic coordination. For example, the pre-condition of an action (i.e. specifying when

interaction with a team object can take place) could be the termination of a certain subtask.

24

Object

SyntaxObject SemanticObject Descriptions Classes for

PN PN distribution support

Team Task Coordination

AN N TN

Figure 3: Overview of the current GrouplE Smalltalk class library implementation. Team objects
are made up of semantic and syntactic objects. Non-basic coordination is achieved by combining
objects instantiated from classes in the subtree of descriptions.

The coordination model integrates the team and task models that where just presented. A co-
ordination is an instance of a coordination description. Coordination descriptions allow complex
coordinations to be specified. Complex coordinations are either guiding or checking. Guiding co-
ordination takes effect after an interaction is finished in order to see if suggestions can be made
for following interactions. Checking coordination is activated before an interaction is allowed to
commence so as to assure that any coordination policies that are peculiar to a certain team/task
configuration are not violated. Another objective of the coordination description is to map team

roles onto task roles.

GrouplE is one possible (distributed) instantiation of the teamwork model just presented. The
current GrouplE implementation presents the programmer with a set of about fifty Smalltalk

classes. The structure of the class library is depicted in figure 3.

A team object is realized as an instance of a subclass of the class SemanticObject which references
instances (one for each team member) of subclasses of the class Syntax0bject. The semantic part
of the team object holds the visibility and mode attributes of the interaction context, while the

syntactic parts (one for each team member) hold the synchronism attributes.

The team, task, and coordination descriptions are specified using special-purpose declarative lan-
guages. These specifications are, in turn, transformed into class declarations. The generated class

declarations are subclasses of the classes Team, Task, and Coordination.

Distribution support is provided through a proxy object extension of Smalltalk. The semantic parts

of team objects are represented by proxys.

25

ﬁﬁésZin: .'I.‘.extMovengh

No 7

[®] urneslin: TextMoven T}

Hei hei Heihei_
a
Synchronismi time |

Wisibility » granularity & fine
hode p notification s medium

coarse
FopUpkdenu & inherited
Pointer ¥ i

Figure 4: A simple whiteboard application. The user on the left is changing the interaction context
synchronism attribute (when the user moved an object, the lag on the other user’s screen was found
to be too high; a coarser granularity will reduce the lag by updating the other user’s views less
frequently).

3.1.2 Example Applications

Due to the lack of documentation on how to actually use GrouplE to develop applications, we had to
spend considerable time trying to understand how to write applications in GrouplE. Consequently,
the reminder of the time that was allocated to application development in GrouplE only allowed

us to implement a very simple whiteboard application.

Our example program demonstrates the interaction model in GrouplE and how easy interesting
applications can be developed once one has managed to get a sufficient understanding of the tool.
We would very much have liked to put the non-basic coordination facilities of GrouplE to the test
but we did not find we could take the time.

Figure 4 shows a screen shot of the whiteboard application. Graphical objects (text, lines, and
rectangles) can be placed on a canvas and manipulated (moved and scaled) by the users in the
session. The canvas is an instance of the editor (team object) class which is made up of a replicated
SemanticEditor object and an attached copy of a SyntaxEditor object for each user. The editor
class has built-in support for end-user tailoring of the interaction context. That is, end-users can
pop up a menu that allows them to dynamically set the values of all interaction context attributes.
Note that user interface objects like pop up menus and pointers are also considered to be objects,
i.e. their interaction context can also be altered. For example, a user can turn her pointer into a

telepointer by simply setting the visibility attribute of the pointer interaction context.

26

3.1.3 Evaluation

As mentioned earlier, groupware developers program in the Smalltalk programming environment
when using GrouplE. This automatically, gives good support for iterative and incremental develop-
ment. Iterative development is facilitated through the component-based approach to programming
that is entailed by object-orientation. Incremental development is supported by the interpreted

environment that Smalltalk provides.

Most good object-oriented languages provide good support for reuse, and Smalltalk is no exception.
A major motivation for using GrouplE is that it is easy to reuse the 50 Smalltalk classes that
GrouplE provides. However, trying to convert an existing single-user Smalltalk application into
a groupware application is not possible without having to basically rewrite the whole application
from scratch. For example, if one wants to use a button in a multi-user setting, that button has to

be an instance of the Grouplll class SyntaxButton.

In view of the criteria under the underlying design paradigm category, Grouplk gets a “good”
rating. GrouplE supports multiple views by allowing multiple syntactic objects attached to a
single semantic object. It is possible to declaratively specify properties of tasks and teams, e.g.
which roles team members can take on and how those roles are related. Properties of different kinds
of coordination are also specified declaratively. For example, a programmer can specify properties
of a special kind of a hierarchical team. This specification can be converted into a Smalltalk class,
creating a template for the desired team type. Instances of that type of team can be made by
instantiating the class. Coordinated interaction is achieved by dynamically associating instances
of teams and tasks with an instance of a coordination class. One should beware that programmers

occasionally are forced to deal directly with the replicated implementation model of GrouplE.

GrouplE is hard to learn. Documentation is poor. The declarative specification of teams, tasks,
and coordination gives Grouplll a “good” rating on declarativeness. We are not enthusiastic about
the expressiveness provided by the GrouplE class library, but chose to give it a “good” rating with

reservations.

Session management is not provided in GrouplE. This is a considerable problem because of the
replicated implementation model. Machine names that can participate in a session are hard coded.
The distribution support must be initialized (making connections to the machines participating in

the session and initializing the object tables that hold proxys) sequentially for each user.

The performance of GrouplE applications is acceptable for prototyping, but not suitable for pro-

duction use. In WYSIWIS applications, display updates may lag considerably.

27

3.1.4 Conclusion

GrouplE is an implementation of a generic model for distributed teamwork. We experimented
with the classes that make up the interaction model and found them interesting, in particular the

built-in support for having end-users customize the interaction coupling.

As mentioned, perhaps the most novel feature of Grouplk is the non-basic coordination facilities
that are offered in the context of synchronous, multi-medial groupware. Unfortunately, we did not
have time to investigate non-basic coordination in any great detail. However, judging from what

we did learn, it looks promising.

There are, however, severe problems with the current version of the system. Performance is too
poor. We suspect that the overhead imposed by the teamwork model is partly to blame; it could
also be that Smalltalk slows things down significantly.

The distribution support is not as transparent and easy to use as we had hoped. In particular,

better support for session management and team object creation should be provided.

Finally, a system of the complexity and size of GrouplE is totally dependent on documentation in

order to be usable. The documentation coming with GrouplE is currently far from being acceptable.

3.2 Groupkit

GroupKit [63, 60] is a groupware toolkit developed at the University of Calgary, Canada. It
extends an existing toolkit (Tcl/Tk [52]) for developing graphical user interfaces for single-user
applications. The first version of GroupKit was based on Interviews [46]. We will only consider the
current Tel/Tk version here, even though the earlier version might have more elaborate multi-user

widgets.

The interesting aspects of GroupKit are its session management support and the fact that it is a
groupware toolkit, i.e. it provides programmers with a set of widgets that are tailored for use in

groupware applications. We will now discuss these issues in some detail.

3.2.1 Session Management

Synchronous groupware requires people to work together by using the same application simulta-
neously. A session is the period of time that a groupware application is being used by a group
of people to work together synchronously [51]. By session management, we mean the activities a

groupware application has to perform when creating a session, allowing participants to enter and

28

[®] New Conference =]

[®] openrc.tel Conference name

File Conference name
Conferences Users

Tic Tac Toe umes -4 Hello World

My Sketchpad TiE Tac T

Multiuser Cardfile » lIC Tac Toe

4, Multiuser Cardfile

4, Minimalist Brainstorming Tool

+, Text Chat

+, Simple Sketchpad

s My Sketchpad
Newi -, Brainstorming Tool

B

Ok | Cancel

Figure 5: The user interface of a GroupKit registrar client. The openrc.tcl window is the main
registrar client window. The “Conferences” list on the left is the list of all on-going sessions.
By selecting a session (the “Multiuser Cardfile” session is selected in this example) the list of
participating users in that session is shown in the “Users” list on the right. The “New” button
can be pressed to pop up the list of possible sessions that can be created from this registrar client.
This list is shown in the New Conference window on the right hand side.

leave a session, and tearing down a session.

GroupKit provides stand-alone session management that can be used by all groupware applications
that are developed using the tool. The session management support consists of two entities: a

central registrar and a set of registrar clients.

The central registrar is a background process that runs on a computer that is known and accessible
to all users. It maintains the complete lists of all the ongoing sessions and all the users registered

for each of the sessions.

A registrar client typically presents the user with three types of lists:

1. A list of on-going sessions.
2. A list of participating users for each on-going session.

3. A list of possible new sessions that may be created.

The registrar client that comes with GroupKit offers all this information through a nice graphical

user interface (see figure 5).

The session management support in GroupKit is slightly more novel than what has been described

so far. The session management support has been implemented by using open protocols [61]. This

29

means that the central registrar (called the controlled object in open protocol terminology) has
been programmed to be as general as possible. That is, one has gone to great lengths in order to
make the central registrar policy independent. The central registrar is a server in that it maintains
a set of data (session and user lists) but it departs from more traditional servers by being policy
independent. A key factor is the protocol that dictates what external requests the central registrar
obeys. A controlled object will typically be extreme with respect to the wide range of requests it

will obey.

Now, any registrar client (the controller object in the terminology of open protocols) will typically
only use a small subset of the requests that the central registrar makes available. The important
thing is that it is easy to write many different kinds of registrar clients without ever having to
change the central registrar (it does not’t even have to be re-compiled). For example one could
imagine wanting to have a registrar client that has super user functionality (e.g. can throw out
users from a session), or a registrar client that requires users to be “sponsored” by users already in
the session in order to join it. The open protocols of the session management support of GroupKit

allow many such registrar clients to be used without changing the central registrar.

3.2.2 Multi-user Widgets

GroupKit can be considered to be a user interface toolkit providing high-level abstractions, called
widgets, for simplifying the realization of graphical, interactive groupware applications. The widgets
that are available in the current version of GroupKit are primarily the Tk widgets, i.e. single-user
widgets like buttons, scrollbars, menus, and canvases. Two multi-user widgets are offered by
GroupKit [62] in addition to those provided by Tk!.

The first multi-user widget is a “vertical remote scrollbar, a device that displays the position of a
remote user’s scrollbar” [62]. Each user is represented by a color in GroupKit and a remote user’s
scrollbar position is represented by a colored position indicator. The remote scrollbar also has a

pop up menu that names of the users of the scrollbar.

The second multi-user widget is a remote cursor widget. A remote cursor is simply a label with a

user’s name appearing in remote users’ canvas widgets.

Tt should be noted that the InterViews version of GroupKit offers two different widgets (or glyphs, as similar
objects are called in InterViews) than the Tcl/Tk version, namely a sketchpad overlay and a cursor overlay.

30

[®] mySketch.tel 2

File View Collahoration Help %

20y § Srowpst, W, § Srowplik
f 7
L"ﬂ\o— u;i\i‘\/\)& $

oy
I @:{; [@] mySketch.tel #2

Z Hile view Collahoration Help }

20§ Sro /va. 25 § Srowpay,
™ \/

\T_L/UYYQ
= e =BT A
[Kﬁ\ 3P %@%[E\

Y
Public Workspace Private Workspace

L. | e - — L

Public Workspace

Figure 6: A simple sketching program. Each user has both a public and private view (or workspace).
Everything appearing in the public view also appears in the private view (this makes it easy to
privately annotate whatever appears in the public view). Any sketching taking place in a public
view will automatically be broadcasted to all public and private views. Sketching made in a
private view will not be broadcasted unless requested explicitly by the “owner” of the private view.
Private sketchings have a different color than public ones. Deleting in a public view will perform
corresponding deletions in all views; deleting in a private view will only affect the private sketchings
in the private view in question. (Regrettably, the dividing line between the private and public views
is missing in this screen dump; it had a too low gray scaling factor.)

3.2.3 Example Applications

The first example application we wrote for GroupKit was an extended version of the very sim-
ple sketching programs that comes with the ftp-able GroupKit distribution. We added a private

drawing area and implemented erasing functionality. Figure 6 depicts a two-user session.

The sketching program was very easy to implement. The item tagging facility that is offered
through the structured graphics functionality of the Tk widget took care of maintaining per-user

data for each user’s private workspace.

Our second example is a multi-user cardfile browser. A set of cards, each holding a person’s name,
address, and phone number information, is kept in a list. A slider consisting of the letters of the

alphabet is used for selecting a card. See figure 7.

This example also attempts to investigate how customized views may be specified in GroupKit. We

first implemented a WYSIWIS version of the cardfile browser, which was fairly straight forward.

31

[®] multiCard.tol @M
Fil Collahorati Help ::
File Collaboration Help 6- . P Y

[®] multiCard.tcl #2
File Collaboration Help 3

c G M|N 3.

c G M|N 3.

Yl
() 6502705 |

18 Passy Crescent 312, Morth York, Ontario, M3J 1

| (416) 650-2705

‘mﬁ

Figure 7: A cardfile browser example. A view consists of a slider and a card. The slider is used
to select cards by clicking on a slider letter (the card having a last name beginning with the slider
letter will be shown). The fields of a card can be edited. If the last name of a card is changed, then
the slider will be updated correspondingly (i.e. it will always reflect the currently available cards
by highlighting certain letters).

Next, we wanted to allow independent browsing while also keeping user interfaces consistent in
response to any changes that were made to the cardfile data base. This turned out to more difficult
than we had imagined. Whenever a last name is changed, the slider must be brought up to date
across all users. In addition, for those users that are currently viewing the changed card, the card
view must also be brought up to date. In addition to keeping views up to date, the cardfile data
base itself had to be maintained across all replica and we also had to write code to bring any
latecomers up to date. It should be evident that implementing a multi-user version of the cardfile

browser was much more difficult than implementing a single-user version.

3.2.4 Evaluation

GroupKit programmers typically spend most of their time writing callback procedures in the Tcl
scripting language. The callback procedures are activated by either Tk or GroupKit widgets in
response to user interaction. Groupware applications generated by GroupKit have a replicated
architecture. Programmers keep data consistent across the different replica by multicasting all

update commands performed on shared data.

Support for iterative development in GroupKit is given an “ok” rating because of the lack of
constructs for structuring the code. Programmers often have to resort to using global data and
rely on side-effects to accomplish many tasks. This makes it difficult to make major changes to the

code.

32

GroupKit programs are interpreted. This ensures that small refinements can be made very quickly
to an application. The widgets provided by Tk and GroupKit provide sensible default values for
most attributes, hence reducing the effort of programming user interfaces. These positive aspects

of GroupKit are reflected in a “good” rating on incremental development.

General reuse is made more difficult by the lack of facilities for component-based programming and
the reliance on global data. No special efforts have been made in order to ease reuse of existing

single-user Tecl/Tk applications.

In GroupKit, the conceptual programming model is identical to the replicated implementation
model. This means that programmers get the feeling that they are programming a distributed
system. One must constantly worry about keeping shared data consistent, and bringing latecomers
up to date is often non-trivial. Though the policy dependent widgets in Tk and GroupKit relieve
the programmer from having to think about low level user interface details, there is a lack of support
for specifying issues related to sharing of data, such as consistency maintenance and access control.

We have therefore only given an “ok” rating on the underlying design paradigm criteria.

When it comes to ease of learning, GroupKit is in a class of its own. The documentation is excellent.
Tecl/Tk is a simple language which is fun to learn. Support is also available through a mailing list

and an internet news group on Tcl. There is no question about the validity of a “very good” rating.

Tecl/Tk is an imperative language, resulting in a “none” rating on declarativeness. The expressive-
ness of the language is “good”. An interesting feature is the possibility of extending the GroupKit
interpreter with arbitrary C code libraries that can be easily accessed by creating new Tel com-

mands.

GroupKit has very good session management. It is easy to get an overview of existing session, to

join an ongoing session, or to create a new session.

GroupKit applications run quickly, despite the fact that they are based on an interpretive language.

We give a “good” performance rating.

3.2.5 Conclusion

GroupKit is the only tool among the ones evaluated in this report that is robust, expressive,
properly documented, and offers good session management. It is therefore the only tool that is

suitable for actually building more than toy applications.

Unfortunately, it is difficult to use GroupKit to implement applications that have non-trivial cou-

pling needs; i.e. coupling that is neither strict WYSIWIS nor completely independent. We suspect

33

that this problem can only be rectified by changing the underlying design paradigm of the tool.
We would in particular have liked to see a more centralized conceptual programming model. Since

GroupKit is so heavily based on Tcl/Tk, it is unclear how this might be accomplished, though.

3.3 Suite

This section gives a detailed presentation of Suite (a System of Uniform Interactive Type-directed
Editors) [18, 17, 21, 12]. Work on Suite started in 1987 at Purdue University. An overview of
the project is given in [20]; it goes through the history of the project and contains an annotated

bibliography recounting all publications related to Suite.

Suite provides development support for groupware applications where users interact through a
shared work surface by editing structured text. That is, groupware applications are viewed as
generalized, multi-user data structure editors. Issues related to the use of generalized multi-user

editing as interaction model in a groupware context are discussed in [15].

We will now look at two distinctive features of Suite: user interface coupling and automatic de-

ployment of single-user Suite code in a multi-user setting.

3.3.1 Flexible Coupling

A novel feature of Suite is that the user interfaces of different users can be easily coupled in a
flexible, dynamic manner. Coupling refers to the kind of sharing that is needed among windows
displaying a shared workspace. The most common form of coupling is WYSIWIS coupling [68],
found in many early groupware systems. Experimentation with groupware applications has verified
the need for more flexible coupling [67]. Before we explain coupling support in Suite in more detail,

we will take a closer look at the model that underlies Suite.

Suite is based on the Seeheim model [29] and dialogue managers play an important role in the
system. Briefly, dialogue managers take care of user interface issues. The other major entity in the

model is the functional core that we will call the application.

There are two major abstractions in Suite: active values and interaction variables. Active values
represent the shared data structures of generated groupware applications. Interaction variables
represent the editable, textual versions of those data structure items. The interaction variables
reside in dialogue managers and are roughly copies of the active values with added interaction
attributes. Users interact by editing (changing) the interaction variable presentations. The active

values, corresponding to the changed interaction variables, and other users’ interaction variables

34

Shared | | o
Active :)Application
value :
Call allback Callback Call
. Interaction fnteraction .
Dialogue variable <\ Counli /= variable Dialogue
Manager pling Manager

Figure 8: A Suite application consisting of one object containing one editable active value. Suite
creates a set of interaction entities (interaction variables and associated attributes) for each user.
Normally, one interaction entity is created for each active value in the application for each user.
Interaction entities reside in dialogue managers. This figure is a simplified version of figure 3 in [17].

may be updated by committing the edited changes.

From a programmer’s view, applications are object-based?. The objects are heavy-weight since
they are basically stand-alone, executable C programs. Objects can send messages to each other
(implemented on top of a remote procedure call mechanism). Within an object, active values can
be specified as global C variables of (in principle) any type (but there are some restrictions in the

current implementation).

What makes Suite a groupware tool is the fact that an object can have several dialogue managers
“attached” to it, one for each user. Also, objects and dialogue managers do not have to execute on
the same machines. Figure 8 shows how an object containing a single active value has two dialogue
managers attached to it; i.e., two users may interact with it. The application C code specifies a
set of callbacks that may be activated by dialogue managers. Callbacks are needed to keep data
consistent and to provide semantic feedback to users. The application instructs dialogue managers

about properties of the desired user interface by issuing calls.

From an architectural view point, one should note that there is always only one copy of each object
and each user will normally have attached no more than one dialogue manager to any object.
An application can consist of an arbitrary number of objects, each being a separate heavy-weight

process. One might view the dialogue managers as being replica of a shared dialogue manager. We

2Snite is not object-oriented since it offers no code sharing mechanisms like inheritance or delegation.

35

call the Suite architecture semi-replicated.
We are now in a position to describe the coupling support in Suite.

One interesting feature of the coupling model in Suite is the fact that both application programmers

and end-users can specify how each user’s user interface should be coupled with those of other users.

Programmers (explicitly) specify coupling by coding callbacks — a fairly traditional and ad hoc
approach, i.e. input “events” are sent to some agent (callback function) that determines which

windows to bring up to date.

The provision for end-user specification of coupling is more interesting. The idea is to identify a set
of coupling attributes and associate them with interaction variables in dialogue managers. When
end-users edit the presentation of interaction variables, dialogue managers broadcast the changes
that are made to the other dialogue managers according to the current setting of the coupling
attributes. This activity is depicted by the “Coupling” arrow in figure 8. Fach dialogue manager
provides the user with a standard coupling window that provides facilities for changing the coupling

attributes dynamically. Figure 9 shows an example.

As can be seen from figure 9, coupling attributes can be divided into two types: those specifying
what to couple and those specifying when coupled data items should be broadcast to other dialogue
managers (or when other dialogue managers should poll for broadcasted data). The twelve buttons
in the middle of the coupling window are used to specify what should be coupled. The lower part

of the coupling window offers provisions for setting the eight transmit/listen coupling attributes.

Setting the value of a coupling attribute involves specifying the value of the attribute in question
(e.g. “True” for the ValueCoupled attribute), the name of the text fields in the user interface
window the setting applies to, and the set of other dialogue managers that should receive notifi-
cation of changes. The upper part of the coupling window is used for specifying these latter two

parameters.

The coupling windows supplied with Suite dialogue managers offer many interesting opportunities
for dynamically changing the coupling among windows in groupware applications generated by

Suite. A video demonstration of the Suite coupling windows is given in [13].

3.3.2 Single-User Code Reuse
One of the design goals of Suite was to allow programs written for an earlier single-user version of

Suite to be executed in a multi-user setting under the current (multi-user) Suite system. Shared

window systems [30] already allow existing window-based single-user applications to be used by

36

pdatea by <n0né>
ocaly Ju hu!

@] Dm_1: TestEdit window for An_Object | []| |[@] Dm_2: TestEdit window for An_Object [I:

stringt hei hei,. thiz iz being broadcasted
Updated by <none>
local: This is not being broadcasted!

[®] Dm_1: coupling window for Anf];

EI Walue Path: Tupe: Default
Hindow Path: Tupe: Default
Group: Others
Attributes

Mes=zage: Set Value

g§(® Dm_2: coupling window for Arﬁ[

Walue Path: Tupe: Default

Hindow Path: Tupe: Default

Group: Others H \

Mes=zage: Set Value

AttrCoupl ingCoupled
TransmitCorrecthess
TransmitEvent
ListenCorrectness

ListenEvent Wseral 1] [WRction |[ucping]
Scrol |Coupled
ActionCoupled
AccessCoupled
FormatCoupled “mit Event: Increment

SelectionCoupled
InputCoupled
CommunicationCoupled

WigwCoupled

WalueCoupled Listen Event: Increment
HindowCoup | ingCoup led
FositionCoupled

SizeCoupled

TransmitPeriod

#“mit Correct: Raw

Listen Correct: Raw

Listen Event: Increment

Transmit Period: Infinite

Transmit Period: Infinite

Transmit Time: Infinity

TransmitTime .
ListenPeriod Listen Period: @ secs 8
ListenTime F Listen Time: How E

Transmit Time: Infinity

* Listen Period: @ secs

iListen Time: How

Figure 9: This example shows a simple example application (An Object) with two dialogue man-
agers attached (Dm 1 and Dm 2) to it. The “coupling window” provided by each dialogue manager is
shown. On the left is a popup menu listing all the coupling attributes that are currently supported
in Suite (the popup menu is part of the standard “attribute window” of Suite dialogue managers).
This simple application allows users to edit a ’string’. If a user commits edited changes, then a mes-
sage says who did the commit. The string ’local’ can be edited privately. The user having dialogue
manager Dm 1 has changed the standard setting of the coupling attributes (the TransmitEvent
(Xmit Event) attribute has been set to increment, meaning that every key stroke is broadcasted
to the other dialogue managers).

multiple simultaneous users. One property of groupware applications generated by shared window
systems is that they exhibit strict WYSIWIS coupling. This is a consequence of the fact that such
applications are completely collaboration transparent (the applications are not aware that they are

executed in a multi-user setting).

The fact that Suite dialogue managers are in effect collaboration aware (e.g. offering generic
facilities to allow end-users to tailor the coupling between different users’ user interfaces) takes
Suite a step beyond shared window systems in that collaboration transparent applications can
be made more collaboration aware without changing the actual code. Note that this approach
has many similarities with what is offered in the MMConf [11] system, where limited, generic

collaboration awareness functionality can be linked into existing single-user applications. However,

37

whereas the collaboration aware primitives in MMConf are primarily intended to help overcome
problems with using replicated architectures in shared window systems, Suite is targeted at making
collaboration transparent applications more collaboration aware with as little cost as possible. Note
that both Suite and MMConf require single-user applications to be re-compiled. Shared window

systems do not have this drawback.

As with shared window systems, rules must be established in order to define “new” semantics of
single-user operations in a multi-user setting. In shared window systems, the end-users themselves
have to enforce these rules, and hence the strict floor control protocols that identify shared window
system groupware. This floor control overhead is not imposed on end-users when executing single-
user Suite applications in a multi-user setting. In stead, Suite enforces a default set of rules that

allows simultaneous interactions to take place in a proper manner.

The first rules are concerned with access control. For callbacks, things are simple, i.e. everybody
has equal access to update application objects. For calls, things are more complicated. The different
types of calls are categorized into five categories: response, request, retrieval, action, and update.
All the different call categories have different rules regarding whether one (response), any (retrieval)

or all (request, action, update) dialogue managers are targets for the call in question.

The second subset of rules is concerned with coupling. When a user commits a change made to an
interaction variable, all dialogue managers get their corresponding interaction variables updated.

Interaction attribute changes are not broadcasted.

The concurrency control rule is that once a user starts editing an interaction variable, all other

corresponding interaction variables at other dialogue managers are locked.

A final interesting aspect of incorporating collaboration transparent (i.e. single-user) code into Suite
is the provision of collaboration aware versions of most calls occurring in single-user Suite programs.
This allows programmers to make the code itself more collaboration aware in an incremental fashion.

For example, one can direct calls to specific groups of users.

3.3.3 Example Applications

There are quite a number of example programs coming with the Suite distribution. When executing
the example programs, it struck us that all of them were basically WYSIWIS applications in terms
of the contents of the views. That is, different users saw exactly the same text fields in their views.
We therefore decided to investigate how highly customizable (relaxing WYSIWIS in terms of view

contents) groupware applications could be specified in Suite.

Our example program was a cardfile browser of the kind that was developed using GroupKit. So,

38

[®] cl: menu window for card

[orsetzct][EN ide||nerer||ne|ete|

|Insert HFter||Insert BeFore||Transmit|

'[@] ¢2: menuwindow for card =]

§|Insert HFter||Insert BeFore||Transmit|

|Syntax||UaIidate||Update||ﬂccept||Next Card| §|Syntax||Ualidate||Update||ﬂccept||Next Card|

|Prev Card||Hake Consistent| §|Prev Card||Hake Consistent|

» k)
[®] cl: CardViewwindow for card] c2: CardView window for card [

names Tore Urnes
address; 18 Passy 312
phone: BRO-2705
essagel <ho messager

hame; P Gell
address; 18 Passy 312

phonet <none>

meszage: Bring your view up to date!

Figure 10: A simple cardfile browser. Users can simultaneously view different cards. A card is
selected by pressing the “Next Card” and “Prev Card” buttons. The “Make Consistent” button
is needed to solve a problem that arises when changes to a card are committed. A card consists
of a name field, an address field, and a phone field. The message field tells users when they have
to press the “Make Consistent” button. The two users in the example are viewing different cards.
The user on the left just committed changes made to the “address” field, making the view of the
user on the right inconsistent. The user on the right must now press the “Make Consistent” button.

we have a set of cards and we want different users to be able to view different cards simultaneously.
The contents of each card can be changed and consistency should be maintained. Figure 10 shows

the Suite version of the cardfile browser.

During the development of our example program we made some surprising discoveries. First of all,
Suite has a centralized application and we therefore did not think that we had to take latecomers
into account. This turned out not to be completely true. In Suite, explicit (though simple) actions

have to be taken to ensure that latecomers are brought up to date in a proper manner.

Secondly, it is very difficult to properly update the views of different users when views are not
WYSIWIS in terms of content. The commit command always updates all views regardless of
whether users are viewing different data or not. Therefore, when a user changes a field in a card,
the corresponding field is updated with the new value in all views even when other users are
viewing different cards. The only way of handling this is to have an update callback re-setting all
the users views to their correct state after a commit. In order to do that, the update callback must
know which cards are currently being viewed by each user (i.e. one must maintain a per-user data
structure with the current card of each user). Then it must instruct the dialogue manager of each
user to redraw its view with the right card information. We use a compromise where we broadcast
a message to all users saying that a commit was just performed an that the users should manually

restore the correctness of their views (it is relatively simple to provide such functionality).

It is very easy to specify the content of a view as long as one is satisfied with the automatic layout.
Basically, one tells the dialogue manager the type and address of a data structure entity that should
be displayed. The dialogue manager goes through the data structure (there are restrictions on what

data structures it can handle) and displays all (sub)entities of basic type (string or integer) it can

39

find in consecutive order. A card is a structure containing three strings. Two simple calls, a submit

and an engage, are sufficient to display it.

We discovered an interesting way of maintaining per-user data (e.g. the current card viewed by a
user). By submitting data to the dialogue manager but not engaging it, the dialogue manager does
in effect serve as a per-user depository for arbitrary data. The data can be accessed in callbacks,
activated by the user in question, by issuing Dm GetView calls. We could not find any evidence

that this approach had been used before.

There is automatic support for persistent data in Suite.

3.3.4 Evaluation

Even though programmers are largely relieved from having to worry about user interface presenta-
tion and coupling issues, we have only given an “ok” rating on support for iterative and incremental
development. The reason is that programmers are forced to resort to global variables for imple-
menting semantic feedback, and the support for modularizing the code is not fine grained enough
(the only kind of module or “object” is a C file, called a heavy-weight object, that is compiled into a
stand-alone executable program) Also, a slow compilation process substantially hinders incremental

development.

Reuse of existing single-user code is exceptional in Suite. The build-in coupling support in the
dialogue managers makes it possible to develop groupware by simply developing a single-user ap-

plication. Reuse in a more general sense is only “ok”.

Suite is distinguished by its elaborate, well-designed coupling model. We found that having a
dialogue manager taking care of all presentation and many coupling issues was a benefit. However,
no work has been done to make it less cumbersome to maintain state across the editable objects,
i.e. programmers are forced to manipulate global variables with ad hoc C code in order to provide
semantic feedback. We give a weak “good” rating on the conceptual model and a strong “ok”

rating on the language abstractions.

An “ok” rating is given to ease of learning since there is no tutorial on how to develop applications
in Suite (there is some documentation for single-user Suite, but the current Suite system has
changed substantially after that documentation was written). Writing make files is non-trivial in
Suite. Although Suite is largely based on the imperative C language, the presence of a declarative
dialogue manager interface gives Suite an “ok” rating on declarativeness. Expressiveness is “good”
with considerable reservations, and we emphasize that Suite cannot be used to develop groupware

based on the graphical, direct manipulation style of user interface that many users expect today.

40

Suite offers some session management support, but users can not get an overview of on-going

sessions. Performance is “good”, but keep in mind that Suite has a textual user interface.

3.3.5 Conclusion

The developers behind Suite have put much effort into allowing end-users to tailor many aspects of
the interaction coupling. We suspect that the Suite coupling model might be a bit too elaborate,

especially in view of the rather restricted (text-only) interactions that can currently take place.

In view of the expectations of today’s end-users, the interaction styles supported by Suite (i.e. only

editing of text) are clearly to restrictive.

3.4 Weasel

The Weasel system [28, 72] was developed partly at Queen’s University in Canada and partly at the
University of Karlstuhe in Germany®. In a way, the motivation behind Weasel is to demonstrate
that the relational view modelis suitable for developing graphical, highly interactive, multi-user user
interfaces. The relational view model was inspired by an early version of Weasel which demonstrated
how a declarative (pure functional) language, called the graphical view language or GVL, was

practical for specifying algorithm animations involving arbitrary abstract data types [27, 10].

We first give a description of the relational view model and its realization in Weasel. Then, we

present some example applications developed using Weasel. Finally, our evaluation is presented.

3.4.1 The Relational View Model

Weasel is an example system implementing the relational view model, and is the only system
employing it to support development of multi-user user interfaces. The Trip2 system [70] is an
example of an instantiation of the relational view model for supporting development of single-user

user interfaces.

The principle underlying the relational view model is that of using the specification of a relation to
facilitate bi-directional mapping between an abstract and a pictorial form of the same data. The
abstract form of the data is typically represented as abstract data types, i.e. part of the functional
core of an application (abstraction) . The pictorial form is represented as graphical views. Note that

both the abstraction and the views can be manipulated, the former by the application program;

*Weasel was developed by T. C. N. Graham, J. R. Cordy, and the first author of this report.

41

Application

Relation Input
25145 17) < ——> DHHHD " 8

Abstraction . - User
View

Figure 11: The relational view model, an example. A relation provides bi-directional mapping
between an abstraction consisting of an array of six numbers and a view consisting of a bar graph
where a bar’s height reflects the value of a number. The array can be updated by an application
program and a user can directly manipulate the (e.g.) height of the bars.

the latter by an end user. By continuously maintaining the relation, updates made to either the
abstraction or the views can be mapped onto corresponding updates to the views or the abstraction,

respectively. See figure 11 for a simple example of the relational view model.

The most interesting aspect of the relational view model is how relations are specified. In Weasel,
relations are specified using the Relational View Language (RVL). RVL is a pure functional lan-
guage [39], i.e. relations are specified as a set of side-effect free functions. RVL is based on the
GVL language mentioned above. The fundamental entities of the language are graphical primitives
like lines, circles, and boxes. An RVL function will always yield a picture when it is evaluated.
Arbitrary pictures can easily be specified by combining functions in the usual manner of functional
languages. Note that the fact that RVL is a pure functional language entails that RVL specifications

are declarative (even in a strict interpretation of the term).

Specifying pictures will not bring us very far towards realizing multi-user user interfaces, however.
First, we need to explain how the bi-directional mapping is accomplished. Basically, it depends on

two notions: bindings and interactors.

RVL functions take parameters and a parameter can be bound to virtually any data structure (e.g.
variables of basic types, arrays, lists, graphs, etc.) Conditional constructs and recursion provide
simple and powerful support for RVL specifications to traverse any of these data structures. In
other words, we can bind arbitrary data to RVL specifications and easily use those data to generate

pictures. This takes care of the mapping from abstraction onto views.

When a user manipulates some part of a picture in a view we need to register this and according

to the “semantics” of the picture make some update to the abstraction. For example, in figure

42

11, clicking on a bar might cause the corresponding number in the abstraction to be incremented.
RVL provides Garnet-style interactors [49] for this purpose. An interactor is an agent that can be
associated with a picture object of the screen; whenever that picture object is manipulated by the
user it causes some semantic operation to take place. A mouse click interactor, for example, can
have the semantics that some entity in the abstraction (which is bound to the picture object in

question) is assigned the value true.

Remember that each part of a picture is generated by calling a function. In RVL, if a function
call has an interactor attribute, then the resulting picture will be sensitive to input. Furthermore,
the part of the abstraction being bound to the parameters of the called function is the target of
whatever are the semantic operations of the interactor. RVL has many predefined interactors, e.g.

text entry interactors, mouse click interactors, counter interactors, etc.

This explains the bi-directional mapping. However, there are still some notions that are needed in
order to be able to effectively specify multi-user applications with graphical, direct manipulation

user interfaces (of which desktop conferencing applications is a special case).

First of all, users expect to see familiar interaction metaphors like menus and scroll bars on the
screen. These can of course be specified easily (even with customized look an feel) using RVL. Un-
fortunately, there is one problem: data state used exclusively for operating user interface metaphors
has to be kept together with the abstraction. This is not compatible with the dialogue independence
principle [33] underlying the majority of modern user interface development systems. Therefore,
data related to the state of the user interface metaphors are kept separate from the abstraction in
the Ul state. Now, interacting with a scroll bar will update the Ul state. Programmers are allowed
to write simple, one-way constraints to trigger updates to the abstraction if any Ul state updates

warrant such actions.

Figure 12 summarizes the discussion this far. We now have a system which is practical and useful

for developing single-user applications with graphical, direct manipulation user interfaces.

We are now in a position to discuss the multi-user features of Weasel and RVL. Clearly, by simply
taking the single-user Weasel system and distributing the views one would get instant collaboration
transparent (i.e. WYSIWIS [68]) desktop conferencing applications. Note that this would not add
any new concurrency control problems since single-user Weasel was designed to manage multi-
threaded dialogues [34] and the application can do computations on its own, independent of what
the user does. So, we would stand apart from shared window systems [30] in that floor control

would not be needed (or, indeed, would not be possible).

We will now show that it is relatively straight forward to have easy specification of collaboration

aware applications in Weasel, using RVL. Collaboration awareness is desirable since it makes it

43

Application

Updates
Updates Abstraction bindings furﬁ:\tlilans
Constraints & ti)ri1rf]cc;I filénc
v Ul state oS interactors

Figure 12: The single-user Weasel system. Rectangles show active entities, ovals are passive entities.
Note that all the active entities creates a concurrency control problem. This is taken fully care of
(automatically) by the Weasel run-time system, so programmers do not have to worry about that.
Note that this is an implementation model, not a conceptual programming model.

possible to relax the pure WYSIWIS interaction style of collaboration transparent applications [67].
In Weasel, making an applications collaboration aware is called customization with respect to the

different users.

We define the abstraction and the Ul state as the context of the application. The notions of global
and local contexts is fundamental to how customization is achieved in Weasel. There is always one
global context for each application. The global context contains everything that is shared between
the users. Both parts of abstraction and Ul state may be shared. Every user has his/her own local
context. Now, customization is achieved by moving abstraction parts and Ul state parts from the
global context to the local context of each user. For example, if the Ul state of a scroll bar is
stored in the global context, then that scroll bar will provide WYSIWIS scrolling. However, if the
UI state of the scroll bar is in the local context, then a user will not be able to scroll other users’
views by using that scroll bar. Similarly, only updates made to abstraction entities in the global

context will be noticeable by other users.

The binding facilities of RVL provide easy, declarative specification of which parts of the abstraction
and the Ul state that go to global context and which go to the local context (the default is that
everything goes to the global context, the programmer must specify which parts go to the local
context). Hence, we can easily specify what is customizable and what is shared. Figure 13 pictures

the notion of global and local context.

Users using a groupware application often have different roles. The role of a user can have wide
implications as to how the groupware application should respond to that particular user (or role).

In Weasel we have the concept of a signature. Each user in a groupware session is given a unique

44

Application

Update
Update
loba RVL
Context Interpreter

Figure 13: In the Weasel system, the global context is used to store shared abstraction and Ul state.
The local context provides easy customization. Note that the figure is simplified in that constraints
have been omitted. The RVL interpreter is the realization of the bi-directional mapping between
pictorial and abstract forms of data.

signature. Limited signature support has been built into the RVL language. This makes it easy
to specify basic coordination like turn-taking or floor control. Or, more generally, the signature

support in RVL makes it possible to customize differently to different users.

This section has discussed the relational view model and its implementation in the Weasel system.
Though the implementation model may seem complicated, the conceptual programming model
is simple; i.e. a central application bound to a set of views through relations. We repeat that
the motivation behind the Weasel system is to demonstrate that the relational view model is
useful and practical as development support for multi-user applications (e.g. desktop conferencing
applications) having a graphical, interactive user interfaces. Weasel is one possible instantiation of

the relational view model.

3.4.2 Example Applications

Our first example groupware application developed using Weasel is an inventory data base browser.
A set of cities has inventories containing various products. A city’s products may be ordered by
other cities. Figure 14 shows an example session where two users are independently browsing

through the inventory data.

The inventory data base example illustrates how view customization is achieved in Weasel by using
RVL to declaratively specify what goes into the global and local contexts. Here, all the inventory
data themselves are placed in the global context. Consequently, if two users are viewing the same

data and one of the users makes changes to a data item, then both users will observe the change.

45

‘ /[@] WEASEL = Cities of the World
[8] WEASEL & Cities of the World ']

[®] WEASEL : City Information =]
mruntu [OProduct Information I
A Order Information @ Mase 1 |
[=]
WEASEL :: City Inf: ti
Product Hamne Ouantity [l 1ty Information 2
Lusekofte ;
N 7 .
Sursild mundhe in Product Infornation
. [J0rder Information
Ski
A Product Hamne Units
Orders from City: Trondhein i Lusekofte 20
- Sursild 10000
i Toerrfisk 20
Laks 40
Julenisse 300
Col M Sk 1000

Figure 14: An inventory data browser. There are two users, each having a “Cities of the World”
and a “City Information” view. The user on the left is looking at Toronto and what orders that
city has on products from Trondheim. The user on the right is scrolling through the products that
are available in the city Trondheim.

There is no global Ul state in this example, so users can browse completely independent of each
other. Browsing is done by clicking on a city on the map (large view) and use a scrollbar to go
through either product or order information (small view). Note that it is easy to make the views
more tightly coupled by changing the RVL specification (or, more presicely, the binding of the RVL

specification).

One nice thing is that programmers never have to worry about updating views in the relational view
model. The run-time system automatically detects any updates made to the abstraction (either
the local or global context) and instantly figures out which actions need to be taken. Programmers
are also totally unaware of the underlying implementation model (e.g. that the local contexts are
actually residing in different address spaces, typically on the remote client machines on which the

users are sitting).

The second example is a tic-tac-toe game. An example session is shown in figure 15. Two users
take turn making moves by clicking on the tic-tac-toe board. This example demonstrates the use

of signature constructs in RVL for specifying turn-taking and view customization according to the

46

[@] WEASEL :: Tic-Tac-ToH]

It’s you, nan!

X

WEASEL :: Tic-Tac-To]

You’ll have to wait!

XXX

B\

Figure 15: A tic-tac-toe example. It is the first (left) user’s turn and he/she must click in an empty
square to place an inverted O.

current role of a user.

Signature constructs in RVL allow this example application to be customized in three ways:

1. The user whose turn it is sees a different message in the top part of the view than the other.
2. Only the game board of the user whose turn it is, is sensitive to input.

3. The first user has inverted O’s has his/her symbol, the second user has X’s.

The complete RVL specification is about 90 lines of code (specifies the board and the appearance
of different board items, specifies turn-taking and customization, prints a message saying whose
turn it is, and prints a message congratulating the winner). The functional core, written in Turing

plus, is trivial.

3.4.3 Evaluation

In Weasel, functional core of the application is specified in the Turing Plus language, which is well-
suited to modular programming. User interface views may be specified separately for each module.
Data state that is necessary for operating user interface metaphors such as buttons and scroll bars is
kept separately from the data state of the functional core. All this provision for separating different
part of an application into components is the main reason for the “good” iterative development

rating.

Weasel does in many ways provide good support for incremental development. The relation specifi-
cations written in RVL offer programmers a way to easily specify sharing, view customization, and

simple basic coordination in a declarative way. However, the functional core of an application must

47

be compiled every time it is modified. This is a big drawback. Even though RV specifications are

interpreted, we have chosen to give only an “ok” rating on support for incremental development.

It is very easy to reuse existing single-user Weasel applications and employ them in a multi-user
setting. In fact, the normal development scenario when using Weasel is to first develop a single-user
application that implements the functional core and some prototypical user interface views. Then,
one switches to multi-user Weasel and incorporates sharing, view customizations, and coordination

into the RVL specifications. We give a “good” rating for single-user reuse.

As we just argued, it is almost as easy to implement multi-user applications as to implement single-
user applications in Weasel. The main reason for this is the conceptual programming model. The
programmer sees a centralized model, i.e. the relational view model, and does not have to worry
about distributed system issues. By requiring the use of special purpose languages for the different
parts of applications, it is possible to provide well adapted language abstractions for the different
programming tasks. Turing Plus is a nice language for programming the functional core, while
RVL makes it easy to program views, customization, and sharing. The conceptual model criterion

gets a “very good” rating, while the language abstraction criterion gets a “good” rating.

Using multiple languages is a problem when it comes to ease of learning. Also, RVL is a pure
functional language and employs notions which may be foreign to many programmers. Weasel only
rates “ok” on ease of learning. We give a “good” rating for declarativeness, mainly because of RVL,

since Turing Plus is an imperative language.

Expressiveness is a problem in Weasel. Extensive use of separation of concerns and declarativeness
provide many advantages but we have to pay an expressiveness penalty. In the current Weasel
system, this is mostly due to unnecessary restrictiveness in the RVL language, and not so much a
problem with the conceptual model. We only give an “ok” rating on expressiveness. There is no

session management in Weasel.

Weasel’s performance is acceptable for prototyping purposes, but not fast enough for production
use. It should be noted, however, that the performance of Weasel applications degrades very slowly

as large numbers of users are added to a session.

3.4.4 Conclusion

Weasel provides groupware developers with an interesting conceptual model and a special purpose

language for specifying synchronous groupware applications.

Another interesting aspect is the semi-replicated implementation model of Weasel. Scalability

measurements have shown that the semi-replicated architecture implementation of Weasel does

48

not experience severe performance degradation (as a centralized implementation would) when the

number of users increases?.

One should note that the functional core in Weasel applications can do computation on its own.

This could be useful for implementing intelligent agents.

The biggest problem with the current version of Weasel is the expressiveness of the RVL language.

The RVL syntax is also somewhat clumsy.

*Note that the performance measurements cited in [28] refer to an old version of Weasel. The latest version has
significantly improved performance.

49

4 Conclusion

This section first briefly compares the evaluated tools at a more pragmatic level. Then, we propose

a set of lessons that we hope will be of interest to groupware tool designers.

4.1 Tool Comparison

It should be clear from the work presented in this report that GroupKit is the tool of choice for
those wanting to use a tool to develop “real” groupware. GroupKit is in a class of its own when it
comes to session management and ease of learning. Unfortunately, it is also the poorest tool when

considering the underlying design paradigm.

One thing that makes GrouplE and Suite interesting is the fact that they offer generic functionality

that allows end-users to tailor the coupling of generated applications.

Suite and Weasel are the only tools that have been designed completely from scratch by their
creators (though they were both single-user tools in the beginning). Consequently, these two
tools offer interesting test beds for experimentation with conceptual models and special-purpose

specification language constructs.

We think that one of the conclusions one can draw from this work is that it is still more difficult
to develop groupware than to develop single-user applications. We will now, in section 4.2, take a

look at how groupware tools can be improved to reduce the complexity of groupware development.

4.2 Lessons for Tool Designers

Here, we analyze the evaluation results. We first propose some lessons that we feel will suggest
improvements to the development support provided by all the subject tools. Then, we discuss some
additional issues that should be taken into account before one sets out to design new groupware

tools.

We propose the following lessons from our tool evaluation:

1. Rapid prototyping support is greatly enhanced by providing an interpreted environment.
GroupKit is a good example. One important observation of particular interest to groupware
tool designers is that the combination of an interpreted language together with good session
management proved an invaluable tool for quick testing of ideas in a multi-user setting. In

GrouplE, the other tool with proper interpreter support, the lack of session management

50

made it much more troublesome to deploy prototypes in a multi-user setting.

2. The conceptual programming model that is exposed to the programmer should be higher level
than the implementation model of the tool. Weasel is a good example of how a high-level
conceptual model makes it easier to develop groupware. A high-level conceptual model also

makes it easier to provide good programming languages.

3. Declarative programming language constructs can greatly simplify the task of tackling low-
level issues that groupware developers often run into. The dependencies on global variables
and callbacks in GroupKit and Suite do not cause serious problems in small applications, but
in larger projects could cause difficulties in maintenance and iterative refinement. Declarative
techniques, as used in Weasel and GrouplE allow issues of replication, concurrency control

and consistency maintenance to be largely hidden from the programmer.

It is interesting to note that each of the four groupware tools considered here are extensions of
tools for developing single-user user interfaces. This is reflected in the type of groupware appli-
cations the tools provide best support for, namely desktop conferencing applications where users
interact exclusively through manipulating objects on a shared workspace. That is, the generated

applications provide only a task space, not a person space [7].

Important groupware issues like supporting both synchronous and asynchronous communication
processes [71] and better integration of task and person spaces [41] should be taken into account
when designing new groupware tools. The latter issue will require continuous digital media like
audio and video to be integrated into groupware tools. That, in turn, will force groupware tool
designers to consider real-time media requirements in relation to hardware and software platforms

and temporal relationship issues in relation to specification of mixed media [35].

4.3 Acknowledgments

We would like to thank Professor Ronald Baecker and Professor Hiroshi Ishii for supervising the

project work that led to this report.

Professor T. C. Nicholas Graham provided many helpful comments and suggestions throughout the
project in additions to proof reading the final draft of this report. His contributions are greatly

appreciated.

We would also like to thank Prasun Dewan, Saul Greenberg, and Tom Riidebusch for making their

tools available to us.

51

This work was funded in part by a scholarship from the Royal Norwegian Research Council, a

tuition fee waiver from York University, and a grant from NSERC.

52

References

[1]

[10]

[11]

[12]

[13]

[14]

S. R. Ahuja, J. R. Ensor, and S. E. Lucco. A Comparison of Application Sharing Mecha-
nisms in Real-time Desktop Conferencing Systems. In Proceedings of the Conference of Office
Information Systems, pages 238-248. ACM, 1990.

R. M. Baecker. Readings in Groupware and Computer-Supported Cooperative Work, Assisting
Human-Human Collaboration. Morgan Kaufmann Publishers, ISBN 1-55860-241-0, 1993.

R. Bentley, T. Rodden, P. Sawyer, and I. Sommerville. An architecture for tailoring cooperative
multi-user displays. In J. Turner and R. Kraut, editors, Proceedings of the Fourth Conference
on Computer-Supported Cooperative Work, pages 187-194. ACM Press, November 1992.

R. Bentley, T. Rodden, P. Sawyer, and I. Sommerville. Architectural Support for Cooperative
Multi-user Interfaces. IFEF Computer, May 1994.

K. P. Birman. The process group approach to reliable distributed computing. Communications
of the ACM, 36(12):37-53,103, December 1993.

John Bowers and Tom Rodden. Exploding the Interface: Experiences of a CSCW Network.
In Proceedings of INTERCHI, pages 255-262, (Amsterdam, The Netherlands, 24 April — 29
April, 1993), 1993. ACM, New York.

W. A. S. Buxton. Telepresence: Integrating Shared Task and Person Spaces. In Proceedings
of Graphic Interface 92 (also in [2]), pages 123-129. Morgan kaufmann Publishers, 1992.

V. G. Cerf. Networks. Scientific America (also in [2]), 265(3):72-81, September 1991.

C. Cool, R. S. Fish, R. E. Kraut, and C. M. Lowery. Iterative Design of Video Communica-
tion Systems. In J. Turner and R. Kraut, editors, Proceedings of the Fourth Conference on
Computer-Supported Cooperative Work, pages 25-32. ACM Press, November 1992.

J. R. Cordy and T. C. N. Graham. Gvl: Visual specification of graphical output. Journal of
Visual Languages and Computing, 1992.

T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R. Tomlinson. MM Conf: An Infrastructure
for Building Shared Multimedia Applications. In F. Halasz, editor, Proceedings of the Third

Conference on Computer-Supported Cooperative Work (Los Angeles, Ca., Oct. 7-10) (also
in [2]), pages 329-342. ACM Press, 1990.

P. Dewan. A Guide to Suite. Technical Report SERC-TR-60-P, Software Engineering Research
Center, Purdue University, February 1990.

P. Dewan. Coupling the User Interface of a Multiuser Program. In ACM SIGGRAPH Video
Review, Issue 87. Originally part of the Video Program of ACM CSCW ’92, November 1992.

P. Dewan. Principles for Designing Multi-User Interface Development Environments. In J. Lar-
son and C. Unger, editors, Proceedings of the 5th IFIP Working Conference on Engineering
for HCI (Ellivaari, Finland), pages 35-48, August 1992.

53

[15]

[18]

[19]

[20]

[24]

[25]

[26]

[27]

[28]

[29]

P. Dewan. An Editing-Based Characterization of the Design Space of Collaborative Appli-
caitons. In Proceedings of the 4th Conference on Organizational Computing, Coordination,
and Collaboration, March 1993.

P. Dewan. Tools for Implementing Multiuser User Interfaces. In L. Bass and P. Dewan, editors,
User Interface Software, chapter 8. John Wiley & Sons, ISBN 0 471 93784 3, 1993.

P. Dewan and R. Choudhary. A High-Level and Flexible Framework for Implementing Mul-
tiuser User Interfaces. ACM Transactions on Information Systems, 10(4):345-380, October
1992.

P. Dewan and R. Choudhary. Coupling the user Interfaces of a Multiuser Program. ACM
Transactions on Information Systems, to appear.

P. Dewan and J. Riedl. Toward Computer-Supported Concurrent Software Engineering. IFEF
Computer, 26(1):17-27, January 1993.

P. Dewan, J. Riedl, R. Choudhary, V. Mashayekhi, and H. Shen. An Overview of the
Suite Collaborative Infrastructure and Applications. Unpublished note available by ftp
(ftp.cs.purdue.edu, pub/rxc/papers/sum.ps), 1993.

P. Dewan and E. Vasilik. An Object Model for Conventional Operating Systems. Useniz
Computing Systems, 3(4):517-549, December 1990.

A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Interaction. Prentice Hall,
ISBN 0-13-458266-7, 1993.

C. A. Ellis and S. J. Gibbs. Concurrency Control in Groupware Systems. In Proceedings of the
ACM SIGMOD ’89 Conference on the Management of Data (Seattle Wash. May 2-4 1989),
pages 399-407, New York, 1989. ACM.

C. A. Ellis, S. J. Gibbs, and G. L. Rein. Groupware: Some issues and experiences. Commu-
nication of the ACM (also in [2]), 34(1):38-58, January 1991.

E. A. Fox. Advances in interactive digital multimedia systems. IEEE Computer (also in [2]),
24(10):9-21, October 1991.

S. Freeman. De-constructing the workstation: Window systems, distribution and cscw. Posi-
tion Paper, CSCW’92 Workshop on Tools and Technologies (Toronto), October 1992.

T. C. N. Graham. Conceptual views of data structures as a programming aid. Master’s thesis,
Queens University at Kingston, Canada, August 1988.

T. C. N. Graham and T. Urnes. Relational Views as a Model for Automatic Distributed Imple-
mentation of Multi-User Applications. In Proceedings of the Fourth Conference on Computer-
Supported Cooperative Work (Toronto, Oct. 1992), 1992.

M. Green. A survey of three dialogue models. ACM Transactions on Graphics, 5(3):244-275,
April 1986.

54

[30] S. Greenberg. Sharing Views and Interactions with Single-User Applications. In Proceedings
of the Conference on Office Information Systems, pages 227-237. ACM, April 1990.

[31] S. Greenberg, M. Roseman, D. Webster, and R. Bohnet. Issues and Experiences Designing
and Implementing Two Group Drawing Tools. In Proceedings of the 25th Annual Hawaii
International Conference on the System Sciences (also in [2]), volume IV, pages 139-150.
IEEE Computer Society Press, January 1992.

[32] N. M. Guimaraes, N. M. Correia, and T. A. Carmo. Programming Time in Multimedia User
Interfaces. In Proceedings of the Fifth Annual Symposium on User Interface Software and
Technology, (Monterey, California, Nov. 15-18), pages 125-134. acm press, 1992.

[33] H. Rex Hartson and Deborah Hix. Human-computer interface development: Concepts and
systems for its management. ACM Computing Surveys, 21(1):5-92, March 1989.

[34] R. D. Hill. Supporting concurrency, communication, and synchronization in human-computer
interaction — the sassafras uims. ACM Transactions on Graphics, 5(3):179-210, July 1986.

[35] R. D. Hill. Languages for the Construction of Multi-User Multi-Media Synchronous (MUMMS)
Applications. In B. A. Myers, editor, Languages for Developing User Interfaces (also in [2]),
chapter 9, pages 125-143. Jones & Bartlett Publishers, 1992.

[36] R. D. Hill. Synchronization vs. responsiveness in distributed conversations. Position Paper,
CSCW’92 Workshop on Tools and Technologies (Toronto), October 1992.

[37] R. D. Hill. The abstraction-link-view Paradigm: Using Constraints to Connect User Interfaces
to Applications. In CHI 92. ACM, acm press, May 1992.

[38] R. D. Hill, T. Brinck, S. L. Rohall, J. F. Patterson, and W. Wilner. The Rendezvous Language
and Architecture for Constructing Multi-User Applications. ACM Transactions on Computer-
Human Interaction, To appear, 1994.

[39] Paul Hudak. Conception, evolution and application of functional programming languages.
ACM Computing Surveys, 21(3):359-411, September 1989.

[40] S. Hudson. How Programming Languages Might Better Support User Interface Tools. In B. A.
Myers, editor, Languages for Programming User Interfaces, chapter 7. Jones and Barlett, 1992.

[41] H. Ishii and M. Kobayashi. Clearboard: A Seamless Medium for Shared Drawing and Con-
versation with Eye Contact. In Proceedings of CHI’92 (also in [2]), pages 525-532. ACM,
1992.

[42] S. M. Kaplan, W. J. Tolone, D. P. Bogia, and C. Bignoli. Flexible, Active Support for Col-
laborative Work with ConversationBuilder. In J. Turner and R. Kraut, editors, Proceedings of
the Fourth Conference on Computer-Supported Cooperative Work, pages 378-385. ACM Press,
November 1992.

55

[43]

[44]

[45]

[55]

[56]

J. C. Lauwers and K. A. Lantz. Collaboration Awareness in Support of Collaboration Trans-

parency: Requirements for the next Generation of Shared Window Systems. In Proceedings of
CHI’90 (also in [2]), pages 303-311. ACM, 1990.

J. C. Lauwers, K. A. Lantz, and A. L. Romanow. Replicated Architectures for Shared Win-
dow Systems: A Critique. In Proceedings of the Conference on Office Information Systems,
Cambridge, MA (also in [2]), pages 249-260. ACM Press, April 1990.

T. M. Levergood, A. C. Payne, J. Gettys, G. W. Treese, and L. C. Stewart. AudioFile:
A Network-Transparent System for Distributed Audio Applications. In Proceedings of the
USENIX Summer Conference, June 1993.

M. A. Linton, J. M. Vlissides, and P. R. Calder. Composing User Interfaces with InterViews.
Computer, 22(2):8-22, February 1989.

Silvano Maffeis. Technologische grundlagen des computer supported cooperative work (cscw).
Technical Report IFI TR 93.29, Institut fiir Informatik der Universitdt Ziirich (in German),
July 1993.

B. A. Myers. Why are Human—Computer Interfaces Difficult to Design and Implement? Tech-
nical Report CMU-CS-93-183, Computer Science Department Carnegie Mellon University,
Pitsburgh, July 1993.

B. A. Myers, D. A. Giuse, R. B. Dannenberg, B. Vander Zanden, D. S. Kosbie, E. Pervin,
A. Mickish, and P. Marchal. Garnet: Comprehensive support for graphical, highly interactive
user interfaces. IEFFE Computer, pages 71-85, November 1990.

K. Narayanaswamy and Neil Goldman. Lazy Consistency: A Basis for Cooperative Software
Development. In Jon Turner and Robert Kraut, editors, Proceedings of the Fourth Conference
on Computer-Supported Cooperative Work, pages 257-264. ACM, acm press, November 1992.

G. M. Olson, L. J. McGuffin, E. Kuwana, and J. S. Olson. Designing Software for a Group’s
Needs: A Functional Analysis of Synchronous Groupware. In L. Bass and P. Dewan, editors,
User Interface Software, chapter 7. John Wiley & Sons, 1993.

J. K. Ousterhout. Tel and the Tk Toolkit. Addison Wesley, ISBN 0-201-63337-X, 1994.

J. F. Patterson. Session Services and Synchronous Groupware. Position Paper at the ACM
CSCW 92 Workshop on Tools and Technologies, November 1992.

John F. Patterson. Comparing the Programming Demands of Single-User and Multi—User
Applications. In Proceedings of the Fourth Annual Symposium on User Interface Software and
Technology (Hilton Head, Carolina, Nov. 11-13, pages 87-94. ACM, acm press, 1991.

J. R. Rhyne and C. G. Wolf. Collaboration through shared event histories: A position paper.
Position Paper, CSCW’92 Workshop on Tools and Technologies (Toronto), October 1992.

J. Riedl and V. Mashayekhi. Suitesound: Collaborative multimedia. Position Paper, CSCW’92
Workshop on Tools and Technologies (Toronto), October 1992.

56

[57]

[61]

[63]

[64]

[65]

M. Robinson. Computer Supported Co-operative Work: Cases and Concepts. In Proceedings
of Groupware ’91 (also in [2]), pages 59-75, P.O. Box 424, 3500 AK Utrecht, the Netherlands,
1991. Software Engineering Research Centre.

T. Rodden, J. A. Mariani, and G. Blair. Supporting cooperative applications. Computer
Supported Cooperative Work (CSCW), 1(1):41-67, 1992.

M. Roseman. Tcl/Tk as a Basis for Groupware. In Proceedings of the Tecl/TK 93 Workshop
(Berkeley, California), June 1993.

M. Roseman and S. Greenberg. GroupKit: A Groupware Toolkit for Building Real-Time
Conferencing Applications. In J. Turner and R. Kraut, editors, Proceedings of the Fourth Con-
ference on Computer-Supported Cooperative Work, pages 43-50. ACM, acm press, November
1992.

M. Roseman and S. Greenberg. Building Flexible Groupware Through Open Protocols. In
Proceedings of the Conference on Organizational Computing Systems (Milpitas, Ca.). ACM
Press, November 1993.

M. Roseman, S. Yitbarek, and S. Greenberg. GROUPKIT REFERENCE MANUAL: A Guide
to its Architecture, Interprocess Communication, and Programs. Included in the public do-
main Groupkit distribution, available by anonymous ftp from ftp.cpsc.ucalgary.ca under
pub/grouplab/software, December 1993.

M. Roseman, S. Yitbarek, and S. Greenberg. GROUPKIT TUTORIAL. Included in the public
domain Groupkit distribution, available by anonymous ftp from ftp.cpsc.ucalgary.caunder
pub/grouplab/software, December 1993.

T. Riidebusch. CSCW: Generische Unterstiitzung von Teamarbeit in verteilten DV-Systemen.
Doctoral dissertation, Deutscher Universitits-Verlag GmbH, Wiesbaden, ISBN 3-8244-2043-0,
University of Karlsruhe, Germany (in German), 1993.

T. D. Riidebusch. Development and Runtime Support for Collaborative Applications. In H.-J.
Bullinger, editor, Proceedings of the Fourth International Conference on Human-Computer In-
teraction, Stuttgart, Germany, Human Aspects of Computing, pages 1128-1132, Amsterdam,
1991. Elsevier Science Publishers.

T. D. Riidebusch. Supporting Interaction within Distributed Teams. In K. Gorling and
C. Sattler, editors, International Workshop on CSCW, Berlin, Germany, pages 17-33, 1991.

M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. WYSIWIS Revised: Early Ex-
periences with Multiuser Interfaces. Transactions on Office Information Systems (also in [2]),
5(2):147-167, 1987.

M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, 5. Lanning, and L. Suchmann. Beyond the
Chalkboard: Computer Support for Collaboration and Problem Solving in Meetings. Com-
munications of the ACM, 30(1):32-47, January 1987.

57

[69]

[70]

S. M. Stevens. Multimedia Computing: Applications, Designs and Human Factors. In L. Bass
and P. Dewan, editors, User Interface Software, chapter 9. John Wiley & Sons, 1993.

S. Takahashi, S. Matsuoka, A. Yonezawa, and T. Kamada. A General Framework for Bi-
Directional Translation between Abstract and Pictorial Data. In Proceedings of the Fourth
Annual Symposium on User Interface Software and Technology (Hilton Head, Carolina, Nov.
11-13), pages 165-174. ACM Press, 1991.

M. Turoff. Computer-Mediated Communication Requirements for Group Support. Journal of
Organizational Computing (also in [2]), (1):85;94-113, 1991.

T. Urnes. A Relational Model for Programming Concurrent and Distributed User Interfaces.
Master’s thesis, Norwegian Institute of Technology, University of Trondheim, Norway (also
available as Arbeitspapiere der GMD 643, Germany), April 1992.

H. M. Vin, P. V. Rangan, and M. Chen. System Support for Computer Mediated Multimedia
Collaborations. In J. Turner and R. Kraut, editors, Proceedings of the Fourth Conference on
Computer-Supported Cooperative Work, pages 203-209. ACM Press, 1992.

George M. White. A formal method for specifying temporal properties of the multi-user
interface. In 5. Gibbs and A. A. Verrijn-Stuart, editors, Multi-User Interfaces and Applications,
pages 49-59. Elsevier Science Publishers B. V. (North-Holland), 1990.

58

