

D
ec

la
ra

ti
ve

D
ev

el
op

m
en

t
of

In
te

ra
ct

iv
e

S
ys

te
m

s

T
.C

.
N

ic
h
ol

as
G

ra
h
am

D
ep

ar
tm

en
t

of
C

om
p
u
te

r
S
ci

en
ce

Y
or

k
U

n
iv

er
si

ty
47

00
K

ee
le

S
t.

T
or

on
to

,
O

nt
ar

io
C

A
N

A
D

A
M

3J
1P

3

iii

iv

Preface

Graphical user interfaces have become a standard feature of modern application pro-
grams. Because user interface design is still more of an art than a science, the de-
velopment of these user interfaces is challenging. The most standard technique for
creating user friendly interfaces is iterative refinement, where the user interface is first
designed, tested with users, and then redesigned. At the same time, user interfaces
have the special problems of supporting computation guided by the user (as imple-
mented in direct manipulation interfaces), and of correctly implementing the often
subtle interdependencies between user interface components.

In this dissertation, Graham shows how techniques from declarative programming can
be used to simplify the process of user interface development. In the functional Clock
programming language, the programmer describes the behaviour of a user interface,
rather than the algorithms required to implement it. From a declarative specification,
a Clock interpreter automatically derives an implementation of the user interface.

A traditional problem with languages as high-level as Clock is in describing their for-
mal semantics. To solve this, Graham introduces the Temporal Constraint Functional
Programming (TCFP) framework, in which the semantics of extended functional lan-
guages can be specified. Because of its basis in temporal logic, it is possible within
TCFP to state and prove properties of not only the Clock language, but also of other
languages based on extended functional programming.

The work described in this dissertation represents a significant step towards simplifying
the process of user interface development. By showing that declarative approaches are
both theoretically sound and practically implementable, the work demonstrates that
the declarative development of user interfaces is a promising approach for the future.

Berlin, December 1994 Stefan Jähnichen

vi

Author’s Preface

This work is the published version of a Doctorate of Engineering dissertation from
the Technical Univerity of Berlin. The work was examined by Prof. Dr.-Ing. Ste-
fan Jähnichen and Prof. Dr. Ulrich Geske. The chair of the examination was Prof.
Dr. A. Biedl. The work presented in this book was largely performed at the GMD
Forschungsstelle für Programmstrukturen in Karlsruhe, Germany.

There are many people whose help and support were crucial to the completion of this
work. Foremost among these is Stefan Jähnichen, who generously provided me with
the opportunity of working at the GMD Karlsruhe, and the freedom to pursue the
ideas presented here.

I would also like to thank my colleagues at the GMD, who were the main source of the
institute’s stimulating and supportive atmosphere. I would particularly like to thank
Birgit Heinz, who suffered the greatest burden of having to put up with my German,
the other members of the Phoenix project: Roland Dietrich, Hendrik Lock and our
colleagues in London and Nijmegen, and Robert Gabriel and Gerd Kock. The latter
stages of the work could not have been completed without the help of Birgitt Schmidt.

My students also deserve thanks for their invaluable work on the Clock system.
These are: Herbert Damker, Stefan Hügel, Catherine Morton, Roy Nejabi, Joachim
Schullerer, Gekun Song, and Tore Urnes.

Many thanks are also due to Walter and Ingrid Tichy, who opened their home to
me when I first arrived in Germany, to Reidar Conradi for generously hosting my six
month stay at NTH, in Trondheim, Norway, and to Jim Cordy for his moral support
throughout the whole process.

I would like to thank my parents for their strong support from start to finish. Finally,
I wish to thank my wife, Kjersti, for her encouragement, patience and quiet confidence
that carried me through the thesis writing.

Toronto, January 1995 T.C. Nicholas Graham

vii

viii

Contents

1 Introduction 1

1.1 Declarative User Interface Programming 1

1.2 Functional Programming . 3

1.3 The Clock Language . 4

1.4 The TCFP Framework . 7

1.5 Thesis Organization . 8

2 Declarative User Interface Development 9

2.1 Problems in User Interface Construction 10

2.2 Seeheim Model . 14

2.3 Supporting User Interface Presentation 15

2.3.1 User Interface Builders . 15

2.3.2 Constraints . 17

2.4 Supporting Human-Computer Dialogues 21

2.4.1 Specifying Dialogues with ATN’s and Grammars 22

2.4.2 Event-Based Approaches . 23

2.4.3 Dialogue Combinators . 24

2.4.4 SIAN . 25

2.5 Connecting Applications to User Interfaces 26

2.5.1 Callbacks . 26

2.5.2 Continuations . 26

2.5.3 Structured Approaches to the Application Interface 28

2.6 Support for Reasoning . 33

2.7 Conclusion . 33

3 Overview of the Clock Language 35

3.1 A Minimal Clock Program . 36

ix

x CONTENTS

3.2 Trees of Components . 38

3.3 Representing Persistent Data . 39

3.3.1 Example Request Handler . 39

3.3.2 Using Request Handlers . 41

3.4 Input . 43

3.4.1 Views as Constraints . 46

3.4.2 Other Forms of Input . 46

3.5 Consistency Maintenance . 47

3.6 Properties of Clock . 49

3.6.1 Declarative in the Small . 50

3.6.2 Declarative in the Large . 50

3.7 Conclusion . 51

4 Developing User Interfaces in Clock 53

4.1 An Example User Interface . 53

4.2 The Clock Card File . 54

4.2.1 Structuring User Interfaces with Components 56

4.2.2 Views and Subviews . 58

4.2.3 Consistency Constraints . 60

4.3 Modifying Architectures . 62

4.4 The Clock I/O Model . 65

4.4.1 The Clock View Language . 66

4.5 Conclusion . 66

5 TCFP 69

5.1 Informal Introduction to TCFP . 70

5.1.1 A TCFP Example . 71

5.2 Syntax and Informal Semantics of TCFP 74

5.2.1 Interaction Lambda-Calculus 74

5.2.2 Interaction Logic . 79

5.2.3 Combining Interaction Logic and Iλc 81

5.3 Modelling Concurrency and Interaction in TCFP 83

5.3.1 Input and Output . 83

5.3.2 Processes and Asynchronous Communication 87

5.3.3 Stream Communication . 88

5.3.4 Synchronous Communication 89

CONTENTS xi

5.3.5 Variables and Shared Memory 90

5.3.6 Oracles and Flags . 92

5.4 Conclusion . 93

6 Semantics of the Clock Language 95

6.1 Layer I: Component Definition . 96

6.1.1 Architectures as Constraints . 96

6.1.2 Semantics of Event Handlers . 98

6.1.3 Semantics of Request Handlers 102

6.2 Layer II: Connectivity . 104

6.3 Layer III: Threads . 106

6.3.1 Kinds of Threads . 107

6.4 Layer IV: Routing . 107

6.4.1 Subview Routing . 108

6.4.2 Request/Update Routing . 108

6.4.3 Routing Restrictions . 111

6.5 Layer V: Triggering . 112

6.5.1 Triggering Initialization . 112

6.5.2 Dependencies among Components 113

6.5.3 Triggering View and Invariant Generation 113

6.6 Layer VI: Sequencing . 114

6.6.1 Ordering Threads . 115

6.6.2 Sequencing User Input Threads 117

6.6.3 Illusion of Single-Threadedness 117

6.7 Conclusion . 118

7 Properties of Clock 121

7.1 Referential Transparency . 122

7.1.1 Proof of Referential Transparency 123

7.2 Termination Properties . 127

7.2.1 Architecture Induction . 127

7.2.2 Termination of Input Sequences 129

7.2.3 Termination of Invariant and View Sequences 131

7.2.4 Proof of Limited Termination 132

7.3 Conclusion . 133

xii CONTENTS

8 Conclusion 135

8.1 Clock and Declarative Programming 135

8.2 Clock and TCFP . 136

8.3 The TCFP Framework . 137

8.4 Future Work . 137

8.5 Conclusion . 139

A The Interaction Lambda Calculus 141

A.1 Syntax . 141

A.1.1 Syntactic Sugar . 142

A.1.2 Supporting I/O in Iλc . 144

A.2 Semantics . 144

A.2.1 Semantic Domains . 144

A.2.2 Semantic Functions . 146

A.3 Properties of Iλc . 149

B Interaction Logic 151

B.1 Syntax . 151

B.1.1 Precedence . 154

B.1.2 Introducing Sorts . 154

B.2 Semantics . 156

B.2.1 A Core Logic . 161

B.3 Proofs In Interaction Logic . 162

B.3.1 Properties of the Calculus . 165

C Combined TCFP Framework 167

C.1 A Model Theoretic Interpretation for Iλc 167

C.2 Combined Semantics . 170

C.3 Transformations . 171

References 173

Chapter 1

Introduction

A recent industry survey has determined that user interface development accounts for
approximately 50% of the cost of producing modern application programs [76]. Re-
acting to this cost, much research effort has been devoted to making user interfaces
cheaper to produce, maintain and modify. One promising approach is the declara-
tive programming of user interfaces, based on techniques from functional program-
ming [75, 64, 49, 53, 37, 111]. Functional languages provide a high-level programming
model, suitable for the problems of rapid prototyping, testing and modification of user
interfaces.

Functional programming of user interfaces faces the central paradox, however, that
pure functional programs may not contain I/O. In order to support flexible, graphical
interaction, most user interface languages mix functional and imperative constructs,
thus sacrificing the high-level declarative programming model. Other approaches [79]
provide only restricted I/O facilities, preserving the declarative programming model,
but at considerable cost to ease and flexibility of programming.

This thesis proposes that despite this apparent paradox, it is possible for purely declar-
ative programming languages to support the development of graphical user interfaces,
while still providing the flexibility and ease of programming of imperative I/O systems.
The Clock language is introduced to substantiate this claim: Clock combines the func-
tional and object-oriented paradigms, while providing a high-level, purely declarative
graphical I/O system. Clock is based on the Temporal Constraint Functional Pro-
gramming (TCFP) framework, a novel framework for developing and reasoning about
extended functional languages. Because TCFP is more flexible than traditional frame-
works, it is possible to reason about Clock’s I/O system, and to prove that Clock
is indeed declarative while still supporting the flexible forms of I/O found in more
imperative approaches.

1.1 Declarative User Interface Programming

One of the prime reasons that interactive software is expensive to develop is that user
interfaces cannot be designed a priori, but must be developed experimentally through

1

2 CHAPTER 1. INTRODUCTION

iterative user testing and refinement [106]. Therefore, much of the research in user
interface construction has focused on providing tools that permit rapid prototyping
and modification of user interfaces.

One promising approach to helping with rapid prototyping of user interfaces has been
functional programming. Functional languages support a high-level, declarative style
of programming, where programmers specify what a program is supposed to do, rather
than how it is to be done. In addition to this high-level programming model, modern
functional languages also support rapid prototyping by providing high-level constructs
such as built-in lists, higher-order functions, and polymorphic typing.

Pure functional languages have the problem, however, that they do not conveniently
support input/output or non-determinism. Input/output constructs are the corner-
stone of specifying interaction with the user, while non-determinism is required to
model the dialogue-dominant nature of direct-manipulation user interfaces. The λ-
calculus, upon which functional programming is based [54], has no means of specifying
input/output or non-deterministic behaviour. It is because of these difficulties that
many user interface languages introduce impure extensions to functional languages,
such as imperative I/O constructs, variables, and assignments. Introducing such im-
pure extensions sacrifices the declarative programming model of the language – in order
to understand the ordering of assignments or I/O events, programmers must be aware
of how programs are executed, therefore viewing their programs as algorithms rather
than specifications.

To avoid sacrificing their declarative programming model, pure functional languages
take the approach of banning I/O from the language itself, and allowing access to
I/O functionality through a restricted external interface. Such approaches are often
based on continuations [57] or monads [113, 114]. While preserving the declarative
programming model, these approaches share two serious problems:

• I/O is the foundation of user interface construction. If I/O is outside the scope
of the language, then 50% of average programs will be outside the scope of the
semantics and reasoning techniques of the language;

• These restricted I/O interfaces impose a particular program organization in order
to satisfy mathematical properties of the language. This program organization
is not necessarily the best way to organize interactive systems.

In chapter 2 of this thesis, we shall see that the traditional functional programming
paradigm has proven too restrictive to conveniently support user interface construc-
tion. We therefore propose an extended framework, Temporal Constraint Functional
Programming (or TCFP), in which these restrictions are eased. Under TCFP, the λ-
calculus is augmented with constraints in a temporal logic. These constraints allow the
expression of I/O, non-determinism, persistent state, and concurrency. Using TCFP
as a framework, it is possible to define extended functional languages where I/O con-
structs are designed primarily for their ease of use, rather than as clumsy extensions
to a too-rigid framework.

1.2. FUNCTIONAL PROGRAMMING 3

To demonstrate that realistic languages for the development of user interfaces can be
based on declarative techniques, the Clock language is introduced. Clock is designed to
conveniently support the development of the direct-manipulation style of user interface,
while maintaining many of the interesting properties of functional languages. Clock has
a graphical, object-framework style of architecture language, similar to the Smalltalk
MVC model [59]. Architecture components are programmed in a functional style, using
a syntax similar to Haskell [56]. Graphical displays are specified in a high-level view
language, loosely based on RVL [43]. Clock has been implemented, and runs on Sun
workstations.

Through its basis in TCFP, Clock has a precise mathematical semantics. The nature
of the semantics allows many implementations, potentially including implementations
supporting concurrency and multiple users. Clock’s formal semantics allow properties
of the language to be investigated. A central theorem of the thesis demonstrates
that despite all of the language’s imperative extensions, functions in Clock remain
referentially transparent.

Clock is an example of just one language developed within the TCFP framework. While
much effort has been made to make Clock practical and realistic, many other styles of
languages are also possible.

We now give a brief overview of functional programming, following which, we introduce
Clock, and give an overview of the TCFP framework upon which Clock is based.

1.2 Functional Programming

Functional programming refers to a style of programming based on mathematical
functions; for a complete overview of functional programming, readers are referred
to [54, 28]. Functional programs map a set of inputs to a set of outputs. A functional
program for computing factorials is:1

fact 0 = 1.
fact n = n * (fact (n-1)).

Here the function fact is defined to map a natural number onto its factorial. The
function is defined by two equations. Functions may not have side-effects, such as
assigning values to variables, or performing I/O. Modern functional languages have a
non-strict semantics. In this example:

let f x = 3 in
f (1/0)

end let.

the expression “f (1/0)” evaluates to “3”, following the definition that for all values of
x, “f x = 3”, even when x is undefined.

1All examples use the Clock syntax, which is similar to that of Haskell [56].

4 CHAPTER 1. INTRODUCTION

Expressions in functional languages have the property of referential transparency,
meaning that each expression has a unique value regardless of the context or time
of its execution. For example, the expression:

(f x) + (f x)

can always be rewritten as:

2 * (f x)

This property does not hold of imperative languages, where f may return different
values each time it is evaluated.

It is because of this property of referential transparency that functional languages are
declarative. The goal of declarative programming is to allow programmers to specify
what a program is to do, rather than how it is to do it. A defining characteristic
of declarative programming is that programmers need not be aware of the order in
which programs are evaluated; i.e., declarative programs have no explicit control flow.
Referential transparency guarantees that the value of an expression will be the same
no matter what the order of its evaluation. This lack of explicit control flow provides
a high-level programming model, where programmers are freed from worrying about
the temporal aspects of programs.

Standard input/output constructs do not provide referential transparency. If we were
to provide a function read that inputs a value provided by the user of the program,
read might return different values each time it was called. When writing an expression
such as “read / read ” (representing division of two numbers read from the user), the
programmer would need to know the order of evaluation of the expression to know
the order in which the values are read from the user. Introducing unrestricted I/O
operations in a functional language therefore requires the language to provide explicit
control flow. Therefore, in order to support I/O, functional languages must either
provide restricted, referentially transparent I/O facilities, or must give up declarative
programming. As we shall see in chapter 2, both of these approaches have been widely
adopted.

1.3 The Clock Language

Modern application software is increasingly based on highly-interactive graphical user
interfaces. Large software companies are discovering that the provision of interactive,
graphical user interfaces introduces new complexities into the software development
process [100]. In particular, the following problems are widely cited [73]:

• User interfaces cannot be designed a priori and then implemented using tradi-
tional techniques. Problems with user interfaces can only be determined exper-
imentally. The design of good user interfaces requires iterations of design and
testing with a user community. This iterative design is highly expensive, and
requires the support of good rapid-prototyping tools.

Resulting DisplayClock
Architecture

1.3. THE CLOCK LANGUAGE 5

Figure 1.1: A Clock program displaying two “clickable” boxes.

• Modern user interfaces, particularly those based on the direct manipulation
style [97], allow the user to direct the order in which tasks are performed. Tasks
may be interleaved, or even performed concurrently. Application programs must
therefore be capable of taking any input at any time.

• The behaviour and appearance of different components of a user interface are
often related in subtle and intricate ways. A simple action in one part of a system
may require updates of several other components. The problem of maintaining
consistency between the different components of a user interface has been called
the single most difficult problem in user interface programming [53].

The Clock language is designed to support the rapid-prototyping of interactive pro-
grams based on the graphical, direct-manipulation style. Clock is a purely declarative
language: a graphical architecture language is used to specify the organization of Clock
programs as a tree of components, while a functional language is used to specify the
operation of the components themselves. The component approach allows existing
user interface components to be reused in new architectures, allowing user interfaces to
be rapidly constructed. The functional language used to program components allows
simple specification of user interface views. Together, these formalisms provide a good
basis for rapid prototyping.

To address the problem of consistency among components, a special class of functions
called invariant functions are provided. These functions allow the programmer to
give a declarative specification of what it is for a component to be in a good state.
The Clock run-time system uses these functions to automatically maintain consistency
among components.

The separation of the language into an architecture language and a component language
is similar in approach to various object-frameworks suggested for user interface con-
struction, such as Smalltalk MVC [59], ALV [48] and PAC [22]. The primary difference
between the Clock approach and these object frameworks is that Clock’s architecture
language is built into the language, rather than being provided as a set of predefined

mouseButtonUpdt "Down" =
 if isSelected then
 deSelect
 else
 select
 end if .

mouseButtonUpdt _ = noUpdate.

invariant = noUpdate.

initially nm = all [setMyId nm, deSelect].

view =
 let msg =
 if isSelected then
 invert (paddedText 3 myId)
 else
 paddedText 3 myId
 end if
 in greyShadow (
 Box (
 Font hugeBoldItalicText msg
)
)
 end let.

6 CHAPTER 1. INTRODUCTION

Figure 1.2: The complete code implementing the NameBox component.

classes in a general object-oriented language. Knowledge of how to reason about archi-
tectures can then be built into the compiler, allowing powerful optimizations. Because
of such optimizations as incremental updating of components and displays, Clock pro-
grams execute at close to production quality speed, despite the very high level language
used to specify them.

Figure 1.1 shows an example of a Clock architecture and the display it generates. The
program displays two boxes, each with a different name. Clicking on a box highlights
it, and clicking on it again returns it to its normal state. In the architecture, the two
components labeled “NameBox” are responsible for displaying the two boxes, and for
handling the mouse input directed to the boxes. The component labeled “NameBoxes”
combines the interactive displays of the two “NameBox” components, and creates a
display containing both of them. The components “Selected” and “Id” are responsible
for maintaining information about the name boxes to which they are attached, in
particular, maintaining the name of the name box, and whether the box is currently
highlighted or not.

Figure 1.2 gives the complete code implementing the NameBox component of the ar-
chitecture. While the details of this functional code will be explained in chapter 4,
this code serves to give a flavour of the language. The view function specifies that the
display generated by the component is to consist of a box with a textual name. If the
box is currently selected, the display view is to be inverted. In Clock, display views
are a data type; because of this, interactive display views are actually first class values
in the language, and the view function specifies how to construct such a value.

The mouseButtonUpdt function specifies how mouse clicks directed to this component
are to be handled: in particular, if the mouse button is clicked down over the display
of this component, the selection state of the component is to be switched. Requests
such as “isSelected” are queries to the Selected component, while updates such as
“select” modify the state of the Selected component. Despite this seemingly imperative
behaviour, the language guarantees that the evaluation of any particular function will
be referentially transparent. Referential transparency implies, for example, that during
the evaluation of the view function, the request “isSelected” must always return the
same value.

Miranda, Haskell,
Term ML

λ-CalculusFramework:

Language: Clock

Temporal Constraint
Functional Programming

Define Define

Augment

Augment

1.4. THE TCFP FRAMEWORK 7

Figure 1.3: The TCFP framework extends the traditional λ-calculus, allowing the
definition of interactive languages like Clock.

A prototype compiler and programming environment for Clock have been implemented.
The graphical display of figure 1.1 was created by the ClockWorks programming en-
vironment [67]. The Clock system is still under active development: ongoing work is
aimed at extending Clock to support the development of multi-user and multi-media
applications.

1.4 The TCFP Framework

As a realistic and usable language, Clock demonstrates the practical use of declarative
technology in the development of user interfaces. Clock, however, through introducing
such imperative features as updates and requests and the manipulation of persistent
state, can no longer be considered a pure functional language. Standard rules such as
β-reduction and standard properties such as referential transparency can no longer be
assumed to hold, but must be proven in the context of the new language.

To address these problems, we introduce a new semantic framework called Tempo-
ral Constraint Functional Programming (or TCFP for short.) Figure 1.3 shows the
relationship between TCFP and functional programming. The λ-calculus forms a
theoretical framework from which traditional functional languages such as Miranda,
Haskell [56], and Term ML [63] can be developed, and where their properties can be
discussed. By extending the λ-calculus with I/O primitives and constraints in a tem-
poral logic, TCFP provides a framework allowing the development and investigation
of extended functional languages.

TCFP is based on a generate and restrict paradigm. Under this paradigm, computa-
tions in an extended functional language may take on a set of different values, depending
on their non-deterministic bahaviour. An extended functional program is said to gener-
ate a possible set of behaviours. Not all of these behaviours may be considered correct.
Constraints in a temporal logic are then used to rule out incorrect behaviours, thereby
restricting the possible behaviours generated by the extended functional program.

TCFP is in itself not intended to be a programming language, but rather a framework
for the development of programming languages. As indicated by figure 1.3, imperative

8 CHAPTER 1. INTRODUCTION

extensions to functional languages can be specified as syntactic sugar for constructs in
TCFP. TCFP therefore provides a basis for specifying the semantics of programming
language constructs, and for reasoning about their properties.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews current approaches to developing
user interfaces. The description concentrates on declarative techniques, showing how
existing techniques choose between impure extensions to functional programming, or
restricted I/O constructs that preserve referential transparency. It is shown that the
definition of declarativeness for user interface programming should go beyond simply
considering referential transparency, and also consider higher level aspects of declara-
tive support for consistency maintenance and view regeneration.

The third and fourth chapters describes the Clock language. It is shown how Clock
provides the flexibility of imperative I/O systems, while providing a high-level, purely
declarative programming style.

In order to demonstrate that Clock actually possesses the declarative properties dis-
cussed in chapters 3 and 4, it is necessary to define Clock’s formal semantics. Chap-
ter 5 introduces the TCFP framework, upon which the Clock semantics are based. It
is shown how TCFP can be used to model concurrency, synchronization, variables, and
shared memory. These mechanisms are then used to define the semantics of Clock in
chapter 6.

Finally, chapter 7 discusses the properties of the Clock language. The notion of declar-
ativeness is formally defined. Declarativeness in the small refers to the traditional
properties of functional programming, particularly referential transparency. Declara-
tiveness in the large refers to the declarativeness of Clock’s constraint-based facilities
for consistency maintenance and display updating. In this chapter, it is shown that
Clock does indeed provide these declarative properties.

Chapter 2

Declarative Approaches to User
Interface Development

It is widely accepted that declarative techniques are helpful in the development of
user interfaces, as evidenced by the adoption of declarative technology in numerous
commercial and research user interface development tools. This chapter motivates
what the problems are in the development of user interfaces, and surveys solutions to
these problems. The chapter particularly emphasizes solutions that adopt a declarative
style, but is not limited to purely declarative approaches.

The survey is structured around the Seeheim model [93] of user interface management
systems (UIMS’s). While somewhat dated as an implementation model, the Seeheim
model still serves as an interesting basis for classifying approaches to user interface
development.

Tools based on declarative technology fall roughly into two groups: those developed
by the HCI (Human-Computer Interaction) community, and those developed by the
functional programming community.1 In their work on user interface development
tools, the HCI community has concentrated on functionality and ease of use, while the
functional programming community has concentrated on pure approaches to supporting
graphical I/O. We shall see that both of these approaches have benefits and drawbacks:
the lack of formalism behind the UI tools can lead to semantic difficulties, while the
pure functional approaches sacrifice ease of use to maintain their declarative properties.

This chapter begins with a general overview of the problems associated with user
interface construction, followed by an introduction to the Seeheim UIMS model. Later
sections then survey methods, languages and tools for user interface development, in the
context of the layers of the Seeheim model. Finally, we discuss methods for specifying
and reasoning about the semantics of declarative languages supporting interaction.

1While treading similar ground, these communities have largely not communicated. For example,
two recent papers on declarative programming of user interfaces [75, 79] collectively refer to 62 other
papers, yet do not have a single reference in common.

9

10 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

Figure 2.1: A card file name and address program implemented in Clock.

2.1 Problems in User Interface Construction

Moving from traditional batch software into the interactive world of graphical user
interfaces has introduced many new problems in software construction. The character-
istics of interactive software differ sufficiently from those of traditional software that
our traditional development tools and languages are no longer adequate. In order to
develop better tools, we must first understand the special characteristics of interactive
software and how it is developed.

In describing these characteristics, we use an example program implementing a card-file
name and address list (figure 2.1). The system allows the user to navigate through a
set of cards, each of which gives a person’s name, address and phone number. Clicking
on a letter button moves to the first card at or following that letter. Clicking on the
left/right arrow buttons moves to the previous or following card respectively. The
various text fields can be edited. While simple, this example exhibits many of the
problems in user interface development. Note that the Clock implementation of this
card file is explored in detail in chapter 4.

Iterative Refinement: The traditional approach to software development is to design
the software based on a set of requirements, and then implement it. The criteria
for success are typically whether the software is correct, and how efficiently it
runs on the target hardware. It is generally not expected that major redesign of
the software should be necessary after implementation.

User interface design, however, requires user feedback. Limited approaches exist
for evaluating user interfaces before they are implemented, such as cognitive
walkthroughs [8] and the use of guidelines [107]. Ultimately, however, the only
way to evaluate a user interface is to implement it, experiment with users, and
modify the design based on user feedback. The technique of iterating between
design, user testing, and redesign is called iterative refinement.

In an example such as the card file of figure 2.1, user testing could reveal impor-
tant design errors – for example, the primitive navigation mechanisms provided

2.1. PROBLEMS IN USER INTERFACE CONSTRUCTION 11

Figure 2.2: A calculator program implemented in Clock. This example was pro-
grammed by Gekun Song [101].

in the card file prove to be unwieldy for large data bases.

Important but less fundamental design errors can also be detected. Imagine a
user is editing a name on a card, and moves to another card before committing
the changes. It is unclear whether this action should be considered equivalent to
committing the edit or aborting it, or perhaps should be forbidden altogether.
Which of these decisions is correct (or at least acceptable) can be determined only
through user testing. User interface design requires many such small decisions –
user testing reveals which of these run counter to the user’s intuition.

Iterative design is, however, expensive. User interfaces are difficult to build in the
first place, and difficult to modify. For a programming language to support iter-
ative design, the language must above all support easy creation and modification
of user interfaces – the less time it costs to iterate, the more iterations will be
performed. The wish to support iterative refinement has led to a proliferation of
tools based on visual techniques for user interface specification, and prototyping
tools based on high-level languages.

Direct Manipulation: The predominant interaction style used by modern user in-
terfaces is called direct manipulation. In this approach, display objects such as
menus, buttons and scroll bars are manipulated to cause actions in the under-
lying application. Usually, display objects give some kind of feedback to reveal
application state. The name and address program of figure 2.1 is a direct manip-
ulation interface based on the metaphor of a rolodex card file. Figure 2.2 shows a
direct-manipulation calculator program. Figure 2.3 shows a direct-manipulation
program implementing a university terminal reservation system.

12 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

Figure 2.3: A simple spreadsheet. This example was programmed in Clock by Tore
Urnes.

Direct manipulation interfaces have a property that the user controls the order
in which interactions occur. Unlike application-dominant programs in which
the user must respond to prompts from the program, in direct manipulation
programs the user can initiate any of a set of dialogues with the application, and
can move back and forth between ongoing dialogues at will. Programs supporting
the direct manipulation style must therefore be capable of taking input intended
for any dialogue at any time. Languages supporting the development of direct
manipulation interfaces must be capable of handling inputs in non-deterministic
orders.

Semantic Feedback: In order to allow ease of modification, it is usually considered
beneficial to separate the user interface from the underlying application program.
This goal is difficult to achieve, since parts of the user interface may depend on
the state of the application program. These dependencies may affect low-level
operation of the user interface, making abstraction difficult.

For example, the card file interface might forbid pushing a letter button for which
there were no cards. This would require each button to be able to query whether
cards were available at the time of its being pushed. Such use of application
information in an interaction technique is called semantic feedback. In order to
implement semantic feedback, user interface components must have fast access
to application data, often making it difficult to separate application and user
interface as cleanly as they should be.

Communication Among User Interface Components: In addition to semantic
feedback, user interface components must be able to communicate with each
other to perform their tasks. Different parts of a user interface can have subtle
and complicated dependencies that require the updating of one component when
another is modified. For example, in the card file, changing the surname of the
current person may move the card’s position alphabetically, in turn changing
which of the letter buttons should be highlighted.

A traditional difficulty in user interface development is identifying all such depen-

2.1. PROBLEMS IN USER INTERFACE CONSTRUCTION 13

dencies between components, and correctly implementing them. Ideally, a user
interface should be structured so that the most basic components such as scroll
bars, menus and buttons are independent, and do not have built in knowledge
of what other components are present in the same user interface. User interface
languages should support the expression of intercomponent dependencies, while
allowing clean structuring of individual components. It has been conjectured that
maintenance of data consistency among user interface components is the single
biggest problem in user interface development [53].

User Interface Consistency: One of the few fundamental guidelines in user inter-
face design is that they should be consistent. Low-level consistency implies that
interaction techniques such as scroll bars and menus should appear and behave in
the same way throughout the user interface. High level consistency implies that
within an interface, similar problems should be solved in similar ways – mecha-
nisms for selecting, searching, or deleting should be consistent regardless of the
context in which they are performed. Most platforms now come with style guide-
lines [2, 85, 104] specifying the behaviour of standard interaction techniques, and
general rules for how interfaces should be designed. User interface tools should
help in maintaining consistency within a user interface.

Concurrency: Many user interfaces support concurrent activities: a user interface
may have a printer window displaying the printer’s progress, while a fax window
automatically reports on incoming faxes, while the user operates a word pro-
cessor. Concurrent user interface processes may interact with one another – a
compiler may insert error messages into a text editor as the user works on the
program. Multiple users working on a common task can introduce concurrency –
for example, distributed editors [58] or electronic chalkboards [102] allow multiple
users to work concurrently on a shared data base that is reflected on each user’s
display.

Programming concurrency is in general difficult, and requires careful design and
planning. It is therefore hard to combine support for rapid prototyping and
concurrency within a single programming language. User interface tools must
walk a difficult line of adequately supporting concurrency, while not sacrificing
ease of programming.

From this list, it is clear that making functional languages suitable for user interface de-
velopment goes beyond the problem of how to introduce I/O constructs into a functional
language. The handling of problems such as semantic feedback, structured communi-
cation between components and concurrency must be solved by providing high-level
mechanisms aiding program structure. Support for consistency in the user interface
can be given by tools supporting reuse of components and designs. The support for
rapid prototyping that is required to allow successful iterative design ultimately de-
pends on how well rapid prototyping features are integrated with a system providing
the high-level structure required by these other requirements.

Presentation
Layer

Dialogue
Control Layer

Application
Interface Application

tokens

screen
updates feedback

tokens calls /
callbacks

calls

14 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

Figure 2.4: The Seeheim Model of User Interface Management Systems.

2.2 The Seeheim Model for User Interface Man-
agement Systems

We shall base our survey of existing solutions to the problem of building user interfaces
on the Seeheim model of User Interface Management Systems [93]. As shown in fig-
ure 2.4, the Seeheim model splits tools for user interface development into four major
layers: the Presentation Layer, the Dialogue Control Layer, the Application Interface
Layer, and the Application itself.

The Seeheim model was originally proposed in 1983 as a model for the implementation
of user interface tools, and a number of tools were actually built based on the model [99].
Since then, tools and toolkits have taken on more varied forms. The various tools tend
to have strengths in some parts of the Seeheim model, and weaknesses in others. The
model remains, therefore, a useful mechanism for understanding and classifying user
interface tools.

In our survey of tools, we shall discuss each of the layers in the Seeheim model, and
give examples of tools that aim to help at each layer.

The first layer in the Seeheim model is called the presentation layer. This layer is
responsible for the physical appearance of the user interface, and for interpreting the
most basic user inputs. The presentation of a user interface includes such aspects as
the physical appearance of buttons, menus and text, and how they are arranged on the
display. The presentation layer is also responsible for interpreting user inputs, such as
mouse motion, clicking, and text entry, and passing it on to the dialogue layer.

The dialogue layer implements dialogues between the user and the application program.
A simple example of a dialogue would be selecting an item from a menu. The selection
process may consist of a number of primitive actions – moving the mouse to the menu
bar, clicking the mouse down, moving the mouse to the correct item, and releasing
the mouse button. At each point during this sequence of actions, the user interface
gives feedback to the user indicating that the action has been correctly interpreted
– moving the mouse causes a tracking symbol to move on the display; clicking on
the menu causes the menu to pop up; moving between menu selections causes the
currently selected menu item to be highlighted. This interchange between the user and
the system, including the various feedback offered at each stage, is called a dialogue.

User interfaces must somehow be connected to an underlying application program.

2.3. SUPPORTING USER INTERFACE PRESENTATION 15

Figure 2.5: Building a User Interface with HyperCard: Programmers can select graph-
ics and interaction techniques from a tools menu, and position and size them using
direct manipulation.

This is accomplished via an application interface layer, that is capable of interpreting
user actions, and invoking the appropriate part of the application to handle it.

The final layer is the application program itself. This layer implements the actual
functionality of the program.

In the following sections, we shall explore a series of systems and approaches for user
interface development. To give some structure to our discussion, we shall consider each
approach within the context of the Seeheim model, indicating what sort of support
for user interface development the system best provides. In the description, we shall
concentrate as much as possible on declarative support for user interface development,
to demonstrate that there is a long tradition within the user interface community of
exploiting declarative description techniques.

2.3 Supporting User Interface Presentation

The presentation layer of a user interface specifies what appears on the display, and
how basic interactions such as mouse clicks and keyboard entry should be handled. The
output side of presentation specifies what basic display objects are present, together
with such aspects as their colour and layout. The input aspect of the presentation
layer represents the lexical structure of the interface, mapping raw inputs to higher
level tokens.

2.3.1 User Interface Builders

While many tools still encourage textual programming of the presentation layer (e.g.,
raw Xlib programming [81]), modern tools tend to provide graphical interface builders

16 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

Figure 2.6: A HyperCard property sheet allows programmers to enter properties of
interaction techniques, and to bind them to application code. The concept of property
sheets is widely used in user interface builders.

to allow the specification of display objects, and their sizes and positions.

Figure 2.5 shows a simple example of building an interface in HyperCard [4]. The
programmer selects from a palette of tools such as buttons, text fields and drawing
tools, and literally draws the interface on a canvas (or card in HyperCard terminology.)
The drawing that the programmer creates corresponds exactly to how the program will
appear on the display as it is running. This direct manipulation approach to designing
user interface presentation is far superior to writing code to generate presentation,
since the programmer can immediately see how the interface appears, and quickly
experiment to obtain an aesthetic presentation.

To establish properties of the user interface that cannot easily be specified with di-
rect manipulation, the programmer double-clicks on the display object, and obtains a
property sheet for the object (figure 2.6). The property sheet allows the programmer
to specify, for instance, feedback effects on the display object, and how the object
connects with computation.

Other example interface builders include the sophisticated NeXT Interface Builder [78],
the FormsVBT form editor [6], Cardelli’s pioneering work [12], and the G2F system
for generation of two-dimensional editors [32, 33].

Interface builders have limitations, however. The direct-manipulation style of an inter-
face builder typically does not provide the full power of a programming language. This
means that dynamic aspects of presentation often cannot be specified. For example, a
tool for visualizing graph structures (such as Edge [88]) typically cannot be built with
an interface builder, since there is no way of expressing a complex layout algorithm to
position an arbitrary number of nodes in a graph. Typically, users of interface builders
must eventually return to the world of textual programming for those dynamic parts
of their user interfaces [25]. Some aspects of these problems have been addressed in
experimental systems allowing programming by demonstration. These systems include
Peridot [69, 68], a system for specifying interaction techniques by demonstration.

Text = “Hello”
X1 = 0
Y1 = 0
X2 = X1 + length (Text)
Y2 = Y1 + length (Text)

t : DisplayText

X1 = t.X1 - 3
Y1 = t.Y1 - 3
X2 = t.X2 + 3
Y2 = t.Y2 + 3

b : DisplayBox

Constraint
Dependency

Hello

Output:

Modify:

t.Text := “Guten Tag”

New Output:

Guten Tag

2.3. SUPPORTING USER INTERFACE PRESENTATION 17

Figure 2.7: Constraints in a Garnet [70] or RendezVous [49] style of one-way constraint
system. The objects created by a program specify a box surrounding a text. If the text
is changed, the box is automatically resized to surround the new text with a border of
3 pixels.

User interface builders can be seen as purely declarative approaches to specifying pre-
sentation. Rather than writing imperative commands to draw pictures on a display,
the programmer directly draws the pictures him/herself.

2.3.2 Constraints

One of the more tedious aspects of user interface construction is specifying the locations
and sizes of primitives on a display. It is especially annoying that when one small part
of a user interface’s layout is changed, potentially the positions of many other objects
may also have to be changed. A solution to this problem is the use of geometric
constraints to specify relationships between the sizes and positions of display objects.

The use of constraints in user interfaces was first investigated in special purpose sys-
tems such as ThingLab [9], and are now available in many user interface toolkits and
languages, such as Garnet [74], RendezVous [49] and Siri [53]. Even the Xlib [81] pro-
gramming interface to the X Window System [95] includes a limited form of geometric
constraints. Our presentation of constraints will be based on a simplified version of
Garnet constraints. (The main simplification is to the syntax; Garnet is based on
Common Lisp.)

Figure 2.7 shows a simple example of how two display objects can be linked with
constraints. The object t represents text to be shown on the display. The lower-left
corner of the text is the coordinate (X1, Y 1), set to be position (0, 0). The upper-right
corner is calculated from the size of the text. As shown in figure 2.7, the text is to
be surrounded by a box, with a border of 3 pixels. A box object b is constrained to
surround the text by linking the position of the box to the position of the text. For
example, the X2 position of the box is set to being t.X2+3, or three pixels to the right
of rightmost extent of the text. This constraint is automatically maintained, meaning
that if the text is modified (e.g., to “Guten Tag”, the German version of “Hello”), the

Text = “Hello”
X1 = 0
Y1 = 0
X2 = X1 + length (Text)
Y2 = Y1 + length (Text)

 t : DisplayText

P = t
X1 = P->X1 - 3
Y1 = P->Y1 - 3
X2 = P->X2 + 3
Y2 = P->Y2 + 3

 b : DisplayBox

Constraint
Dependency

18 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

Figure 2.8: Constraints may involve pointer variables, providing indirection. Here, by
setting the value “b.P”, the box can set to surround an arbitrary object. (In this case,
as in figure 2.7, the box is surrounding the text “Hello”.

box is automatically resized so that the constraint continues to hold.

Constraints such as these are called one-way constraints, since they only hold in one
direction – if the size of the box is explicitly changed, the size of the text is not affected,
and the constraint is effectively broken.

It is often useful to permit indirection in constraints, so that an object to which a
constraint refers is determined at run-time. Figure 2.8 shows how the example from
figure 2.7 can be recoded to use a pointer variable P to refer to the text node. This way,
by reassigning b.P , the box can be set to enclose arbitrary objects. This indirection is
crucial to the design of reusable user interface components.

Constraints need not only be used for maintaining geometric relations. They can
also be used to maintain internal data consistency in a user interface. Figure 2.9
shows a Garnet-style approach to implementing the card file of figure 2.1. In this
implementation, an object cp holds the data representing the current person. We
assume that cp is somehow kept up to date as the user traverses the card file. Using
constraints, the card display c can be automatically kept up to date as the card data
changes. (Note that implementing this card display c would require several Garnet
objects, not shown here.) An object cl uses a constraint to maintain the first letter of
the last name of the current card. This allows the letter tag and letter buttons also
to be automatically kept up to date. Constraints therefore provide a solution to the
consistency maintenance problem, since programmers can specify consistency relations
at a high level, leaving it up to the constraint solver to make consistency updates as
necessary.

Evaluating the Constraint Approach

As pointed out by Vander Zanden, one-way constraints are actually functions [111].
Other languages implement multi-way constraints, where the directional aspects are
not important; these languages include Siri [53, 52] and Constraint Imperative Pro-
gramming [29]. A discussion of varying styles of constraints can be found in [41].

Constraint solving is in general very expensive. Most user interface constraint solvers,
however, follow an incremental approach that is usually linear in the number of con-

FirstName = “Kjersti”
LastName = “McEngelsen”
Address = “232 Klarsicht Ave.”
Phone = “555-8236”

 cp : CurrentPerson

Letter = cp.LastName (1)

 cl : CurrentLetter

Constraint
Dependency

 l : Letter lb : LetterBox

 c : Card

Constraint
Dependency

Constraint
Dependency

Constraint
Dependency

Text = t2.Text
X1 = 0
Y1 = 0
X2 = X1 + length (Text)
Y2 = Y1 + length (Text)

t1 : DisplayText
Constraint

Dependency Text = t1.Text
X1 = 100
Y1 = 100
X2 = X1 + length (Text)
Y2 = Y1 + length (Text)

t2 : DisplayText

Constraint
Dependency

2.3. SUPPORTING USER INTERFACE PRESENTATION 19

Figure 2.9: Constraints may be used to maintain consistency in user interfaces; this
schematically shows a Garnet-style solution to the card file example of figure 2.1. Note
that the code for the objects Card, Letter and LetterBox is not provided.

Figure 2.10: Example of a constraint loop – the text in both objects is constrained to
be the same as the other. The semantics of this constraint depends on the constraint
solver used.

P = createInstance ‘DangerousBox
X1 = P->X1 - 3
Y1 = P->Y1 - 3
X2 = P->X2 + 3
Y2 = P->Y2 + 3

b : DangerousBox

20 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

Figure 2.11: Example of an infinite constraint sequence – a box surrounds another
box, created as a side-effect of evaluation ‘P’. These leads to an infinite sequence of
DangerousBox objects being created.

straints to be solved [30]. Other examples of incremental constraint solvers include the
RendezVous constraint system [49], and the Garnet constraint solver [112].

Constraints are essentially a declarative formalism, in that programmers should be able
to specify consistency conditions and geometric constraints without explicitly coding
how or when consistency updates are to be made. The aim of providing constraints
in languages like Garnet is to permit programming in a “declarative style” [75]. The
one-way constraints of Garnet and RendezVous have, however, two features which
compromise their declarative nature: they permit side-effects and constraint loops in
constraints.

A constraint contains a side-effect if its execution results in some observable effect
other than the update of the object containing the constraint. For example, in Garnet
and RendezVous, constraint side-effects are used to to create and destroy objects,
implementing the dynamic aspects of user interfaces. In RendezVous, side-effects and
pointer variables are combined to allow constraints to be modified as a result of their
own execution [49]. This use of side-effects reveals the evaluation strategy of the
constraint solver to the programmer – if a constraint has the side-effect of creating a
new display object, the programmer must know exactly when the constraint is to be
executed.

Figure 2.10 shows an example of a constraint loop. A programmer wishes to display
two text strings, which are constrained to always contain the same text. As written,
the constraint does not have a unique solution, so it is unclear what text should be
displayed. This form of constraint loop can be detected at compile or run-time; how-
ever, when combined with side-effects and pointer variables, constraint loops can lead
to unexpected behaviour, and difficult debugging. To debug constraint loops, a pro-
grammer must understand when constraints are evaluated, and in what order. This
detracts from the declarative flavour of the constraints.

When combined, constraint loops, pointer variables and side-effects can lead to disaster.
Figure 2.11 shows an example of an infinite constraint sequence. If an instance of
DangerousBox is created, to resolve the boxes position, the evaluation of the P slot
creates a new instance of DangerousBox. The new DangerBox will in turn create a
new instance of DangerousBox, and so on. In general, this form of infinite constraint

Font Colour Size

Font Colour Size
Red
Green
Blue
Magenta
Celeste

Font Colour Size
Red
Green
Blue
Magenta
Celeste

Font Colour Size

(1)

(2)

(3)

(4)

2.4. SUPPORTING HUMAN-COMPUTER DIALOGUES 21

tivoli<175> ftp ftp.cs.yorku.ca

Connected to wolf.cs.yorku.ca.

220-ftp.cs.yorku.ca FTP server (CS.YorkU.Ca 3.93) ready.

220-Report any problems to Sysadm@cs.yorku.ca.

220-Note: Anonymous FTP incoming requires setting "account"

220 Note: to appropriate email address for local user.

Name (ftp.cs.yorku.ca:graham): anonymous

331 Guest login ok, send email address (eg "your.name@tivoli") as password.

Password:

230 Guest login ok, access restrictions apply.

ftp>

Figure 2.12: A human-computer dialogue establishing an ftp connection with the York
University server. The user initiates an ftp command, and is prompted for a username
and password.

Figure 2.13: A menu dialogue: the user clicks on the menu bar (1), and the menu is
shown (2); the user selects a colour (3), and releases the button (4).

sequence is not detectable, even at runtime.

2.4 Supporting Human-Computer Dialogues

A human-computer dialogue is a sequence of interactions in which a user engages in or-
der to carry out some task. A dialogue normally involves an interchange of information,
where the user receives feedback following his/her actions. For example, in figure 2.12,
a user carries out a dialogue with the computer to establish an ftp-connection with a
remote site. The user initiates the dialogue with an ftp command; the user is prompted
for a username and a password, and is finally informed that the connection has been
established. At each stage of the dialogue, the computer provides feedback indicating
to the user that his/her input has been successfully interpreted. Another example of

1 2 3 4
Move to

menu header

Move over
menu entry

(A2)

Move over
menu entry

(A2)

Button Down
(A1)

Button Up (A3)Actions:
A1: Display Menu
A2: Highlight Menu Entry
A3: Remove Menu
A4: Inform Application of

Menu Selection 5

Button Up
(A3,A4)

22 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

Figure 2.14: An augmented transition network encoding of the menu dialogue of fig-
ure 2.13. The arcs of the network are annotated with semantic actions to be carried
out when the arc is traversed.

a dialogue (figure 2.13) is the sequence of steps required to make a selection from a
menu – the user moves the mouse to the menu bar, clicks the mouse down, moves to
the desired entry, and releases the mouse. At each stage, the system provides feedback
indicating the currently selected menu item.

2.4.1 Specifying Dialogues with ATN’s and Grammars

There has been considerable research into tools and formalisms for specifying legal
dialogues, much of which is summarized by Green [44] and Olsen [83]. Under these
approaches, the programmer provides a high-level dialogue specification, from which
the dialogue control component of a user interface is automatically generated.

One form of dialogue specification is the Augmented Transition Network (ATN). ATN
nodes represent user interface states, and arcs represent transitions caused by user
actions. Figure 2.14 shows how an ATN can be used to encode the menu-selection
dialogue of figure 2.13. Arcs are tagged with semantic actions, indicating what is to
happen in response to the user’s actions. The pure ATN approach has not been widely
adopted, largely because ATN’s rapidly become large and unmanageable. Practical
ATN-based systems commonly use extensions to standard finite state machines, such
as the use of external code to encode state, and meta-rules to guide the activation of
arcs.

A second approach is the use of grammars, as in SYNGRAPH [84]. Grammars are
similar to ATN’s, including the use of semantic actions to indicate the effect of user
actions. Figure 2.15 shows the menu-selection dialogue encoded as a grammar. The
semantic actions attached to a production are triggered whenever the production is
matched. The problem with grammars is in their implementation. If matching a
production requires look-ahead, it is unclear whether intermediate semantic actions
should be triggered or not. Semantic actions that involve feedback to the user are
not reversable, and therefore cannot be performed until it is clear that they are really

selectFromMenu ::= moveToMenuHeader
ButtonDown A1
finishMenu

finishMenu ::= ButtonUp A3
 | { MoveOverMenuEntry A2 }+

ButtonUp A3 A4

2.4. SUPPORTING HUMAN-COMPUTER DIALOGUES 23

Figure 2.15: A grammar encoding of the menu dialogue. The productions are annotated
with semantic actions to be carried out when the production is matched; the semantic
actions are shown in figure 2.14.

required. Look-ahead is not necessarily possible, since the lookahead may require
actions that the user has not yet performed. In practice, the class of grammars that
can be used to specify dialogues is restricted, and the grammar-writer must be aware
of the restrictions. Attribute grammars [7, 94] have been used successfully as a more
powerful approach to dialogue specification.

2.4.2 Event-Based Approaches

Both the grammar and ATN approaches perform poorly in the case of multi-threaded
dialogues, since it is difficult to indicate the effect of interleaving actions in two or
more dialogues. A better approach is production systems, which allow declarative
specification of dialogues as a set of rules [82]. The Event-Response Language (ERL)
used in the Sassafras User Interface Management System [47] uses a rule-based form
of system to specify concurrent dialogues.

Programming languages supporting event-based programming include Esterel [16],
Forms/3 [10], and Siri [53, 52]. Of these, both Forms/3 and Siri are declarative lan-
guages in which the reaction to events is specified in a functional and constraint-based
style.

Concurrent Clean

The Concurrent Clean language [80, 110] provides a functional approach to I/O speci-
fication. Clean uses a systems-based model of input/output. A type World is used to
encode the state of the environment at any given time. Input is therefore a mapping
from a World (the “world” before the input) to a World (the “world” after the input.)
The World parameter must therefore be passed to and returned by all functions in the
program that either perform I/O, or call some other function that performs I/O.

As pointed out by Hudak and Sundaresh [55], the problem with the systems approach is
that multiple, differing copies of the world may result, potentially leading to paradoxes.
Clean avoids this problem simply by banning the creation of multiple copies through
a special UNQ (or unique) type attribute applied to the World type.

Figure 2.16 shows an example of a systems-based I/O approach (using a Haskell-like

Predefined I/O functions:

read :: World -> (String,World).
write :: World -> String -> World.

Prompting program:

promptRespond :: World -> (String,World).
promptRespond w =
 let w’ = write “Next name:” in
 read w’
 end let.

readNames :: World -> ([String],World).
readNames w =
 let
 (n,w’) = promptRespond w,
 in
 if n = “Done” then
 ([], w’’)
 else
 let (ns,w’’) = readNames w’ in
 (n:ns, w’’)
 end let
 end if
 end let.

Sample Execution:

Next name: Roy
Next name: Catherine
Next name: Tore
Next name: Song
Next name: Done

24 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

Figure 2.16: A systems-based I/O approach in the style of Concurrent Clean.

syntax). The function readNames prompts the user for a list of names, returning the
names as a list of strings. Because of the need to present a World parameter to the
I/O operations, the promptRespond and readNames functions must receive and return
a World parameter themselves. It is clear from the example how quickly this becomes
cumbersome.

Noble and Runciman have performed a significant case study with Clean [79].

2.4.3 Dialogue Combinators

A purely functional approach to dialogue specification is dialogue combinators, first
pioneered by Thompson [108], and later extended for dynamic graphical user interfaces
by Dwelly [26]. Under the dialogue combinator approach, a program is considered to
map a list of inputs to a list of outputs. The list of inputs represents all inputs the user
will ever perform; through lazy evaluation, this list is instantiated as the user performs
inputs. Primitive I/O operations allow reading of inputs, and writing of (possibly
graphical) outputs.

The dialogue combinators allow the combination of these primitive I/O operations in
interesting ways. Combinators exist for sequencing, conditions, and repetition, allowing
completely general specification of dialogues using only combinators. Programs written
with dialogue combinators can, however, be difficult to read and understand.

Predefined I/O functions:

read :: String.
write :: String -> String.

Prompting program:

nextEvent :: String.
E1: nextEvent = write “Next name:”.
E2: nextEvent = read.

events :: [String].
events = nextEvent : events.

Constraints:

E1 -> T(E2), E2 -> T(E1).

Sample Execution:

Next name: Roy
Next name: Catherine
Next name: Tore
Next name: Song
...

2.4. SUPPORTING HUMAN-COMPUTER DIALOGUES 25

Figure 2.17: A SIAN program implementing a simple dialogue reading a (potentially
infinite) list of names. The prompting and input are interleaved using a temporal
constraint.

2.4.4 SIAN

Another interesting approach allowing the programming of dialogues in a functional
language is Darlington and While’s SIAN language [24]. In this approach, the Hope
language is extended with constructs permitting non-determinism and I/O. Although
the approach is no longer purely functional (functions are not referentially transparent
due to the presence of non-determinism and I/O), SIAN can still be considered to be
declarative, since no control structure is imposed to order the program’s evaluation.

Because of this lack of control structure, programs written in the basic SIAN language
could have I/O occuring in any jumbled manner. In order to give the programmer
some control over the order of I/O activities, a constraint language is provided as a
meta-language, allowing control over the reduction order used to evaluate programs.

Figure 2.17 gives an example of a very simple SIAN program using this approach. (We
use a Haskell-like syntax for the example rather than SIAN’s own Hope-like syntax.)
A simpler version of the program of figure 2.16, this program repeatedly prompts the
user for a name, and returns the infinite list of names read. The core of the program
is the function nextEvent, which is a non-deterministic function defined using two
equations (E1 and E2.) When invoked, nextEvent will, at random, either prompt the
user with “Next name:” or will read a string value. A constraint is used to specify that
prompting and reading are to operate in lock-step. The constraint specifies that if the
current evaluation of nextEvent uses equation E1 (i.e., if E1 holds), then E2 should
be evaluated next time (i.e., “tomorrow (E2)”, or “T(E2)” holds). Similarly, if E2 is
used this time, then E1 should be evaluated next time.

While SIAN constraints appear to be low-level for actually programming user interfaces,
SIAN provided much of the inspiration for the TCFP framework for defining and
reasoning about I/O in functional languages [42, 40].

Print

procedure PrintCallback
 Spool (currentFile)
end PrintCallback

RegisterCallback (printButton, PrintCallback)

Register

Call

26 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

Figure 2.18: Example callback structure. An application registers a callback procedure
(PrintCallback) with a button (PrintButton). When the button is pushed, PrintCall-
back will be called.

2.5 Connecting Applications to User Interfaces

User interfaces must somehow be connected to the application code implementing their
functionality. This section reviews some approaches to how this is done. We first
consider low-level connection approaches, concentrating on the traditional approaches
of callbacks and continuation functions. We then review some more structured ap-
proaches, especially including user interface architectures.

2.5.1 Callbacks

The most standard mechanism for connecting user interface code to applications is the
callback procedure. Callbacks are used in most user interface toolkits, such as the X
Window System [95], OSF Motif [85], the Macintosh Toolkit [3], SUIT [89], Garnet [74],
and InterViews [62].

Consider that we are developing a system in which a print button is used to activate
a printing facility. Toolkit libraries typically provide a button widget, which can be
instantiated to appear with a “Print” label at the desired screen location. We wish
to specify that when the button is clicked, a Spool procedure is to be invoked with a
variable representing a file to be printed. To do this, we create the callback procedure
PrintCallback. We register this callback with the button, so that whenever the button
is clicked, PrintCallback is invoked.

In toolkits, widgets commonly use numerous callback procedures to allow them to be
used in arbitrary contexts. Programmers have have to learn many of the possible
callbacks a widget can generate before being able to use it. The large number of
callbacks and possible contexts in which they can be invoked can lead to a “spaghetti”
style of programming, hindering program clarity and maintainability [71].

2.5.2 Continuations

The continuation passing style of programming provides application interface support
for functional programming on a similar level to the callback approach used in imper-
ative languages. Continuations were first pioneered in the Nebula operating systems

data IORequest = Read (Num -> IORequest)
 | Write Num IORequest
 | Done.

eval Read
 fn v1 ->
 Read
 fn v2 ->
 Write (v1 + v2) Done
 end fn
 end fn.

c2c1

c3

Imperative World
(Presentation + Dialogue)

Functional World
(Application Program)

eval (Read c1)
 giving: Read c1

eval (c1 val1)
 giving: Read c2

eval (c2 val2)
 giving: Write (val1 + val2)

eval c3
 giving: Done

Read value val1 from
user; apply continuation
to val1

Read value val2 from
user; apply continuation
to val2

Write value val1 + val2
to display; evaluate
continuation

Terminate

2.5. CONNECTING APPLICATIONS TO USER INTERFACES 27

Figure 2.19: A simple continuation-based I/O system, and a program that reads in
two numbers and writes out their sum.

Figure 2.20: Execution of the continuation-based example of figure 2.19. The execution
consists of a sequence of pure functional computations interleaved with the imperative
actions of the I/O requests.

project [57], and have now been adopted as fundamental I/O facilities in LML [5],
Haskell [55, 56], Opal [90], and Hope [91, 92].

The notion behind continuations is that pure functional computations cannot perform
I/O directly while maintaining referential transparency. The notion of programs is
therefore redefined to mean a set of pure functional computations, interleaved with
which a set of imperative operations such as I/O may occur.

Figure 2.19 shows an example of a very simple continuation-based I/O system. Each
functional computation must be of type IORequest, a data type defined to have three
possible values. The Read I/O request indicates that a number is to be read, and that
the argument should be applied to that value, giving a new I/O request. The Write I/O
request indicates that the given number is to be written, and then the given expression
of type IORequest is to be evaluated. Finally, the Done request indicates that no more
computation is to be performed, i.e., that the program should terminate.

The example program in figure 2.19 uses continuation-based I/O to read in two numbers
from the user, and to write their sum on the display. Figure 2.20 shows how this

28 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

program is executed. First, the main expression is evaluated to the request Read c1,
indicating that a value is to be read, and c1 is to be applied to the value. The second
functional computation consists of applying the continuation function c1 to the value
read provided by the user, which we call val1. This expression is reduced to a new
Read request, which is again evaluated. Finally, the Write request is performed, and
the program terminates with a Done request.

This I/O request and continuation-based interface forms the application interface of
the Seeheim model. The presentation and dialogue control components are performed
in the imperative world of the I/O requests. The continuation functions are a form
of call-back, used to communicate the results of I/O activity back to the functional
world. The I/O requests are responsible for performing the actual I/O and sequencing
I/O activities, while the functional code specifies whatever computation needs to be
performed.

In practical languages, I/O requests have been defined for many forms of I/O, including
interprocess communication, and as an interface to graphics toolkits. An extreme
example of the use of I/O requests as an application interface is Sinclair’s Haskell-
Tcl/Tk interface [98], where user interfaces are programmed in the imperative Tcl/Tk
language [86], while applications are programmed in Haskell.

In practice, the continuation passing style is sufficiently expressive to allow the con-
struction of user interfaces. However, as can be seen in the example of figure 2.19, the
style is cumbersome and unintuitive. It is difficult to convince imperative programmers
of the benefits of functional programming when they have to write such code for as
simple an activity as reading two numbers and printing their sum.

A similar effect to continuations can be achieved through the use of monads [113, 114].
While the underlying formalism is different (and more general), the style of programs
is similar, and prone to the same usability problems as the continuation-passing style.
Another related approach is token streams [103], which are also present in Haskell [55].
While elegant, token streams have proved difficult to use in practice.

In later sections, we shall see that many of the more elaborate approaches to pure func-
tional I/O are in effect disguised versions of CPS, where programmers are to varying
degrees shielded from the low-level details of the continuation passing style.

2.5.3 Structured Approaches to the Application Interface

A number of more structured approaches exist for organizing how applications are
connected to user interfaces. We shall first consider approaches developed within the
HCI community, then approaches for pure functional languages. Many of the HCI ap-
proaches are applicable to both declarative or imperative languages. These approaches
mainly relax the Seeheim assumption that there is a single user interface component
attached to a single application component, instead allowing more general connection
structures.

Model

View

Controller
Callback

Method Call

Abstraction Presentation

Control

A P

Control

A P

Control

2.5. CONNECTING APPLICATIONS TO USER INTERFACES 29

Figure 2.21: The Model-View-Controller Methodology. A Model encodes the underly-
ing application. The View maintains the display view. The Controller handles input.
(Diagram adapted from [48].)

Figure 2.22: The PAC Model. An interaction technique is divided into presentation,
abstraction and control components. These components can be arbitrarily nested.

The MVC Methodology

One of the earliest and most influential is the Smalltalk Model-View-Controller (MVC)
methodology [59]. In MVC, interactive systems are divided into three components
(figure 2.21). A model is used to encode the application functionality. A model is an
abstract representation of the data underlying what appears on the display. The model
is connected to a view, which is responsible for maintaining the display, and a controller,
which is responsible for handling input. The model, view and controller communicate
via a combination of method calls and callbacks. When the model is changed, it can
notify the view and controller via callbacks that a change has taken place. Each is
then responsible for bringing its own state up to date. Direct communication with the
model is possible via method calls.

MVC is more structured than raw callbacks, since a single, clear communication strat-
egy is used for all parts of the system. This helps somewhat to untangle the callback
spaghetti.

The PAC Model

Another system similar to MVC is the Presentation-Abstraction-Control approach [20,
21, 22]. As shown in figure 2.22, PAC programs are organized into groups of three

A

A

A

A A

A

A

V

V

VV V

V

V

Link

Link

Link

30 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

Figure 2.23: The ALV Model. Abstractions and views can be grouped into tree struc-
tures connected by constraints; constraint links are used to connect abstractions and
views, and to automatically maintain consistency between them.

components. An abstraction implements the data underlying the view; this component
corresponds to an MVC model. The presentation implements an interactive display
view, implementing both the screen appearance and its interactive behaviour. The
control is responsible for implementing consistency maintenance between the abstrac-
tion and presentation. In our Seeheim terminology, the presentation corresponds to
the presentation and dialogue control layers; the abstraction corresponds to the appli-
cation, and the control corresponds to the application interface.

In PAC, interactive applications can be structured as a tree of PAC clusters. Each
subtree implements an interaction technique; these interaction techniques can then be
grouped to provide more powerful interaction techniques, or a complete application.
This tree-like structure represents an important advance over earlier (and many later)
systems, in that the programmer is not forced to divide the entire program arbitrarily
into application and user interface; the tree instead allows interactive systems to be
built through layered abstractions.

One difficulty with the PAC model is that it is unclear how components on different
levels of the tree are to communication, as is required to implement semantic feedback
or consistency constraints.

The ALV Model

Another model similar to PAC is the Abstraction-Link-View (ALV) model [48], as
implemented in the RendezVous language for development of multi-user applica-
tions [50, 87].

As shown in figure 2.23, ALV programs are divided into an abstraction and a view,
corresponding to PAC’s abstraction and presentation respectively. Both the abstrac-
tion and view are specified as hierarchies of components, using constraints to specify
consistency maintenance. ALV links are used to connect the abstraction and the view.
Links are special constraints allowing the view to be kept up to date with changes in the
abstraction, and vice versa. Unlike PAC, where the control is used to keep abstraction

2.5. CONNECTING APPLICATIONS TO USER INTERFACES 31

and presentation of individual components up to date, ALV links may be connected
arbitrarily between any number of abstraction and view components.

In Hill’s RendezVous implementation of ALV, constraints are similar to Garnet con-
straints, but with enhanced facilities for indirection and for side-effects [49]. Hill claims
that side effects are an essential part of programming with constraints. Although pow-
erful, side effects are clearly not declarative, and expose the frequency and order in
which constraints are evaluated.

The Relational View Model

Similar to the ALV model is the Relational View Model. In this model, applications
and user interfaces are specified separately. A relation is specified, indicating a con-
sistency condition between the two. Whenever the application data changes (through
program execution), the UI state will be automatically updated to reflect the change;
whenever the UI state changes (through user input), the application data is automat-
ically updated to reflect the change. This organization supports mixed control user
interfaces [45], where control is shared between the application program and the user.

The Trip-2 system [105] implements relational views using Prolog – the application
and user interface are programmed separately, and a prolog relation is used to connect
them.

Weasel [43, 109] uses the Graphical View Language (GVL) [17] to implement the
Relational View Model. Under this approach, the user interface is inferred from the
relation, meaning that user does not have to specify the user interface directly, as would
be the case in the ALV model.

The Relational View Model is described in more detail in chapter 4.

Fudgets

The Fudget approach [13, 14] also encourages the structuring of interactive systems
as a hierarchy of components. Components (or fudgets) are connected in a data-flow
model, where the output of some component becomes the input of another. Fudgets
may be connected via a set of fudget combinators, or may be grouped to form composite
fudgets. A library of fudgets implements the basic interaction techniques found in most
toolkits, such as buttons, menus and scroll bars. These fudgets communicate directly
with a windowing system, and provide a high-level, message passing interface to the
fudget programmer.

Most aspects of user interface presentation are built in to the predefined fudgets, al-
though programmers have control over layout. More complex dialogues can be built
into “abstract” fudgets, which may combine any number of presentation-level fudgets.
The application program is also typically an abstract fudget.

Fudgets themselves are programmed using a continuation passing style – either using
I/O continuations to implement the interface to the windowing system, or using special
stream processing requests to implement application functionality. Figure 2.24 shows

data SP α β = GetSP (α -> SP α β)
 | PutSP β ([α] -> SP α β).

counter =
 let
 count n =
 GetSP
 fn _ ->
 PutSP [n+1] (count (n+1))
 end fn
 in
 count 0
 end let.

Counter

dummy
input

next count
value

32 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

Figure 2.24: An example abstract fudget implementing a counter, and the “Stream
Processing” code implementing its functionality. Example adapted from [14].

an example of how fudgets are programmed. The example implements a counter –
whenever the counter receives an input, the input is discarded, and the next counter
value is written out. Two requests, PutSP and GetSP are used to read and write values
to the fudget’s I/O ports; the types of the requests indicate that a fudget should take
values of type α on its input port, and β on its output port. The counter function
generates a sequence of requests, repeatedly reading an input value and writing the
next counter value.

The Fudget approach is a step up from programming with raw continuations, but
has a number of difficulties. The basic model for component connection is that a
component should read from one fudget, and write to one fudget. This restricted
organization makes it difficult for a fudget to notify several user interface components
of a state change; as we have seen in earlier examples, such complex data dependencies
are common in user interfaces. Consistency maintenance is also made challenging by
the message passing communication of fudgets. There is no high-level mechanism for
specifying consistency constraints between fudgets, so all consistency conditions must
be programmed by hand.

Fudgets implicitly carry a state with them. Rather than having state represented ex-
plicitly in a variable, state is carried as the continuation parameter in stream processing
requests. Since there is no way for fudgets to share state, each fudget must represent
all state it might possibly need. This inevitably leads to multiple representations of
the same data, worsening the already difficult problems of state maintenance.

Finally, although programmers are somewhat shielded from using continuations, the
fudget programmer must ultimately be comfortable with the CPS programming style.

A similar approach to Fudgets is the combination of functional programming and data
flow embodied in Prograph [64, 38, 61]. In Prograph, objects are connected together
using a visual editor. An object’s ‘methods’ are programmed in an impure functional
language, in which persistent data and side effects are used to avoid the need for
continuation-based programming. Objects may have arbitrary input and output ports,
and flexible object connection and data multiplexing allows far simpler design than is
possible with the Fudget combinators.

2.6. SUPPORT FOR REASONING 33

2.6 Support for Reasoning about Languages for
Developing User Interfaces

The functional programming community has placed great importance on the mathe-
matical foundations of functional languages, and on being able to reason about the
properties of functional programs. Despite this, support for user interface development
is still undergoing sufficient investigation that the formalism has yet to catch up to the
practice. The HCI community, on the other hand, has tended to place more value on
the usability and application of their languages and tools than on their formal under-
pinnings. Because of this, there is relatively little in the way of developed formalisms
for discussing and reasoning about interaction in declarative languages.

Part of the problem with trying to formalize the support for user interfaces in tradi-
tional functional languages is that the languages do not really support user interface
development at all. As was seen in section 2.5.2, most functional languages provide
support on the level of the application interface, and then leave the actual structuring
of user interfaces out of the language.

Andrew Gordon addresses this problem in his framework for reasoning about I/O in
functional languages [39]. This framework is based on the π-calculus [65], a formalism
combining the λ-calculus and a CCS-style calculus [66] for reasoning about processes.
Gordon uses the λ-calculus embedded in the π-calculus to define functional languages,
while the process calculus is used, for example, to describe the meanings of contin-
uations and how continuations interact with one another. Perry [92] uses Gordon’s
approach to specify the meaning of a continuation-based concurrent functional lan-
guage.

Thompson [108] uses a trace-based approach to define the semantics of dialogue com-
binators, and to demonstrate some of their important properties.

Other more traditional approaches remain possible for describing the semantics of
languages involving concurrency and interaction, such as Hoare’s CSP [51], or power-
domain based denotational semantics [96].

A number of the languages developed specifically for user interface development are
based on mathematical formalisms: Garnet constraints are based on standard algebra;
ATN and grammar-based methods for dialogue specification are based on language
theory. However, the presence of side-effects and restrictions that expose the compu-
tational model of these approaches can invalidate the underlying formalism.

2.7 Conclusion

This chapter has reviewed the problems of programming user interfaces, and has sur-
veyed a wide variety of declarative or near-declarative approaches to supporting user
interface development. From this literature review, a number of points should be clear.

First, user interface programming is not a simple extension of traditional programming.

34 CHAPTER 2. DECLARATIVE USER INTERFACE DEVELOPMENT

The demands of direct manipulation interfaces require special support, particularly in
the areas of responding to asynchronous inputs, concurrency, and consistency main-
tenance. User interface programming requires support in many different areas, from
presentation, to dialogue management, to organizing the interface between user in-
terface and application. Therefore, simply providing an interface builder to aid in
programming presentation, or adding I/O continuations to a functional language, is
not sufficient to solve the problems of user interface programming.

Second, ease of use is paramount in user interface languages. The demands of rapid
prototyping and iterative refinement mean that programmers will not willingly put up
with clumsy I/O systems. Practically, this means that languages whose I/O is based
on continuations or monads have no realistic chance of widespread acceptance.

Third, the notion that declarative styles of specification are useful in user interface
development is widely accepted, both in the user interface and functional program-
ming communities. What is still at issue is how the tradeoff between ease of use and
mathematical purity should be resolved. Purity seems to lead to clumsy I/O systems.
Impure constructs such as side-effects and pointer variables expose the underlying im-
plementation, and can lead to disasterous effects, such as infinite constraint sequences.

These three points form the philosophical basis of the work with the Clock language
that is reported in this dissertation. As will be seen in chapter 4, Clock adopts many
ideas from existing user interface languages, such as the use of high-level declarative
constraints for consistency maintenance, the use of an architecture language for pro-
gram structuring, and the adoption of a simple I/O system. At the same time, Clock
provides the most basic properties of pure functional programming, most importantly,
referential transparency of expressions. Clock also solves the constraint loop problem;
the design of Clock means that it is impossible to write constraint loops or infinite
constraint sequences. Clock achieves these goals through its basis in the TCFP for-
malism. Chapter 6 presents the Clock semantics in terms of TCFP, while chapter 7
demonstrates that Clock provides the properties of referential transparency, and free-
dom from constraint loops.

Chapter 3

Overview of the Clock Language

Clock is a high-level language intended for the rapid prototyping of interactive systems.
Clock is designed to support easy creation and modification of user interfaces, while
supporting convenient reuse of existing user interface components. Clock programmers
are freed from many of the low-level details of creating user interfaces, particularly
through:

• A high-level view language for specifying interactive display views;

• Constructs supporting automatic consistency maintenance among user interface
components;

• Constructs providing automatic incremental display updates;

• Strong support in the language for the creation of well-structured, maintainable
programs.

The high-level structure (or architecture) of Clock programs is specified using an
object-oriented style of specification language. The ClockWorks programming envi-
ronment [67] is a graphical editor allowing the development, structured viewing, and
modification of Clock architectures.

The components making up the architecture are programmed in a pure functional
language in the style of Haskell [56]. Functions in Clock avoid clumsy continuation or
monad-based syntax while maintaining a referential transparency property.

As with most pure approaches to introducing imperative features to functional pro-
gramming, the execution of Clock programs consists of a set of purely functional com-
putations, bound together by an outer shell in which imperative effects such as I/O
may take place. In Clock, this outer shell is implicitly specified via the architecture,
relieving the programmer of the task of specifying when the functional computations
take place, and how to pass values between them. The Clock system takes care of the
sequencing of computations, as guided by constraints introduced by the architecture
description.

35

view = Box (Text "Hello World").

display

component code

36 CHAPTER 3. OVERVIEW OF THE CLOCK LANGUAGE

Figure 3.1: A complete Clock program displaying “Hello World”. The program consists
of a single component of class “HelloBox”; the component’s text consists of a view
function specifying the graphical display.

This chapter presents an overview of the features of the Clock language. The chapter
is structured around a simple example, developed and extended throughout the chap-
ter. Chapter 4 presents a more analytical view of Clock, describing the declarative
properties of Clock, and discussing why Clock is a useful language for user interface
development.

Clock has been implemented, and runs on Sun workstations under the X Window
System [95]. In this chapter, all examples of Clock architectures are screen snapshots
of the actual architecture developed within the ClockWorks environment, and examples
of output generated by programs are screen snapshots of the running Clock program.
The functional code given is the complete code required to create the applications.

3.1 A Minimal Clock Program

In Clock, programs are built as architectures of connected components. Architectures
are specified in a graphical architecture editor within the ClockWorks programming
environment [67]. Consider that we wish to write a program displaying a box containing
the text Hello World. As shown in figure 3.1, this program would consist of a single
component, whose program text is:

view = Box (Text "Hello World").

This code specifies that the view generated by the component is the value “Box (Text
"Hello World")”, which is displayed as a box surrounding the text “Hello World”.
view is a function, with type definition:

view :: DisplayView.

where DisplayView is a predefined type representing possible graphical displays. Fig-
ure 3.1 shows how the single component looks in ClockWorks, and how the resulting
view appears on the display.

The component in this example is called root, and is an instance of class HelloBox.
The graphical output produced by the HelloBox component can easily be made more

view =
 Font veryLargeItalicText (
 greyShadow (
 Box (
 pad 3 (Text "Hello World")
)
)
).

display

component code

3.1. A MINIMAL CLOCK PROGRAM 37

Figure 3.2: A complete Clock program displaying “Hello World” in a stylish manner.

aesthetic. Primitives in the Clock view language allow the specification of font, shad-
owing and positioning of display objects, leading to the new view function of figure 3.2.
The greyShadow function is an example of one of the many predefined view functions
provided in the Clock library; in particular,

greyShadow :: DisplayView -> DisplayView.

maps an arbitrary view to the same view with a grey shadow. Similarly,

pad :: Num -> DisplayView -> DisplayView.

takes an arbitrary view as parameter, and returns the same view with a padded border
of the specified number of pixels. In addition to the library functions, programmers
can also develop their own functions to manipulate views. For example, a neater way
of coding the view from figure 3.2 would be to abstract the drawing of the box and
shadow from the actual text used in the box. This is accomplished by creating a
function greetingBox that makes a shadowed box around arbitrary text:

greetingBox :: String -> DisplayView.
greetingBox t = Font veryLargeText (

greyShadow (
Box (pad 3 (Text t)))).

Then, the view function can be specified as:

view = greetingBox "Hello World".

Views in Clock are elements of the DisplayView data type defined in the Clock library
A partial definition of DisplayView is contained in figure 3.3 (the full definition is
provided in chapter 4). DisplayView provides a simple set of primitives from which
views can be built. The real power of the view language lies in the ease of specification
of high-level view functions such as greyShadow and greetingBox.

% The basic display view data type.

data DisplayView =
 Views [DisplayView] % View grouping
 | Line Coord Coord % Line between given points
 | Arrow Coord Coord % Arrow between given points
 | At Coord Coord DisplayView % Position view between given points
 | Box DisplayView % Box surrounding given view
 | Text String % Display text
 | NumText Num % Display number as text
 | CharText Char % Display character as text
 | BooleanText Bool % Display boolean as text
 | InstanceOf SubViewName SubViewId % Display subview
 | Font FontVal DisplayView % Set font for given view
 | Style StyleVal DisplayView. % Set style for given view

38 CHAPTER 3. OVERVIEW OF THE CLOCK LANGUAGE

Figure 3.3: The DisplayView data type forms the basis of view generation.

3.2 Trees of Components

In Clock, programs consist of trees of communicating components. Breaking programs
up into components has several advantages – it assists in high-level organization of
programs, and provides support for easily modifying and reusing code.

Figure 3.4 shows an architecture used to display greetings to “Stefan” and “Ulrich”
side by side. The architecture to accomplish this display is split into three parts –
the “stefan” component, which generates the “Hello Stefan” greeting; the “ulrich”
component, which generates the greeting for Ulrich, and the “root” component, which
combines the views of its two children to display the two greetings side by side.

The “GreetStefan” and “GreetUlrich” components each produce a view through the
greetingBox function defined in section 3.1. This shows how easy it is in Clock to define
interesting functions and use them in multiple contexts. The root component Greetings
refers to its children “stefan” and “ulrich” when creating its own view. Components
always refer to their children via a subview name rather than by the name of the
component. This makes it easier to modify the architecture, since components do not
need to know what they are attached to. The children components GreetStefan and
GreetUlrich appear to the root component Greetings to be functions of type:

stefan :: String -> DisplayView.
ulrich :: String -> DisplayView.

Subview functions take a string parameter and deliver a display view. Section 3.3.2
shows how the string parameter can be used; for now, we simply use a null string.

Through this subview communication mechanism, the view of a child component is
not directly displayed on the screen, but rather is passed up the tree to be used by its
parent. The view finally generated by the root component is displayed on the screen.

The view function of the Greetings component uses the library function beside:

beside :: [DisplayView] -> DisplayView.

which lays out a list of views left to right.

view = greetingBox "Hello Stefan".

view = greetingBox "Hello Ulrich".

view =
 beside [
 stefan "",
 space 20,
 ulrich ""
].

component code

display

component code

component
code

3.3. REPRESENTING PERSISTENT DATA 39

Figure 3.4: The greeting program is split into three architecture components.

3.3 Representing Persistent Data

The components we have seen so far are all called event handler components. These
are components used to create an interactive display view. Because of their functional
style, event handlers are stateless.

In order to represent state, a second form of component called request handlers is
provided. Request handlers are a form of abstract data type – they have a hidden
internal state, and a defined interface allowing requests about the state, and updates
to the state. We shall first present an example of a request handler component, and
then show how request handlers are used.

3.3.1 Example Request Handler

Request handlers are used to maintain and manipulate persistent state; thereby playing
the role of data structures in Clock programs. Figure 3.5 shows an example of a request
handler Id, implementing a simple string identifier. As shown in the architectural
diagram, Id has two operations: setMyId is used to set the string identifier, while myId
is used to query the value of the identifier.

The state of a request handler is modified by sending it an update event. For example,
“setMyId "Fred"” is a value of type UpdateEvent. If “setMyId "Fred"” is sent to a
component of class Id, then subsequent requests of “myId” will evaluate to the string
"Fred". Note that Clock programmers never need to create values of type UpdateEvent

setMyId :: String -> UpdtEvent.
myId :: String.

%
% Request handler code.
% Maintains a text identifier.
%

% State of the request handler

type State = String.

% Functions to handle update events:

setMyIdUpdt :: State -> (String -> State).
setMyIdUpdt _ =
 fn t ->
 t
 end fn.

% Functions to handle request events:

myIdReq :: State -> String.
myIdReq s = s.

% Initial state

initially :: State.
initially = "".

Types of updates and
requests used by Id:

Component
code

40 CHAPTER 3. OVERVIEW OF THE CLOCK LANGUAGE

Figure 3.5: A Request Handler in Clock implementing a string identifier. The string
value is set by sending the update SetMyId to the component; the string value is queried
by sending the request myId.

explicitly; update events are created automatically through update functions such as
setMyId.

As shown in figure 3.5, the code for a request handler requires: a type definition of the
request handler’s state; functions for each update and request the request handler is
capable of handling, and an initially function specifying the components initial state.

The type State specifies the type of the component’s state. The type of a request
handler may be arbitrarily complex. In Id, the state is a String, since the identifier
being represented is a string. The initially function returns a value of type State,
specifying the initial state of the request handler; in this case, the initial value of Id is
a null string, indicating there is no identifier.

The update functions in a request handler respond to update events sent to the request
handler. An update function takes the current state as parameter, and delivers a new
state as its result. Update functions are restricted to being purely functional.

For example, when an update “setMyId "Fred"” is sent to an instance of the Id
component, the update function setMyIdUpdt is automatically applied, first to the
current state, and then to the argument "Fred". The result of the application becomes
the new state of the request handler. In general, if an update function u :: t1 → . . . →
tn → updateEvent is listed in the interface of a request handler, then the request handler
must have a function:

uUpdt :: State → (t1 → . . . → tn → State).

to handle the update.

view :: DisplayView.
view = greetingBox (strconc "Hello " myId).

initially :: String -> UpdateEvent.
initially id = setMyId id.

view =
 beside [
 greet "Stefan",
 space 20,
 greet "Ulrich"
].

component code

component code

3.3. REPRESENTING PERSISTENT DATA 41

Figure 3.6: New version of greetings program of figure 3.4. The GreetingsBox compo-
nent uses an Id component to represent the person to be greeted.

Similarly, if a request “myId” is sent to an instance of the Id component, the function
myIdReq is applied to the current state, giving a string value as response to the request.
In general, if a request function r :: t1 → . . . → tn is listed in the interface of a request
handler, then the request handler must have a function:

rReq :: State → (t1 → . . . → tn).

to handle the request. Note that requests query the current state only, and cannot
modify it.

Request handlers implement the imperative functionality of persistent data structures
that can be queried and updated. The functions implementing request handlers are,
however, purely functional, taking the current state as a parameter and returning values
based on the state.

3.3.2 Using Request Handlers

As an example of how request handlers are used, consider that we wish to improve
the implementation of the program of figure 3.4. In this implementation, we have
two components stefan and ulrich implementing the greetings to Stefan and Ulrich
respectively. These components have almost identical code, except that the name is
different. If we make use of the Id request handler, we can replace the stefan and ulrich
components with a single parameterized component.

Figure 3.6 shows this new program organization. The root event handler has a single
subview greet. As usual, from the point of view of the root, greet has type:

42 CHAPTER 3. OVERVIEW OF THE CLOCK LANGUAGE

greet :: String -> DisplayView.

The greet subview is implemented so that the string parameter is the name of the
person to be greeted; i.e., “greet "Stefan"” evaluates to a greeting to Stefan, and
“greet "Ulrich"” evaluates to a greeting to Ulrich. This allows us to recode the root
component as:

view = beside [greet "Stefan", space 20, greet "Ulrich"].

Each use of greet creates a separate instance of the subview; these instances are iden-
tified by the string parameter to which greet is applied.

The greet subview is made up of a GreetingsBox event handler, and an Id request
handler, as shown in figure 3.6. The annotations on the architecture diagram show
that the GreetingsBox issues the update setMyId, and uses the request myId. These
annotations are provided to make architectures visually easier to understand.

The code for the GreetingsBox event handler introduces the intially function, which is
used to initialize a component when it is created. The function is typed:

initially :: String -> UpdateEvent.

When an instance of the greet subview is invoked with some string parameter s, if there
is not yet any instance of s, an instance of GreetingsBox is automatically created, and
the initially function of the new component is applied to s. In this example, s represents
the name of the person to be greeted, so that separate instances of GreetingsBox are
created for the strings "Stefan" and "Ulrich". When applying the initially function
of GreetingsBox to some name s, The update event “setMyId s” is passed to the Id
component, setting the name of the person to be greeted.

The view function uses Id to obtain the name of the person to be greeted. In the code:

view = greetingBox (strconc "Hello " myId).

the request myId evaluates to the name of the person to be greeted. The full greeting
is obtained by concatenating the string “Hello ” to the name.

Requests appear to have the potential of violating referential transparency. For exam-
ple, the expression “streq myId myId” should be a tautology, comparing two instances
of the request myId. If we are unlucky, however, the two instances of myId could have
different values, due to an update being performed during the evaluation of the ex-
pression. In fact, the execution semantics of Clock guarantee that requests maintain
the same value throughout the execution of an expression. This is achieved by defer-
ring potentially harmful updates until the expression has been completely evaluated.
This guarantee means that all expressions that a Clock programmer can write are
referentially transparent.

Since architectures may contain multiple instances of the same component, rules are
required to specify how updates and requests are routed. These rules are quite simple.

%
% Request handler to determine whether
% a view should be highlighted.
%

% State of the request handler

data State = Highlighted | NotHighlighted.

% Functions to handle update events:

highlightUpdt _ = Highlighted.
deHighlightUpdt _ = NotHighlighted.

% Functions to handle request events:

isHighlightedReq Highlighted = True.
isHighlightedReq NotHighlighted = False.

% Initial state

initially = NotHighlighted.

component
code

3.4. INPUT 43

Figure 3.7: The Highlighted request handler and its implementation.

If an update or request cannot be handled by a local request handler (e.g., Id is local
to GreetingsBox), then it is sent up the tree to the first component that is capable of
handling it. Updates and requests always move up the architecture tree – never down
or across the tree.

3.4 Input

So far, the programs we have created produce graphical output, but are not interactive.
In order to create interactive programs, we need some way of expressing how user inputs
are handled.

First, we introduce another useful request handler, called Highlighted. This request
handler is used to determine whether a view is to be displayed in highlighted mode or
not. As shown in figure 3.7, Highlighted takes two updates and one request:

highlight :: UpdateEvent.
deHighlight :: UpdateEvent.
isHighlighted :: Bool.

Imagine we wish to extend our greeting program so that if the user clicks on one of
the greetings messages with the mouse, the message is drawn in inverted mode, and
clicking again returns the message to normal mode. Figure 3.8 shows how this appears
on the display, and how it is implemented in Clock.

The greet subview is extended to include a Highlighted request handler that represents
whether the view produced by each instance of the subview should be inverted or not.

mouseButtonUpdt :: String -> UpdateEvent.
mouseButtonUpdt “Down” =
 if isHighlighted then
 deHighlight
 else
 highlight
 end if.
mouseButtonUpdt _ = noUpdate.

greetingBox :: String -> DisplayView.
greetingBox t =
 let textBox = Box (pad 3 (Text t)) in
 Font veryLargeItalicText (
 greyShadow (
 if isHighlighted then
 invert textBox
 else
 textBox
 end if
)
)
 end let.

view = greetingBox (strconc "Hello " myId).

display

44 CHAPTER 3. OVERVIEW OF THE CLOCK LANGUAGE

Figure 3.8: Clicking on one of the greetings inverts it; clicking again returns it to
normal mode.

3.4. INPUT 45

The architecture view of GreetingsBox shows that this event handler uses the updates
and requests implemented by Highlighted.

The GreetingsBox event handler is tagged to show that it takes the mouseButton input.
Mouse button inputs are created when the user clicks the mouse button. If the user
clicks the mouse button on the display created by this component, a mouse button
input is sent to the component.

In the code for GreetingsBox, the function

mouseButtonUpdt :: String -> UpdateEvent.

defines how the component responds to mouse input. The string parameter can be
either “Down” or “Up”, corresponding the mouse button being depressed and released
respectively. In this case, when the mouse button is depressed, the highlighted status
of the display is toggled. This is achieved with the code:

mouseButtonUpdt "Down" =
if isHighlighted then

deHighlight
else

highlight
end if.

This code states that when the mouse button is clicked down on this view, if the view is
highlighted now, it should be de-highlighted, and vice versa. Recall that highlight and
deHighlight are values of type UpdateEvent, which are sent to the Highlighted request
handler. When the mouse button is released, nothing happens, as encoded by the
special update event noUpdate:

The view of the component depends on the value of the Highlighted request handler.
The greetingBox function is modified to invert the greeting if highlighted is true:

greetingBox :: String -> DisplayView.
greetingBox t =

let textBox = Box (pad 3 (Text t)) in
Font veryLargeItalicText (

greyShadow (
if isHighlighted then

invert textBox
else

textBox
end if

)
)

end let.

% Keyboard inputs
key :: Char -> UpdateEvent.
arrowKey :: String -> UpdateEvent. % Parm = {“Left”, “Right”, “Up”, “Down”}
editKey :: String -> UpdateEvent. % Parm = {“Tab”, “Backspace”, “Delete”, “Escape”, “Return”}
functionKey :: String -> UpdateEvent. % Parm = {“1”, “2”, ...}

% Mouse button clicks
mouseButton :: String -> UpdateEvent. % Parm = {“Up”, “Down”}

% Mouse motion
enter :: UpdateEvent. % Mouse moves over display of this component
leave :: UpdateEvent. % Mouse moves away from display of this component
motion :: (Num, Num) -> UpdateEvent. % Mouse moves to position (x,y)
relMotion :: (Num, Num) -> UpdateEvent.% Mouse moves (x,y) from last reported position

46 CHAPTER 3. OVERVIEW OF THE CLOCK LANGUAGE

Figure 3.9: Predefined user inputs available in Clock.

In the greetingBox function, the if-expression evaluates to either the display view
“textBox” or “invert textBox”. The grey shadow is applied to whichever of these
values is selected. The predefined function:

invert :: DisplayView -> DisplayView.

inverts its argument by swapping its background and foreground colours.

3.4.1 Views as Constraints

The view function of an event handler component specifies how, at any given time, the
view of that component is to appear on the display. The view function of GreetingsBox
differs from the view functions we have seen so far in that it does not always return
the same value. When the user clicks on a greeting, the display presentation of the
greeting is changed.

In Clock, programmers don’t have to worry about when a view function is updated.
The language guarantees that whenever a view function is out of date, it will be eval-
uated, and the new view will be posted on the display. View functions are therefore a
specialized form of constraint, specifying the appearance of the display as a function of
the current state of the program. As with other constraint-based languages, the pro-
grammer does not specify when the constraints must be evaluated; rather, the compiler
automatically determines when updates are required. The current implementation of
Clock performs data flow analysis to determine when views are potentially out of date,
providing efficient incremental display updates.

3.4.2 Other Forms of Input

In addition to the mouse button input shown in the last example, Clock provides all
of the input events in figure 3.9. Together, these inputs permit the implementation of

%
% Maintains a current string selection.
%

% State of the request handler

type State = String.

% Functions to handle update events:

setSelectionUpdt :: State -> (String -> State).
setSelectionUpdt _ s = s.

% Functions to handle request events:

isSelectionReq :: State -> (String -> Bool).
isSelectionReq currentSelection s =
 streq s currentSelection.

% Initial state

initially = "".

3.5. CONSISTENCY MAINTENANCE 47

Figure 3.10: The Selection request handler.

all common interaction techniques found in direct manipulation user interfaces, such
as menus, scroll bars, dialogue boxes, picking, dragging, and drawing.

3.5 Consistency Maintenance

Imagine that we wish to extend our example to provide a radio button functionality.
Radio buttons have the property that only one button can be selected at any one
time – if one button is clicked and highlighted, whatever button was highlighted before
becomes de-highlighted.

Implementing radio buttons is an example of a consistency maintenance problem – the
modification of one button’s state requires the modification of any number of other
buttons as well. Clock provides support for consistency maintenance through event
handler invariants.

In this example, we require the new Selection request handler (figure 3.10). Selection
implements a current string selection. The update:

setSelection :: String -> UpdateEvent.

sets the current selection; the request:

isSelection :: String -> Bool.

tests the given string to see whether it matches the selection.

Figure 3.11 shows an architecture implementing a radio button version of the grouping
program. This program produces output as before, but permits only one greeting to

48 CHAPTER 3. OVERVIEW OF THE CLOCK LANGUAGE

Figure 3.11: An architecture implementing radio buttons.

be highlighted at a time. Clicking on one greeting de-highlights any other highlighted
greetings. The architecture diagram of figure 3.11 contains a great deal of detail, so in
figure 3.12, we show a less detailed version of the architecture, in which local request
handlers in the greet subview have been hidden.

As can be seen in the code of figure 3.12, whenever the user clicks on one of the
greetings, the update “setSelection myId” is sent up the tree. This update sets the
selected name in the Selection component to the identifier of the subview clicked.

Once the current selection changes, then the highlighting of the greetings may have
to change. The subview whose identifier matches the selection must be highlighted,
and the subviews that do not match the selection must be de-highlighted. In order to
express this condition, we use an invariant function:

invariant :: UpdateEvent.
invariant =

if isSelection myId then
highlight

else
deHighlight

end if.

The Clock semantics guarantee that whenever evaluating an invariant function would
have an effect, the invariant will be evaluated. This means that whenever the selection
is changed, the invariants of any subcomponents with incorrect highlighting will be
evaluated. Invariants are therefore a form of constraint, used specifically for data
consistency maintenance.

mouseButtonUpdt :: String -> UpdateEvent.

mouseButtonUpdt "Down" = setSelection myId.
mouseButtonUpdt _ = noUpdate.

invariant :: UpdateEvent.

invariant =
 if isSelection myId then
 highlight
 else
 deHighlight
 end if.

view :: DisplayView.

view = greetingBox (strconc "Hello " myId).

component code

3.6. PROPERTIES OF CLOCK 49

Figure 3.12: The architecture of figure 3.11, with information elided. The code for
the GreetingsBox event handler shows the use of an invariant function for consistency
maintenance.

An important restriction in Clock is that updates issued by invariants may only go
to local request handlers. Philosophically, this restriction means that invariants are
intended to express consistency conditions among local data. Practically, the restriction
eliminates the danger of creating infinite sequences of invariants that trigger each other
in cycles. Chapter 7 investigates termination conditions among invariant sequences.

3.6 Properties of Clock

As a language for specifying user interfaces, Clock provides many attractive features.
The I/O language is simple yet powerful. High-level constraints allow easy specifi-
cation of consistency maintenance and automatic, incremental view updates. Clock’s
architecture language allows high-level structuring of user interfaces. Request handlers
provide easy access to persistent state. The language used to program components is
functional, and therefore high-level and expressive; the functional programming is also
in a direct style, as opposed to the continuation-based style found in many functional
I/O systems.

Despite the inclusion of all of these features normally associated with imperative pro-
gramming, Clock is purely declarative. Clock is declarative in the small, meaning that
Clock functions are referentially transparent, and declarative in the large, meaning that
the constraint system underlying Clock’s view and invariant functions is also purely
declarative. These properties are formally investigated in chapter 7.

50 CHAPTER 3. OVERVIEW OF THE CLOCK LANGUAGE

3.6.1 Declarative in the Small

All expressions written by Clock programmers are guaranteed to be referentially trans-
parent. This means that when a programmer writes a Clock function, he/she does not
need to be aware of the order in which the function will be evaluated. The usual prop-
erties and transformation identities of functional programming (e.g., the fold/unfold
transforms [11]) also hold of Clock functions.

Informally, referential transparency is present for the following reasons: functions in
Clock are pure, except that they may contain requests and references to views generated
by subviews. The values of requests and subviews change over the course of execution
of a Clock program. However, when executing any individual Clock function (e.g.,
an invariant or a view function), all system state upon which the function depends
is frozen. That is, the values of all requests and subviews are held constant during
the execution of the function. This freezing of state implies that requests and subview
references are referentially transparent for the duration of the execution of the function.

For example, the value of a view function may change from one invocation to the
next. However, the values of the subviews and requests upon which the view function
depends do not change during any single evaluation of the view function. The view
function itself is not referentially transparent, but since the view function can only be
invoked by the Clock system itself, this impurity is shielded from the functional code
written by programmers.

3.6.2 Declarative in the Large

The execution of a Clock program consists of a set of purely functional computations.
As we have seen, each functional computation can be the execution of an event, in-
variant or view function, or of an update or request function in a request handler.
The Clock compiler is responsible for automatically determining when these purely
functional computations should be triggered. We say that Clock provides declarative
programming in the large, since Clock programmers never have to worry about when
these computations are triggered, or in what order.

The formal properties of declarativeness in the large are discussed in chapter 7. Intu-
itively, the properties are as follows. Event functions handling user inputs are guar-
anteed to be executed in an order semantically equivalent to fifo. That is, whenever
the order of handling user inputs matters, the input the user performed first must be
processed first. Because of this fifo guarantee, the Clock programmer does not have to
worry about when event functions are triggered.

Invariant functions are guaranteed to be triggered whenever their execution would
make a change to local state. That is, if the local state has become inconsistent, it is
guaranteed that the invariant function will be triggered to handle the inconsistency.
Invariants may cause state changes that trigger other invariants; however, Clock’s
visibility rules guarantee that (i) it is impossible to write circular dependencies among
invariants, and therefore (ii) any sequence of invariants triggering other invariants is

3.7. CONCLUSION 51

finite. Similarly, view functions are guaranteed to be triggered whenever a component’s
view is out of date. Clock programmers therefore need only be aware that when a state
change occurs, the appropriate invariant and view computations will be triggered, and
that the number of computations triggered is finite.

3.7 Conclusion

This chapter has introduced the features of the Clock language. We have seen that
Clock provides flexible I/O based on a high-level view language, and flexible support
for structuring through the Clock architecture language. Support for constraint-style
consistency maintenance is provided through invariant functions.

The examples shown so far are, however, very simple, and do not give the flavour of
how real applications are developed in Clock. Chapter 4 discusses how Clock is used
to develop real interactive applications, and gives more extensive examples.

52 CHAPTER 3. OVERVIEW OF THE CLOCK LANGUAGE

Chapter 4

Developing User Interfaces in
Clock

Chapter 3 gave an overview of the Clock language and its properties. This chapter
discusses the design of Clock, and how the language is used to implement graphical user
interfaces. We show how Clock helps with the problems particular to user interface
development, and how Clock’s high-level declarative programming style aids in the
evolutionary development of user interfaces. The chapter concludes with an evaluation
of how Clock supports the problems of user interface development that were identified
in chapter 2.

4.1 An Example User Interface

In order to show how Clock is used to develop substantial user interfaces, we return to
the card file program first introduced in chapter 2. Figure 4.1 shows the simple name
and address data base implemented via a card file metaphor. The current card displays
the name, address and telephone number of the current person. A tab on the upper
right corner of the card displays the first letter of the current person’s surname.

Two mechanisms are provided for navigating among cards. On the card itself, ar-
row buttons allow the user to move to the previous or following card alphabetically.
Advancing beyond the first or last card wraps around the card file.

Above the card, a row of letter buttons allows the user to move directly to the first
card in a given letter. (We call these buttons a slider, analogously to a rolodex slider.)
The use of a shadow gives these buttons a three-dimensional feel, where clicking on a
button causes it to appear first depressed then released. The button corresponding to
the current letter appears highlighted in reverse-video. If a button is selected for which
there is no card, the next card alphabetically following that letter is selected.

The surname on the current card can be edited: if the user clicks on the surname, a
cursor appears indicating a text insertion point. Pressing return or moving to another
card commits the edit operation, causing the cursor to disappear. If the first letter

53

54 CHAPTER 4. DEVELOPING USER INTERFACES IN CLOCK

Figure 4.1: A card file name and address program implemented in Clock.

of the surname has been modified, the position of the card in the data base is modi-
fied to maintain alphabetical order, and the current letter tag and slider are updated
accordingly.

Despite its apparent simplicity, this example shows that many details must be observed
in creating a user interface, and indicates the numerous potential interactions between
the components of a user interface.

4.2 The Clock Card File

Figure 4.2 shows a Clock architecture implementing the card file of figure 4.1. Clock
architectures are structured as a tree of components. The tree structure supports a
gradual progression from application to user interface, avoiding an artificially sharp
split between the two. The root of the tree corresponds to the main application pro-
gram, while the leaves of the tree implement the most basic interaction objects. In
figure 4.2, the leaves of the tree correspond to the letter boxes making up the current
letter selector, the editable text field used for the current surname, and the arrow but-
tons used to move between cards. The root of the tree represents the data base used
to implement the card file.

Moving from the leaves up the tree, the leaf nodes are combined to form more ab-
stract interaction objects. The LetterBox component is given a Pushable property;
the pushable letter buttons are then combined to make the slider (Slider). The two
arrow buttons are combined to make a card scroller (Scroller). The name and address
data (in NameAndAddress) is combined with the current letter tag (in Letter) and the
scroller to make up the current card (in Card).

A component may make use of zero or more instances of its children in making up its
own display view. For example, the Slider component uses twenty-six pushable letter
boxes in making up a slider.

4.2. THE CLOCK CARD FILE 55

Figure 4.2: A Clock architecture for a card file name and address program.

56 CHAPTER 4. DEVELOPING USER INTERFACES IN CLOCK

Figure 4.3: A Clock architecture with request handlers for a card file name and address
program.

4.2.1 Structuring User Interfaces with Components

As was seen in chapter 3, architecture trees are composed of two kinds of components,
event handlers and request handlers. Event handlers are stateless components respon-
sible for maintaining display views and handling input. Request handlers make up the
data structures of an architecture, each implementing an abstract data type usable
by the architecture’s event handlers. The card file provides interesting examples of
complex interactions among components.

Figure 4.3 shows the full event handler/request handler breakdown of the cardfile
architecture tree. The PeopleDB request handler represents the database of names
and addresses. CurrentLetter represents the first letter of the current surname, and is
used in the Letter and Slider event handlers.

As a more detailed example of the interaction between event handlers and request
handlers, figure 4.4 shows the event handler LeftArrow with its request handler High-
lighted. LeftArrow is responsible for maintaining a left-arrow graphic on the display,
and for handling mouse input to the arrow. When the mouse button is depressed
over the arrow, the arrow is redrawn in a highlighted (white-on-black) mode; when the

mouseButtonUpdt “Down” = highlight.
mouseButtonUpdt “Up” =
 all [deHighlight, leftArrowPushed].

leftArrow =
 polyLine [(0,15), (20,3), (20,10),
 (30,10), (30,20), (20,20),
 (20,27), (0,15)].

view =
 if isHighlighted then
 invert leftArrow
 else
 leftArrow
 end if.

code

4.2. THE CLOCK CARD FILE 57

Figure 4.4: The LeftArrow event handler and its request handler Highlighted. The event
handler maintains a display view and takes mouse input, while the request handler
maintains the highlighted status of the display.

button is released, the arrow returns to normal black-on-white. The predefined func-
tion “polyLine :: [(Num,Num)] -> DisplayView” is used to specify the left arrow
graphic.

The Highlighted request handler determines whether the arrow should be drawn in
highlighted mode. In computing the view of LeftArrow, the request isHighlighted is
used to determine whether the arrow is selected. The updates highlight and deHighlight
are issued to Highlighted in response to mouse input.

Figure 4.5 shows the sequence of updates and requests resulting from clicking the
mouse over the arrow graphic. The behaviour of the left-arrow interaction technique
is that when the user clicks the mouse down on the picture of the arrow, the arrow
is redrawn in inverted mode, giving visual feedback that the arrow has been clicked.
When the mouse button is released, the arrow is redrawn in normal mode, and the
update leftArrowPushed is sent up the tree.

As shown in the code of figure 4.4, clicking down on the arrow causes the update
highlight to be sent to the Highlighted component. The view function is automati-
cally invoked, and the inverted arrow is drawn. When the button is released, the two
updates deHighlight and leftArrowPushed are sent. (The predefined function “all
:: [UpdateEvent] -> UpdateEvent” allows multiple updates to be grouped into a
single update.) Again, the view function is automatically updated to return the arrow
to normal mode.

Clock programs consist of a set of pure functional computations. Each of these com-
putations consists of the evaluation of a function defined in one of the request or event
handlers – for example, a mouse input triggers the evaluation of an event handling

mouseButton “Down”

highlight
(a)

mouseButton “Up”

deHighlight

leftArrowPushed

(b)

new view new view

subview
values

view

view

subview
value

•••view

58 CHAPTER 4. DEVELOPING USER INTERFACES IN CLOCK

Figure 4.5: Sequence of events following clicking on the LeftArrow of figure 4.4. The
highlighting of the arrow is used to give visual feedback that the click has been regis-
tered. The ultimate result of the click is that the event leftArrowPushed is sent up
the architecture tree.

Figure 4.6: The value of each component is an interactive display view. Here, a push-
button property is added to a letter box; a collection of pushable letter boxes is turned
into a slider.

function, while an update may trigger the evaluation of a view function.

4.2.2 Views and Subviews

The value of event handler components is an interactive display view (or view) for short.
In Clock, views are first class values: among other operations, they can be represented
in variables, passed as parameters, and used to construct other views. A component
can use the values of each of its children as subviews. Figure 4.6 shows an excerpt from
the card file architecture, showing how views can be composed from subviews.

The value of a LetterBox component is simply a letter with a box around it. A Pushable
component adds a push-button property to its subview, in this case the LetterBox. This
behaviour adds a three-dimensional shadow effect to the letter box, and adds sensitivity
to mouse clicks to implement a button behaviour.

4.2. THE CLOCK CARD FILE 59

The code for a simplified1 version of Pushable is the following:

mouseButtonUpdt "Down" = depress.
mouseButtonUpdt "Up" = all [release, buttonPushed myId].

view =
if isDepressed then

pushItem ""
else

greyShadow (pushItem "")
end if.

This version assumes that request handlers Id and Depressed are available, and that
some subview called pushItem is to be given a pushable property. When the button is
clicked down, the pushItem is depressed, resulting in its being drawn without a shadow;
then the button is released, the pushItem is drawn with a shadow again. This gives
the illusion of three-dimensional motion as the display object is “pushed” down and
released. Pushable is an example of a component that is intended to be reusable in
many architectures. The push-button property is generally applicable to any button
used in a user interface, particularly since the Pushable component does not depend in
any way on the view of its child.

The Slider component uses the values of twenty-six Pushable LetterBox components
to create its own view. The twenty-six subviews are laid out horizontally, and a radio
button behaviour is added, permitting exactly one of these subviews to be highlighted
at any one time.

The view function in Slider is:

alphabet =
["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L",
"M", "N", "O", "R", "S", "T", "U", "V", "W", "X", "Y" ,"Z"].

buttons = map sliderButton alphabet.

view =
Font normalBoldText (

beside (insertBetween buttons (space 3))
).

Recall that to Slider, the subview sliderButton appears to be a function “sliderButton
:: String -> DisplayView”. By mapping sliderButton over the alphabet, the list
of buttons is created. The predefined function “insertBetween :: [DisplayView]
-> Num -> [DisplayView]” is used to space the buttons apart; the function “beside
:: [DisplayView] -> DisplayView” lays out the buttons left to right.

1The real Pushable component also takes care of highlighting.

(2) invariant:
 setCurrentLetter
 (firstchar currentLastName)

(3) view:
 Text currentLetter

(1) update:
 goToLetter “M”

60 CHAPTER 4. DEVELOPING USER INTERFACES IN CLOCK

Figure 4.7: Communication between components via updates and requests. Clicking
the slider letter “M” initiates a sequence of updates and requests.

4.2.3 Consistency Constraints

In implementing the card file of figure 4.1, a number of consistency conditions must
be observed. The main condition is: the highlighted letter in the slider, the letter in
the card tab, and the first letter of the surname in the card must all be the same.
This letter may change from any of: scrolling over a letter boundary; clicking a letter
button, or editing the surname on the card.

In the Clock card file, these consistency conditions are implemented automatically
through the constraints provided by view and invariant functions. In general, view
functions are sufficient to implement almost all consistency conditions; most compo-
nents do not require an invariant function.

Figure 4.7 shows the interaction of view and invariant functions to implement consis-
tency conditions. The figure shows the sequence of function evaluations resulting from
clicking the “M” slider button. As we saw in section 4.2.2, clicking a letter button re-
sults in the update “buttonPushed myId” being sent up the tree. This button-pushed
update is handled by an event function in Slider:

buttonPushedUpdt :: String -> UpdateEvent.
buttonPushedUpdt letter = goToLetter letter.

This function specifies that clicking the “M” slider button causes the update goToLetter
“M” to be sent up the tree. The goToLetter update function has type “goToLetter
:: String -> UpdateEvent”.

4.2. THE CLOCK CARD FILE 61

The Clock system automatically sends the update event up the tree to the first event
or request handler that is able to accept it. In this case, the PeopleDB request handler
accepts the update, setting the current person to the first person whose surname begins
with the letter “M”.

The modification of the state of PeopleDB causes an inconsistency between the state
of PeopleDB and the request handler CurrentLetter, which still refers to the old letter.
The CardFile event handler contains an invariant condition that specifies how the state
of CurrentLetter is to be kept consistent with that of PeopleDB:

invariant = setCurrentLetter (firstchar currentLastName).

This invariant takes the current last name from PeopleDB, and uses its first character to
set the currentLetter. The invariant uses the request “currentLastName :: String”
which is handled by PeopleDB.

Finally, the modification to CurrentLetter causes the view of the letter tag on the card
display to be out of date. The view of the letter tag is specified in Letter with the
function:

view = pad 3 (Text currentLetter).

specifying that the current letter (obtained via a request to CurrentLetter) is to be
displayed with a border of three pixels around it.

This example shows how clicking a letter button changes the current card in Peo-
pleDB, resulting in a change in the CurrentLetter request handler. The components
which depend on the current letter (Slider and Letter) can base their view functions on
CurrentLetter, allowing their views to be automatically updated whenever the current
letter changes.

In this example, we see that a simple action (the user clicking the mouse) can lead
to a great deal of activity in the Clock architecture – the original mouse click led
to the buttonPushed update, which in turn triggered the goToLetter update, which
triggered an invariant function, which in turn triggered a number of view functions.
This sequence of updates triggering more updates, invariants and views is similar to
the chains of dependent constraints of languages such as Garnet. Clock differs from
Garnet, however, in that every sequence of triggered constraints is guaranteed to be
finite. The basic argument for this finiteness is simple – updates travel up the tree,
and therefore sequences of updates must eventually terminate at (or before) the root
component. Invariants can only make local updates based on requests made up the
tree. Therefore, invariants can only trigger invariants lower in the the tree. Since trees
have finite depth, sequences of invariants triggering invariants must also eventually
terminate. These arguments are formalized in chapter 7.

62 CHAPTER 4. DEVELOPING USER INTERFACES IN CLOCK

4.3 Modifying Architectures

A major design goal in Clock is to support the iterative design of user interfaces. The
principle behind iterative design is programmers cannot simply design a user interface
and then implement it. User interfaces must be refined based on the results of user
evaluation. Usually, several iterations of testing and modification are required to create
a satisfactory user interface. Hence, it should be easy to quickly modify user interfaces
in order to rapidly test new designs, or react to problems users encounter.

One major problem with iterative refinement is that as programs are substantially
modified from their initial design, the overall structure of the program can degrade.
Programs that have been developed using this experimental approach can easily become
difficult to understand, maintain, and modify.

Clock provides four features that support the iterative refinement of user interfaces.
These features also help to maintain structure despite modification:

Easy Reuse: Clock comes with a library of predefined components. Often, many of the
components required in a change can be drawn straight from the library. Using
library components speeds up modifications by reducing coding time, and helps
in maintaining structure, since predefined components have been designed to be
easily and cleanly connected.

Untargetted Updates/Requests: Updates and requests are values that are sent up the
architecture tree, and handled by the first component that knows how to deal
with them. This means that an event handler issuing an update or request does
not have to be aware of the structure of the tree above it. If the structure of the
tree above an event handler is modified, the event handler itself does not have to
be modified, as long its updates and requests continue to be serviced.

The fact that updates and requests are untargetted also aids in component reuse.
Since components do not have knowledge of the context in which they are used,
it is easy to connect existing components into new architectures.

In the constraint-based approaches of languages like Garnet, constraints are ex-
plicitly tied to objects. To achieve component reuse, Garnet must introduce
pointer variables, permitting explicit indirection. The need to set and reset these
pointer variables dynamically is one of the reasons why Garnet-style constraint
systems require side-effects.

Named Subviews: In Clock, the names of subviews are tied to the parent class, not to
the child. This means that an event handler does not need to have any knowledge
about how its subviews are computed. Subview components can therefore be
replaced or modified without any modification to their parents whatsoever.

Restricted Visibility: In Clock, updates and requests travel up the tree only. This
means that it is only possible for data dependencies to exist between a compo-
nent, its children, and its parents, since it is not possible to express commu-
nication laterally across the tree. These visibility controls restrict the number

4.3. MODIFYING ARCHITECTURES 63

Figure 4.8: Modified card file program, where cards are selected by typing in a fragment
of the last name.

of components that may be affected when a component is modified. These re-
strictions, therefore, help in controlling the effects of change, and in maintaining
structure when change takes place.

Figure 4.8 shows an example of a modification to the card file program of figure 4.1.
In the new version, rather than using a rolodex-style slider to select cards, we use a
text field allowing the user to type a leading string of the desired last name. As shown
in the figure, the string “Grah” is sufficient to locate the card for “Graham”. Such a
text-based interface might be suitable for locating data in a large data base of cards.

Figure 4.9 shows the modifications that have to be made to accomplish this change.
The chooser subview of the CardFile component is replaced. Instead of the old Slider
component, we now have a NameChooser component implementing the query box
shown in figure 4.8. When a new name is selected (e.g., the leading string “Grah”),
the update “goToName” is issued to move to that name; the PeopleDB request handler
(attached to the People component) was modified to handle this request.

The NameChooser component is based on the EditField component taken from the
library. Note that EditField is also used to implement editing of the data on cards.
NameChooser is new, and had to be programmed.

Despite the fact that the card selection mechanism was completely changed, no other
components had to be modified. From the point of view of the CardFile component,
the chooser subview is still responsible for choosing which card to view; CardFile has
no knowledge of how the the selection is accomplished, and is therefore not affected
when the mechanism is changed. Changing which card is currently displayed is handled
automatically by the view functions of the components in the person subtree; therefore,
these components are not affected by the change in the chooser subview.

This example demonstrates how well Clock localizes changes. Because of the flexible
support for architecture modification, the changes were easy to make. Because of the
restricted visibility of Clock architectures, the changes are guaranteed to be localized
to a small number of components. The localization of change also implies that the
structure of the architecture as a whole is minimally affected by the change of the
selection mechanism. This minimal impact on the architecture helps in maintaining

The goToName update is
added to the PeopleDB
request handler

The Slider class is
replaced with the
NameChooser

goToName “Grah”

64 CHAPTER 4. DEVELOPING USER INTERFACES IN CLOCK

Figure 4.9: The architecture for the modified card file program. The components that
had to be modified are shown.

Executing
Program View

view mapping

input events

4.4. THE CLOCK I/O MODEL 65

Figure 4.10: The Relational View Model.

clean structure throughout iterative design.

4.4 The Clock I/O Model

Clock’s I/O system is based on the declarative Relational View Model of input and
output [43]. Under the relational view model, there is considered to be a two-way
mapping between an executing program and its user interface. A view mapping specifies
the appearance of the display as a function of the data state of the program. An event-
based mapping in the other direction allows manipulations of the user interface to be
reflected in the state of the executing program. The two mappings together can be
considered to be a relation, since they guarantee that the state of the user interface
and the program are always consistent.

In Clock, the relational view model is implemented via the view and event functions
provided in event handlers. The view function is a mapping from the state of the
program (as obtained via requests) onto a display (an element of the type DisplayView.)
Event functions process events generated by the user (such as keyboard input, mouse
clicking or mouse motion events), and modify the state of the program via updates.
Thus, the view and event functions together ensure that the program state and display
state are always consistent.

Clock’s I/O model is declarative, in that a pure function maps a snapshot of the system
state onto a display value. The Clock system is then responsible for posting the view
on a workstation display. The view function is automatically evaluated as often as
necessary to maintain an up to date display.

The relational view model differs from constraint-based approaches such as ALV [48] or
Garnet [70]. These approaches use the retained object model of output, where an object
must be explicitly created in memory for each display primitive. Constraints are used
to maintain consistency between application and display objects, in effect implementing
a relation between the two. As the display is modified, however, the programmer must
explicitly create and destroy view objects to keep the display up to date. This object
management is performed via side-effects in the consistency constraints. Unlike the
relational view model, therefore, the programmer must be aware of what has been on
the display in the past, and of when the side-effects in the constraints will be executed.

% The basic display view data type.
data DisplayView =
 Views [DisplayView]
 | Line Coord Coord
 | Arrow Coord Coord
 | At Coord Coord DisplayView
 | Box DisplayView
 | Text String
 | NumText Num
 | CharText Char
 | BooleanText Bool
 | InstanceOf SubViewName SubViewId
 | Font FontVal DisplayView
 | Style StyleVal DisplayView.

type SubViewName = String.
type SubViewId = String.

type Char = Num.
type FontVal = String.

% Definition of coordinates as used in the At,
% Line and Arrow constructs.
type Coord = (Ordinate,Ordinate).
type Offset = Num.
type OrdinateLabel = Num.
type OrdinateLocation = Num.

data Ordinate =
 XBaseOffset OrdinateLabel Offset
 | YBaseOffset OrdinateLabel Offset
 | Left Offset | Bottom Offset
 | Right Offset | Top Offset
 | XSomewhere | YSomewhere.

% The available grahical styles
data StyleVal =
 Invisible | Solid | Filled | Dashed
 | Dotted | Bold | Grey | White
 | Elipse | BoldElipse | ThickElipse
 | Thick | Inverted | LightGrey
 | NoBorderGrey | NoBorderLightGrey.

66 CHAPTER 4. DEVELOPING USER INTERFACES IN CLOCK

Figure 4.11: The DisplayView data type forms the basis of view generation.

4.4.1 The Clock View Language

The Clock view language is based on the functional Graphical View Language [18].
Views must be elements of the data type DisplayView, as defined in figure 4.11. This
view language is based on a very simple set of primitives. By taking advantage of the
functional abstraction mechanisms of the Clock language, powerful view functions are
built from the DisplayView primitives. Examples we have seen include beside, which
lays out a set of views left to right, and polyLine, which generates a set of lines to
connect the given coordinates.

Based on the predefined view functions, view specification is simple and high-level.
It is rarely necessary to include explicit coordinates to specify the size or position of
views. The full expressive power of the underlying view language is, however, always
available to the programmer.

4.5 Conclusion

In chapter 2, we identified a set of problems particular to user interface development.
We conclude this chapter with an examination of how Clock addresses each of these
problems.

Iterative Refinement: Iterative refinement requires the ability to rapidly prototype
and modify user interfaces. Clock aids rapid prototyping and modification on
three levels. Firstly, the Clock architecture language allows replacement of in-
teraction techniques (represented by architecture subtrees) with minimal modi-
fication to the rest of the tree. This plug-replacement also supports component
reuse. Reuse not only frees the programmer from repetitively recoding the same

4.5. CONCLUSION 67

behaviours, but also provides the architecture programmer with a vocabulary of
predefined components, leading to better structured architectures.

Secondly, within event handlers, invariant and view functions are automatically
invoked as necessary to maintain up-to-date internal state and display views.
This frees the programmer from having to determine when these updates are
necessary, and from having to identify all the complex interrelations between
user interface components.

Finally, the use of functional style makes component programming very high
level. Our experience has shown that pseudo-code descriptions of event handler
functions map almost directly into functional programs. Particularly within view
functions, the fact that views are first class values and the use of higher order
functions combine to give compact and elegant descriptions.

Direct Manipulation: Direct manipulation style interfaces are hard to program be-
cause user inputs may come in an arbitrary order, directed to arbitrary parts of
the user interface. In Clock, inputs to a display view are automatically directed
to the event handler component that produced the display. Each component need
only know how to handle the inputs directed to it, without needing to be aware
of inputs directed to other components. When components have interdependen-
cies, invariant functions automatically reflect changes in state caused by inputs
elsewhere in the system.

Semantic Feedback: Semantic feedback in a user interface component is used to
obtain application data within an interaction technique. In Clock, semantic feed-
back is implemented through the request mechanism. Requests may directly
access application data arbitrarily far up the architecture tree. Since requests
are not explicitly targetted to any particular request handler, they do not reveal
the structure of the application, thereby preserving reasonable separation of con-
cerns between the user interface and application. A component making requests
for application data can be reused in any architecture tree, as long as the request
is served somewhere in the tree.

Communication among User Interface Components: In Clock, even when com-
ponents are interdependent, they need never communicate with each other di-
rectly. The invariant mechanism allows a component to be automatically updated
following the modification of another component upon which it depends. This
means that components can be defined independently of another, easing clarity
in architectures, and aiding component reuse.

User Interface Consistency: Clock contains a class concept allowing components
to be defined once, and reused over an architecture. This mechanism allows the
capturing of interaction techniques such as buttons and menus, and of behaviours,
such as selection and searching. Reuse naturally guarantees consistency, helping
improve the quality of the user interface.

68 CHAPTER 4. DEVELOPING USER INTERFACES IN CLOCK

Concurrency: The current implementation of Clock does not support concurrency,
but the semantics of the language permit concurrent implementations. One pos-
sible approach to concurrency would be the component as process model, where
one event handler processes an input, while another concurrently processes the
next input. The semantics guarantee that as long as these inputs do not conflict
with one another, a concurrent implementation is valid.

The semantics also could permit multi-user implementations. One possibility
would be to split the architecture over a client-server network. The root ap-
plication and its data would be placed on the server, while each user would be
a subview instance of the client, communicating updates and requests over the
network. Work is ongoing investigating this approach.

This concludes our description of the Clock language. We have stated that Clock helps
solve the problem of declarative programming of user interfaces by combining a flexible
I/O system with high-level support for structuring and consistency maintenance, and
yet is purely declarative. This chapter has shown how Clock is used to build user inter-
faces. It remains to be demonstrated, however, that Clock actually is purely declarative
– i.e., that Clock functions are referentially transparent, and that the programmer does
not need to be aware of the order of evaluation of Clock constraints.

To reason about Clock’s features, we introduce in chapter 5 the Temporal Constraint
Functional Programming framework (TCFP), upon which Clock is based. In chapter 6,
we define the formal semantics of Clock based on TCFP. In chapter 7, we use TCFP’s
proof mechanisms to state and prove the declarative properties of Clock.

Chapter 5

Temporal Constraint Functional
Programming

In the description of Clock in chapter 4, we stated that Clock satisfies two basic prop-
erties of declarative user interface programming: referential transparency, and freedom
from constraint cycles. To substantiate these claims, we must formally specify the
semantics of Clock, and based on the semantics, we must prove that the properties
hold. With this goal in mind, chapter 6 defines the semantics of Clock, while chapter 7
provides proofs of the declarative properties.

This chapter presents Temporal Constraint Functional Programming (or TCFP), a
novel framework for defining the semantics of I/O, non-determinism and concurrency
in extended functional languages. Because of these facilities, TCFP is an appropriate
formalism for defining the semantics of the Clock language.

TCFP specifications of language semantics are split into two levels: an extended λ-
calculus (called the Interaction λ-Calculus) is used to define the core of the functional
language, while constraints in a temporal logic (the Interaction Logic) are used to
specify the meaning of constructs supporting interaction and concurrency.

Because of its basis in the temporal interaction logic, TCFP provides strong support
for reasoning about languages. If a language is defined using TCFP, then proving a
property of the language consists of first specifying the property as a formula of inter-
action logic, and proving the formula to be a consequence of the language’s semantics.
Proofs are therefore based on standard techniques of logical reasoning. This approach
is followed in chapter 7 to prove the declarative properties of the Clock language.

In this chapter, we first provide an informal overview of the TCFP framework. While
this overview is intended to provide sufficient information to understand chapters 6
and 7, the fully formal definition of TCFP is also provided in appendices A, B and C.

Following this informal introduction, we give some examples of how TCFP is used.
These examples show how TCFP can be used to model processes, synchronous and
asynchronous interprocess communication, variables, and oracles. These facilities are
defined as predicates in interaction logic, and collectively form the building blocks from
which the semantics of complex languages such as Clock can be built.

69

Models for Iλ c
program + temporal

constraints

Possible Models for
I λc program

Extended Functional Language
(e.g., Clock)

Iλc Constructs
(e.g., for Clock components)

Temporal Constraints
(e.g., for Clock architectures)

syntactic
transformation

syntactic
transformation

semantics semantics

70 CHAPTER 5. TCFP

Figure 5.1: Defining extended functional languages using TCFP: the language is defined
as syntactic sugar for TCFP constructs. The semantics of TCFP then give meaning
to the constructs of the language. For example, in the definition of Clock (chapter 6),
the functions defining Clock components are mapped to Iλc constructs, while the ar-
chitecture structure is mapped to interaction logic constraints. Combined, these give
the meaning of Clock programs.

5.1 Informal Introduction to TCFP

The TCFP framework is a combination of two formalisms: Iλc, which is used to define
extended functional constructs, and interaction logic, which is used to specify struc-
tural and temporal aspects of extended functional languages. As shown in figure 5.1,
extended functional languages such as Clock can be defined by considering them to
be syntactic sugar for TCFP constructs. As we shall see in chapter 6, the functions
used to define Clock components are mapped into Iλc functions, while the architecture
specification of a Clock program is mapped onto constraints in interaction logic.

The semantics of an extended functional language are therefore given through the
semantics of TCFP itself. As shown in figure 5.1, TCFP’s semantics are based on a
generate and restrict approach. Iλc contains non-deterministic constructs, meaning
that any given Iλc program can have multiple possible executions. Any observable
execution of an Iλc program is called a model of the program. We therefore say that
Iλc programs generate a set of possible models. Temporal constraints serve to rule
out execution cases we consider to be incorrect, therefore leading to a restricted set of
models.

5.1. INFORMAL INTRODUCTION TO TCFP 71

As an analogy illustrating how the generate and restrict approach works, consider the
rules governing when a person may drive a car in Canada’s province of Ontario. In
general, anyone can drive at any time, but with a series of exceptions: people must be
at least 16 years old with a valid driver’s license; new drivers may not drive at night,
or on highways; people with vision problems must wear their glasses to drive.

The generation component of this specification states the overly general case that any-
body can drive at any time. The restriction component narrows this set of possibilities
by imposing constraints on age, time of day, etc. As human beings, we don’t have
great difficulty understanding this form of definition – we understand that driving is
generally permitted, as long as the myriad of constraints is satisfied.

We now give a simple example of a system specified using TCFP, after which a more
detailed introduction to the formalism is given.

5.1.1 A TCFP Example

The core of TCFP is the Interaction λ-calculus, or Iλc for short. As is shown in
appendix A, Iλc is based on an extended version of the untyped λ-calculus. Through
the use of syntactic sugar, Iλc can be extended to contain the constructs found in
most modern functional languages, such as higher-order functions, lambda abstractions,
pattern matching, equational definitions, let-bindings and case selection; the resulting
syntax is similar to that of Haskell [56]. For example, an Iλc program to reverse a list
is:

append [] b = [b].
append (a:as) b = a : (append as b).

reverse [] = [].
reverse (a:as) = append (reverse as) a.

For simplicity, Iλc is untyped, so that Iλc expressions have values in some domain that
we call value. Practical languages built from Iλc would normally introduce some form
of typing system.

Iλc extends normal functional programming with constructs to express input and out-
put. For example, the expression:

read "stdin"

reads from a communication port called “stdin”; the value of the expression is the value
read. Similarly, the expression:

write "stdout" "Hello"

writes the value “Hello” to the communication port “stdout”, and the value of the
expression is the value written (here, the string “Hello”). Iλc assigns no particular

p2
in2 out2

p1
in1 out1

72 CHAPTER 5. TCFP

Figure 5.2: Two communicating processes. Process p1 takes inputs from communica-
tion port in1, and writes the values to communication port out1. Process p2 reads from
in2, and writes the values to out2. Such a structure might be used to allow two people
on different machines to communicate.

meaning to these communication ports; as we shall see in the next section, constraints
in interaction logic are used to specify the behaviour of communication ports, and how
they are connected.

Iλc does not specify any order in which I/O must take place. In the expression:

(write "stdout" "Hello", write "stdout" "world")

the output to “stdout” may be "hello world" or "world hello".

Because the Iλc read function does not always return the same value, Iλc expressions
are not guaranteed to be referentially transparent (see theorem A.3.1).

Constraints in interaction logic can be used to rule out possible executions of the
program that we do not consider to be correct. For example, the constraint:

out("stdout", "world") ⊃ out("stdout", "Hello").

states that if the value "world" is written to the communication port "stdout" now,
then sometime in the past (written “ ”), the value "Hello" must have been written
to "stdout". This constraint rules out the undesirable case of writing "world hello",
since the only way "world" can be written is if "Hello" is written first. The predicates
in and out are predefined in interaction logic to allow constraints to be placed on input
and output activity performed by Iλc programs.

Interaction logic is a temporal logic, including all the facilities of classical, first order
predicate logic, as well as a set of temporal operators (such as “ ”) to allow temporal
reasoning. All of the traditional axioms and proof rules of classical logic continue
to hold in interaction logic, so that traditional reasoning techniques continue to be
applicable.

An Example: Modelling Interprocess Communication with TCFP

TCFP can be used to model complex systems such as processes and interprocess com-
munication. Consider, for example, that we wish to model two processes (figure 5.2).
The first reads inputs from communication port in1, and writes the same values to

5.1. INFORMAL INTRODUCTION TO TCFP 73

communication port out1. The second process reads the values that the first process
sent, and writes them to its own output port. Such a configuration might be used to
allow two people to communicate over a network.

In Iλc, we define the processes as:

process inCP outCP =
(write outCP (read inCP)) : (process inCP outCP).

eval (process "in1" "out1", process "in2" "out2").

That is, two invocations of the process function are used to model the processes. Since
Iλc has no defined control flow, it is possible for the processes to be evaluated sequen-
tially, or in parallel. Each process repeatedly reads from its “in” communication port,
and writes the same value to its “out” communication port.

This program is non-deterministic, since it is not specified what values will be read
from the input communication ports. In particular, there is nothing in the Iλc code to
specify that the output of process p1 becomes the input of process p2. The semantics
of Iλc simply specify that whenever a read occurs, some non-deterministically selected
value is read. We will use interaction logic to constrain this non-deterministic selection
so that the output from process p1 always becomes the input from process p2.

First, we can express that whatever p2 reads must have been output sometime earlier
by p1. This is stated as:

∀v : value, i : uid . in("in2", v, i) ⊃ out("out1", v, i).

This constraint states that for every value v read over communication port in2, the same
value must have been written sometime in the past over communication port out1. The
operator “ ” (read “was sometime”) indicates that the predicate “out("out1", v, i)”
must have been true sometime in the past. In order to distinguish between different I/O
events involving the same value, TCFP assigns a unique identifier to each I/O event.
Therefore, “in("in1", v, i)” can be read as “the value v is read now over communication
port in1, and this read operation has unique identifier i.”

This constraint specifies that any values read by p2 must have been written earlier by
p1. However, it does not state that all values written by p1 must eventually be read
by p2. This form of communication could describe low-level network communication,
where it is not guaranteed that every value sent over the network will arrive at the
other end. If we wish to guarantee that all values from p1 are eventually read by p2,
we can add the following constraint:

∀v : value, i : uid . out("out1", v, i) ⊃ in("in2", v, i).

This constraint specifies that if a value v (with unique identifier i) is written over
communication port out1, then sometime in the future (written “ ”), the same value
(with the same unique identifier) must be read from communication port in2.

Finally, while these constraints specify that the output from p1 must eventually become
the input to p2, nothing is said about the order in which the values must be read. This

74 CHAPTER 5. TCFP

form of communication could describe a lossless networking protocol, where all values
are guaranteed to arrive at the destination, but where the order may be jumbled. If
we wish to specify a fifo ordering, we can use the constraint:

∀v1, v2 : value, i1, i2 : uid .

(out("out1", v1, i1) out("out1", v2, i2))

⊃ (in("in2", v1, i1) in("in2", v2, i2)).

This constraint specifies that if the output of v1 precedes (written) the output of v2,
then the input of v1 must also precede the input of v2, thereby preserving the ordering
of values sent.

This example has shown how a single Iλc program can be given different properties by
applying different temporal constraints. The example also shows that the integration
of Iλc and integration logic is simple, in that interaction logic can be used to constrain
the execution of Iλc programs by restricting their I/O activity.

It should be emphasized, however, that TCFP is not a programming language in itself.
TCFP is to powerful to be implemented directly. The real use for TCFP is as a
means for expressing the semantics of programming languages, as shown in figure 5.1.
Section 5.3 shows numerous examples of how small, extended languages can be specified
with TCFP. First, however, the next section gives a more detailed overview of TCFP.

5.2 Syntax and Informal Semantics of TCFP

The last sections presented an example giving the flavour of TCFP, and showing how
TCFP can be used to model impure extensions to functional languages. The TCFP
framework itself is fully described in appendices A, B, and C. This section gives a less
formal introduction to TCFP, summarizing the basic properties of the framework.

5.2.1 Interaction Lambda-Calculus

The functional component of the TCFP framework is based on a language called the
Interaction Lambda Calculus, or Iλc for short. As described in appendix A, Iλc consists
of a small functional language, loosely based on the λ-calculus. It is shown how through
syntactic sugar, this language can be extended to a full language similar to Haskell [56],
and providing the traditional properties of functional languages such as equational
definition of functions, pattern matching, non-strict semantics, and functions as first-
class values. The syntax of this full language is shown in figure 5.3. In examples of
the use of Iλc in defining language constructs, we shall feel free to use this much richer
language, rather than the smaller core from which the language is defined.

In Iλc, I/O is performed using the predefined operations read and write: “read c” re-
sults in a value being read from the communication port c. The expression: “write c e”
results in the value e being sent over the communication port c. From these basic prim-
itives, it is possible to build random value generation, from which non-determinism is
introduced into Iλc.

script ::= { eqn } expr

eqn ::= fnName { pattern } = expr .

pattern ::= _
| literal
| variable
| [[pattern { , pattern }]]
| cSym { pattern }
| (pattern { , pattern })

variable ::= lowerId
fnName ::= lowerId
cSym ::= upperId

literal ::= stringLit | intLit
| True | False

binaryOp ::= and | or | = | ~= | >= | <=
| < | > | + | - | ++ | * | /
| div | mod | :

unaryOp ::= hd | tl | # | not | -

ioExpn ::= read expn
| write expn expn
| bind pattern = expn

{ , pattern = expn }
in

expn
end bind

expn ::= literal
| fnName
| variable
| [[expn { , expn }]]
| cSym { expn }
| (expn { , expn })
| if expn then

expn
{ elsif expn then

expn }
else

expn
end if

| let pattern = expn
{ , pattern = expn }

in
expn

end let

| case expn of
pattern -> expn
{ | pattern -> expn }

end case

| fn pattern -> expn end fn
| expn expn
| unaryOp expn
| expn binaryOp expn
| ioExpn

5.2. SYNTAX AND INFORMAL SEMANTICS OF TCFP 75

Figure 5.3: Abstract context-free syntax of a functional language built from the Inter-
action Lambda Calculus.

76 CHAPTER 5. TCFP

Randomness

Random values are generated by reading from the communication port "rand". We
place no constraints on the values read from "rand", so that the communication port
behaves as a random value generator. The function rand is defined as:

rand = read "rand".

Another useful function is flip, which randomly returns a value of True or False:

flip = (rand = 0).

That is, if rand has the value “0”, then flip has the value True; otherwise, flip has the
value False.

Note that there is no probability assigned to the generation of any particular values
with the rand function. Each value generated by rand leads to some behaviour of the
program, none of which is considered by the semantics to be any more likely than
another.

The introduction of random numbers allows us to define the concept of indefinite rep-
etition. We can define a function repeat which returns a list of zero or more repetitions
of its argument:

repeat e =
if flip then

[]
else

e : (repeat e)
end if.

Recalling that the expression e may not be referentially transparent, this function
returns a list of possibly different evaluations of e. For example, the expression:

repeat (read "stdin")

would read zero or more values from standard input, and return them in a list.

Binding Values

A basic property of Iλc is that expressions involving I/O are not necessarily referentially
transparent. This can cause difficulties when we wish to evaluate an expression, and
use its result in other expressions. Consider, for example, we wish to write a program
that reads in a number, and writes out whether it is positive, negative or zero. Our
first attempt at this program might be:

5.2. SYNTAX AND INFORMAL SEMANTICS OF TCFP 77

let x = read "stdin" in
if x = 0 then

put "Zero"
elsif x < 0 then

put "Negative"
else

put "Positive"
end if

end let

According to the semantics of Iλc, the variable x is bound to the expression “read
"stdin"”, not the value obtained by performing a read. This means that each time
x is used in the body of the let expression, a separate read operation may be per-
formed, potentially giving each occurrence of x a separate value. Because of this, the
specification above is not guaranteed to read in one value and determine its sign.

To solve this problem, we introduce the bind construct that allows variables to be
bound to values, not expressions. This can be seen as a form of strict evaluation with
respect to I/O activity. Using the new notation, we can write:

bind x = read "stdin" in
if x = 0 then

put "Zero"
elsif x < 0 then

put "Negative"
else

put "Positive"
end if

end bind

Here, the read operation is performed once, and the resulting value is bound to x.
References to x within the if expression are then references to value that was read in,
giving the expected semantics.

Binding implicitly sequences I/O. Any I/O specified in the binding is guaranteed to be
performed before any I/O in the body of the bind construct. This allows us to define
a general sequencing construct:

ioSeq [] = [].
ioSeq (e : es) = bind x = e in

x : (ioSeq es)
end bind.

The ioSeq function takes a list of expressions as argument, and guarantees that the I/O
performed in each expression will take place in sequential order. This function will be
used extensively in later definitions.

78 CHAPTER 5. TCFP

Properties of Iλc

The properties of Iλc are presented in appendix A. These properties are informally
summarized here.

Iλc contains a pure functional subset, called basic Iλc. Basic Iλc is obtained by re-
moving all I/O operations from Iλc. (These I/O operations are represented in the
ioExpn production in the grammar of figure 5.3.) Theorem A.3.2 demonstrates that
basic Iλc has the property of referential transparency, meaning that any expression is
guaranteed to have a unique value, regardless of the context in which it is evaluated.
Referential transparency, for example, guarantees that the expression “e+ e” is equiv-
alent to “2 ∗ e”, for any sub-expression e of basic Iλc. We consider this referential
transparency property to be the defining property of pure functional languages.

Basic Iλc is extended with the read, write and bind constructs presented above. In-
tuitively, it is clear that once Iλc is extended with these I/O constructs, it is longer
referentially transparent. This can be confirmed in that as simple an expression as
“read "stdin"” can take on a different value each time it is evaluated. Theorem A.3.1
proves that Iλc expressions are not in general referentially transparent.

Despite its lack of referential transparency, many of the syntactic properties associated
with the λ-calculus continue to hold in Iλc. As demonstrated in section A.3, the β-rule
is sound1; ie,

fn x->e1 end fn e2 ≡ e1[e2/x]

That is, applying a function in x to an argument e2 is equivalent to the function body
e1 where all free occurrences of x are replaced by e2, for any Iλc expressions e1 and e2,
including those involving I/O.

Similarly, other expected properties hold, such as simplification of if, case and let. For
example, for any Iλc expressions e1 and e2, including those involving I/O, it holds that:

if True then e1 else e2 end if ≡ e1

and that:

case e1 of x->e2 end case ≡ e2[e1/x]

If x does not appear free in e1, it also holds that:

let x = e1 in e2end let ≡ e2[x/e1]

There is no equivalent simplification rule, however, for the bind construct.

These properties turn out to be appropriate for the definition of extended functional
languages. As we saw in chapter 2, extended functional languages are typically based on
a pure functional language similar to basic Iλc. This pure language is then extended
with non-functional facilities, such as continuations or dialogue combinators. The

1Note that in this definition we use Iλc’s syntax for λ-abstractions. A more traditional syntax for
application would be “(λx . e1) e2”.

5.2. SYNTAX AND INFORMAL SEMANTICS OF TCFP 79

Classical Future-Temporal Past-Temporal
Connectives Connectives Connectives

¬a not a a next a a last a
a ∧ b a and b a sometime a a was sometime a
a ∨ b a or b a always a a was always a
a ⊃ b a implies b
a ≡ b a equivalent to b a b a precedes b a b a was preceded by b

a b a prequals b a b a was prequaled b
∀x . p(x) for all x . p(x) a b a follows b a b a was followed by b
∃x . p(x) exists x . p(x) a b a foquals b a b a was foqualed b

a b a together b a b a was together b

Figure 5.4: Connectives in interaction logic.

I/O features of Iλc can be used to define these extended constructs, which are not
guaranteed to possess the usual features of functional languages. When programming
within the purely functional subset of the language, however, the programmer will be
able to assume that the normal properties hold.

Perhaps surprisingly, the simple I/O features present in Iλc are sufficient to model
all of the features normally found in imperative languages and languages supporting
concurrent programming. In section 5.3, it is shown how Iλc can be used to model
sequenced I/O, variables, non-determinism, parallel processes, synchronous and asyn-
chronous communication and shared memory.

5.2.2 Interaction Logic

Iλc programs provide no restrictions on the order in which I/O events take place. To
express these constraints, a second level of description is used. Here, assertions are
written in a temporal logic about the events that occur over communication ports.
Temporal logic [36] is a modal extension of classical logic, where special temporal
operators have been added. The logic presented here, interaction logic, is loosely based
on Gabbay’s USF logic [31].

Formulae in interaction logic have an implicit reference to the current time. For exam-
ple it is possible for the formula

hungry(kjersti)

to be true in the current time (Kjersti is hungry now), to be false in 10 minutes, and
true again in an hour. This differs from classical logic, where hungry(kjersti) is either
true or false, always. We can use the whole range of standard classical operators; for
example:

hungry(kjersti) ⊃ eats(kjersti, cake)

a b, b a,
a b, b a

b a, a b,
b a, a b

a b, b a,
a b, b a,
a b, b a

a b, b a,
a b, b a,
a b, b a

Now

a b

Now

ab

Now

a
b

Now

a
b

“a” occurs in the
future, and “b” next
occurs following “a”

“a” occured in the
past, and “b” last

occured prior to “a”

“a” and “b” next
occur together

“a” and “b” last
occurred together

80 CHAPTER 5. TCFP

Figure 5.5: Intuitive semantics of sequencing operators – the timeline shows the order
of events, and gives a set of temporal formulae that are true in the presence of these
events. Now represents the current time.

says that whenever Kjersti is hungry, she eats some cake. This is a constraint: as long
as in every time instant where hungry(kjersti) holds, eats(kjersti, cake) also holds,
then the constraint holds over all time. Interaction logic additionally provides special
temporal operators. For example,

hungry(kjersti) ⊃ buy(kjersti, cake)

states that if sometime in the future Kjersti is going to be hungry, then Kjersti buys
some cake now. (The “ ” operator is read as sometime.) Temporal events can also
be sequenced, as in:

hungry(kjersti) ⊃ (eats(kjersti, cake) ¬hungry(kjersti))

which states that if Kjersti is hungry, then she must eat some cake before she stops
being hungry. (The “ ” operator is read as precedes.)

Interaction logic itself provides all of the facilities of classical first-order predicate logic,
extended with a set of temporal operators. Figure 5.4 lists the connectives provided
in interaction logic, and gives their names. As demonstrated by theorem B.3.1 in
appendix B, the traditional proof rules of classical logic all apply in interaction logic
as well.

In addition to the classical connectives, a rich set of temporal operators are provided.2

Three traditional operators are provided: a holds if a holds in the next time instant;

2As shown in appendix B, the core of interaction logic contains only the connectives , , ,
and . The remaining connectives are defined from this core as syntactic sugar.

write c1 v read c2 = v
<v, i >

c1 c2

Event: out (c1,v,i) Event: in (c2,v,i)

5.2. SYNTAX AND INFORMAL SEMANTICS OF TCFP 81

Figure 5.6: Events in TCFP – Process 1 writes value v to communication port c1; pro-
cess 2 reads value v from communication port c2. A unique identifier i is automatically
assigned to the event. At the time the value is written, out(c1, v, i) is true; at the time
the value is read, in(c2, v, i) is true.

a holds if a holds sometime in the future, and a holds if a holds henceforth. The
past-temporal reflections of these operators are provided as well – a holds if a was
true in the last time instant; a holds if a was true sometime in the past, and a
holds if a has always been true in the past.

As well as these traditional operators, interaction logic possesses operators defined
specifically to accommodate reasoning about I/O sequencing. The most basic of these
operators is precedes, defined such that a b iff a occurs sometime in the future, and b
does not occur until after a occurs. Note that a b does not necessarily imply that b
occurs at all. The past-temporal reflection of precedes is was preceded by, defined such
that a b iff a occurred sometime in the past, and any occurrences of b occurred prior
to the last occurrence of a.

Additional operators determine whether a and b next occur together (a b), or last
occurred together (a b). The prequals operator determines that if a b, then a
precedes b, or occurs at the same time. a b (follows) is the same as b a. Figure 5.5
shows pictorially the meanings and relationships between these operators.

These sequencing operators obey intuitive laws that makes them easy to reason with.
These laws include, for example, transitivity:

(a b) ∧ (b c) ⊃ (a c)

distribution of negation:

¬(a b) ≡ a b

and relation of precedes/together:

(a b) ∨ (a b) ≡ (a b)

In fact, as shown in appendix B, satisfies all the axioms of a total order, and
satisfies all the axioms of an equivalence relation.

5.2.3 Combining Interaction Logic and Iλc

The fundamental occurrences over which constraints in interaction logic are written
are I/O events. If a value is written to a communication port at some time, then

82 CHAPTER 5. TCFP

the predefined predicate out will hold over that communication port and value at that
time. Similarly, the predefined predicate in holds whenever an input event occurs
over a particular communication port. I/O events are automatically assigned unique
identifiers so that they can be distinguished.

Figure 5.6 shows an example of the events that are generated by reading and writing
a value. If process 1 writes the value v, using the Iλc expression “write c1 v”, then
an event occurs that at some time t1, the value v with unique identifier i is sent out
over communication port c1. In the world of interaction logic, this means that at time
t1, the predicate out(c1, v, i) holds. Similarly, if the same value is read by process 2 at
time t2 using the Iλc expression “read c2”, then the predicate in(c2, v, i) holds. This
notion of events provides the primary interface between Iλc and interaction logic.

The second way in which Iλc and interaction logic are combined is that terms in
interaction logic are expressions in the Iλc language. This forms a convenient way of
sharing definitions between the two formalisms. For example, if we define function hd
in Iλc to take the first element of a list:

hd (x:xs) = x.

then we can axiomatize the function in interaction logic as follows:

∀x, xs . ((hd (x : xs)) = x).

That is, for any pair of values x and xs from the Iλc value domain, the head of x
cons’d with xs is x. Here, “=” is the predefined equality predicate in interaction logic.
Because Iλc expressions are also the terms of interaction logic, it is possible to reason
about Iλc programs within the logic, thus unifying the two formalisms.

Appendix C describes the technical details of combining Iλc and interaction logic.

Interaction logic is one-sorted, meaning all values come from the the same value domain
(the value domain shared with Iλc). It can simplify some specifications, however, to
use a special sort notation within interaction logic. These sorts are defined as syntactic
sugar for interaction logic formulae. For example, if we wish to write that all birds fly,
we write:

∀x : bird . flies(x).

as a syntactic short-form for:

∀x . (bird(x) ⊃ flies(x)).

We also use syntactic short forms to help in the definition of predicates. For example,
if we wish to state that all birds are aquatic if they have webbed feet, we write:

aquatic(x : bird) ≡ webbedFeet(x).

as a syntactic short-form for:

∀x : bird . (webbedFeet(x) ⊃ aquatic(x)).

5.3. MODELLING CONCURRENCY AND INTERACTION IN TCFP 83

Any unary predicate can be used as a sort predicate in this way. Particularly useful
sort predicates are commPort, which holds over all values that are used to identify
communication ports; uid, which holds over all values used as unique identifiers, and
value, which holds over all values.

When clear from context, we allow ourselves to use this sort notation to introduce
shortened versions of predicates. For example, consider we wish to specify that at any
given time, a communication port can be used for either input or output, but not both.
This constraint can be written as:

¬∃c : commPort . (in(c) ∧ out(c)).

as an abbreviation of:

¬∃c : commPort .

((∃v1 : value, i1 : uid . in(c, v1, i1)) ∧ (∃v2 : value, i2 : uid . out(c, v2, i2))).

This section has informally introduced the syntax and semantics of TCFP. The follow-
ing sections now motivate how TCFP can be used to describe interesting properties of
languages. The definitions introduced in the next section will be used in defining the
semantics of Clock in chapter 6.

5.3 Modelling Concurrency and Interaction in
TCFP

The following sections show how TCFP can be used to model traditional forms of
concurrency and interaction. The approach in this presentation is hierarchical – it is
shown how more complex forms of interaction can be built from simpler forms using an
inheritance-based definition style. This way, the properties and theorems pertaining
to simpler forms of interaction can be reused in the more complex forms.

We first show how simple, asynchronous communication can be modeled, allowing
us to model low-level network-style communication. We then add a fifo property to
asynchronous messages, giving traditional asynchronous message passing. We then
add synchronization, leading to CSP-style communication primitives. We show how
variables can be implemented, leading to monitor-style shared memory. We further
show how TCFP can model oracles, such as random number generators, and generators
for unique identifiers.

For each style of communication, we introduce a possible language construct which
is added to our functional language, and show how the construct can be modelled in
TCFP.

5.3.1 Input and Output

This section introduces the basic facilities of input and output, based on the communi-
cation port abstraction. Figure 5.8 summarizes the new predicates and functions that

commPort -- communication ports

in (c : commPort, v : value, i : uid)
out (c : commPort, v : value, i : uid)
io (c : commPort, v : value, i : uid)
nextIn (c : commPort, v : value, i : uid)

c : commPort

var -- persistent state

hasValue (x : var)
val (x : var, v : value)

v : var oracle -- value generator
o : oracle ?

flag -- value generator and flag
 synchronization

raised (f : flag)
setFlag (f : flag)

f : flag

wire -- lossless interprocess
 communication

inWire (w : wire, v : value, i : uid)
outW (w : wire, v : value, i : uid)
connected (c : commPort, w : wire)

w : wire

stream -- fifo interprocess
 communication

pending (s : stream, v : value, i : uid)
s : streamcsp -- synchronous

interprocess
communication

h : csp !

84 CHAPTER 5. TCFP

Figure 5.7: Abstractions for communications, synchronization and persistent state can
be defined in TCFP. Our definition is based on inheritance, where higher-level abstrac-
tions inherit the definitions and properties of more primitive abstractions. This figure
shows the abstractions defined in section 5.3; the abstractions are defined as predicates
(e.g., the stream predicate represents fifo, lossless communication streams); predicates
define operations on the abstractions (e.g., in and out hold when I/O operations take
place.)

commPort -- Communication Ports

New Predicates:
in (c : commPort, v : value, i : uid) Value v read from commPort c, with uid i
out (c : commPort, v : value, i : uid) Value v written to commPort c, with uid i
io (c : commPort, v : value, i : uid) Value v read or written from/to commPort c, with uid i

in Occurs (c : commPort, v : value, i : uid) Input event occurs either now, in the past, or in the future
outOccurs (c : commPort, v : value, i : uid) Output event occurs either now, in the past, or in the future
ioOccurs (c : commPort, v : value, i : uid) I/O event occurs either now, in the past, or in the future

next In (c : commPort, v : value, i : uid) Next input over c will be value v, with uid i
lastIn (c : commPort, v : value, i : uid) Last input over c was value v, with uid i
nextOut (c : commPort, v : value, i : uid) Next output over c will be value v, with uid i
lastOut (c : commPort, v : value, i : uid) Last output over c was value v, with uid i

New Functions:
read c Read a value from communication port c
write c v Write value v to communication port c
rand Return a random value
flip Return True of False randomly
repeat e Return a random number of repetitions of argument e

5.3. MODELLING CONCURRENCY AND INTERACTION IN TCFP 85

Figure 5.8: Summary of the commPort abstraction introduced in section 5.3.1

are defined in this section.

As was shown in figure 5.6, the basis of interaction in TCFP is the event. Events
correspond to either input or output over some communication port. Each event is au-
tomatically tagged with a unique identifier distinguishing it from all other events. In
Iλc, events are generated using the predefined operations read and write. The expres-
sion “read c” results in a value being read from the communication port c, while the
expression “write c e” results in the value e being sent over the communication port c.
In both cases, the message generated by the read or write operation is automatically
given a unique tag to distinguish it from all other messages.

In interaction logic, it is possible to reason about events using the predefined predicates
in and out. The predicate in(c, v, i) holds at a given time if at that time, the value v
with unique identifier i is read from communication port c. The predicate out(c, v, i)
holds if the value v with unique identifier i is written to the communication port c. We
also define the io predicate, which holds when either an input or an output event take
place over a communication port:

io(c : commPort, v : value, i : uid) ≡ in(c, v, i) ∨ out(c, v, i). (5.1)

Communication Ports

All I/O events take place over some communication port. Communication ports satisfy
a series of properties – for example, only one I/O event can occur over a given port at
any given time, and all output events are tagged with an identifier that is guaranteed
to be unique. We define these properties using constraints in interaction logic. These
constraints define properties of a predicate commPort, which is used to identify which
values are communication port names.

86 CHAPTER 5. TCFP

We define two constraints that specify that only one I/O event can take place over a
given port at any given time. This is accomplished by saying that it is impossible for
both an input and output event to take place over a communication port at a given
time, and that whenever two I/O events take place at the same time over the same
communication port, they must in fact be the same event:

∀c : commPort . ¬(in(c) ∧ out(c)). (5.2)

∀c : commPort, v, v′ : value, i, i′ : uid . (5.3)

io(c, v, i) ∧ io(c, v′, i′) ⊃ v = v′ ∧ i = i′.

A series of constraints is then required to guarantee the uniqueness of tags. Informally,
the rules about tags are as follows: when a value is output over a port, it is assigned a
unique tag. No other output event can occur using the same tag. The tag is associated
with the value written. Because of this, input events may use the same tag, but must
correspond to a read of the same value written with the tag:

∀c, c′ : commPort, i : uid . out(c, i) ∧ out(c′, i) ⊃ c = c′. (5.4)

∀v, v′ : value, i : uid . out(v, i) ∧ in(v′, i) ⊃ v = v′. (5.5)

∀i : uid . out(i) ⊃ ¬ out(i) ∧ ¬ out(i). (5.6)

This description of communication ports and their properties forms the basis of the
I/O and communication mechanisms we use in TCFP. The more complex forms of
interactions we define will be constructed using communication ports, and hence will
inherit all of their properties and axioms.

Useful I/O Predicates

Building from the basic in and out predicates, we can define predicates over I/O events
that will prove useful in later sections. First, we define predicates to specify that an
I/O operation occurs at some time during the execution of the program, either in the
past, the present or the future:

inOccurs(c : commPort, v : value, i : uid) (5.7)

≡ in(c, v, i) ∨ in(c, v, i) ∨ in(c, v, i).

outOccurs(c : commPort, v : value, i : uid) (5.8)

≡ out(c, v, i) ∨ out(c, v, i) ∨ out(c, v, i).

ioOccurs(c : commPort, v : value, i : uid) (5.9)

≡ inOccurs(c, v, i) ∨ outOccurs(c, v, i).

The next input event to occur over a communication port is characterized by the fact
that no input occurs on that communication port between now and the time of the
input:

nextIn(c : commPort, v : value, i : uid) (5.10)

≡ ∀v′ : value, i′ : uid . (v′ ̸= v ∨ i′ ̸= i) ⊃ (in(c, v, i) in(c, v′, i′)).

wire -- Asynchronous Interprocess Communication

New Predicates:
connected (c : commPort, w : wire) Values written to commPort c are entered into wire w
outw (w : wire, v : value, i : uid) Value written to the commPort which is connected to w
inWire (w : wire, v : value, i : uid) Value has been written to w, but has not yet been read

p2
w

p1
c

5.3. MODELLING CONCURRENCY AND INTERACTION IN TCFP 87

Figure 5.9: Summary of the wire abstraction introduced in section 5.3.2

The last input is defined as the last input to occur in the past:

lastIn(c : commPort, v : value, i : uid) (5.11)

≡ ∀v′ : value, i′ : uid . (v′ ̸= v ∨ i′ ̸= i) ⊃ (in(c, v′, i′) in(c, v, i)).

The predicates nextOut and lastOut are defined similarly:

nextOut(c : commPort, v : value, i : uid) (5.12)

≡ ∀v′ : value, i′ : uid . (v′ ̸= v ∨ i′ ̸= i) ⊃ (out(c, v, i) out(c, v′, i′)).

lastOut(c : commPort, v : value, i : uid) (5.13)

≡ ∀v′ : value, i′ : uid . (v′ ̸= v ∨ i′ ̸= i) ⊃ (out(c, v′, i′) out(c, v, i)).

5.3.2 Processes and Asynchronous Communication

In Iλc, any expression can be a process. Since Iλc has no specified control flow,
any pair of expressions can be evaluated sequentially in any order, or concurrently.
Constraints in the interaction logic can be used to reduce concurrency, but nothing
special is required to introduce concurrency – it is simply there as part of Iλc.

Communication between processes is modelled via read and write events over com-
munication ports. The properties of the ports are augmented with constraints defining
the desired communication properties.

The first form of communication we will consider is simple asynchronous message pass-
ing. Intuitively, this is the form of communication one might find in a distributed
systems environment, where when sending a message from one process to another, it
is guaranteed that messages eventually arrive, but where the order of arrival is not
guaranteed.

The new concept introduced to support this form of communication is called a wire.
Intuitively, a wire is a communication port with a buffer. As messages arrive addressed
to the communication port, they are stored in the buffer until they are read. A predicate

stream -- Fifo Asynchronous Interprocess Communication

New Predicates:
pending (s : stream, v : value, i : uid) Value is at the head of the fifo queue represented by stream s

p2
s

p1
c

88 CHAPTER 5. TCFP

Figure 5.10: Summary of the stream abstraction introduced in section 5.3.3

inWire is defined that determines whether a given message has been sent but not yet
received.

A second communication port can be attached to a wire, forming an asynchronous
communication link. The connected predicate indicates whether a communication port
is currently connected to a wire. A predicate outw is defined that specifies whether
output has been performed over the communication port currently connected to the
wire.

outw(w : wire, v : value, i : uid) (5.14)

≡ ∃c : commPort . (connected(c, w) ∧ out(c, v, i)).

∀c, c′ : commPort, w : wire . (5.15)

connected(c, w) ∧ connected(c′, w) ⊃ c = c′.

inWire(w : wire, v : value, i : uid) (5.16)

≡ outw(w, v, i) ∧ ¬in(w, v, g).

∀w : wire, v : value, i : uid . (5.17)

in(w, v, g) ⊃ inWire(w, v, g).

From these definitions, two theorems can be proven. The first states that only one
message can be read at a time. That is, if two messages are “in” the wire, waiting to
be read, it is not possible for them to be read at the same time:

∀w : wire, i, i′ : uid . outw(w, i) ∧ outw(w, i′) ⊃ i′ = i. (5.18)

The second states that a message can be read exactly once. That is, if a message is
read at the current time, it can be never be read again:

∀w : wire, v : value, i : uid . in(w, v, i) ⊃ ¬inWire(w, v, i). (5.19)

5.3.3 Stream Communication

The wire-based communication introduced in the last section had one major shortcom-
ing – messages sent from one process to another were not guaranteed to be read in the

5.3. MODELLING CONCURRENCY AND INTERACTION IN TCFP 89

same order that they were sent. While this form of communication adequately models
low-level network communication (hence the term wire), we will wish to add further
constraints to model higher-level communication primitives.

The stream abstraction augments the properties of wires to include a fifo property,
where messages arrive in the same order they were sent. Streams introduce a new
predicate, pending, which indicates whether a message is the next message to be read
from a stream buffer. First, streams inherit all the properties of wires:

∀s : stream . wire(s). (5.20)

The pending predicate is defined to be true of the oldest message in the stream buffer.
That is, a pending message must be in the buffer (inWire), and and other messages in
the buffer must have arrived later than the pending message:

pending(s : stream, v : value, i : uid) (5.21)

≡ inWire(s, v, i)

∧ ∀i′ : uid . ((inWire(s, i′) ∧ i ̸= i′) ⊃ (outw(s, i) outw(s, i′))).

Then the order of inputs from a stream is constrained to match the order of the outputs
to the stream:

∀s : stream, v : value, i : uid . (in(s, v, i) ⊃ pending(s, v, i)). (5.22)

To ensure us that this definition of streams indeed matches our intuition of fifo buffers,
the following theorems about streams can be proven. First, only one message can be
pending on a stream at any time – that is, there can be only one oldest element:

∀s : stream, v, v′ : value, i, i′ : uid . (5.23)

(pending(s, v, i) ∧ pending(s, v′, i′) ⊃ v = v′ ∧ i = i′).

Secondly, removing a message from a stream means that it is no longer pending, and
will never be pending again:

∀s : stream, v : value, i : uid . (in(s, v, i) ⊃ ¬pending(s, v, i)). (5.24)

Stream-based communication is appropriate for modelling asynchronous message pass-
ing systems, such as Unix’s stream sockets, or the X Client-Server communication
protocol.

5.3.4 Synchronous Communication

Another popular form of process communication is synchronous communication. This
form is embodied in theoretical calculi, such as Hoare’s CSP, and in practical languages
such as Ada and Occam. The key property of synchronous communication is that the
send and receive operations are synchronized – that is, if one process sends a message
to another one, the sending process must wait until the receiving process has taken the
message.

csp -- Synchronous Interprocess Communication

New Functions:
send h v Sends value v over csp channel h
receive h Receives value over csp channel h

“receive h”“send h v” ! h

90 CHAPTER 5. TCFP

Figure 5.11: Summary of the csp abstraction introduced in section 5.3.4

Synchronous communication in fact combines two operations into one construct – com-
munication and synchronization. Synchronization is particularly useful in the presence
of shared resources, as it allows one process to force another one to wait until it is
finished with a shared resource.

In TCFP, we model synchronous communication with the csp abstraction. This ab-
straction builds on the properties of wires, but forces a sending process to wait until
the receiving process has read the message that was sent. In traditional systems, a
“waiting” process performs no computation whatsoever. In TCFP, however, a waiting
process is restricted only to performing no I/O. Since I/O is the only form of side-effect
available in TCFP, a process that performs no I/O is indistinguishable from one that
performs no computation at all.

We define that the csp predicate inherits all the properties of wires:

∀h : csp . wire(h). (5.25)

We then define the property that I/O over a csp channel must be synchronous. That
is, a message must be received at the same time it is sent; or, a process must wait until
its receiver is ready to receive before it is permitted to send a message:

∀h : csp, v : value, i : uid . (outw(h, v, i) ≡ in(h, v, i)). (5.26)

5.3.5 Variables and Shared Memory

The TCFP nomenclature of communication ports, reads and writes tends to imply
that all communication must be of a message-passing style. In fact, TCFP can used
to model other forms of communication, such as variables, random number generators,
and oracles. Here we define how variables can be modeled.

Variables provide the facility to store a value and later retrieve it. Different processes
may set and access the same variable, thereby providing shared memory between pro-
cesses.

Variables are built from communication ports:

∀x : var . commPort(x). (5.27)

var -- Variables (Persistent, mutable state)

New Predicates:
hasValue (x : var) Variable x has a value
val (x : var, v : value) Variable x has value v

New Functions:
assign x e Assign e to variable x
val x Return value of variable x

x
assign x v

val x

5.3. MODELLING CONCURRENCY AND INTERACTION IN TCFP 91

Figure 5.12: Summary of the var abstraction introduced in section 5.3.5

Variables may be set by writing to their communication port. Reading from a variable’s
communication port returns the last value set to the variable. A variable’s value can be
read multiple times after it has been set, corresponding to each access of the variable.
This multiple-read behaviour distinguishes variables from the message passing we have
seen earlier, where each message could be read only once.

We first define that a variable has a value iff a value has been set to the variable:

hasValue(x : var) ≡ out(x). (5.28)

We then define that the value of a variable to be the last value written to the variable.
That is, no other value was written to the variable since the value was written:

val(x : var, v : value) ≡ ∀v′ : value . (out(x, v′) out(x, v)). (5.29)

We then define that any value read from a variable must be the variable’s value:

∀x : var, v : value . (in(x, v) ⊃ val(x, v)). (5.30)

From these definitions, we can prove as a theorem that if a variable has no value, it is
not possible to input from it:

∀x : var . ¬hasValue(x) ⊃ ¬∃v : value . val(x, v). (5.31)

It is then easy to introduce variables into a functional language. Assigning to a variable
and referring to a variable’s value can be accomplished through the functions assign
and val, which can be defined as follows:

assign x e = write x e.
val x = read x.

oracle -- Unique value generator
flag -- Unique value generator with synchronization

New Predicates:
raised (f : flag) Flag f is raised
setFlag (f : flag) Set flag f

? o f

92 CHAPTER 5. TCFP

Figure 5.13: Summary of the oracle and flag abstractions introduced in section 5.3.6

5.3.6 Oracles and Flags

Sometimes within a functional program, it is necessary to obtain a value that is guar-
anteed to be unique. The oracle abstraction is provided for this purpose. Whenever
a read is performed from an oracle, it is guaranteed that the value read has not been
read from any other oracle. Example applications (as will be seen in chapter 6) include
the assignment of a unique group identifier to a set of I/O events.

Oracles are built from communication ports:

∀o : oracle . commPort(o). (5.32)

Values read from oracles are unique:

∀o, o′ : oracle, v : value . (5.33)

(in(o, v) ⊃ (¬ in(o′, v) ∧ ¬ in(o′, v) ∧ (in(o′, v) ⊃ o = o′))).

Flags are a kind of oracle supporting a blocking semantics. Similarly to oracles, reading
from a flag delivers a unique value. However, it is only possible to read from a flag
when it has been explicitly set. As will be seen in chapter 6, flags can be used to trigger
actions such as the computation of a Clock view function.

Flags are based on oracles:

∀f : flag . oracle(f). (5.34)

A flag is raised if it has been set, and not yet read:

raised(f : flag) ≡ ∃v : value . (setFlag(f, v) in(f)). (5.35)

It is only possible to read from a flag if it has been raised:

∀f : flag . (in(f) ⊃ raised(f)). (5.36)

5.4. CONCLUSION 93

5.4 Conclusion

This section has introduced the TCFP framework. TCFP is used to specify the se-
mantics of extended functional languages, and to provide a framework for reasoning
about such extended languages.

TCFP is novel in that it combines an extended λ-calculus with a temporal logic. As was
seen in the last section, the Iλc calculus allows the introduction of I/O, processes, pro-
cess communication, non-determinism and variables into functional languages, while
still preserving many of the traditional properties of λ-calculus, such as the soundness
of β-reduction. The interaction logic is used to restrict the possible behaviours of Iλc
programs. In the preceding sections, we have seen how interaction logic is used to in-
troduce synchronization, process connection and sequentialization, and the mutability
properties of variables. The examples have shown that TCFP’s generate-and-restrict
approach to defining semantics is general enough to specify all common forms of inter-
action and synchronization, while allowing relatively simple specifications.

Chapter 6 uses TCFP to define the semantics of Clock. Chapter 7 uses TCFP to
investigate Clock’s properties, and in particular, to prove the declarative properties of
Clock discussed in chapter 4.

94 CHAPTER 5. TCFP

Chapter 6

Semantics of the Clock Language

We now take advantage of the TCFP framework developed in chapter 5 in order to
formally define the semantics of the Clock language. These semantics fully capture the
meaning of Clock programs, specifying precisely what behaviour is expected from the
execution of a program.

TCFP is an appropriate formalism for expressing Clock’s semantics, since the language
contains non-deterministic constructs that are difficult to represent using traditional
methods. For example, the language guarantees that whenever a component’s view
becomes out of date, the display must be updated. The language leaves it open, how-
ever, as to what order display updates may take place; similarly, an implementation
is permitted to update the display more often than is strictly necessary. User inputs
can be processed purely sequentially, but the language also permits concurrent im-
plementations. The TCFP definition of Clock specifies only what must happen, and
sometimes in what order. If the order is unimportant, the implementor is left free to
choose. The language semantics generally follow an approach of specifying that any-
thing can happen, as long as certain restrictions are observed. This approach maps in
a straight-forward manner to TCFP’s generate and restrict paradigm.

The semantic description is structured in layers. The lowest layer describes the com-
ponents themselves, while the highest layer describes concurrency issues:

Layer I: Component Definition: describes the basic properties of components
themselves, including what I/O ports they possess.

Layer II: Connectivity: specifies how components are connected together to form
an architecture tree.

Layer III: Threads: describes how sets of I/O events are grouped together.

Layer IV: Routing: describes how updates, requests and subviews are routed.

Layer V: Triggering: specifies when invariants and views must be updated.

Layer VI: Sequencing: specifies constraints on the order in which actions may be
performed.

95

Architecture: Constraint Equivalents:

ehClass (“Greetings”).
ehClassUses (“Greetings”, “greet”).

ehClass (“GreetingsBox”).

rhClass (“Id”).
rhClassTakesUpdate (“Id”, “setMyId”)
rhClassTakesRequest (“Id”, “myId”).

eventHandler (“e1”, “Greetings”).
isRoot (“root”).

eventHandler (“e2”, “GreetingsBox”).
ehChildOfEh (“e2”, “e1”, “greet”).

requestHandler (“r1”, “Id”).
rhBelongsToEh (“r1”, “e2”).

96 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

Figure 6.1: We assume that predefined predicates are available to specify the basic
composition of the program’s architecture. Here, it is shown how predefined predicates
define a simple architecture from chapter 3. The semantics of the Clock language are
built from these predefined predicates.

6.1 Layer I: Component Definition

The first step in defining the TCFP semantics of Clock is to define the basic components
of Clock architectures. As we saw in chapters 3 and 4, Clock architectures are drawn
by direct manipulation in the ClockWorks programming environment [67]. In layer I of
the Clock semantics, we first show how architectures can be represented by constraints
in interaction logic, and then define the TCFP semantics of event handlers and request
handlers.

6.1.1 Architectures as Constraints

As it is inconvenient to directly define the semantics of an architecture that has been
graphically designed, we assume that predefined predicates exist to express the struc-
ture of architecture diagrams. Figure 6.1 shows how an architecture defined in chapter 3
is mapped into architecture constraints based on these predefined predicates. Since the
translation from architecture diagrams to constraints is straightforward, we will simply
assume that for any given architecture, the constraints are predefined.1

1It is interesting to note that these constraints are not only of theoretical interest. ClockWorks
uses the constraint format to save architectures in a file. The Clock compiler uses this constraints file
to implement the architecture.

6.1. LAYER I: COMPONENT DEFINITION 97

Predicates Representing Classes

The ClockWorks environment is based on a prototype-instance model of classes [72],
where any component instance can also be used as a class. In the Clock semantics,
we make the distinction between class and instance more clear – the name given to
each component in the architecture diagram is assumed to be the component’s class.
A unique name must then be assigned to each instance of the class. For example, in
figure 6.1, Greetings, GreetingsBox and Id are all class names. It is not necessary to
show the name of the instance of these components, since the architecture diagram
itself already distinguishes the components.

The second name shown in the architecture diagram is a subview name, which an event
handler’s parent uses to refer to the event handler’s view. The subview names are part
of the class definition of the parent. For example, in figure 6.1, the Greetings event
handler refers to the view of the GreetingsBox by the subview name greet.

We assume that the predicate ehClass is defined so that ehClass(ec) holds iff ec is an
event handler class; similarly, rhClass(rc) holds iff rc is an request handler class. The
predicate request(rq) holds iff rq is a request, and update(u) holds iff u is an update.

The interfaces of component classes are defined through the predicates:

ehClassTakesUpdate(ec : ehClass, u : update)
rhClassTakesUpdate(rc : rhClass, u : update)
rhClassTakesRequest(rc : rhClass, rq : request)

where ehClassTakesUpdate (ec, u) holds iff ec handles the input u, rhClassTakesUpdate
(ec, u) holds iff rc handles the update u, and rhClassTakesRequest (rc, rq) holds iff rc
handles the request rq. As can be seen in figure 6.1, the definition of these predicates
comes straight from the architecture diagram drawn by the user.

The final part of the interface of event handler components is what subviews the com-
ponent may use. A predicate is assumed to be defined from the subview definition of
an event handler class, so that if event handler class ec uses a subview sv, then it holds
that ehClassUses(ec, sv). From this, we define a predicate svid identifying all subview
names:

svid(sv) ≡ ∃ec : ehClass . ehClassUses(ec, sv). (6.1)

Predicates Representing Components

Components are instantiated from classes. We assume that predefined predicates exist
to specify what components exist within the architecture. In particular, we assume
the predicate eventHandler(e, ec) holds iff the event handler e has been declared to
be of class ec, and that requestHandler(r, rc) holds iff the request handler r has been
declared to be of class rc.

We can then define some useful predicates describing components. The eh and rh
predicates hold over all event and request handler instances respectively; these predi-
cates are particularly useful as sort predicates. The component predicate identifies all

98 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

components, i.e., all event and request handlers:

eh(e) ≡ ∃ec : ehClass . eventHandler(e, ec). (6.2)

rh(r) ≡ ∃rc : rhClass . requestHandler(r, rc). (6.3)

component(c) ≡ eh(c) ∨ rh(c). (6.4)

The request/update interface of a component is the same as the interface of the com-
ponent’s class. We define predicates to describe components’ interfaces based on the
equivalent predicates over classes:

ehTakesUpdate(e : eh, u : update) (6.5)

≡ ∃ec : ehClass . eventHandler(e, ec) ∧ ehClassTakesUpdate(ec, u).

ehTakesSubview(e : eh, sv : svid) (6.6)

≡ ∃ec : ehClass.eventHandler(e, ec) ∧ ehClassUses(ec, sv).

rhTakesUpdate(r : rh, u : update) (6.7)

≡ ∃rc : rhClass.requestHandler(r, rc) ∧ rhClassTakesUpdate(rc, u).

rhTakesRequest(r : rh, rq : request) (6.8)

≡ ∃rc : rhClass.requestHandler(r, rc) ∧ rhClassTakesRequest(rc, rq).

Predicates to Express Architecture Structure

The structure of an architecture is defined using the predefined predicates
rhBelongsToEh, ehChildOfEh, and root. As seen in figure 6.1, the definition of these
components comes straight from the architecture diagram.

The predicate rhBelongsToEh specifies where request handlers are placed in the ar-
chitecture. For example, in figure 6.1, rhBelongsToEh(“r1”, “e2”). If a component ec
is a child of component ep, and if ep refers to this component’s subview as sv, then
ehChildOfEh(ec, ep, sv) holds. In figure 6.1, ehChildOfEh(“e2”, “e1”, “greet”). Finally,
if an event handler e is the root of the the tree, then root(e) holds. In figure 6.1,
root(e1) holds, identifying the Greetings component as the root of the tree.

6.1.2 Semantics of Event Handlers

Following the generate and restrict approach of TCFP, components are specified in two
parts – an Iλc function generates a set of possible behaviours for the component, and
constraints in interaction logic restrict the behaviours to the correct ones.

Event handlers are built from the TCFP abstractions developed in chapter 5. As
shown in figure 6.2, event handlers are built from communication ports, streams, wires,
variables, flags and oracles. The exact function of all of these parts will be made clear
in the following sections. For now, we provide an overview of the definition.

For simplicity’s sake, we assume the existence of functions giving unique names to each
of the ports used in an event handler. For example, “updtIn e” is the input-port for
updates sent to event handler e.

subView e s1 subView e sn...

invTrigger e

view Trigger e

updtOut e

reqOut e

respIn e

viewOut e

updtIn e

Legend: f lag

? oracle
var

stream

wire

commPort

initVal e

? eventId e

? rqId e

? initId e

6.1. LAYER I: COMPONENT DEFINITION 99

Figure 6.2: The TCFP definition of an event handler component e. The event handler
takes inputs on an updtIn port. Updates are sent on an updtOut port; requests are
sent on a reqOut port, and responses are returned on a respIn port. The final view
is delivered on the viewOut port. The invTrigger and viewTrigger are flags used to
determine when the invariant and view functions must be updated. A series of subview
variables is used to represent the values of any subviews the event handler may have.

The basic function of an event handler is to provide a view and to respond to input.
Whenever the component has a new view to report, it is written to the port “viewOute”.
Whenever a new input arrives at the component, it is queued in the stream “updtIn e”
for fifo processing.

Event handler functions may require that updates and requests be sent to components
higher up the tree. These updates and requests are sent out over the communication
ports “updtOute” and “reqOute” respectively. Responses returned from requests arrive
in the wire “respIn e”. Note that the use of a wire for responses implies that responses
are not necessarily received in the order in which they were sent.

An event handler’s view function may require the views of children of the component;
these childrens’ views are referred to as subviews. The subview of each child s is stored
in a variable “subView e s”.

The initializing value of the component is stored in a variable “initVal e”, for use in
the components initially function.

As is explained in section 6.3, sets of I/O events are logically grouped into threads
according to their purpose. For example, the I/O used to process a single re-
quest/response pair is grouped into a request thread, so that the response can be
correctly matched to the request. Similarly, all I/O used to compute a view function
is grouped into a view thread. Identifiers for these threads are obtained from a set of
oracles and flags (see sections 5.3.6 and 5.3.6.) For example, the oracle “rqId e” assigns
identifiers to request threads; the oracle “eventIde” assigns identifiers to input threads.

100 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

Flags are used to assign identifiers to invariant and view threads. This allows us to
explicitly trigger the start of these threads when they are required – for example,
triggering a view update when a component’s view is out of date. This use of triggers
is detailed in section 6.5.

The structure of event handlers, as shown in figure 6.2, is specified as follows:

∀e : eh . (6.9)

stream(updtIn e)

∧ commPort(updtOut e)

∧ commPort(reqOut e) ∧ wire(respIn e)

∧ commPort(viewOut e)

∧ oracle(eventId e) ∧ oracle(rqId e) ∧ oracle(initId e)

∧ flag(invTrigger e) ∧ flag(viewTrigger e)

∧ var(initVal e)

∧ ∀s . ehTakesSubview(e, s) ⊃ var(subView e s).

The Iλc code for event handlers is shown in figure 6.3. The function mkEHC makes
an event handler class. The mkEHC function takes four functions as parameters, the
event, invariant, initially and view functions provided by the Clock programmer. The
resulting event handler class function can be applied to an event handler name to
instantiate an event handler component.

The details of the Iλc code are explained throughout the remaining sections of this
chapter. The basic structure, however is as follows. The main body of the function
can be stated in pseudo-code as:

repeat oneOf [
initialize, processNextInput, doInvariant, updateView

]

That is, the component performs an indefinite series of initializations, inputs, invariants
and view updates. There is nothing in the Iλc code to specify such obvious constraints
as that the initialization should be performed only once, before any other computation
begins, or that the view updates must be performed whenever the view changes – such
constraints are encoded in interaction logic, and will appear in later sections.

All I/O is performed over the ports that were defined in figure 6.2. For example, view
updates are issued by sending them over the port “viewOut e”; in figure 6.3, this
behaviour is encoded in the definition:

sendView = write (viewOut e).

Similarly, updates are written to the port “updtOut e”, as captured in the definition of
sentUpdt.

Both the initially and view functions may issue requests, and therefore take a request
function as parameter. This function, requestFn, is defined to write a given request to

mkEHC eventFn invariantFn initiallyFn viewFn =
 fn e ->
 let eventThread = read (eventId e),
 invariantThread = read (invariantTrigger e),
 viewThread = read (viewTrigger e),
 initThread = read (initId e),
 requestThread = read (rqId e),

 requestFn rq =
 group requestThread
 bind s = write (reqOut e) rq in
 read reqIn
 end bind,

 subviewFn svName = val (subview e svName),

 sendUpdt = write (updtOut e),
 sendView = write (viewOut e),

 handleEvent = eventFn requestFn,
 doInvariant = invariantFn requestFn,
 doInitially = initiallyFn requestFn,
 newView = viewFn requestFn subviewFn
 in
 repeat oneOf [
 let initialValue = val (initVal e) in
 group initThread (
 sendUpdt (initiallyFn initialValue)
)
 end let,

 let nextEvent = read (updtIn e) in
 group eventThread (
 sendUpdt (eventFn nextEvent)
)
 end let,

 group invariantThread (
 sendUpdt doInvariant
)

 group viewThread (
 sendView newView
)
]
 end let
 end fn.

6.1. LAYER I: COMPONENT DEFINITION 101

Figure 6.3: An Iλc function specifying the behaviour of event handlers. When combined
with the temporal constraints represented in figure 6.2, this function gives the semantics
of event handler components.

102 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

the reqOut e port, and read the response from the reqIn e port. Section 6.4.2 describes
how it is guaranteed that the correct response is always read for a given request.

The group function is used to group together I/O activity into threads. For example,
the execution of the view function is grouped into a view thread. Reading the thread
id from the “viewTrigger e” flag is used to guarantee that views are updated at the
correct time (as defined in section 6.5.)

The values of subviews are read from the appropriate subview variable. A subview
function is defined to read a given subview:

subviewFn svName = val (subview e svName).

That is, the function reads the subview value from the appropriate variable. This
subview function is passed as a parameter to the view function. Section 6.4.1 shows
how the views of child components are connected to subview variables.

The Iλc definition of figure 6.3 together with the temporal constraints shown in fig-
ure 6.2 give the basic definitions of event handler components. These definitions do not
specify the complete behaviour of Clock programs – for example, it is specified that
after issuing a request, the event handler reads some response, but not what response.
Further connectivity and routing constraints are required to specify this. Similarly,
the definitions imply that an event handler generates views, but not when – further
triggering and sequencing constraints will answer these questions also.

Figure 6.2 shows that each event handler has a variable representing its view. An
architecture also has a variable representing the view of the entire architecture tree.
This view is represented in a special variable "rootView":

var("rootView"). (6.10)

Section 6.4.1 shows how the value of this view is set.

6.1.3 Semantics of Request Handlers

The semantics of request handlers are structured in a similar way to those of event
handlers. Figure 6.4 shows the structure of the interaction logic description of a request
handler. Updates and requests arrive on the streams “updtIn r’ and “reqIn r” for fifo
processing. Responses are returned via the communication port “respOut r”.

The current state of the request handle is represented in the variable “state r”. The
oracles “rqId r” and “updtId r” are used to group the I/O used to perform a particular
request or update into a thread. The flag “initTrigger e” is used to group the I/O used
to process the request handler’s initially function, and to determine when the request
handler should be initialized.

respOut r

updtIn r

reqIn r

state r

? rqId r

? updtId r

initTrigger e

6.1. LAYER I: COMPONENT DEFINITION 103

Figure 6.4: The TCFP representation of a request handler r. The state of the request
handler is maintained in a state variable. Updates and requests are received from
updtIn and reqIn ports respectively; responses are returned via a respOut port. (For
legend see figure 6.2.)

The structure of figure 6.4 can be formalized with the following constraints:

∀r : rh . (6.11)

stream(updtIn r)

∧ stream(reqIn r) ∧ commPort(respOut r)

∧ var(state r)

∧ oracle(rqId r) ∧ oracle(updtId r)

∧ flag(initTrigger r).

The Iλc code implementing a request handler class is found in figure 6.5. The mkRHC
function takes three functions as parameters, the request, update and initially functions
written by the user. The resulting function takes a request handler name as parameter,
and creates a request handler instance. In pseudo-code, the basic structure of mkRHC
is the following:

repeat oneOf [
handleRequest, handleUpdate, initialize

]

That is, the function indefinitely handles updates, requests, and initializes itself.

The requestFn parameter is a function that takes the current state and a request as
parameters, and returns a response. To evaluate a request, therefore, mkRHC reads a
request (with the expression “read (reqIn r)”), reads the current value of the state
variable (“val (state r)”), and writes the response to the response port (using the
expression “write (respOut r)”).

Similarly, updates are performed by applying the updateFn parameter to the current
state and update, and assigning the new state back to the state variable (with the
expression “assign state newState”). Initialization is performed by assigning the
initial state to the state variable (“assign state initialState”).

mkRHC requestFn updateFn initialState =
 fn r ->
 let requestThread = read (rqId r),
 updateThread = read (updtId r),
 currentState = val (state r),
 initiallyThread = read (initTrigger r)
 in
 repeat oneOf [
 let rq = read (reqIn e),
 sendResponse = write (respOut r)
 in
 group requestThread (
 sendResponse (requestFn currentState rq)
)
 end let,

 let updt = read (updtIn r) in
 group updateThread
 let newState = updateFn currentState updt in
 assign state newState
 end let
 end let,

 group initiallyThread (
 assign state initialState
)
]
 end let
 end fn.

104 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

Figure 6.5: Code implementing a request handler class.

The oracles and flags rqId, updtId, and initTrigger are used to group together sets of
I/O activities into threads. As will be seen in section 6.5, the initTrigger flag is used
to make sure that the request handler is initialized before it is used.

6.2 Layer II: Connectivity

The last section specified the basic structure of Clock components, and provided pred-
icates to state what components exist to make up an architecture. When specifying
architectures, Clock programmers also specify how components are connected together
– which components are children of other components, and where request handlers
fit. This section defines the concept of a well-formed architecture, through constraints
restricting how components may be connected. If these constraints are satisfied, the
architecture is guaranteed to be well-formed. The constraints express restrictions that,
for example, architectures must be tree structured, have finite depth and breadth, that
subviews must be connected to their children, and so forth. In fact, every architecture
that can be created within ClockWorks satisfies these well-formedness constraints. An
architecture is well-formed if the following constraints hold:

An architecture has one root:

∃e : eh . (root(e) ∧ ∀e′ : eh . (root(e′) ⊃ e′ = e)). (6.12)

6.2. LAYER II: CONNECTIVITY 105

Every event handler is either the root, or has one parent:

∀ec : eh . (root(ec) ∧ ¬∃ep : eh . ehChildOfEh(ec, ep) (6.13)

∨ ¬root(ec) ∧ ∃ep : eh . (ehChildOfEh(ec, ep)

∧ ∀e′p : eh . (ehChildOfEh(ec, e
′
p) ⊃ e′p = ep))).

Every request handler belongs to one event handler:

∀r : rh . ∃e : eh . (6.14)

(rhBelongsToEh(r, e) ∧ ∀e′ : eh . (rhBelongsToEh(r, e′) ⊃ e′ = e)).

If an event handler has multiple local request handlers, their request/update interfaces
must be disjoint:

∀r1, r2 : rh, e : eh . (6.15)

rhBelongsToEh(r1, e) ∧ rhBelongsToEh(r2, e)

⊃ ¬∃rq : request . (rhTakesRequest(r1, rq) ∧ rhTakesRequest(r2, rq)).

For every subview of an event handler, there is one child:

∀ep : eh, sv : svid . ehTakesSubview(ep, sv) (6.16)

⊃ ∃ec : eh . (ehChildOfEh(ec, ep, sv)

∧ ∀e′c : eh . (ehChildOfEh(e′c, ep, sv) ⊃ e′c = ec)).

It finally remains to require that all the event handlers are arranged in a single tree
structure, where root(e) holds of the tree root e. We first defined a predicate to span
the tree:

inTree(ec : eh) ≡ root(ec) ∨ ∃ep : eh . (ehChildOfEh(ec, ep) ∧ inTree(ep)). (6.17)

We then insist that all event handlers be reachable by spanning the tree in this manner:

∀e : eh . inTree(e). (6.18)

Finally, we wish to constrain legal trees to being finite. That is, each event handler can
have only a finite number of children, and each path through the tree has finite depth.

We assume that a predicate ehNum exists that assigns a natural number identifier to
each event handler e. We then express the finiteness of the tree by specifying that
there is an upper bound on these distinct identifiers. We first specify that each event
handler has a natural number associated with it, and that these identifiers are distinct:

∀e : eh . ∃n : IN . ehNum(e, n). (6.19)

∀e1, e2 : eh, n1, n2 : IN . (6.20)

ehNum(e1, n1) ∧ ehNum(e1, n2) ∧ e1 ̸= e2

⊃ n1 ̸= n2.

We then specify that there is an upper bound on the identifiers:

∃b : IN . ∀e : eh . (ehNum(e, n) ⊃ n ≤ b). (6.21)

106 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

6.3 Layer III: Threads

In the Clock semantics, it is important to be able to consider related I/O activity to be
grouped together. For example, a request issued by an event handler is related to the
response that eventually is returned. The set of requests contributing to a single view
computation are also form a related group. To allow us to express such relations, the
concept of thread is introduced. Threads are defined to group together sets of related
I/O events. In section 6.4, threads will be used to make sure that responses to requests
are delivered to the right place, and in section 6.6, threads will be used to make sure
that updates are processed in a correct order.

Threads are based on oracles and flags – for each thread, an oracle is used to provide
a unique identifier for the thread. For example, I/O resulting from view generation is
grouped into a thread using the following code (taken from figure 6.3):

group viewThread (sendView newView)

where

viewThread = read (viewTrigger e)

That is, all I/O activity resulting from the computation of the new view is grouped into
the thread viewThread, the value of which is read from the flag viewTrigger. (Oracles
and flags were described in section 5.3.6.)

In order to reason about threads within interaction logic, we define four predicates.
First, we define that a thread is a value read from an oracle (that is, a value used to
identify a thread):

thread(t : value) ≡ ∃o : oracle . inOccurs(o, t). (6.22)

We can determine whether a particular I/O event belongs to a thread by determining
whether an I/O event occurs within the group identified by the thread:

inThread(t : thread, i : uid) ≡ ∃c : commPort, v : value . inGroup(c, v, i, t). (6.23)

We then define a predicate indicating whether a particular thread was issued from a
given oracle:

threadFrom(t : thread, o : oracle) ≡ inOccurs(o, t). (6.24)

This then allows us to determine whether two I/O events belong to the same thread:

sameThread(o : oracle, i1, i2 : uid) (6.25)

≡ ∃t : thread . (threadFrom(t, o) ∧ inThread(t, i1) ∧ inThread(t, i2)).

The sameThread predicate allows us to determine whether two I/O events belong to
the same thread, as initiated by a particular oracle. For example, we can write:

sameThread(viewOut e, i1, i2).

to determine whether two I/O events belong to the same view generation thread of
some event hander e.

Event handler ec viewOut e

subView e sv

code to update view:
 write (viewOut ec) v

code to access subview:
 val (subview ep sv)

Event handler ep

6.4. LAYER IV: ROUTING 107

Figure 6.6: Event handler ep can access the subview of its child ec, connected as subview
sv, by referring to the variable subView ep sv. When ec updates its view, the update is
set in the variable.

6.3.1 Kinds of Threads

We define different kinds of threads for different tasks – a view thread handles a view
update; an input thread handles an input, and so forth. We specify that a thread is an
input thread if it received its thread identifier from an input oracle:

inputThread(t : thread) ≡ ∃e : eh . inOccurs(eventId e, t). (6.26)

Similarly, invariant, view and initialization threads are identified by their oracles or
flags:

invThread(t : thread) ≡ ∃e : eh . inOccurs(invTrigger e, t). (6.27)

viewThread(t : thread) ≡ ∃e : eh . inOccurs(viewTrigger e, t). (6.28)

initThread(t : thread) ≡ ∃e : eh . inOccurs(initId e, t). (6.29)

6.4 Layer IV: Routing

Section 6.1 provided the basic definition of event and request handler components, while
section 6.2 showed how components are joined together to form an architecture. This
section defines how components communication with each other, or how information
is routed between components.

There are two basic mechanisms which components use to communicate with each
other. The first is the subview mechanism, allowing a parent component to use the
views of its children when creating its own view. The second is requests and updates,
allowing components to query or modify state further up the tree.

108 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

6.4.1 Subview Routing

In Clock, components may use the views of their children in making up their own views.
The views of children are called subviews. In our semantics, subviews are represented
as variables. Whenever a child component updates its view, it writes the view to a
subview variable represented in its parent. Whenever the parent computes its own
view, it simply refers to the current values of the subview variables. As shown in
figure 6.3, if event handler e wishes to refer to its subview sv, it refers to the variable
as “val (subview e sv)”.

Figure 6.6 shows how a child component writes its subview to its parent. The viewOut
port of the child is bound to the subview variable of the parent, so that whenever the
child updates its view, the subview variable is updated:

∀ep, ec : eh, sv : svid, v : value . (6.30)

(ehChildOfEh(ec, ep, sv) ∧ out(viewOut e, v) ≡ out(subView e sv, v)).

The view for the entire tree is represented in the variable "rootView". The view of
the root component is attached to this variable:

∀e : eh . root(e) ∧ out(viewOut e, v) ≡ out("rootView") (6.31)

6.4.2 Request/Update Routing

Event handler components can query state in request handlers appearing above them
in the tree, and can issue updates which may be handled by event or request handlers
appearing above them in the tree. A request or update issued by an event handler
is handled by the first component appearing above the event handler that is capable
of handling it. To capture this form of routing, we first define what it means for one
component to be above another:

above(c1, c2 : component) (6.32)

≡ ehChildOfEh(c2, c1) ∨ rhBelongsToEh(c2, c1)

∨ ∃e : eh . (ehChildOfEh(e, c1) ∧ rhBelongsToEh(c2, e))

∨ ∃c′ : component . (above(c1, c
′) ∧ above(c′, c2)).

That is, as shown in figure 6.7, a parent event handler appears above its children, re-
quest handlers appear above their owning event handler, and the relation is transitively
extended. We will also find it useful to express that a component c appears between
components c1 and c2 in the tree:

between(c, c1, c2 : component) ≡ above(c, c1) ∧ above(c2, c). (6.33)

We can then succinctly express request/update routing by stating that a request or
update issued by a component e is handled by the first component c appearing above

above

above

above

6.4. LAYER IV: ROUTING 109

Figure 6.7: The above predicate captures the visibility path of updates and requests as
they move up the tree.

e that is capable of handling the request/update. For requests, this is stated as:

handlesRequest(r : rh, rq : request, e : eh) (6.34)

≡ rhTakesRequest(r, rq) ∧ above(r, e)

∧ ¬∃r′ : rh . (rhTakesRequest(r′, rq) ∧ between(r′, e, r)).

Updates can be handled by both event and request handlers:

takesUpdate(c : component) ≡ ehTakesUpdate(c) ∨ rhTakesUpdate(c). (6.35)

An update is handled by the first component appearing above the issuing event handler
that is capable of handing it:

handlesUpdate(c : component, u : update, e : eh) (6.36)

≡ takesUpdate(c, u) ∧ above(c, e)

∧ ¬∃c′ : component . (takesUpdate(c′, u) ∧ between(c′, e, c)).

Routing Requests and Updates

The predicates handlesRequest and handlesUpdate establish which components are re-
sponsible for handling the requests and updates generated by a particular event han-
dler. Based on these predicates, we now establish constraints specifying that when a
component issues a request or update, the correct component receives and handles it.

As shown in figure 6.8, this means that whenever an event handler issues an update,
the update must be sent to the updtIn port of whatever component handles the update:

∀e : eh, u : update, c : component . (6.37)

out(updtOut e, u) ∧ handlesUpdate(c, u, e)

⊃ connected(updtOut e, updtIn c).

updtOut e

write (updtOut e) u

updtIn r

read (updtIn r)

u

Event handler e Request handler r

110 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

Figure 6.8: An update u issued by event handler e is written to the port updtOut e.
If request handler r handles this update, then updtOut e is connected to the stream
updtIn r, and a future read from updtIn r will obtain the update u.

Similarly, whenever an event handler e issues a request rq, the request must be sent to
the reqIn port of whatever request handler r handles that request. This is achieved by
connecting the reqOut port of e to the reqIn port of r:

∀e : eh, rq : request, r : rh . (6.38)

out(reqOut e, u) ∧ handlesRequest(r, u, e)

⊃ connected(reqOut e, reqIn r).

As shown in figure 6.9, the response to a request must be written back by connecting
the respOut port of r to the respIn port of e. Before specifying this condition, we
first specify what it means for a response to be associated with a request. As shown
in figure 6.9, when a request handler r responds to a request, it groups the reading
of the request and the writing of the response into a thread. The thread identifier is
obtained from the oracle rqId r. Similarly, when an event handler e issues a request,
the request and response are grouped with a thread obtained from the oracle rqId e.
This grouping allows us to express in interaction logic whether a response results from
a given request:

respondsTo(i1, i2 : uid, c : component) ≡ sameThread(rqId c, i1, i2). (6.39)

We can then specify that when a request handler r responds to a request issued by
event handler e, then the response is sent to e:

∀r : rh, i1, i2 : uid, e : eh . (6.40)

out(reqOut e, i1) ∧ out(respOut r, i2) ∧ respondsTo(i2, i1, r)

⊃ connected(respOut r, respIn e).

Finally, we must ensure that when an event handler reads a response, that the response
is matched to the correct request. This is accomplished by specifying that whenever
a request handler specifies that a request/response pair are in the same thread, the

reqOut e reqIn r

<rq,g1>

Event handler e Request handler r

<resp,g2>
respIn e respOut r

? rqId r? rqId e

group (read (rqId e))
 case write (reqOut e) rq of
 _ -> read reqIn
 end case

 group (read (rqId r)) (
 write (respOut r)
 (requestFn currentState rq)
)

6.4. LAYER IV: ROUTING 111

Figure 6.9: A request rq (with unique id i1) issued by event handler e is written to
the port reqOut e. If request handler r handles this update, then reqOut e is connected
to the stream reqIn r, and a future read from reqIn r will obtain the request rq. The
response resp is written to respOut r, and received by e over the port respIn e. Since
request and response pairs are grouped, it holds that: sameThread(rqId e, i1, i2), and
sameThread(rqId r, i1, i2).

event handler that issued the request must also consider the response to be in the same
thread.

∀r : rh, i1, i2 : uid, e : eh . (6.41)

outOccurs(respOut e, i1) ∧ inOccurs(respIn e, i2) ∧ respondsTo(i2, i1, r)

⊃ respondsTo(i2, i1, e).

6.4.3 Routing Restrictions

An important correctness condition on Clock architectures is that any updates per-
formed in an initialization or invariant must be local updates; that is, the updates
must be handled by a local request handler.

We first define predicates to indicate whether a thread t makes a request or update to
a request handler r:

threadRequests(t : thread, r : rh) (6.42)

≡ ∃i : uid . (in(reqIn r, i) ∧ inThread(i, t)).

threadUpdates(t : thread, r : rh) (6.43)

≡ ∃i : uid . (in(updtIn r, i) ∧ inThread(i, t)).

threadViews(t : thread, r : rh) (6.44)

≡ ∃i : uid . (viewVar(v) ∧ in(v, i) ∧ inThread(i, t)).

112 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

We then specify that if a thread is an invariant or initially thread from some event
handler e, then any updates must be routed to request handlers owned by e:

∀t : thread, e : eh, r : rh . (6.45)

((threadFrom(initTrigger e, t) ∨ threadFrom(invTrigger e, t))

∧ threadUpdates(t, r)

⊃ rhBelongsToEh(r, e)).

6.5 Layer V: Triggering

The previous sections have established how architectures are constructed, and how
requests and updates are routed when they are issued. It has been shown how sets of
I/O are grouped into threads working towards, for example, the evaluation of a view,
or the processing of an invariant. What remains to be addressed is the question of
when views must be updated, and when invariants must be processed.

Intuitively, a view must be processed whenever it is out of date. We express this
with a constraint stating that if evaluating a view would result in a new view, a view
thread should be initiated. Similarly, an invariant function must be evaluated whenever
the component’s local state is out of date. We express this condition with a constraint
stating that if evaluating an invariant were to modify the state of some request handler,
then an invariant thread should be initiated. Threads to initialize components must
also be initiated immediately following the creation of a component.

As was shown in figures 6.2 and 6.4, components have a set of flags used to trigger
the evaluation view, invariant and initialization computations. The flags are a special
form of oracle, providing a thread identifier used to group I/O events. Additionally,
flags act as triggers for threads – only when the predicate raised(f) holds is it possible
to read from the flag f . Therefore, triggering a thread establishes that the thread will
be executed either now or sometime in the future.

Naturally, it is not enough to state only when it is necessary to update a view or
invariant, since the updates of multiple components may conflict. Section 6.6 states
further constraints on how threads may be sequenced or interleaved.

6.5.1 Triggering Initialization

All Clock components contain an initially function which is used to initialize the com-
ponent when it is first created. In request handlers, the initially function is used to
establish an initial state for the request handler. In event handlers, the initially function
establishes the state of local request handlers.

If a component has not yet been initialized, it must be initialized:

∀c : component . (¬ in(initTrigger c) ⊃ setFlag(initTrigger c)). (6.46)

6.5. LAYER V: TRIGGERING 113

6.5.2 Dependencies among Components

In order to determine when the view and invariant functions of a component must
be updated, we specify how components may depend on one another. Intuitively, a
component’s view function depends on a request handler if computation of the view
depends on requests made to that request handler. This means that if the request
handler’s state is changed, the view function should be recomputed.

Then, in order to capture whether a view function of an event handler e depends on
some request handler r, we write:

viewDepends(e : eh, r : rh) (6.47)

≡ ∃t : thread . (in(viewTrigger e, t) ∧ threadRequests(t, r)).

That is, if the computation of a view has required this request handler in the past,
the view depends on the request handler. Similarly, we define how an invariant may
depend on a request handler:

invDepends(e : eh, r : rh) (6.48)

≡ ∃t : thread . (in(invTrigger e, t) ∧ threadRequests(t, r)).

6.5.3 Triggering View and Invariant Generation

In order to specify how a component’s view appears on the display, Clock programmers
specify a view function indicating what the view looks like at any given time. The
Clock system guarantees that whenever the view is out of date, it will be automatically
updated. Similarly, whenever the state on which an invariant depends is modified, the
invariant must be recomputed to ensure internal consistency within a component.

Recalling from figure 6.4 that the state of a request handler is represented as a variable,
we can define that if a thread modifes state upon which the view and invariants of
other components depend, view and invariant generation in those components must
be triggered. The predicate threadSetsFlag is used to indicate that a thread t causes
either the view or invariant flag of a component to be set.

Note in this definition that we specify only the conditions where threadSetsFlag must
be true; an implementation can in fact choose to update views or invariants more often
than necessary.

An invariant is triggered whenever state upon which the invariant depends is modified:

∀e : eh, t : thread, r : rh . (6.49)

(threadUpdates(t, r) ∧ ¬threadFrom(t, invTrigger e) ∧ invDepends(e, r)

≡ threadSetsFlag(t, invTrigger e))

Note that according to this definition, an invariant cannot trigger itself.

114 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

View updates are triggered whenever state upon which the view depends is modified:

∀e : eh, t : thread, r : rh . (6.50)

(threadUpdates(t, r) ∧ viewDepends(e, r)

≡ threadSetsFlag(t, viewTrigger e))

Finally, we specify that if a thread t sets a flag f , that flag should be set:

∀t : thread, f : flag . (threadSetsFlag(t, f) ⊃ setFlag(f)). (6.51)

6.6 Layer VI: Sequencing

The semantics of Clock specify that different threads may be executed concurrently –
for example, the views of two components may be updated at the same time, or two
user inputs coming from different input devices may be processed at the same time.
Particularly in the case of multi-user implementations of Clock, this opportunity for
concurrency becomes very important.

In Clock, concurrency is considered to be an implementation technique, rather than
being explicitly programmed by the Clock programmer. Recognizing this, the Clock
semantics provide an illusion of single threadedness, where the semantics guarantee that
although threads may be executed concurrently for efficiency reasons, the programmer
needn’t be aware that the concurrency is present.

Intuitively, the illusion of single threadedness implies that if two inputs arrive in the
system, the semantics must make it appear as if the input that arrived first is processed
first. This means, for example, that two input threads may run concurrently; however,
if the second thread modifies data that the first thread uses, the modification must
be delayed until after the first thread has read whatever data it requires. This form
of sequencing guarantees the same semantics as if the inputs were processed purely
sequentially.

Additional sequencing constraints guarantee that if an input triggers the execution of
invariants and updates of views, it must appear as if these updates take place before
further inputs are processed.

The specification of sequencing of threads falls into two parts. An important predicate,
olderThread, is defined. This predicate arranges threads into a partial order based on
their priority. Intuitively, it must appear as if an older thread is executed before a
newer thread. The second part specifies the illusion of single threadedness by specifying
sequencing constraints on the activities of threads.

r

input i1

thread t1
handles
input i1

thread t3 handles
updates from t1

thread t2
handles
input i2

input i2

Properties:

olderThread (t 1,t3)
olderThread (t 3, t2)

6.6. LAYER VI: SEQUENCING 115

Figure 6.10: Example of the illusion of single-threadedness. If input i1 arrives before
input i2, then the thread t1 generated to handle i1 has priority over thread t2 generated
to handle i2. Assuming thread t1 generates an update which is handled by thread t3,
then t3 also has priority over t2. This priority means that if t1 or t3 uses request handler
r, then t2 may have to block – e.g., if t1 modifes r, then t2 cannot read from r until
the modification has taken place; if t1 reads from r, then t2 may not modify r until the
read has taken place.

6.6.1 Ordering Threads

Threads in Clock are partially ordered over time. The predicate olderThread is defined
to establish this ordering.

Two basic rules are used to establish the ordering:

• If the user performs two inputs, the one that was performed first is the one that
is processed first;

• All consequences of an input are processed before the next input itself is pro-
cessed.

This implies that the execution of programs must make it appear as if inputs are
processed in order.

As seen in figure 6.10, when the processing of an input results in updates being sent
up the tree, the threads to process these updates must also have priority over later
user inputs. Similarly, invariant or view function updates resulting from an input take
priority over later user inputs.

116 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

Linked Input Threads

We first define the notion of a linked input. In figure 6.10, the thread t3 is executed as
a result of thread t1, and is therefore a linked input to t1. The definition states that
if one thread generates an update that is handled as an input in another thread, then
the threads are linked:

linkedInput(t1, t2 : thread) (6.52)

≡ ∃i : uid, e1, e2 : eh .

(inThread(i, t1) ∧ inThread(i, t2)

∧ outOccurs(updtOut e1, i) ∧ inOccurs(updtIn e2, i))

∨ ∃t′ . (linkedInput(t1, t
′) ∧ linkedInput(t′, t2)).

Note that linkedInput is transitive and asymmetric.

Linked input threads follow the threads that caused them to be initiated:

∀t1, t2 : inputThread . (linkedInput(t1, t2) ⊃ olderThread(t1, t2)). (6.53)

Linking Invariant and View Threads

If processing an input triggers an invariant thread, then the invariant thread is linked
to the input. Similarly, if an invariant triggers further invariants lower down the tree,
then these invariants are linked to the first one:

linkedInvThread(t1 : thread, t2 : invThread) (6.54)

≡ ∃e : eh . (threadSetsFlag(invTrigger e, t1) ∧ nextIn(invTrigger e, t2))

∨ linkedInvThread(t1, t2) ∨ linkedInvThread(t1, t2).

Similarly, if an input or invariant triggers a view update, the view update thread is
linked to the thread that triggered it:

linkedViewThread(t1 : thread, t2 : viewThread) (6.55)

≡ ∃e : eh . (threadSetsFlag(viewTrigger e, t1) ∧ nextIn(viewTrigger e, t2))

∨ linkedViewThread(t1, t2) ∨ linkedViewThread(t1, t2).

Then, linked threads must follow the threads that triggered them:

∀t1, t2 : thread . (6.56)

((linkedInvThread(t1, t2) ⊃ olderThread(t1, t2))

∧ (linkedViewThread(t1, t2) ⊃ olderThread(t1, t2))).

Two threads are then linked if there is an input, invariant or view link between them:

linkedThread(t1, t2 : thread) (6.57)

≡ linkedInput(t1, t2) ∨ linkedInvThread(t1, t2)

∨ linkedViewThread(t1, t2).

6.6. LAYER VI: SEQUENCING 117

A thread may trigger a number of invariant threads or a number of view threads.
When more than one thread is triggered, it is not set as to what order the threads are
performed, but one has to take precedence over the other. We specify first the concept
of a main thread:

mainThread(t : thread) (6.58)

≡ (inputThread(t) ∨ invThread(t) ∨ viewThread(t)).

Then, any pair of main threads must be ordered:

∀t1, t2 : mainThread . olderThread(t1, t2) ∨ olderThread(t2, t1). (6.59)

6.6.2 Sequencing User Input Threads

We distinguish those input threads which came as a result of user input. These threads
have no predecessor threads that initiated them:

userInputThread(t : inputThread) (6.60)

≡ ¬∃t′ : inputThread . linkedInput(t′, t).

We then specify that input threads are ordered according to the inputs that generate
them. That is, if the user performs two actions in sequence, then the threads handling
the actions should be ordered in the same sequence. We specify that if input i1 was
performed by the user before input i2, then thread t1 handling i1 should come before
thread t2 handling i2, and that all input, invariant, and view threads linked to t1 should
also come before t2:

∀t1, t2 : userInputThread, i1, i2 : uid, e1, e2 : eh . (6.61)

pending(updtIn e1, i1) ∧ nextIn(eventId e1, t1)

∧ pending(updtIn e2, i2) ∧ nextIn(eventId e2, t2)

∧ (out(i1) out(i2))

⊃ olderThread(t1, t2)

∧ ∀t′ : thread . (linkedThread(t1, t
′) ⊃ olderThread(t′, t2)).

6.6.3 Illusion of Single-Threadedness

As seen in figure 6.10, different threads may contend for the same resources. The
illusion of single-threadedness states that as long as two threads do not require the
same resources, the order of their execution is immaterial. However, when the threads
compete for a resource, the priority of the threads (as determined by olderThread)
determines the order of access to the resource.

If two threads t1 and t2 both wish to use a request handler r, and t1 is the older thread,
then the illusion of single-threadedness specifies that no action on the part of t2 may
modify the data seen by r. Further, if t1 modifies r, then t2 may not access r before

118 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

the modifications take place, guaranteeing that the execution is as if t1 had completely
executed before t2.

We then specify the illusion of single-threadedness, which says that if thread t1 is older
than thread t2, then it must appear as if t1 executes to completion before t2 executes.
In particular, t1 has priority access to shared data over t2:

∀t1, t2 : thread, r : rh . (6.62)

olderThread(t1, t2)

⊃ (threadRequests(t1, r) ⊃ ¬threadUpdates(t2, r))

∧ (threadUpdates(t1, r)

⊃ ¬(threadRequests(t2, r) ∨ threadUpdates(t2, r)))

∧ (threadViews(t1, v) ⊃ ¬modifiesVar(t2, v)).

Finally, within a thread itself, all updates to a request handler made by the thread are
deferred until all requests to that request handler have taken place:

∀t : thread, r : rh . (6.63)

threadRequests(t, r) ⊃ ¬threadUpdates(t, r).

6.7 Conclusion

This chapter has presented the semantics of Clock, specified using the TCFP frame-
work. The semantics provide a precise definition of Clock, and at the same time gives
us an opportunity to evaluate the effectiveness of TCFP in describing the semantics of
programming languages.

One of the primary advantages of TCFP is that it is possible to build semantics in
layers, based on existing abstractions. As was seen in figures 6.2 and 6.4, event and
request handlers are modeled using the various structures defined in chapter 5. These
structures are not specific to Clock itself, and could be used in the semantics of any
language.

Once the basic structure of the components is defined, the definitions specific to the
Clock language itself are built in a series of six layers. Each layer builds on the defini-
tions of the layers below it. Therefore, a good separation of concerns is provided within
the semantics, allowing a reader of the semantics to look at various features of the def-
inition in isolation. For example, to understand how invariant and view functions are
triggered, it is not necessary to understand the concurrency issues of the language.
This separation of concerns is a major benefit in a language as complex as Clock.

The handling of concurrency and non-determinism shows the true advantages of TCFP.
It is quite simple to specify that view and invariant functions can be executed at any
time, but that certain concurrency constraints must be observed to provide the illusion
of single-threadedness. In this sense, the semantics of the language lend themselves
naturally to the generate and restrict approach of TCFP.

6.7. CONCLUSION 119

Over all, the description of the semantics is lengthy and detailed. Given the complex
nature of the Clock language, particularly involving the features of concurrent execu-
tion, this is not surprising. What is hoped is that through the clear, layered structure
of the semantics, and through the separation of concerns, the description is still rea-
sonably accessible. The fact that it was possible to describe the semantics of Clock at
all represents an advance, in that formal methods have not gained wide acceptance in
describing the semantics of user interface languages.

Based on the semantics presented here, chapter 7 will present some of the interesting
formal properties of Clock.

120 CHAPTER 6. SEMANTICS OF THE CLOCK LANGUAGE

Chapter 7

Properties of Clock

The semantics of chapter 6 gives us a sufficient framework to investigate some of the
key properties of the Clock language. There are many properties which we might
choose to examine; however, we shall concentrate on the declarative properties dis-
cussed in Chapter 4. This chapter proposed that languages such as Clock should
consider declarativeness in the small, corresponding to such traditional properties as
referential transparency, and declarativeness in the large, examining the properties of
high-level I/O and constraint systems.

In this chapter, we prove two theorems, showing that Clock does provide properties
of declarativeness in the small and in the large. The first (theorem 7.1.1) specifies
that all functions written by Clock programmers are referentially transparent; the
second (theorem 7.2.2) shows that all sequences of triggered invariant and view function
evaluations are finite. Together, these theorems show that the implementation model
of Clock is not revealed to Clock programmers, thus providing the most basic property
of declarative programming. In more detail, these properties are:

Referential Transparency: The Clock language itself clearly provides imperative
features, such as the ability to manipulate global state through request handlers,
and the ability to post views to the display. In Clock, however, these imperative
features are specified on the level of the architecture. The actual functions that
users write are themselves pure functions, similar to thos of languages such as
Haskell [56] or LML [5]. We consider functions to be pure if they are referentially
transparent; that is, within a computation, a function applied to a given argument
always has the same value.

The theorem proving that all user-defined functions are referentially transparent
(theorem 7.1.1) establishes the main success of Clock’s design – that programmers
can write purely functional code to specify user interfaces, without having to
worry about the impure effects of reading user inputs or handling display updates.

Termination of Constraint Sequences: As was seen in chapter 6, the execution
of a single user input can lead to the triggering of a sequence of invariant and
view threads intended to bring all request handlers and views up to date. This

121

122 CHAPTER 7. PROPERTIES OF CLOCK

automatic triggering of invariants and views is similar to the constraint facilities
of languages such as Garnet [74] and RendezVous [49]. As was seen in chap-
ter 2, in these languages, sequences of constraints triggering other constraints are
not guaranteed to terminate. We call such non-terminating sequences infinite
constraint sequences.

In Clock, the architecture structure of the language guarantees that any sequence
of invariant and view updates resulting from an input is guaranteed to terminate.
This means that as long as the individual invariant and view functions themselves
terminate, the sequence of updates will also eventually terminate (theorem 7.2.2).
A corollary to this theorem is that any input a user makes will eventually be
processed.

This property of termination is critical to the success of Clock’s high-level pro-
gramming model. If it were possible to generate looping constraint structures,
programmers would have to know exactly when invariant and view functions
would be triggered in order to avoid programming infinite sequences, or to de-
bug them when they occur. Since infinite constraint sequences are impossible to
program, programmers do not need to be aware of the execution order used by a
particular implementation.

This chapter investigates these properties of the Clock language, using the semantic
description of Clock to justify them. Ultimately, the proof of these properties are
proofs in interaction logic, using the proof system defined in appendix B. The proofs
are based on the constraints defined in the semantics of chapter 6. Since these proofs
quickly become long and detailed, our presentation intermixes proof sketches with fully
rigorous proofs.

7.1 Referential Transparency

Referential transparency is one of the key defining properties of pure functional lan-
guages. Intuitively, this property means that the value of an expression does not depend
on its context, or on the execution order of the program. For example, if an expression
e is referentially transparent, then in the expression:

e + e

both occurrences of e evaluate to the same value, and the expression is equivalent to:

2 ∗ e

In appendix A, the property of referential transparency is investigated in terms of the
Iλc language. A precise definition of referential transparency is given (definition A.3.1),
stating that an expression is referentially transparent iff it evaluates to the same value,
regardless of the context in which it is evaluated. As discussed in appendix A, the
basic core of Iλc is referentially transparent (theorem A.3.2). This is intuitively to

7.1. REFERENTIAL TRANSPARENCY 123

be expected, since Basic Iλc is only a slightly extended version of the λ-calculus,
which possesses the referential transparency property. Full Iλc, however, possesses I/O
constructs that are not referentially transparent. For example, the expression

read "stdin"

takes on different values depending on the input provided by the user.

Programs in the Clock language are constructed using a graphical architecture language
to specify components and connection of components, and using a syntactically sugared
form of Iλc to program the components themselves. It is therefore not immediately
clear that expressions written by Clock programmers will be always be referentially
transparent.

In fact, as was claimed in chapter 4, any function written by a Clock programmer is
referentially transparent. The argument why this is true is as follows:

The execution of a Clock program is not a single computation, but rather a set of
computations, partially ordered by time. Each computation corresponds to the ex-
ecution of one of the functions programmed by a Clock programmer; in chapter 6,
each execution is represented by a main thread, partially ordered by the olderThread
predicate. Each of these functions is guaranteed to be executed so that its referential
transparency is preserved. This means, for example, that if a view function makes the
same request twice during its execution, then the response to both requests will be the
same. During two separate executions of a view function, however, the request may
return a different value.

The functions provided by the Clock programmer are programmed using Basic Iλc,
extended with two constructs: requests can be used to obtain values from request
handlers further up the tree, and the values of subview variables can be referenced
when computing a view. Since the Basic Iλc constructs are known to be referentially
transparent (theorem A.3.2), it only remains to be shown that requests and subview
references are referentially transparent within the evaluation of a main thread. This
property follows directly from definitions 6.62 and 6.63, which require that no thread
modify the state of request handlers or subview variables until the current thread has
finished using them.

This referential transparency property means that Clock programmers can have avail-
able the facilities of persistent state and graphical I/O, which still enjoying the usual
mathematical properties of functional programming.

7.1.1 Proof of Referential Transparency

The final proof of referential transparency in Clock is built up from a series of smaller
results. The first of these is that the response values generated by request handlers
depend on only the request itself, and the request handler’s state. That is, as long as
the state of a request handler remains constant, then the response to each request rq
will always be the same. We first define a predicate responseVal capturing what the

124 CHAPTER 7. PROPERTIES OF CLOCK

response is to a given request under a given state:

responseVal(r : rh, rq : request, resp : value, s : value) (7.1)

≡ ∃t : thread, i1, i2, i3 : uid .

threadFrom(t, rqId r)

∧ inThread(i1, t) ∧ inThread(i2, t) ∧ inThread(i3, t)

∧ inOccurs(reqIn r, rq, i1)

∧ inOccurs(state r, s, i2)

∧ outOccurs(respOut r, resp, i3).

We can then prove that responses change only if the request handler’s state changes.
That is, if the same request is sent twice to the same request handler, with the same
state, then the response is guaranteed to be the same:

Lemma 7.1.1 (Referential Transparency of Request Handlers)

∀r : rh, rq : request, resp, resp′ : value, s : value .

responseVal(r, rq, resp, s) ∧ responseVal(r, rq, resp′, s) ⊃ resp = resp′.

Proof: If “responseV al(r, rq, resp, s)” then it holds that “resp = requestFn s rq”
(definition of request handlers, figure 6.5), where “requestFn” is the function
handling requests for r. Similarly, if “responseV al(r, rq, resp′, s)”, then “resp′ =
requestFn s rq”. By the definition of the Clock language, “requestFn” is
constructed from Basic Iλc only; therefore, by theorem A.3.2, “requestFn s rq”
is referentially transparent, and has a unique value. Therefore, “resp = resp′”.

✷

Ultimately, we are interested in showing that functions executed within a main thread
are referentially transparent. One required property is that requests return the same
value within the execution of a main thread. To investigate this property, we define a
predicate threadRqResp that holds if during the execution of a main thread, a request
rq is made, and a response of resp is returned. Requests and responses are identified
by their unique identifiers, so the predicate holds if a request rq with uid ⊂rq is sent,
and a response resp with uid iresp is returned, and both of the unique identifiers (⊂rq

and iresp) belong to the same thread t. This definition will eventually be used to show
that all requests made during the execution of a main thread return the same value.

threadRqResp(t : mainThread, rq : request, irq : uid, resp : value, iresp : uid) (7.2)

≡ inThread(irq, t) ∧ inThread(iresp, t)

∧ outOccurs(rq, irq) ∧ inOccurs(resp, iresp)

∧ respondsTo(iresp, irq).

7.1. REFERENTIAL TRANSPARENCY 125

We next establish that all requests generated within a single main thread must be
generated by the same event handler. Intuitively, this holds because main threads are
generated from group constructs in the definition of an event handler (figure 6.3), where
the grouped code does not cross event handler boundaries. This lemma will allow us
to determine which request handlers handle requests generated by a thread, by linking
each main thread to a specific event handler. The lemma states that each request
issued by a main thread is written to the “reqOut” port of the same event handler e.

Lemma 7.1.2 (Threads bound to a single EH)

∀t : mainThread, rq : request .

∃e : eh . ∀rq : request, irq : uid .

threadRqResp(t, rq, irq) ⊃ outOccurs(reqOut e, rq, irq).

Proof: Let t : mainThread. Then by definitions 6.58 and 6.26-6.29, it holds that ∃o :
oracle, e : eh. inOccurs(o, t)∧(o = eventIde∨o = invTriggere∨o = viewTriggere).
By definition 5.33, the thread is unique; i.e., ∀o′ : oracle . inOccurs(o′, t) ⊃ o′ = o.
Then by definition 6.23 and the definition of event handlers (figure 6.3), ∀e′ :
eh, i : uid . outOccurs(reqOut e, i) ∧ inThread(i, t) ⊃ e′ = e, and lemma follows.

✷

From layer VI of the Clock semantics, we saw that I/O is ordered so that a thread
may not modify the state of request handlers upon which earlier threads rely. A simple
consequence of this definition is that the state of a request handler does not change
throughout a thread. In particular, if a thread t makes a request to request handler r,
then during any future requests to r within thread t, r will have the same state:

Lemma 7.1.3 (RH State Constant During Thread)

∀t : mainThread, r : rh, s : value .

(threadRequests(t, r) ∧ val(state r, s)

⊃ (threadRequests(t, r) val(state r, s))).

Proof: For t : mainThread, r : rh, the sequencing constraints 6.62 and 6.63 show
that threadRequests(t, r) ⊃ ∀t′ . threadRequests(t, r) threadUpdates(t′, r); i.e.,
if a request is made to a request handler, all updates are deferred until all fur-
ther requests are made. By wire definition 5.17, no update can be read by r
if no updates are sent to r: threadRequests(t, r) in(updtIn r). By the defini-
tion of request handlers (figure 6.5), the state can only be modified if an update
is processed: threadRequests(t, r) out(state r). By the definition of variables
(definition 5.29), variables change only when written to; therefore, lemma holds.

✷

126 CHAPTER 7. PROPERTIES OF CLOCK

From lemmas 7.1.2 and 7.1.3, we can prove that whenever a main thread makes the
same request multiple times, the response to the request is the same. This property
shows that requests are referentially transparent within the execution of a thread.

Lemma 7.1.4 (Referential Transparency of Requests)

∀t : mainThread, rq : request, resp, resp′ : value .

(threadRqResp(t, rq, resp) ∧ threadRqResp(t, rq, resp′) ⊃ (resp′ = resp)).

Proof: Assume there exist irq, iresp, i′rq, i′resp : uid, t : mainThread,
rq:request, resp,resp′ : value s.t. threadRqResp(t, rq, irq, resp, iresp) and
threadRqResp(t, rq, i′rq, resp

′, i′resp). Then by lemma 7.1.2, there exists e : eh
s.t. outOccurs(reqOut e, rq, i′rq) ∧ outOccurs(reqOut e, rq, i′rq). By the definition
of threadRqResp (definition 7.2), respondsTo(iresp, irq) ∧ respondsTo(i′resp, i

′
rq).

From the definitions of routing (definitions 6.34 and 6.15), it holds that
both requests are handled by the same request handler: there exists r : rh
s.t. inOccurs(reqIn r, irq) ∧ inOccurs(reqIn r, i′rq). Then, by lemma 7.1.3, if
in(reqIn r, irq) val(state r, s) then in(reqIn r, i′rq) val(state r, s). Then by
lemma 7.1.1, resp = resp′.

✷

We can now show that any function written by a Clock programmer is referentially
transparent. We have to show that any expression evaluated within a main thread has
the same value regardless of when it is evaluated within the thread. To prove this, we
must show that requests and subview references always have the same values within
the execution of the thread, which follows directly from the lemmas just proved.

Theorem 7.1.1 (Referential Transparency of Clock Functions)

Every Clock expression e is referentially transparent within the execution of a
main thread.

Proof: e can appear within a request handler or within an event handler. If e appears
in a request handler, then by syntactic restrictions in Clock, e contains only con-
structs from Basic Iλc, and by theorem A.3.2, e has a unique value. If e appears
in an event handler, then by definition of event handlers (figure 6.3), e occurs
within a main thread. Ie, ∃t : mainThread s.t. ∀i : uid . ioOccurs(i) and i was
generated by the execution of e implies that inThread(i, t). By definition A.3.1, e
is referentially transparent iff e has a unique value under all evaluation contexts.
Using structural induction over expressions to establish this property, we have
base cases: if e in Basic Iλc, e has a unique value by theorem A.3.2. If e is a
request, e has a unique value by lemma 7.1.4. If e is a subview reference, e has a
unique value, by definition 6.63. From the base case, the inductive step follows
in a straight-forward manner.

✷

7.2. TERMINATION PROPERTIES 127

7.2 Termination Properties

The last section demonstrated that functions written by Clock programmers are guar-
anteed to be referentially transparent. Clock programs, however, consist of sequences
of functional computations, as guided by the structure of the program’s architecture.

In this section, we wish to demonstrate that Clock’s declarative properties extend
also to the architecture level. In Clock, whenever the user makes an input, an input
thread is invoked to handle the input. This input thread may in turn invoke other input
threads, invariant threads, and view threads. In chapter 4, we claimed that in all Clock
programs, this sequence of threads invoking new threads is guaranteed to terminate –
that is, it is impossible to write the equivalent of infinite constraint sequences such as
those found in Garnet (see chapter 2).

What this section will show is that as long as the individual functions used to implement
views, invariants and inputs themselves terminate, then the sequence of threads used
to perform an update will also terminate. This property is called weak termination, to
emphasize that termination is guaranteed as long as the individual functions terminate.

The presence of weak termination is reassuring. It means that programmers cannot
unintentionally introduce unresolvable dependencies among components. Because of
this, programmers are never faced with debugging constraint loops or infinite constraint
sequences, and therefore do not need to understand the evaluation strategy used in
processing user inputs. Weak termination guarantees a form of declarativeness in
Clock architectures, since programmers never need to know when or in what order
component functions are executed in order to understand a program.

In order to establish weak termination, we demonstrate a sequence of smaller properties.
First we show that any sequence of input threads generated by a user input terminates;
that is, that there is always a last input thread in any sequence. Secondly, we show
that any sequence of invariants terminates. From the fact that view threads cannot
trigger other threads, we can then show that any user input generates a finite sequence
of threads.

Before establishing these properties, we first develop two important proof techniques
used for reasoning about architecture trees.

7.2.1 Architecture Induction

In most branches of mathematics, some form of inductive proof technique is developed
to aid in proving theorems applying to all elements of a structure. In number theory,
mathematical induction is used, while in programming language semantics, structural
induction is a key proof technique. Similarly, for reasoning about Clock architectures,
we develop two variants of architecture induction.

Assume we wish to prove that some property p holds over all elements of an architec-
ture; i.e., that ∀e : eh . p(e). Using architecture induction, we would be obliged to prove
that p holds at the root of the tree, and that if p holds at some element ep : eh, then p

128 CHAPTER 7. PROPERTIES OF CLOCK

holds over all children of ep. From this, we can conclude that p holds over all elements
of the tree.

Intuitively, this property holds, since if the property holds at the root, it also holds for
all children of the root, and all children of the children of the root, and so forth until
the entire tree is covered. More formally, the property can be proved as a theorem:

Theorem 7.2.1 (Architecture Induction)

For all unary predicates p, it holds that:

∀e : eh . (root(e) ⊃ p(e))

∧ ∀ep, ec : eh . (ehChildOfEh(ec, ep) ∧ p(ep) ⊃ p(ec))

⊃ ∀e : eh . p(e).

Proof: Assume (i) ∀e : eh . (root(e) ⊃ p(e)) and (ii) ∀ep, ec : eh . (ehChildOfEh(ec, ep)∧
p(ep) ⊃ p(ec)), and let e : eh. Then by definitions 6.17 and 6.18, inTree(e) and
root(e) ∨ ∃ep : eh . ehChildOfEh(e, ep) ∧ inTree(ep). Case 1: if root(e), then
p(e), by (i). Case 2: if ∃ep : eh . ehChildOfEh(e, ep) ∧ inTree(ep), then for some
e1, . . . , en : eh, we can derive a set of sentences root(e1), ehChildOfEh(e1, e2), . . .,
ehChildOfEh(en−1, en), and ehChildOfEh(en, e), by successively applying defini-
tion 6.17. By (i), p(e1). Then by successive application of (ii), we derive that
p(e2), . . ., p(en), and hence p(e).

✷

A variant on architecture induction is called course-of-values architecture induction.
For some property p and some given event handler ec, if assuming p holds for all event
handlers above ec allows us to prove that p holds for ec also, then we can infer that ∀e :
eh . p(e). COV architecture induction is a straightforward corollary of theorem 7.2.1.

Corollary 7.2.1 (Course of Values Architecture Induction)

For all unary predicates p, it holds that:

(∀ec : eh .
∀ep : eh . above(ep, ec) ⊃ p(ep)) ⊃ p(ec))

⊃ ∀e : eh . p(e).

Proof: Assume (∀ec : eh . ∀ep : eh . above(ep, ec) ⊃ p(ep)) ⊃ p(ec)). Step 1: Assume
er : eh and root(er). Show p(er): It holds that (∀ep : eh . above(ep, er) ⊃ p(ep)) ⊃
p(er)). But ¬∃ep . above(ep, er) (definition 6.32). Therefore p(r) holds. Step
2: Let ep, ec : eh, where ehChildOfEh(ec, ep), and let p(ep). Show p(ec): Since
ehChildOfEh(ec, ep), it follows that above(ep, ec), from which we have p(ec).

✷

7.2. TERMINATION PROPERTIES 129

7.2.2 Termination of Input Sequences

Our next step in establishing the weak termination property is to show that sequences
of input threads eventually terminate.

When a Clock program takes a user input, the input is directed towards a component
e, and an event function in e is executed to handle the input. Executing the event
function may cause updates to be sent up the tree, each of which will be handled as a
linked input thread.

The proof that such a sequence of inputs terminates is conceptually simple – first we
demonstrate that all updates are sent up the tree. Then, since updates must eventually
reach the root, there must eventually be a last one.

First, we demonstrate that linked input threads move up the tree. The proof is a
straight-forward application of COV architecture induction:

Lemma 7.2.1 (Linked Updates Move Up Tree)

∀t1, t2 : inputThread, e1, e2 : eh .

linkedInput(t1, t2)

∧ threadFrom(eventId e1, t1) ∧ threadFrom(eventId e2, t2)

⊃ above(e2, e1).

Proof: (By architectural induction.) Define

p(e1 : eh) ≡
∀t1, t2 : inputThread, e2 : eh .

linkedInput(t1, t2)

∧ threadFrom(eventId e1, t1) ∧ threadFrom(eventId e2, t2)

⊃ above(e2, e1).

Assume ec : eh, and ∀ep : eh . (above(ep, ec) ⊃ p(ep)). Show p(ec): Assume
linkedInput(t1, t2)∧ threadFrom(eventId e1, t1)∧ threadFrom(eventId e2, t2). From
the definition of linkedInput (definition 6.52), there are two cases. Case 1: ∃i :
uid, u : update s.t. inThread(i, t1)∧ inThread(i, t2)∧ outOccurs(updtOut e1, u, i)∧
inOccurs(updtIn e2, u, i). By definitions 5.16 and 5.14, out(updtOut e1, i) ⊃
connected(updtOut e1, updtOut e2). Therefore, by definitions 6.37 and 5.15,
handlesUpdate(e2, u, e1). Therefore, by definitions 6.36 and 6.33, above(e2, e1),
establishing p(ec). Case 2: ∃t′ . linkedInput(t1, t′) ∧ linkedInput(t′, t2). By case 1,
there exists e′ : eh s.t. threadFrom(eventIde′, t′)∧above(e′, e1); since above(e; , e1),
it holds that p(e′), giving above(e2, e′). By definition 6.32, it therefore holds that
above(e2, e1), establishing p(ec).

✷

130 CHAPTER 7. PROPERTIES OF CLOCK

We now define a predicate noLinkedInput to indicate whether an input thread is the
last one in a sequence of linked inputs:

noLinkedInput(t : inputThread) ≡ ¬∃t′ : inputThread . linkedInput(t, t′). (7.3)

A sequence of linked inputs terminates iff there is a “last” thread in the sequence;
that is, if there is some thread t′ in the sequence such that noLinkedInput(t′). From
lemma 7.2.1 and using COV architecture induction, we can demonstrate that all se-
quences of linked inputs terminate:

Lemma 7.2.2 (Termination of Update Sequences)

∀t : inputThread . noLinkedInput(t)

∨ ∃t′ : inputThread . linkedInput(t, t′) ∧ noLinkedInput(t′).

Proof: (By COV architecture induction.) Define:

p(e1 : eh) ≡
∀t1 : inputThread .

threadFrom(eventId e1, t1)
⊃ (noLinkedInput(t1)
∨ ∃t′ : inputThread . linkedInput(t, t′) ∧ noLinkedInput(t′)).

We wish to show ∀e : eh . p(e). Let e1 : eh. Induction hyp: assume ∀e2 :
eh . above(e2, e1) ⊃ p(e2). Induction step: show p(e1). Let t1 : inputThread,
where threadFrom(eventId e1, t1). Then it holds that (i) noLinkedInput(t1), or (ii)
¬noLinkedInput(t1). From (i), p(e1) follows directly. From (ii), we must show:

∃t′ : inputThread . linkedInput(t1, t
′) ∧ noLinkedInput(t′).

By definition 7.3,

∃t2 : inputThread . linkedInput(t1, t2).

Let e2 : eh s.t. threadFrom(eventId e2, t2). By lemma 7.2.1, above(e2, e1),
and therefore, by induction hyp, p(e2). Then by definition of p, either (a)
noLinkedInput(t2), from which p(e1) follows directly, or (b) there exists t′ :
linkedInput satisfying linkedInput(t2, t′) ∧ noLinkedInput(t′). Then by defini-
tion 6.52, linkedInput(t1, t′), which implies p(e1). Therefore, by corollary 7.2.1,
∀e : eh . p(e), from which the lemma follows.

✷

7.2. TERMINATION PROPERTIES 131

7.2.3 Termination of Invariant and View Sequences

Updates may also trigger invariants, as state changes caused by updates cause compo-
nents to become inconsistent. Invariants also cause state change, and therefore may
themselves trigger invariants. We now show that all sequences of invariants triggered
by an update are finite.

The basis of this proof is the following: invariant functions can make requests upwards
in the tree. Therefore, any invariant must be triggered by changes occurring at some
higher node in the tree. Invariants also may only modify local state. Therefore, the
execution of the invariant of some event handler e can only trigger the invariants of
components below e in the tree. Since trees have finite depth, this means that every
sequence of invariants must eventually terminate.

First, we show that if an invariant triggers another invariant, the triggered invariant
must belong to an event handler lower down in the tree:

Lemma 7.2.3 (Invariants Move Down Tree)

∀t1, t2 : invThread, e1, e2 : eh .
linkedInvThread(t1, t2)

∧ threadFrom(eventId e1, t1) ∧ threadFrom(eventId e2, t2)
⊃ above(e1, e2).

Proof: Let t1, t2 : invThread and let e1, e2 : eh. Let linkedInvThread (t1, t2) and thread-
From (eventId e1, t1) and threadFrom (eventId e2, t2). Show above (e1, e2). linked-
InvThread (t1, t2) implies that at some time, threadSetsFlag (invTrigger e2, t1) ∧
nextIn(invTrigger e2, t2) (def of linkedInvThread; def 6.54). Then for some
r : rh, threadUpdates (t1, r) ∧ invDepends(e2, r) ∧ ¬threadFrom(t2, invTrigger e1)
(def 6.49). From threadUpdates(t1, r), we know that rhBelongsToEh(r, e1)
(def 6.45), and from invDepends(e2, r), we know that above(r, e2) (defs 6.48
and 6.36). Since threadFrom(t2, invTriggere2) and ¬threadFrom(t2, invTriggere1),
it holds that e1 ̸= e2. Since above(r, e2) and rhBelongsToEh(r, e1), then by
def 6.32, it holds that above(e2, e1).

✷

We define that a thread is finished if there will be no more I/O activity within the
thread:

finishedThread(t : thread) ≡ (∀i : uid . io(i) ⊃ ¬inThread(i, t)). (7.4)

132 CHAPTER 7. PROPERTIES OF CLOCK

We then state that for all sequences of invariants, eventually the sequence terminates.
Ie, eventually, all linked invariants are finished:

Lemma 7.2.4 (Termination of Invariant Sequences)

∀t : invThread .
(∀t′ : invThread . linkedInvThread(t, t′) ⊃ finishedThread(t′)).

Proof: By COV architecture induction, similarly to lemma 7.2.2.

✷

Input and invariant threads can trigger view threads. View threads may not perform
updates, however, and therefore themselves generate no linked threads:

Lemma 7.2.5 (Termination of View Sequences)

∀t : viewThread .
¬∃t′ : thread . linkedThread(t, t′).

Proof: Follows directly from definition of linkedThread (def. 6.57).

✷

7.2.4 Proof of Limited Termination

Having investigated how input and invariant threads can generate linked threads, and
having shown that these sequences of linked threads always terminate, we can finally
express our notion of limited termination within Clock programs. Limited termination
means that a user input may cause an arbitrarily long sequence of linked inputs, invari-
ants and view updates to be triggered. However, this sequence is always guaranteed
to finish eventually. In Clock, as in all programming languages, it is possible to write
programs with errors in them. Theorem 7.2.2 shows, however, that it is impossible to
write a program where an infinite sequence of linked inputs, invariants or views results.
The theorem is as follows:

Theorem 7.2.2 (Termination)

∀t : userInputThread .
(∀t′ : thread . linkedThread(t, t′) ⊃ finishedThread(t′)).

Proof: Follows from the termination of linked update sequences (lemma 7.2.2), linked
invariant sequences (lemma 7.2.4) and view sequences (lemma 7.2.5).

✷

7.3. CONCLUSION 133

7.3 Conclusion

This chapter has demonstrated two important properties of the Clock language. The
referential transparency property (theorem 7.1.1) showed that any expression written by
a Clock programmer is referentially transparent. Referential transparency is one of the
key defining properties of functional languages. This means that despite the imperative
extensions made to Clock, programmers may act as if they are programming in a pure
functional language.

After a user of a Clock program performs some input, a sequence of linked inputs may
be generated, as well as a set of invariant and view functions. The limited termination
property (theorem 7.2.2) showed that the number of such triggered threads is always
finite. This implies that a Clock programmer need not worry about the possibility
of writing infinite constraint sequences, where invariant and input functions can have
unresolvable dependencies.

These two properties can both be seen as contributing towards the declarative nature
of Clock. Referential transparency represents declarativeness in the small – i.e., the
evaluation of individual expressions is not dependent on timing or side-effects. Limited
termination represents declarativeness in the large – programmers can write functions
handling inputs, invariants and views without having to worry about the order in which
they are evaluated, or the possible interdependencies the functions may have.

The proofs of these two properties provide examples of how it is possible to reason
about a language within the TCFP framework. Once the semantics of a language
have been defined in terms of TCFP constraints (as was done in chapter 6), language
properties can be proved as consequences of the semantics. Proving language properties
serves the dual purpose of gaining better understanding of the language, and of testing
the correctness and completeness of the semantics.

Proofs in TCFP are not trivial. The description of a language such as Clock is long
and complicated, and logical proofs are often lengthy and arduous. Without some form
of mechanical proof aid, it is challenging to prove all properties of a language in full
detail. An interesting future research topic would be to develop mechanical support
for reasoning within TCFP.

134 CHAPTER 7. PROPERTIES OF CLOCK

Chapter 8

Conclusion

The development of graphical, direct manipulation user interfaces introduces challenges
not present in the development of traditional interactive applications. Graphical user
interfaces must be developed by iterative refinement, requiring good support for rapid
prototyping and easy program modification. Rapid prototyping is difficult, however,
when programmers need to deal with inputs occurring in non-deterministic order, con-
currency, consistency maintenance, and semantic feedback. Providing programming
language support for user interface development is therefore a difficult task.

The Clock language was designed to support rapid prototyping while providing strong
support for program structuring, easy program modification, non-determinism, and
concurrency. The key to Clock’s design is the provision of a high-level programming
model. This model provides flexible support for user interface development, combin-
ing an architecture language for structuring user interfaces, constraint-style display
and consistency maintenance, and a simple, high-level I/O system. Clock is purely
declarative, both in the small and in the large.

In summarizing the results of this thesis, we first consider the importance of declarative
programming, and how Clock supports it. We then discuss the relationship between
Clock and the TCFP framework upon which Clock is based; following this, we discuss
the success of TCFP framework itself. The chapter concludes with a summary of future
and ongoing work with the Clock language.

8.1 Clock and Declarative Programming

As we saw in chapter 2, the specificational flavour of declarative programming is partic-
ularly suited to programming user interfaces. In developing user interfaces, program-
mers must keep in mind:

• What inputs might the user perform next?

• How will these inputs affect what is on the display?

• How might these inputs affect other components in the system?

135

136 CHAPTER 8. CONCLUSION

In declarative languages like Clock, it is possible to treat these questions separately
– a view function states what will be on the display; an invariant function handles
consistency, and event functions handle inputs. It is left up to the compiler to work
out when and in what order these functions need to be invoked. In languages with
a non-declarative programming model, programmers must work out how every state
change might trigger changes in other parts of the system or in the display, and program
the changes by hand. The complexity of this task can push programmers into ad-hoc
solutions such as simplifying consistency maintenance by making all data global, or
simplifying display maintenance by updating the entire display after every modification.

It is critical that the language be purely declarative. If constructs such as view or
invariant functions permit side-effects, then the programmer must be aware of when
they are invoked. If the programmer needs to know what will trigger view and invariant
updates, then the benefits of being able to separately deal with inputs, consistency
maintenance and view maintenance are lost. As described in chapters 3 and 4, Clock
provides declarativeness in the small through the referential transparency property,
and declarativeness in the large, guaranteeing that evaluation strategy for view and
invariant functions is not visible to Clock programmers.

8.2 Clock and TCFP

The reason why Clock is able to support flexible development of user interfaces within
a purely declarative framework is Clock’s basis in TCFP. TCFP relaxes the traditional
functional programming framework by permitting general I/O and non-determinism.
Since TCFP’s I/O is completely general, any restricted I/O system (such as that pro-
vided in Clock) can be modeled in TCFP.

The design of Clock and TCFP took place in parallel, with much interplay in the design
process. The desire to make Clock as flexible as possible led to the improvement of
early, more restrictive versions of TCFP. TCFP’s formal basis led to confidence that
Clock provided the desired declarative properties, and that proposed implementation
techniques for Clock would implement the desired semantics.

Therefore, designing the language and its formalism together provided a synergy. If
TCFP had not been available to help in exploring language design, it would have been
difficult to design a language whose goals are as ambitious as Clock’s. Without TCFP,
we would not have the same confidence that Clock actually possesses the declarative
properties we aimed to provide.

The main lesson to be learned from this design of Clock and TCFP is that language
design and language definition are related tasks. While languages should have clean
and simple semantics, we should be willing to recognize when our formalisms are too
restrictive, and we should be careful not to sacrifice the human factors of languages in
order to achieve desirable formal properties.

8.3. THE TCFP FRAMEWORK 137

8.3 The TCFP Framework

TCFP was used to define the semantics of Clock (chapter 6), and provided the frame-
work for reasoning about Clock’s properties (chapter 7). While successful for these
tasks, one drawback of using TCFP is that formally reasoning about language proper-
ties can be arduous. The number of constraints required to describe a language such as
Clock is large. The use of abstractions such as streams, wires and flags means that the
constraints themselves rely on lower-level constraints. This means that proving even
simple properties can rely on extensive manipulation of many logical formulae. Fully
formal proofs of such properties as those presented in chapter 7 are in practice difficult.
It is clear that some form of mechanical aid would greatly help in using TCFP.

TCFP is based on a very rich temporal logic, embedding all of classical, predicate logic.
As yet, practical theorem provers do not exist for logics of this power. One area of
further research might be to examine how TCFP can be restricted so that existing
theorem provers can be used.

Another difficulty with TCFP is that semantic specifications themselves may be in-
correct or incomplete. This is of course a problem with all specification methods. If
TCFP were supported by a mechanical theorem prover, it would be possible to easily
determine if basic properties of the language hold, thereby increasing confidence in the
correctness of the specification. The layered approach of TCFP specifications would
aid greatly in this process, since it would be possible to verify properties at one level
before proceeding to the next.

Despite these difficulties, TCFP has proven itself to be a practical formalism for ex-
pressing the semantics of languages. It is an achievement that it was possible at all
to express Clock’s semantics. The TCFP method led to extensive interplay between
language design, implementation and specification, leading to an improved language
design, and increased confidence in the correctness of the implementation.

8.4 Future Work

Clock is already an interesting language for the prototyping of direct manipulation,
graphical user interfaces. We are currently investigating a number of directions aiming
to improve Clock system itself, and to extend the language to support the development
of different styles of user interfaces. These lines of work are:

The Clock Implementation: Clock is currently a compiled language, combining
syntactic transforms written in TXL [19] with compilation based on Chakravarty
and Lock’s GTML compiler [15]. The speed of applications generated with the
Clock compiler is fast enough for production use; however, the compilation pro-
cess itself is slow. An interpretive version of Clock is currently being implemented
to allow improved turnaround following modifications in Clock programs. Future
plans include the integration of the interpreter with the ClockWorks programming
environment to provide a truly flexible user interface development environment.

138 CHAPTER 8. CONCLUSION

Fluid Interface Building: One of the drawbacks of programming in Clock is that
views must be specified in a purely textual view language. An experimental user
interface builder for Clock has been developed [101], allowing views to be drawn
rather than described textually. One of the novel aspects of interface building
in Clock is that since display views are first class values in Clock, it is easy to
mix text and pictures in a single expression. We aim to develop a full editor
supporting this style of interface building, where text and graphics can be fluidly
mixed.

Multi-User Applications: Multi-user applications support groups of people per-
forming a common task. Examples of multi-user interfaces include multi-user
editors, telepresence systems, and collaborative software engineering tools. Clock
is currently being extended to support the declarative development of multi-user
applications [77].

The key to this development is that Clock architectures provide a high-level
model for structuring applications. Components communicate via updates and
requests. By implementing these updates and requests over a network, high-level
communication between distributed parts of an application can be achieved. The
key to this implementation strategy is that Clock’s semantics, as described in
chapter 6, continue to be hold even when applications have multiple users.

Supporting Multi-Media: Modern user interfaces involve not only text and graph-
ics, but also sound and video. Sound and video (collectively referred to as contin-
uous media), differ from traditional text and graphics in that they have temporal
aspects – a video or sound clip runs for some amount of time. Programming
languages must therefore support the starting, stopping and synchronization of
continuous media, as opposed to the atomic operations required to support text
and graphics. An interesting challenge is to see whether Clock can be extended
to handle temporal media in a high-level, declarative fashion.

Easy Component Reuse: One of the fundamental ideas behind Clock is that user
interfaces can be structured via a set of connected components. In order to
allow rapid prototyping of interactive systems, it is assumed that a rich library of
components is available: ideally, most of the components used in an architecture
would be drawn from the library. Even with the small number of components
currently available in the Clock library, component reuse is already a major part
of development with Clock.

The trouble with component libraries is that as they become large, they rapidly
become unmanageable [60]. High-level support is therefore required to help pro-
grammers understand what components are available, and which is the best com-
ponent to use in a given situation. In the future, some such support will have to
be developed to help manage component-based programming in Clock.

Clock Methodology: To be effective, software tools must support some software de-
velopment methodology. The Clock Methodology aims to provide a structured
framework for user-centred design of interactive systems. Work has already been

8.5. CONCLUSION 139

performed showing how Clock architectures can be derived from task-oriented
specifications in the User Action Notation [46]. Two significant case studies have
been performed with this methodology [23, 67]. Future work involves experi-
menting with using the Clock methodology throughout the software development
process, and investigating tool support to link the phases of the methodology.

8.5 Conclusion

This thesis has demonstrated that it is possible to provide flexible support for develop-
ing graphical user interfaces within a purely declarative language based on functional
programming. The key to providing a flexible I/O system within a functional language
is the use of the novel TCFP framework for specifying and reasoning about extended
functional languages. Using TCFP, it was possible to formally define Clock, and to
prove Clock’s declarative properties.

140 CHAPTER 8. CONCLUSION

Appendix A

The Interaction Lambda Calculus

This appendix formally defines the interaction λ-calculus (Iλc). A less formal intro-
duction is contained in chapter 5.

The interaction λ-calculus (Iλc) is a small functional programming language extended
with constructs for I/O and non-determinism. The basic Iλc is a slightly extended
version of the traditional lambda calculus. It is shown how through syntactic sugar,
the constructs of modern functional programming languages such as Haskell [56] can
be easily defined in terms of the constructs of basic Iλc. This core language is shown to
possess the referential transparency property, the key defining property of functional
languages.

The basic Iλc is extended with constructs to express I/O and non-determinism. Iλc
has no explicit control strategy, so I/O events are not sequenced. For example, the Iλc
program

(write "stdout" "hello", write "stdout" "world")

could produce the output “hello world” or “world hello”. This means that Iλc is
not confluent; i.e., for any given Iλc redex, there is more than one possible normal
form. Since there is no explicit control flow, we can still consider the language to be
declarative: of the normal forms to which an expression can reduce, all are considered
correct.

This chapter introduces the syntax and semantics of the interaction lambda calculus,
and concludes with some properties of the language.

A.1 Syntax

The basic core of the Interaction Lambda Calculus (or Iλc) is the traditional λ-calculus,
extended to allow naming of lambda-abstractions (through the let construct), and pat-
tern matching (through the case construct). This syntax is presented in figure A.1.1.

An Iλc program to compute the fibonacci number of 10 is:

141

142 APPENDIX A. THE INTERACTION LAMBDA CALCULUS

let

fib = fn x ->

case x of

0 -> 1

| 1 -> 1

| n -> + (fib (- n 2)) (fib (- n 1))

end case

end fn

in

fib 10

end let

A.1.1 Syntactic Sugar

The constructs of modern functional languages such as Haskell [56] can be easily added
to Iλc through syntactic sugar. This approach is used to extend Iλc to the full syntax
used in chapter 5. For example, an if construct:

if e1 then e2 else e3 end if

can be defined as:

case e1 of True ->e2 | False ->e3 end case

A let construct:

let p = e1 in e2 end let

can be defined as:

case e1 of p ->e2 end case

Equational definitions of functions:

f p1 = e1.
· · ·
f pn = en.
eval e.

A.1. SYNTAX 143

expn ::= variable

| literal

| constructorSymbol { expn }
| fn variable -> expn end fn

| expn expn

| “(” expn “)”

| let decl in expn end let

| case expn of caseBody end case

decl ::= variable = expn

| decl “, ” decl

caseBody ::= pat -> expn {“|” pat -> expn}
pat ::= variable

| constructorSymbol { pat }
| “(” pat “)”

Figure A.1: Abstract Syntax of Basic Interaction Lambda Calculus

can be defined as:

let
f =

fn x ->
case x of

p1 ->e1 |
· · · |
pn ->en

end case
end fn

in
e

end let

In addition, we allow ourselves the use of infix notation for the usual predefined func-
tions such as arithmetic and list construction. The fibonacci example then looks like:

fib 0 = 1.

fib 1 = 1.

fib n = fib (n-2) + fib (n-1).

eval fib 10.

144 APPENDIX A. THE INTERACTION LAMBDA CALCULUS

expn ::= read expn

| write expn expn

| group expn expn

| bind pat = expn in expn end bind

Figure A.2: Extensions to Interaction Lambda Calculus

A.1.2 Supporting I/O in Iλc

In order to give the building blocks for concurrency and interaction, constructs are
added to the language for input/output, forcing I/O operation, and grouping I/O events
(figure A.1.1). As seen in chapter 5, the read construct reads a value from the named
communication port, while write writes a given value to the named communication
port. The bind construct is used to force I/O to be performed in an expression, so
that the expression has a unique value. An example of the use of bind is presented
in section 5.2.1. The group construct is used to group sets of related I/O operations
together. Grouping is used in section 6.3 to sequence threads of I/O activity.

A.2 Semantics

The semantic definition of Iλc is very close to that of traditional functional languages.
The crucial difference is that the semantic functions are defined in terms of an ioTrace
parameter that encodes all external behaviour resulting from executing the program.
This parameter in effect acts as an oracle: if an input is to take place, the parame-
ter indicates what value is read, over which communication port, and at what time.
Outputs are similarly recorded, as are the values of random numbers and explicit se-
quencing directives. This means that the semantic functions themselves are pure, all
the external information is encoded as a parameter.

A.2.1 Semantic Domains

The semantic functions are defined over domains of values, which are (in the traditional
style of denotational semantics [96]) structured as complete partial orders.

The values which expressions can take on are built from the basic values: the rational
numbers, characters, and boolean values.

bv def= Q⊥ + char⊥ + {true, false}⊥
Values may be constructor terms, represented as a tuple including an identifier for the
constructor symbol, and a list of the values being grouped by the constructor:

csym def= IN⊥

A.2. SEMANTICS 145

cterm def= csym × value∗

Values are themselves defined in terms of the basic values, constructor terms, and
interactive functions, to be described later:

value def= bv + cterm + ifunction

An I/O trace is a tree of I/O events that occur over the program’s execution. A trace
encodes the input, output and random number generation that a program causes, and
when these events occur. The tree structure for traces is convenient, as it allows simple
splitting of traces to different parts of the functional program.

Events are (analogously to definition B.2.2) tuples encoding a time the event occurred,
what the event was (i for input, o for output), on what communication port it took
place, and the value and tag communicated:

time def= IN

commPort def= value

uid def= value

event def= time × {i, o}× commPort × value × uid

events def= P(event)

I/O traces are a tree of such events, values for random number generation, and I/O
sequencing directives:

ioTrace def= event⊥ + ioTrace∗

The concept of an interactive value can now be described. Interactive values may take
on many different values, dependent on the value of a given I/O trace. An interactive
value is defined as being a mapping from an I/O trace to a weak head normal form (or
whnf) value. A whnf value may be a value, or a constructor term whose components
are in term interactive values:

whnf def= value + csym × ivalue∗

ivalue def= ioTrace → whnf

Interactive functions are then considered to be mappings from interactive values onto
interactive values:

ifunction def= ivalue → ivalue

146 APPENDIX A. THE INTERACTION LAMBDA CALCULUS

A.2.2 Semantic Functions

We now have the necessary apparatus to define the semantic functions themselves.
There are four semantic functions:

L[[·]] : literal → value

C[[·]] : constructorSymbol → csym

E [[·]] : expn → env → ivalue

D[[·]] : decl → env → env

The first function assigns meanings to literal expressions, and is assumed to be pre-
defined. The second assigns unique integer identifiers to each of a set of predefined
constructor symbols. The third gives meaning to expressions, and the fourth meaning
to declarations.

The semantic functions use environments to collect definitions, where:

env : ident → ivalue

The initial environment µ0 contains definitions for all predefined constructors and func-
tions, and the undefined value “⊥” otherwise.

Letting a ∈ ident, e,e1,e2 be expn productions, p be a pat production, µ be an envi-
ronment, ι,ι1, and ι2 be I/O traces, d ∈ decl, and b ∈ caseBody, then figure A.3 shows
the semantics of the basic Interaction Lambda Calculus. Implicitly, the value of any
expression not covered by one of these cases is ⊥. Additionally, the following notes
apply to this definition.

In equation A.4, the “ ” symbol is a place-holder for the I/O trace parameter. This is
meant to emphasize that this parameter is not used in the definition of fn abstractions.
(I.e., I/O is performed when the function is applied, not when it is defined.)

In equation A.8, the definition function is used to give the values of recursive function
definitions. This function is defined as:

D[[f1 = e1, · · · , fn = en]]µ
def= µ [f1 /→ f 1, . . . , fn /→ fn]

where ⟨f 1, . . . , fn⟩ = fix λ⟨f 1, . . . , fn⟩.⟨E [[e1]]µ
′, . . . , E [[en]]µ

′⟩
where µ′ = µ [f1 /→ f 1, . . . , fn /→ fn]

The semantics of the extensions to Interaction Lambda Calculus are shown in fig-
ure A.6, where e, e1 and e2 are expn productions, µ is an environment, ι1 and ι2 are
I/O traces, and n ∈ IN⊥. As before, wherever the E [[·]] function is undefined, it
implicitly takes on the “undefined” value “⊥”.

In these definitions, the I/O trace parameter is used as an external oracle to determine
what values are read and written, and the values of random numbers. This behaviour
truly has an oracular behaviour, since the input parameter is expected to be in exactly
the right format, offering an input tuple every time input is required, an output tuple

A.2. SEMANTICS 147

E [[l]]µ def= λ⊥.L[[l]] (A.1)

E [[v]]µ def= µ x (A.2)

E [[c e1 . . . en]]µ
def= λ⊥.⟨C[[c]], E [[e1]]µ , . . . , E [[en]]µ ⟩ (A.3)

E [[fn x -> e end fn]]µ def= λ⊥.λv.E [[e]] µ[x /→ v] (A.4)

E [[e1 e2]]µ
def= λ⟨ι1, ι2⟩.(E [[e1]]µ ι1) (E [[e2]]µ) ι2 (A.5)

E [[(e)]] def= E [[e]] (A.6)

(A.7)

E [[let d in e end let]]µ def= E [[e]] (D[[d]]µ) (A.8)

(A.9)

E [[case e of
p1->e1

| . . .
| pn->en
end case]]µ

def=

λ⟨ι1, . . . , ιn⟩.
let v = E [[e]]µ ,

µ1 = match[[p1]] v ι1 µ,
. . . ,
µn = match[[pn]] v ι1 µ

in (if µ1 ̸= ⊥ then
E [[e1]] µ1 ι2

elsif . . .
elsif µn ̸= ⊥ then

E [[en]] µn ι2)

(A.10)

Figure A.3: Semantics of Basic Interaction Lambda Calculus

match[[·]] : pat → ivalue → ioTrace → env → env

match[[x]] v ⊥ µ def= µ[x /→ v] (A.11)

match[[(p)]] def= match[[p]] (A.12)

match[[c p1 . . . pn]] v ι µ
def= (match[[p1]] v1 ι1) · · · ((match[[pn]] vn ιn)µ) (A.13)

if ι = ⟨ι′, ι1, . . . , ιn⟩,
and ⟨C[[c]], v1, . . . , vn⟩ = v ι′

Figure A.4: Semantics of Pattern Matching

148 APPENDIX A. THE INTERACTION LAMBDA CALCULUS

eval : ivalue → ioTrace → value

eval v ι def= v ι (A.14)

eval ⟨c,ω1, . . . ,ωn⟩ ⟨ι1, . . . , ιn⟩ def= ⟨c, eval ω1 ι1, . . . , eval ωn ιn⟩ (A.15)

toWhnf : value → whnf

toWhnf ⟨c, v1, . . . , vn⟩ def= ⟨c,λι.toWhnf v1, . . . ,λι.toWhnf vn⟩ (A.16)

toWhnf v def= v (A.17)

V [[·]] : expn → env → ioTrace → value

V [[e]]µ ⟨ι1, ι2⟩ def= eval (E [[e]]µ ι1) ι2 (A.18)

Figure A.5: Evaluating Interactive Values

E [[read e]]µ def= λ⟨ι1, ι2⟩.toWhnf v (A.19)

where ι1 = ⟨t, i, c, v, g⟩ for some t : time, v, g : value,

and c = V [[e]]µ ι2

E [[write e1 e2]]µ
def= λ⟨ι1, ι2, ι3⟩.toWhnf v (A.20)

where ι1 = ⟨t, o, c, v, g⟩ for some t : time, g : value,

c = V [[e1]]µ ι2
and v = V [[e2]]µ ι3

Figure A.6: Semantics of Extended Interaction Lambda Calculus

A.3. PROPERTIES OF IλC 149

for output, and so forth. We can therefore intuitively consider an appropriate I/O
trace to be a model for an interactive program; in chapter C, exactly this view will be
formalized in providing an integrated semantics for Iλc with temporal constraints.

In equation A.19, the I/O trace is divided into two parts (ι1 and ι2). The first is used
to evaluate the expression (e) that is the communication port over which the read is to
occur. The second records the time, communication port, value and tag of the input,
where the communication port must agree with e.

The definition of write in equation A.20 is similar, where the value e2 is to be written
on communication port e1. The value and communication port recorded in the I/O
trace must agree with e1 and e2.

A.3 Properties of Iλc

Traditionally, the defining property of functional languages is referential transparency.
Informally, this means that any expression in a functional program always has the
same value, regardless of the control strategy being used in executing the program.
This notion underlies most reasoning about functional programs: powerful statements
can be made about expressions without having to consider the global context in which
the expression occurs.

For Iλc, this definition is naturally extended with the condition that to be referentially
transparent, an expression must have the same value regardless of the I/O trace given
to the expression. For example, the expression “2 + 2” is always equal to 4, whereas
the expression

2 + (read "stdin")

depends on a random number, and therefore will have different values under different
executions of the program. “2 + 2” is therefore considered to be referentially transpar-
ent, whereas “2 + (read "stdin")” is not.

We define referential transparency of an expression as follows:

Definition A.3.1 (Referential Transparency)

An expression e is referentially transparent iff there exists v ∈ value such that
for all environments µ and all I/O traces ι,

E [[e]]µ ι ̸= ⊥ ⇒ E [[e]]µ ι = v

✷

150 APPENDIX A. THE INTERACTION LAMBDA CALCULUS

As we have seen, it is not the case that all Iλc expressions are referentially transparent:

Theorem A.3.1 (Referential Transparency of Iλc)

There exists an Iλc expression e that is not referentially transparent.

Proof: By example: the expression “"stdin"” does not fulfil definition A.3.1.

✷

Fortunately, however, it can be shown that every expression in the basic Interaction
Lambda Calculus is referentially transparent.

Theorem A.3.2 (Referential Transparency of Basic Iλc)

Every expression of Basic Iλc, as defined in figure A.1.1, is referentially trans-
parent.

Proof: Structural induction over the Basic Iλc, with reference to the semantics of
figure A.3.

✷

Two Iλc expressions are considered to be equivalent iff they have the same semantics:

Definition A.3.2 (Equivalence of Expressions)

Expressions e1 and e2 are equivalent iff for all environments µ and all I/O traces
ι,

E [[e1]]µ ι = E [[e2]]µ ι

✷

Many of the syntactic properties of traditional λ-calculus continue to hold. For ex-
ample, β-reduction is the property that function application is the same as syntactic
substitution:

Theorem A.3.3 (Beta Reduction)

For expressions e1 and e2, and variable x free in e1, it holds that:

fn x->e1end fn e2 ≡ e1[e2/x]

Proof: Structural induction over Iλc.

✷

Appendix B

Interaction Logic

As discussed in chapter 5, the interaction λ-calculus is used to generate a set of possi-
ble program executions, while constraints in the temporal interaction logic are used to
restrict how programs can execute. Chapter 5 gives examples of how interaction logic
can be used to model process connection, synchronization, and persistent data. Chap-
ter 7 shows how interaction logic can be used to describe the properties of languages
defined using TCFP. This appendix provides the formal definition of interaction logic.

B.1 Syntax

The atomic formulae of interaction logic are built from symbols, variables, function
symbols, and predicate symbols. Function and predicate symbols are assigned a con-
stant rank, specifying the number of arguments they require. The particular set of
symbols, variables, and function and predicate symbols from which formulae are con-
structed is called the signature of the logic, defined as follows:

Definition B.1.1 (Signature)

A signature of interaction logic is a structure

⟨ symbol, variable, expn,

predicateSymbol, rp ⟩

where symbol, variable, and predicateSymbol are disjoint alphabets, expn is a set of
expressions, and rp : predicateSymbol → IN is a ranking function for the predicate
symbols.

✷

151

152 APPENDIX B. INTERACTION LOGIC

Referring to the elements of a signature directly can become quite clumsy, so we intro-
duce a series of syntactic short forms:

Convention B.1.1 (Syntactic Short Forms)

Let

Σ = ⟨symbol, variable, functionSymbol, rf , predicateSymbol, rp⟩

be a signature. We combine all variables and all symbols by writing:

“x is a Σ–symbol” for “x ∈ symbol ”,
“x is a Σ–variable” for “x ∈ variable ”,

“x is a Σ–atom” for “x is a Σ-symbol or x is a Σ–variable”, and
“x is a Σ–expression” for “x ∈ expn.”

We rank predicate symbols by writing:

“p/m is a Σ–predicate symbol” for “p ∈ predicateSymbol and rp(p) = m.”

We leave the signature name Σ implicit when it is clear from context which
signature is intended.

✷

Terms are either atoms or expressions. As seen in appendix C, expressions are de-
fined by the Iλc expn production. Thus, predicates in interaction logic can hold over
expressions in some programming language.

Definition B.1.2 (Σ–term)

Let Σ be a signature. Then t is a Σ–term iff t is a Σ–atom or t is a Σ–expression.

✷

Atomic formulae are built by applying predicate symbols to the required number of
terms:

Definition B.1.3 (Σ–Atomic Formula)

Let Σ be a signature, t1, . . . , tm be Σ–terms, and p/m a Σ–predicate symbol.
Then p(t1, . . . , tm) is a Σ–atomic formula.

✷

Formulae are constructed from atomic formulae and logical connectives. At this point,
we introduce the predicates that are predefined in the logic.

B.1. SYNTAX 153

Definition B.1.4 (Σ–Formula)

Let

Σ = ⟨symbol, variable, functionSymbol, rf , predicateSymbol, rp⟩

be a signature, where the predicate symbols

in/3, out/3, = /2

are predefined.

Let A, B and C be Σ–formulae, X a variable, and let X be free in C. Then the
following are Σ–formulae:

• All Σ–atomic formulae.

• Constants:

TRUE FALSE

• Classical Connectives:

(A) ¬A A ∧ B A ∨ B
A ⊃ B A ≡ B ∀X.C ∃X.C

• Future Temporal Operators:

A A A

• Past Temporal Operators:

A A A

• Future Temporal Relations:

A B A B A B A B A B

• Past Temporal Relations:

A B A B A B A B A B
✷

154 APPENDIX B. INTERACTION LOGIC

B.1.1 Precedence

Formulae can always be disambiguated using parentheses. Since extensive use of paren-
theses is syntactically cumbersome, we introduce the following rules of precedence
among connectives:

Definition B.1.5 (Precedence)

The connectives bind in the following order, from most to least tightly binding.
Connectives appearing at the same level bind from left to right.

¬, , , , , ,
, , , , , , , , ,

∧
∨
⊃
≡

∀, ∃
✷

B.1.2 Introducing Sorts

Interaction logic is fundamentally one-sorted: functions and predicates are defined over
all atoms and terms. Our examples have shown, however, that functions and predicates
generally have some intended domain that is smaller than the entire universe of possible
values. For example, in the formula

in(c, v, i)

it is intuitively intended that c be a communication port, v a value, and i a tag. When
using in, this intention can be expressed using predicates commPort/1, value/1, and
tag/1:

in(c, v, i) ∧ commPort(c) ∧ value(v) ∧ tag(i)

This approach is somewhat clumsy, so we introduce syntactic sugar to allow the defini-
tion of predicates and quantification over restricted domains. These restricted domains
we shall call sorts.

B.1. SYNTAX 155

Quantification over sorts is defined as:

Definition B.1.6 (Sorted Quantification)

If Σ is a signature, x is a Σ–variable, s/1 is a Σ–predicate symbol, and A is a
Σ–formula where s is free in A, then

∀x : s.A

is syntactic sugar for

∀x.(s(X) ⊃ A))

Similarly,

∃x : s.A

is syntactic sugar for

∃x.(s(x) ∧A))
✷

Predicates over sorts are defined as:

Definition B.1.7 (Sorted Predicates)

If Σ is a signature, p/m, s1/1, . . . , sm/1 are Σ–predicate symbols, x1, . . . , xm are
Σ–variables, and A is a Σ–formula where x1, . . . , xm are free in A, then

p(x1 : s1, . . . , xm : sm) ≡ A

is syntactic sugar for

∀x1 : s1. · · · .∀xm : sm.(p(x1, . . . , xm) ≡ A)
✷

Note that according to this definition, predicates are still defined over all values, and
do not hold when applied to values of the wrong sort.

Example B.1.1 (Sort Notation)

A less specific version of the in predicate can be defined that is true for a particular
communication port in a particular time iff any input event at all has occured on
that channel in that time:

inc(c : commPort) ≡ ∃v : value.(∃i : tag.(in(c, v, i))
✷

156 APPENDIX B. INTERACTION LOGIC

B.2 Semantics

Formulae of interaction logic are based over linear, discrete time. Intuitively, this means
that there is always exactly one future, and that time moves incrementally from one
position to the next. Formally, we model time with the natural numbers – time has a
“start” (i.e., time 0), and no definite end. Time is totally ordered, hence linear; the
natural numbers are discrete, and thus so is time.

Definition B.2.1 (Time)

We define the set time as the natural numbers:

time def= IN

✷

We first define the concept of interpretation, a structure forming the basis of the se-
mantics, and then derive the interpretation function, giving meaning to formulae.

The semantics of formulae are based on two sets: a universe of values and a universe
of events. The values are the names of communication ports, and the values and tags
that can be sent over these ports. Events are a temporal recording of what has been
sent over which ports and when. In addition to these sets, an interpretation includes
functions that give meaning to function and predicate symbols and atoms.

Definition B.2.2 (Σ–Interpretation)

Let Σ be a signature. A Σ–interpretation is a structure

⟨V,E,α,φ, ρm⟩

where:

• V is a universe of values.

• E is a universe of events.

• The function

α : Σ–atoms → time → V

maps an atom to its value at a particular time point.

• The functions

φ : Σ–expression → V

ρm : Σ–predicateSymbol → time → P(V m)

are families of functions giving meaning to function and predicate symbols
of the corresponding arity.

B.2. SEMANTICS 157

Events are tuples of the form:

⟨t, k, c, v, i⟩

where

• k ∈ {r, w} (for literal symbols r and w),

• t ∈ time,

• c, v, i ∈ V , represent a communication port, value and tag respectively.

✷

Some properties of the preceding definition are worth noting. First, there is only one
universe of values. This means that all communication ports, values, and tags must
fit in this universe. When we apply this logic to a real programming language (in
chapter A), typically all elements of V will be values, and subsets of V will play dual
roles as communication ports or tags.

Secondly, note that we have now defined the concept of event. Intuitively, an event
consists of something happening over one of the communication ports used by the
program. An event can either be a read or write on the port (corresponding to in and
out in the logic respectively). Events are time-stamped, and the port, value, and tag
are given.

This gives us the necessary machinery to give meanings to formulae. Note that in the
meta-language used to define formulae, we use the traditional connectives of classical
logic. To distinguish these from the notation of the object language, we write these as:
and (conjunction), or (disjunction), not (negation), ⇒ (implication), ⇔ (equiva-

lence), for all (universal quantification), exists (existential quantification), t (truth), f
(falsehood). These have the traditional definitions of classical logic, and the traditional
theorems hold (see for example [35]).

Definition B.2.3 (I–Interpretation Function)

Let Σ be a signature, and

I = ⟨V,E,α,φn, ρm, isv, isc, ist⟩

be a Σ–interpretation. We first define a helper function:

T [[·]] : Σ–term → time → V

Let a be a Σ–atom, t1, . . . , tn Σ–terms, f/n a Σ–function symbol, and τ ∈ time.
Then:

T [[a]] def= α(a)

T [[f(t1, . . . , tn)]]τ
def= φn(f)⟨T [[t1]]τ, . . . , T [[tn]]τ⟩

158 APPENDIX B. INTERACTION LOGIC

We define I[[·]], the I–interpretation function, where

I[[·]] : Σ–formulae → time → {t, f}

as follows. Let p/m be a Σ–predicate symbol, t1, . . . , tm Σ–terms, A, B, C and D
and Σ–formulae, X a variable where X is free in D, τ ∈ time, and x a variable
ranging over V . Then:

• Σ–atomic formulae:

I[[p(t1, . . . , tm)]]τ def= ρm (p)(τ)⟨T [[t1]]τ, . . . , T [[t1]]τ⟩

• Constants:

I[[TRUE]]τ def= t

I[[FALSE]]τ def= f

• Classical Connectives:

I[[(A)]]τ def= I[[A]]τ

I[[¬A]]τ def= not I[[A]]τ

I[[A ∧ B]]τ def= I[[A]]τ and I[[B]]τ

I[[A ∨ B]]τ def= I[[A]]τ or I[[B]]τ

I[[A ⊃ B]]τ def= I[[A]]τ ⇒ I[[B]]τ

I[[A ≡ B]]τ def= I[[A]]τ ⇔ I[[B]]τ

I[[∀X.D]]τ def= for all x ∈ V.(I ′[[D]]τ)

where I ′[[·]] is the I ′–interpretation function,

where I ′ = I when α[X /→ x] is subst’d for α

I[[∃X.D]]τ def= exists x ∈ V.(I ′[[D]]τ)

where I ′[[·]] is the I ′–interpretation function,

where I ′ = I when α[X /→ x] is subst’d for α

• Future Temporal Operators:

I[[A]]τ def= I[[A]](τ + 1)

I[[A]]τ def= ∃τ ′.(τ ′ > τ and I[[A]]τ ′)

I[[A]]τ def= ∀τ ′.(τ ′ > τ ⇒ I[[A]]τ ′)

• Past Temporal Operators:

I[[A]]τ def= I[[A]](τ − 1)

I[[A]]τ def= ∃τ ′.(τ ′ < τ and I[[A]]τ ′)

I[[A]]τ def= ∀τ ′.(τ ′ < τ ⇒ I[[A]]τ ′)

B.2. SEMANTICS 159

• Future Temporal Relations:

I[[A B]]τ def=

exists τb.(τb ≥ τ and I[[B]]τb)
⇒ (exists τa.(τa ≥ τ and I[[A]]τa

and for all τb.(τ ≤ τb < τa ⇒ not I[[B]]τb)))

I[[A B]]τ def=

exists τa.(τa ≥ τ and I[[A]]τa)
⇒ (exists τb.(τb ≥ τ and I[[B]]τb

and for all τa.(τ ≤ τa < τb ⇒ not I[[A]]τa)))

I[[A B]]τ def=

exists τa.(τa ≥ τ and I[[A]]τa
and for all τb.(τ ≤ τb ≤ τa ⇒ not I[[B]]τb))

I[[A B]]τ def=

exists τb.(τb ≥ τ and I[[B]]τb
and for all τa.(τ ≤ τa ≤ τb ⇒ not I[[A]]τa))

I[[A B]]τ def=

(not exists τa.(τa ≥ τ and I[[A]]τa)
and not exists τb.(τb ≥ τ and I[[B]]τb))

or exists τ ′.(τ ′ ≥ τ and I[[A]]τ ′ and I[[B]]τ ′

and not exists τ ′′.(τ ≤ τ ′′ < τ ′ and (I[[A]]τ ′ or I[[B]]τ ′)))

• Past Temporal Relations:

I[[A B]]τ def=

exists τb.(τb ≤ τ and I[[B]]τb)
⇒ (exists τa.(τa ≤ τ and I[[A]]τa

and for all τb.(τa < τb ≤ τ ⇒ not I[[B]]τb)))

I[[A B]]τ def=

exists τa.(τa ≤ τ and I[[A]]τa)
⇒ (exists τb.(τb ≤ τ and I[[B]]τb

and for all τa.(τb < τa ≤ τ ⇒ not I[[A]]τa)))

I[[A B]]τ def=

exists τa.(τa ≤ τ and I[[A]]τa
and for all τb.(τa ≤ τb ≤ τ ⇒ not I[[B]]τb))

I[[A B]]τ def=

exists τb.(τb ≤ τ and I[[B]]τb
and for all τa.(τb ≤ τa ≤ τ ⇒ not I[[A]]τa))

160 APPENDIX B. INTERACTION LOGIC

I[[A B]]τ def=

(not exists τa.(τa ≤ τ and I[[A]]τa)
and not exists τb.(τb ≤ τ and I[[B]]τb))

or exists τ ′.(τ ′ ≤ τ and I[[A]]τ ′ and I[[B]]τ ′

and not exists τ ′′.(τ < τ ′′ ≤ τ ′ and (I[[A]]τ ′ or I[[B]]τ ′)))

• Predefined Predicates:

I[[in(A,B, C)]]τ def= ⟨τ, r, I[[A]]τ, I[[B]]τ, I[[C]]τ⟩ ∈ E

I[[out(A,B, C)]]τ def= ⟨τ, w, I[[A]]τ, I[[B]]τ, I[[C]]τ⟩ ∈ E

I[[t1 = t2]]τ
def= T [[t1]]τ = T [[t2]]τ

✷

An interpretation is called a model for a set of formulae if it satisfies all the formulae
over all time:

Definition B.2.4 (Model)

Let Σ be a signature, F be a set of Σ–formulae, I a Σ–interpretation, and I[[·]]
the I–interpretation function. We say I is a model for F , written

I |= F

iff for all A ∈ F and all τ in time,

I[[A]]τ = t

✷

A tautology is then a formula which always holds.

Definition B.2.5 (Tautology)

Let Σ be a signature, and A a Σ–formula. We say A is a tautology, written

⊢ A

Iff for every Σ–interpretation I,

I |= {A}

✷

B.2. SEMANTICS 161

B.2.1 A Core Logic

When defining a logic, it is traditional to define only a small core of logical connectives,
and to define the remaining connectives as syntactic sugar building on the core. For
example, in classical logic, disjunction is often defined as:

A ∨ B def= ¬(¬A ∧ ¬B)

As well as conciseness, this approach has the advantage that proofs requiring induction
over the structure of formulae need only consider the core connectives.

’The disadvantage of defining connectives syntactically is that there is no assurance
that the definitions correspond to the intuitive definitions one expects. For example,
with the non-standard semantics of interaction logic, can we be sure that the above
definition of disjunction corresponds to our intution of what disjunction should mean?

Our approach has been to laboriously define all of the connectives, so that our intuition
is satisfied. We now show that the logic could have been built from a small set of
connectives (in particular, ∧, ¬, ∀, , , , and), by proving the syntactic
equivalences as a theorem. This approach gives us the advantage of being sure that
our definitions are intuitively correct (since all connectives are defined directly in the
semantics), and also of having a core logic over which we can reason. We shall call this
logic the Core Interaction Logic.

Theorem B.2.1 (Core Equivalences)

Let Σ be a signature, A, B and C be Σ–formulae, X a Σ–variable where X is free
in C, and p/0 a Σ–predicate. Then each of the following formulae is a tautology:

FALSE ≡ p ∧ ¬p
TRUE ≡ ¬FALSE

A ∨ B ≡ ¬(¬A ∧ ¬B)

A ⊃ B ≡ ¬A ∨ B
(A ≡ B) ≡ (A ⊃ B) ∧ (B ⊃ A)

(∃X.C) ≡ (¬∀X.¬C)

A ≡ (A FALSE)

A ≡ (A FALSE)

A ≡ ¬ ¬A
A ≡ ¬ ¬A

A B ≡ ¬(A B ∨ B A)

A B ≡ A B ∨A B

162 APPENDIX B. INTERACTION LOGIC

A B ≡ B A
A B ≡ B A

Proof: These equivalences follow directly from definition B.2.3.

✷

B.3 Proofs In Interaction Logic

In order to use the logic effectively, we need to reason within the logic, that is, without
having to resort to its semantics. We introduce a calculus for the logic, based on a
set of inference rules and axiom schemata. The inference rules allow us to deduce the
truth of formulae from formulae we already know to be true, and the axiom schemata
provide us with a stock of tautologies to start with.

We show that the rules of inference are correct, and that the axioms indeed always
hold – this leads to a soundness theorem for the calculus (theorem B.3.1.) A second
desirable property of a calculus is completeness – i.e., that we have all the rules and
axioms we need to be able to prove any true theorem of the logic. Unfortunately, it is
often the case with temporal logics that no such complete calculus exists [1], which is
the case in interaction logic as well. The practical result of this incompleteness is that
no matter how many axioms we add to the calculus, there will still be theorems that
cannot be proved without adding at least one axiom. The calculus is, however, quite
powerful, and is sufficient to prove all the results contained in this report.

We first define the notion of entailment, and then present the rules of inference and
axiom schemata of interaction logic.

Definition B.3.1 (Entailment)

If Σ is a signature, we say that a set of Σ–formulae Γ entails the Σ–formula A,
written

Γ ⊢ A

iff A can be obtained from Γ and the axioms of interaction logic through the
inference rules of interaction logic.

✷

The rules of inference for the logic are shown in figure B.1. The first twelve rules
(i.e., those without -Introduction and -Introduction) form the traditional Gentzen
calculus, which when augmented with the axiom ⊢ A∨¬A provides a complete calculus
for first order predicate logic. These rules are as presented in [27], but specified in a
notation closer to that of [34]. The fact that these rules also form the basis of a calculus

B.3. PROOFS IN INTERACTION LOGIC 163

Γ ⊢ A Γ ⊢ B
Γ ⊢ A ∧ B

(∧-Introduction)

Γ ⊢ A
Γ ⊢ A ∨ B

Γ ⊢ B
Γ ⊢ A ∨ B

(∨-Introduction)

Γ ⊢ A ∧ B
Γ ⊢ A

Γ ⊢ A ∧ B
Γ ⊢ B

(∧-Elimination)

Γ ⊢ A ∨ B
Γ,A ⊢ C Γ,B ⊢ C

Γ ⊢ C
(∨-Elimination)

Γ,A ⊢ B
Γ ⊢ A ⊃ B

(⊃-Introduction)

Γ ⊢ A
Γ ⊢ A ⊃ B

Γ ⊢ B
(⊃-Elimination)

Γ ⊢ A
Γ ⊢ ∀X.(A[a /→ X])

(∀-Introduction)

Γ ⊢ ∀X.A
Γ ⊢ (A[X /→ a])
(∀-Elimination)

Γ ⊢ A
Γ ⊢ ∃X.(A[a /→ X])

(∃-Introduction)

Γ ⊢ ∃X.A
Γ,A[X /→ a] ⊢ B

Γ ⊢ B
(∃-Elimination)

Γ,A ⊢ FALSE
Γ ⊢ ¬A

(¬-Introduction)

Γ ⊢ A Γ ⊢ ¬A
Γ ⊢ FALSE

Γ ⊢ FALSE
Γ ⊢ A

(¬-Elimination)

⊢ A
⊢ A

(-Introduction)

⊢ A
⊢ A

(-Introduction)

where A, B and C are Σ–formulae for some signature Σ, X is a Σ–variable, a is a
Σ–symbol, and in the rules ∀–Introduction and Elimination, and ∃–Introduction and
Elimination, a is free in A, and for all f ∈ Γ, a is not free in f .

Figure B.1: Inference Rules of Interaction Logic

164 APPENDIX B. INTERACTION LOGIC

for interaction logic is reassuring, since all of the familiar theorems of classical logic
are also theorems of interaction logic.

In addition to the rules of inference, we start with a set of formulae which we know to
be true. We call these formulae the initial axioms of interaction logic.

Definition B.3.2 (Initial Axioms)

For Σ a signature, and A, A′, B and B′ Σ–formulae, the following axiom schemata
are defined to be tautologies:

• All the equivalences of theorem B.2.1.

• Law of excluded middle:

⊢ A ∨ ¬A

• Definition of and :

⊢ ¬ A ≡ ¬A
⊢ (A ⊃ B) ≡ (A ⊃ B)

⊢ ¬ A ≡ ¬A
⊢ (A ⊃ B) ≡ (A ⊃ B)

• Definition of :

⊢ A B ∧ (A ⊃ A′) ⊃ A′ B
⊢ A B ∧ (B ⊃ B′) ⊃ A B′

⊢ A B ∧ B C ⊃ A C
⊢ ¬(A B)
⊢ ¬(A B) ≡ A B
⊢ A B ≡ ¬B ∧ (A ∨ (A B))

• Definition of :

⊢ A B ∧ (A ⊃ A′) ⊃ A′ B
⊢ A B ∧ (B ⊃ B′) ⊃ A B′

⊢ A B ∧ B C ⊃ A C
⊢ ¬(A B)
⊢ ¬(A B) ≡ A B
⊢ A B ≡ ¬B ∧ (A ∨ (A B))

✷

B.3. PROOFS IN INTERACTION LOGIC 165

B.3.1 Properties of the Calculus

It is necessary to show that usings the axioms and rules of this calculus, that only true
formulae can be deduced, i.e. that no false formulae can be proved to be true. This
property is called soundness.

Theorem B.3.1 (Soundness)

Let Σ be a signature, F a set of Σ–formulae, and A a Σ–formula. Then

F ⊢ A

only if for all Σ–interpretations I,

I |= F ⇒ I |= A

Proof: The proof proceeds by showing that each of the initial axioms from defi-
nition B.3.2 are tautologies, and that each of the inference rules of figure B.1
preserves the entailment relation.

✷

An additional property that is desirable of a calculus, but not necessary, is that any
true formula can be deduced with the calculus. This property is called completeness,
and is defined as follows:

Definition B.3.3 (Completeness)

Let Σ be a signature, F a set of Σ–formulae, and A a Σ–formula. We say the en-
tailment relation ⊢ is complete iff whenever it holds that for all Σ–interpretations
I,

I |= F ⇒ I |= A

then

F ⊢ A
✷

As is the case of all interesting temporal logics, interaction logic does not possess
a complete proof calculus. This can be proved by constructing a sentence in the
logic which completely defines the natural numbers and their associated operations.
By the Gödel incompleteness theorem, there is no calculus which can prove all the
consequences of this sentence. One presentation of this proof can be found in [1].

166 APPENDIX B. INTERACTION LOGIC

Appendix C

Combining Temporal Constraints
and Functional Programming

The preceding two chapters have introduced Interaction Logic, a temporal logic for
expressing constraints over the interactive behaviour of functional programs, and the
Interaction Lambda Calculus, a functional language extended with constructs to ex-
press I/O and non-determinism. The semantics of both of these systems was precisely
specified.

This section introduces a combined semantic framework, where the semantics of inter-
action logic are combined with the Iλc semantics. This allows meaning to be given to
TCFP programs, involving both functions and temporal constraints. Once the seman-
tics of TCFP programs has been given, we define the concept of semantic-preserving
transformations over TCFP programs.

To create the combined semantics, we first cast the semantics of Iλc programs into a
model theoretic framework. The combined semantics is then the composition of the
model theoretic semantics of Iλc and that of interaction logic.

C.1 A Model Theoretic Interpretation for Iλc

In order to combine the semantics of Iλc with that of interaction logic, we need to
consider Iλc as being a logic as well. We can then consider the coombined semantics
of an Iλc program and a set of constraints as being the intersection of all models for
the program with all models for the constraints.

Intuitively, we define a model as being a possible input trace to a program that produces
some sensible (i.e., defined) output. This allows us to use the E [[·]] function as an
interpretation function, where the I/O trace parameter is a model for the program.

167

168 APPENDIX C. COMBINED TCFP FRAMEWORK

We first define the notion of a program signature, simply as being a set of variables,
constructor symbols and function symbols to be used in the program:

Definition C.1.1 (Iλc–Signature)

A signature of the interactive lambda calculus is a structure

⟨V , C, rc,F⟩

where V , C, and F are disjoint alphabets of symbols, and

rc : C → IN

is a ranking function assigning an arity to constructor symbols.
✷

A program is then constructed from a signature using the grammar rules of the pre-
ceding chapter:

Definition C.1.2 (Γ–Program)

Given an Iλc–signature

Γ = ⟨V , C, rc,F⟩

we define P to be a Γ–program if P satisfies the grammar of fig-
ures A.1.1 and A.1.1, where the non-terminals variable, constructorSymbol, and
functionSymbol take on the values of V , C, and F respectively.

✷

An interpretation for a program then contains a set of events that results from the
execution of the program, and the value of the program. Additionally, the meaning
of the function and constructor symbols used in the program are given, as well as the
type projection functions.

Definition C.1.3 (Γ–Interpretation)

Given an Iλc–signature

Γ = ⟨V , C, rc,F⟩

and P a Γ–program, then a structure

⟨E, µ0, is?, v⟩

is called an interpretation for P iff

C.1. A MODEL THEORETIC INTERPRETATION FOR IλC 169

• E ∈ events is a set of events,

• µ0 : (F ∪C) → value assigns meanings to predefined functions and construc-
tors, and where for all c ∈ constructorSymbol,

rc c = n ⇒ µ0 c = λv1. · · · .λvn.⟨C[[c]], v1, . . . , vn⟩

• is? is a pair of relations

isc, ist ⊆ value

indicating which values can be used as communication ports and tags,

• v ∈ value is a value.

and where value, events, and C[[·]] are as defined in section A.2.

✷

Intuitively, an interpretation is a model if the interpretation agrees with the semantics
of the program as given by the expression function E [[·]]. This means that some I/O
trace must generate the set of events given in the interpretation, and that the function
definitions must agree with those of the program.

Definition C.1.4 (Γ–Model)

Given Γ an Iλc-signature, P a Γ–program, and I an interpretation of P , we say
I is a model for P , written

I |= P

iff there exists some I/O trace ι such that

E = eventStream ι

and

v = E [[P]] µ0 ι

If v ̸= ⊥, I is called a non-trivial model for P . In this definition, we use the
helper function

eventStream : ioTrace → events⊥

to extract the I/O events from an I/O trace. This function is defined as:

eventStream ⟨t, k, c, v, g⟩ def=

⟨t, k, c, v, g⟩
if ι = ⟨t, k, c, v, g⟩, for t ∈ time, k ∈ {i, o},
and c, v, g ∈ value s.t. isc(c), and ist(g),

170 APPENDIX C. COMBINED TCFP FRAMEWORK

eventStream ⟨r, n⟩ def= ∅, if n ∈ IN

eventStream ⟨a, ι1, ι2⟩ def=

E1 ∪ E2

where E1 = eventStream(ι1), E2 = eventStream(ι2),

if E1 ̸= ⊥, E2 ̸= ⊥,

and for all ⟨t1, k1, c1, v1, g1⟩ ∈ E1,

and⟨t2, k2, c2, v2, g2⟩ ∈ E2, t1 < t2,

eventStream ⟨ι1, . . . , ιn⟩ def=

E1 ∪ · · · ∪ En

where E1 = eventStream(ι1), · · · , En = eventStream(ιn),

and where E1 ̸= ⊥, · · · , En ̸= ⊥,

eventStream ι def= ⊥, otherwise

✷

C.2 Combined Semantics

Having cast the semantics of Iλc programs into a model-theoretic framework, we can
now consider the combined semantics of Iλc and interaction logic. We first define what
it means for two signatures, of the interaction lambda calculus and interaction logic
respectively, to be compatible. This means that the function and variable symbols in
either signature must be common to both.

Definition C.2.1 (Compatible Signatures)

Let

Γ = ⟨variable, constructorSymbol, rc, functionSymbol⟩

be an Iλc–signature, and let

Σ = ⟨symbol, variable, cfSymbol, predicateSymbol, rp⟩

be a signature of interaction logic, where cfSymbol = constructorSymbol ∪
functionSymbol. Then Γ and Σ are called compatible signatures.

✷

Two models for a program and a set of constraints respectively can be combined if the
corresponding components of the models are the same: in particular, that the models
describe the same set of events.

C.3. TRANSFORMATIONS 171

Definition C.2.2 (Combined Model)

Let Γ be an Iλc–signature, and let Σ be a compatible signature of interaction
logic. Let P be a Γ–program, and F a set of Σ–formulae. Then the structure

I = ⟨E,α,φ, ρm, is?, v⟩

is a model for the combined program, written

I |= ⟨P ,F⟩

iff ⟨E,φ, is?, v⟩ |= P and ⟨value, E,α,φ, ρm, is?⟩ |= F .

If v ̸= ⊥, and E ̸= ∅, we say I is non-trivial.

✷

C.3 Transformations

We are ultimately interested in being able to reason about whether two TCFP pro-
grams have the same semantics, and in particular, if some function that transforms
one TCFP program to another can be expected to always provide the same semantics.
This informal notion of “same semantics” is defined to mean that of all the possible
behaviours the original program exhibited, the new program must exhibit at least one,
and that whereever the old program was defined, the new program must also be de-
fined. That is, transformations are allowed to reduce non-determinism, but must still
leave at least one possible execution path. We first define this notion in terms of the
semantics of TCFP programs:

Definition C.3.1 (Semantic-Preserving Transformations)

Let Γ and Σ be compatible signatures of Iλc and interaction logic respectively.
Then any function

t : Γ–program × Σ–formulae → Γ–program × Σ–formulae

is called a ⟨Γ,Σ⟩–transformation. We say t is semantic preserving iff for all Γ–
programs P and sets of Σ–formulae F for which there is some non-trivial model,
there exists some I such that

I |= ⟨P ,F⟩ and I |= t ⟨P ,F⟩

✷

172 APPENDIX C. COMBINED TCFP FRAMEWORK

While this definition provides us with a precise notion of what it means for a trans-
formation to be semantic-preserving, it is not particularly helpful in reasoning about
particular transformations. To help us out here, we reformulate the definition in terms
of our proof theory, rather than the semantics. Unfortunately, due to the incomplete-
ness of the proof theory, we will not be able to prove that every semantic-preserving
transformation is actually semantic-preserving.

Two interesting special cases of transformations are program and constraint transforma-
tions. These cases are functions that transform only the Iλc program or the constraints,
not both at the same time. In reasoning about transformations, it is convenient to split
the transformations into a sequence of program and constraint transformations, rather
than trying to reason about both at once.

Definition C.3.2 (Program and Constraint Transformations)

Let Γ and Σ be compatible signatures of Iλc and interaction logic respectively,
and let t be a ⟨Γ,Σ⟩–transformation. If for all Γ–programs P and sets of Σ–
formulae F , if

t ⟨P ,F⟩ = ⟨P ′,F⟩

for some Γ–program P ’, then t is called a program transformation; if

t ⟨P ,F⟩ = ⟨P ,F ′⟩

for some set of Σ–formulae F ′, then t is called a constraint transformation.
✷

We can now formulate how to prove that constraint transformations are semantic-
preserving. This is simply a case of proving that all the formulae in the transformed
version are a consequence of formulae in the original version.

Theorem C.3.1 (Semantic Preserving Constraint Transformations)

Let Γ and Σ be compatible signatures of Iλc and interaction logic respectively,
and let t be a constraint transformation over ⟨Γ,Σ⟩. Then t is semantic preserving
if for all Γ–programs P and sets of Σ–formulae F , if

t ⟨P ,F⟩ = ⟨P ′,F⟩

then

F ⊢ F ′

Proof: Follows directly from theorem B.3.1.
✷

Note that because of the incompleteness of the entailment relation “⊢”, this theorem
does not hold in the other direction.

Bibliography

[1] Martin Abadi. The power of temporal proofs. Theoretical Computer Science,
65(1):35–83, 1989.

[2] Apple Computer, Inc. Human Interface Guidelines: The Apple Desktop Interface.
Addison-Wesley, 1987.

[3] Apple Computer, Inc. Inside Macintosh. Addison-Wesley, 1987.

[4] Apple Computer, Inc. HyperCard Reference. Claris Corporation, 1990.

[5] L. Augustsson. Compiling Lazy Functional Languages. PhD thesis, Chalmers
University of Technology, 1987.

[6] Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. FormsVBT: A
two-view approach to constructing user interfaces. In CHI’90 Technical Video
Program, volume 53, 1990.

[7] Lee Alton Barford and Bradley T. Vander Zanden. Attribute grammars in
constraint-based graphics systems. Software Practice and Experience, 19(4):309–
328, April 1989.

[8] Brigham Bell, John Rieman, and Clayton Lewis. Usability testing of a graphical
programming system: Things we missed in a programming walkthrough. In ACM
SIGCHI 1991, pages 7–12, April 1991.

[9] Alan Borning. Defining constraints graphically. In Human Factors in Computing
Systems, CHI 1986 Proceedings, pages 137–143, 1986.

[10] Margaret M. Burnett and Allen L. Ambler. A delcarative approach to event-
handling in visual programming languages. In Proceedings of the 1992 IEEE
Workshop on Visual Languages, pages 34–40, 1992.

[11] R.M. Burstall and J. Darlington. A transformation system for developing recur-
sive programs. Journal of the Association of Computing Machinery, 24(1):44–67,
January 1977.

[12] Luca Cardelli. Building user interfaces by direct manipulation. Technical report,
DEC SRC, October 1987.

173

174 BIBLIOGRAPHY

[13] Magnus Carlsson. Fudgets – Graphical User Interfaces and I/O in Lazy Func-
tional Languages. PhD thesis, Chalmers University of Technology, Göteborg,
Sweden, 1993.

[14] Magnus Carlsson and Thomas Hallgren. Fudgets – a graphical user interface in
a functional language. In Proceedings of Functional Programming Languages and
Computer Architectures, pages 321–330. ACM Press, 1993.

[15] Manuel M.T. Chakravarty and Hendrik C.R. Lock. The implementation of lazy
narrowing. In Proceedings of PLILP, Programming Language Implementation
and Logic Programming, pages 123–134. Springer Verlag, 1991.

[16] Dominique Clément and Janet Incerpi. Specifying the behavior of graphical
objects using Esterel. In Proceedings of TAPSOFT’89, pages 111–125, 1989.

[17] James R. Cordy and T.C. Nicholas Graham. GVL: A graphical functional lan-
guage for the specification of output in programming languages. In Proceedings of
the 1990 IEEE International Conference on Computer Languages, pages 11–22,
March 1990.

[18] James R. Cordy and T.C. Nicholas Graham. GVL: Visual specification of graph-
ical output. Journal of Visual Languages and Computing, 3:25–47, 1992.

[19] James R. Cordy, Charles Halpern, and Eric Promislow. TXL : A rapid prototyp-
ing system for programming language dialects. In IEEE International Conference
on Computer Languages, pages 280–285, October 1988.

[20] Joelle Coutaz. The construction of user interfaces and the object paradigm. In
Proceedings of ECOOP ’87, pages 121–130, 1987.

[21] Joelle Coutaz. PAC, and object-oriented model for dialog design. In Proceedings
of INTERACT’87, pages 431–436, 1987.

[22] Joelle Coutaz. Architecture models for interactive software. In Proceedings of
ECOOP ’89, pages 383–399, July 1989.

[23] Herbert Damker. Spezifizierung und Architekturentwurf von Benutzungss-
chnittstellen: eine Fallstudie in der Clock-Methodologie. Studienarbeit, Uni-
versität Karlsruhe, September 1992.

[24] John Darlington and Lyndon While. Controlling the behaviour of functional
language systems. In Proceedings of Functional Programming Languages and
Computer Architecture, volume 274, pages 278–300. Springer Verlag LNCS, 1987.

[25] Michael L. Dertouzos. The user interface is the language. In Brad A. Myers,
editor, Languages for Developing User Interfaces, chapter 2, pages 21–30. Jones
and Barlett, 1992.

BIBLIOGRAPHY 175

[26] Andrew Dwelly. Functions and dynamic user interfaces. In Proceedings of Func-
tional Programming Languages and Computer Architecture, pages 371–381. ACM
Press, 1989.

[27] Norbert Eisinger and Hans Juergen Ohlbach. Kalküle für die prädikatenlogik
erster stufe. In K.H. Bläsius and H.-J. Bürckert, editors, Deduktions-Systeme.
Oldenbourg Verlag, München, 1987.

[28] Anthony J. Field and Peter G. Harrison, editors. Functional Programming. Ad-
dison Wesley, 1988.

[29] Bjorn N. Freeman-Benson and Alan Borning. Constraint imperative program-
ming languages for building interactive systems. In Brad A. Myers, editor, Lan-
guages for Developing User Interfaces, chapter 11, pages 161–182. Jones and
Barlett, 1992.

[30] Bjorn N. Freeman-Benson, John Maloney, and Alan Borning. An incremental
constraint solver. Communications of the ACM, 33(1):54–65, January 1990.

[31] Dov Gabbay. The declarative past and imperative future. In Temporal Logic in
Specification, volume LNCS 398, pages 409–448. Springer Verlag, 1987.

[32] R. Gabriel. The automatic generation of graphical user interfaces. In System
design: concepts, methods and tools, pages 330–339. IEEE, April 1988.

[33] R. Gabriel. A formalism for the definition of graphical formulas. In ACM SIGS-
MALL symposium on personal computers, pages 28–36. ACM, May 1988.

[34] Jean Gallier. Constructive logics. part I: A tutorial on proof systems and typed
λ-calculi. Technical Report 8, Digital Equipment Corporation Paris Research
Laboratory, May 1991.

[35] Jean H. Gallier. Logic for Computer Science. John Wiley, New York, 1987.

[36] Anthony Galton, editor. Temporal Logic and Their Applications. Academic Press,
1987.

[37] Emden R. Ganser and John H. Reppy. A foundation for user interface con-
struction. In Brad A. Myers, editor, Languages for Developing User Interfaces,
chapter 14, pages 239–260. Jones and Barlett, 1992.

[38] Eric J. Golin. Tool review: Prograph 2.0 from TGS Systems. Journal of Visual
Languages and Computing, 2:189–194, 1991.

[39] Andrew D. Gordon. An operational semantics for I/O in lazy functional lan-
guages. In Proceedings of Functional Programming Languages and Computer
Architectures, pages 136–145. ACM Press, 1993.

176 BIBLIOGRAPHY

[40] T.C. Nicholas Graham. Constructing user interfaces with functions and temporal
constraints. In Brad A. Myers, editor, Languages for Developing User Interfaces,
chapter 16, pages 279–302. Jones and Bartlett, 1992.

[41] T.C. Nicholas Graham. Future research issues in languages for developing user
interfaces. In Brad A. Myers, editor, Languages for Developing User Interfaces,
chapter 22, pages 401–418. Jones and Bartlett, 1992.

[42] T.C. Nicholas Graham. Temporal constraint functional programming: a declara-
tive framework for interaction and concurrency. In John Darlington and Roland
Dietrich, editors, Declarative Programming, pages 83–100. Workshops in Com-
puting, Springer Verlag, April 1992.

[43] T.C. Nicholas Graham and Tore Urnes. Relational views as a model for auto-
matic distributed implementation of multi-user applications. In Proceedings of
the Fourth Conference on Computer-Supported Cooperative Work (Toronto, Oct.
1992), pages 59–66, 1992.

[44] Mark Green. A survey of three dialogue models. ACM Transactions on Graphics,
5(3):244–275, July 1986.

[45] H. Rex Hartson and Deborah Hix. Human-computer interface development: Con-
cepts and systems. ACM Computing Surveys, 21(1):5–92, March 1989.

[46] H. Rex Hartson, Antonio C. Siochi, and Deborah Hix. The UAN: A user-oriented
representation for direct manipulation interface designs. ACM Transactions on
Information Systems, 8(3):181–203, July 1990.

[47] Ralph Hill. Supporting concurrency, communication and synchronization in
human-computer interaction: the Sassafrass UIMS. ACM Transactions on
Graphics, 5(3):179–210, July 1986.

[48] Ralph Hill. The abstraction-link-view paradigm: Using constraints to connect
user interfaces to applications. In ACM SIGCHI 1992, pages 335–342, April 1992.

[49] Ralph Hill. The rendezvous constraint maintenance system. In Proceedings of
the ACM Symposium on User Interface Software and Technology, pages 225–234,
1993.

[50] Ralph D. Hill. Languages for construction of multi-user multi-media synchronous
(MUMMS) applications. In Brad A. Myers, editor, Languages for Developing
User Interfaces, pages 125–146. Jones and Bartlett, 1992.

[51] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London,
1985.

[52] Bruce Horn. Constraint patterns as a basis for object-oriented programming. In
Proceedings of OOPSLA’92, pages 218–234. ACM Press, 1992.

BIBLIOGRAPHY 177

[53] Bruce Horn. Properties of user interface systems and the siri programming lan-
guage. In Brad A. Myers, editor, Languages for Developing User Interfaces,
chapter 13, pages 211–238. Jones and Barlett, 1992.

[54] Paul Hudak. Conception, evolution and application of functional programming
languages. ACM Computing Surveys, 21(3):359–411, September 1989.

[55] Paul Hudak and Raman S. Sundaresh. On the expressiveness of purely functional
I/O systems. Technical Report YALEU/DCS/RR-665, Yale University, March
1989.

[56] Paul Hudak and Philip Wadler. Report on the functional programming language
Haskell (v1.1). Technical Report YALEU/DCS/RR777, Yale University, August
1991.

[57] Kent Karlsson. Nebula – a functional operating system. Technical report,
Chalmers University, 1981.

[58] Michael J. Knister and Atul Prakash. Distedit: A distributed toolkit for support-
ing multiple group editors. In Proceedings of the Third Conference on Computer-
Supported Cooperative Work (Los Angeles, Ca., Oct. 7–10), pages 343–355, New
York, 1990. ACM Press.

[59] Glen E. Krasner and Stephen T. Pope. A cookbook for the using the Model-
View-Controller interface paradigm. Journal of Object-Oriented Programming,
1(3):26–49, 1988.

[60] Charles W. Krueger. Software Reuse. ACM Computing Surveys, 24(2):131–184,
1992.

[61] TGS Systems Limited. Prograph Reference. TGS Systems, 1989.

[62] Mark A. Linton, John M. Vlissides, and Paul R Calder. Composing user interfaces
with InterViews. IEEE Computer, 22(2):8–22, February 1989.

[63] Hendrik C.R. Lock. An amalgamation of functional and logic programming lan-
guages. Technical Report 408, GMD, September 1989.

[64] S. Matwin and T. Pietrzykowski. Prograph: A preliminary report. Computer
Languages, 10(2):91–126, 1985.

[65] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Techni-
cal Report ECS-LFCS-89-85, Laboratory for Foundations of Computer Science,
University of Edinburgh, 1989.

[66] Robin Milner. Communication and Concurrency. Prentice-Hall, Hemel Hemp-
stead, 1986.

[67] Catherine Morton. Tool support for component-based programming. Master’s
thesis, York University, North York, Canada, June 1994.

178 BIBLIOGRAPHY

[68] Brad A. Myers. Creating dynamic interaction techniques by demonstration. In
Proceedings of ACM CHI+GI’87 Conference on Human Factors in Computing
Systems and Graphics Interface, pages 271–278. ACM Press, November 1987.

[69] Brad A. Myers. Creating user interfaces by demonstration. Technical Report
CSRI-196, Computer Systems Research Institute, May 1987.

[70] Brad A. Myers. A new model for handling input. Transactions on Information
Systems, pages 289–320, July 1990.

[71] Brad A. Myers. Separating application code from toolkits: Eliminating the
spaghetti code of callbacks. In Proceedings of the Fourth Annual Symposium
on User Interface Software and Technology, pages 211–220. ACM, acm press,
November 1991.

[72] Brad A. Myers. Ideas from Garnet for future user interface programming lan-
guages. In Brad A. Myers, editor, Languages for Developing User Interfaces,
pages 147–160. Jones and Bartlett, 1992.

[73] Brad A. Myers. Why are human-computer interfaces difficult to design and
implement? Technical Report CMU-CS-93-183, Computer Science Department,
Carnegie Mellon University, July 1993.

[74] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden,
David S. Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal. Gar-
net: Comprehensive support for graphical, highly interactive user interfaces.
IEEE Computer, pages 71–85, November 1990.

[75] Brad A. Myers, Dario A. Guise, and Brad Vander Zanden. Declarative Program-
ming in a Prototype-Instance System: Object-Oriented Programming Without
Writing Methods. In OOPSLA’92, ACM SIGPLAN Notices, Vol. 27, Num. 10,
Oct. 1992, 1992.

[76] Brad A. Myers and Mary Beth Rosson. Survey on user interface programming.
In Human Factors in Computing Systems, pages 195–202, Monterrey, CA, May
1992.

[77] Roy Nejabi. Efficient semi-replicated implementation of multi-user user inter-
faces. Master’s thesis, York University, North York, Canada, May 1995. (ex-
pected).

[78] NeXT Inc. NeXTStep Reference. Addison-Wesley, 1991.

[79] Rob Noble and Colin Runciman. Functional languages and graphical user inter-
faces – a review and a case study. Technical Report YCS-94-223, University of
York, Febraury 1994.

[80] E.G.J.M.H. Nöcker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmei-
jer. Concurrent Clean. In Proceedings of PARLE ’91, volume LNCS 506, pages
202–219. Springer Verlag, June 1991.

BIBLIOGRAPHY 179

[81] Adrian Nye. Xlib Programming Manual. O’Reilly and Associates, 1988.

[82] Dan R. Olsen Jr. Propositional production systems for dialog specification. In
ACM CHI ’90 Conference Proceedings, pages 57–64, 1990.

[83] Dan R. Olsen, Jr. User Interface Management Systems: Models and Algorithms.
Morgan Kaufmann, San Mateo, 1992.

[84] D.R. Olsen Jr. and E.P. Dempsey. SYNGRAPH: A graphical user interface
generator. Computer Graphics, 17(3):43–50, 1983.

[85] Open Software Foundation. OSF/Motif Style Guide. Prentice Hall International,
1990.

[86] John K. Ousterhout. An X11 toolkit based on the Tcl language. In Proceedings
of the 1991 USENIX Winter Conference, pages 105–115, January 1991.

[87] John F. Patterson, Ralph D. Hill, Steven L. Rohall, and W. Scott Meeks. Ren-
dezvous: An architecture for synchronous multi-user applications. In Proceedings
of the Third Conference on Computer-Supported Cooperative Work, pages 317–
328. ACM, October 1990.

[88] F. Newberry Paulisch and W.F. Tichy. EDGE: An extensible graph editor. Soft-
ware Practice and Experience, 20(S1):63–88, 1990.

[89] Randy Pausch, Nathaniel R. Young II, and Robert DeLine. SUIT: the Pascal of
user interface toolkits. In Proceedings of the ACM Symposium on User Interface
Software and Technology, pages 117–125. ACM, acm press, November 1991.

[90] Peter Pepper. The programming language OPAL-1. Technical Report May-91,
T.U. Berlin, May 1991.

[91] Nigel Perry. I/O and inter-language calling for functional languages. In Pro-
ceedings of the Ninth International Conference of the Chilean Computer Science
Society and Fifteenth Latin American Conference on Informatics, July 1989.

[92] Nigel Perry. Towards a concurrent object/process oriented functional language.
In Proceedings of ACSC’15, the Australian Computer Science Conference, 1992.

[93] Guenther E. Pfaff, editor. User Interface Management Systems. Springer-Verlag,
Berlin, November 1983.

[94] T. W. Reps and T. Teitelbaum. The synthesizer generator. Springer Verlag,
1989.

[95] Robert W. Scheifler and Jim Gettys. The X window system. ACM Transactions
on Graphics, 5(2):79–109, 1986.

[96] David A. Schmidt. Denotational Semantics: A Methodology for Language Devel-
opment. Wm. C. Brown Publishers, Dubuque, Iowa, 1986.

180 BIBLIOGRAPHY

[97] Ben Shneiderman. Direct manipulation: A step beyond programming languages.
IEEE Computer, 16(8):57–69, August 1983.

[98] Duncan C. Sinclair. Graphical user interfaces for Haskell. In Proceedings of the
Fifth Annual Glasgow Workshop on Functional Programming, pages 252–257,
July 1992.

[99] Gurminder Singh and Mark Green. Automating the lexical and syntactic design
of graphical user interfaces: The UofA* UIMS. ACM Transactions on Graphics,
pages 213–254, July 1991.

[100] David Canfield Smith and Joshua Susser. A component architecture for personal
computer software. In Brad A. Myers, editor, Languages for Developing User
Interfaces, pages 31–56. Jones and Bartlett, 1992.

[101] Gekun Song. Mixing visual and textual programming in functional languages.
Master’s thesis, York University, North York, Canada, February 1995. (expected).

[102] Mark Stefik, Gregg Foster, Daniel G. Borrow, Kenneth Kahn, Stan Lanning, and
Lucy Suchman. Beyond the chalkboard: Computer support for collaboration and
problem solving in meetings. Communications of the ACM, 30(1):32–47, January
1987.

[103] William Stoye. A new scheme for writing functional operating systems. Technical
Report 56, Cambridge University, 1984.

[104] Sun Microsystems Inc. OPEN LOOK Graphical User Interface Style Guidelines.
Addison-Wesley, 1990.

[105] Shin Takahashi, Satoshi Matsuoka, Akinora Yonezawa, and Tomihisa Kamada.
A general framework for bi-directional translation between abstract and pictoral
data. In Proceedings of the ACM Symposium on User Interface Software and
Technology, pages 165–174, November 1991.

[106] Leo Tessler. Keynote speech. In CHI 89: Conference on Human Factors in
Computing Systems. Apple Computer, Inc., May 1989.

[107] Linda Tetzlaff and David R. Schwartz. The use of guidelines in user interface
design. In Human Factors in Computing Systems, CHI 1991 Proceedings, pages
329–333, April 1991.

[108] Simon Thompson. Interactive functional programs: a method and a formal se-
mantics. Technical Report UKC-48, University of Kent at Canterbury, November
1987.

[109] Tore Urnes. A relational model for programming concurrent and distributed
user interfaces. Master’s thesis, Norwegian Institute of Technology, University of
Trondheim, 1992.

BIBLIOGRAPHY 181

[110] Marko van Eekelen, Halbe Huitema, Eric Nöker, Sjaak Smetsers, and Rinus
Plasmeijer. Concurrent Clean language manual (version 0.8.4). Distributed with
Concurrent Clean implementation, February 1993.

[111] Bradley T. Vander Zanden. An active-value spreadsheet model for interactive
languages. In Brad A. Myers, editor, Languages for Developing User Interfaces,
pages 183–210. Jones and Bartlett, 1992.

[112] Bradley T. Vander Zanden, Brad A. Myers, Dario Giuse, and Pedro Szekely. The
importance of pointer variables in constraint models. In Proceedings of the Fourth
Annual Symposium on User Interface Software and Technology, pages 155–164.
ACM, acm press, November 1991.

[113] Philip Wadler. Comprehending Monads. In ACM Conference on Lisp and Func-
tional Programming, pages 61–78, Nice, June 1990.

[114] Philip Wadler. The essence of functional programming. In 19th Annual Sym-
posium on Principles of Programming Languages, pages 1–14, Santa Fe, New
Mexico, January 1992.

