
September 15, 1995

Linguistic Support For Developing
Groupware Systems

by

ROY NEJABI

B.Sc., York University (1993)

A Thesis submitted to the

Faculty of Graduate Studies, York University

in partial fulfillment of the requirements

 for the degree of

Master ofScience

Thesis Supervisor: T.C.N. Graham

Graduate Programme in Computer Science

Department of Computer Science, York University

4700 Keele Street, North York, Ontario

Canada, M3J 1P3

@ Roy Nejabi, 1995

(July 1995)

iv

Abstract

Groupware refers to computer based systems which are explicitly designed to support

groups of people working together. Synchronous groupware systems, the form of group-

ware which this thesis aims to support, allow several users to work simultaneously on the

same information. This class of applications is difficult to develop. The difficulty is due to

the involvement of distribution, networking and interaction technologies in the develop-

ment of this class of applications. This thesis argues that groupware development is suffi-

ciently difficult to justify a special purpose language. This thesis presents a set of

requirements which facilitate the development of groupware. These requirements are clas-

sified into two inter-related groups: requirements for expressiveness, such as the need to

support the development of a rich set of collaboration styles, and requirements for ease of

use, such as the need for a transparent communication infrastructure. These requirements

are used as the criteria for the development of a prototype toolkit: Multi-User Clock. This

toolkit provides a special purpose programming language for the construction of group-

ware and multi-user user interfaces. This thesis shows how Multi-User Clock can be used

to develop a wide range of groupware systems, and how this toolkit satisfies many of the

identified requirements.

v

Acknowledgments

I would like to thank all the members of the supervisory committee: Nick Graham, Tim

Brecht, Tom Papadakis, and Richard Irving, for their invaluable comments and inputs.

Their efforts have certainly contributed to the quality of this thesis, and for that I am

thankful. I would like to express my particular gratitude to my supervisor, Nick Graham,

without whose efforts this thesis would not be possible. I am very grateful for his

numerous discussions and readiness to provide the assistance when I needed.

I am grateful to Katherine Figuracion for all her assistance and support during this thesis

and her efforts for proof-reading numerous thesis versions. I also would like to thank my

many friends and colleagues at York, for their moral support and friendship. Special

thanks to Tore Urnes (for letting me borrowing books from his private collection and

keeping them for months), Ragab Omran (for many intellectual discussions and many

basketball games), Kaushik Guha (for sharing many laughs and squash games), and Jason

Tsui (for his readiness to help at all times).

Lastly, but not least, I feel indebted to all the people from whom I have learned a lesson

throughout my life, and dedicate this work to them.

vi

Contents

Introduction 1
1.1 Overview..1

1.2 An Introduction to Groupware Systems ..2

1.3 Thesis Motivation and Contributions ..3

1.4 Thesis Outline ..5

Related Work 7
2.1 Overview..7

2.2 Features of Groupware Applications ...7

2.3 Enabling Technologies in Groupware Development ...10

2.4 Requirements for Groupware Toolkits...11
2.4.1 Requirements for Expressiveness..12
2.4.2 Requirements for Ease of Use...14

2.5 An Overview of Some Existing Groupware Toolkits ..18

2.6 The GroupKit System ..18
2.6.1 Programming Environment of the GroupKit System..20
2.6.2 Architecture of the GroupKit System..20

2.7 The Rendezvous System..22
2.7.1 Programming Environment of the Rendezvous System......................................23
2.7.2 Architecture of the Rendezvous System..24

2.8 The Suite System ...26
2.8.1 Programming Environment of the Suite System...27
2.8.2 Architecture of the Suite System...28

2.9 The Weasel System..29
2.9.1 Programming Environment of the Weasel System..31
2.9.2 Architecture of the Weasel System..31

2.10 Other Groupware Toolkits ...31
2.10.1 GroupIE ...32
2.10.2 Lotus Notes..32
2.10.3 MMConf ..33

2.11 Summary and Conclusion..33

An Introduction To Clock 34
3.1 Overview..34

3.2 The Clock Language..34
3.2.1 Tree of Components ..36

3.3 Event Handler Components ...36

3.4 Request Handler Components ...39
3.4.1 Example Request Handler ...40
3.4.2 Using Request Handlers ..41

3.5 Request, Update and Input Events...43

3.6 Declarativeness in the Clock Language...46

3.7 A Simple Multi-User Groupware Program..47

3.8 Transparent Constraint Maintenance ...52

vii

3.9 Summary..53

Language Design 54
4.1 Overview..54

4.2 A Shared Drawing Program...55

4.3 A Polling Program ...63

4.4 A Terminal Reservation System ..67

4.5 Summary..74

Language Implementation 76
5.1 Overview..76

5.2 Distribution Architecture ...76
5.2.1 Centralized Architecture..78
5.2.2 Replicated Architecture...81
5.2.3 Semi-Replicated Architecture ...84

5.3 Transparent Distribution of Application Architecture...87

5.4 Communication Infrastructure...90
5.4.1 Server Processes..91
5.4.2 Client Processes...92

5.5 Transparent Event Handling ..94
5.5.1 Message Structure ...96
5.5.2 Remote Event Handling ..97

5.5.2.1 Remote Update Handling Mechanism...97
5.5.2.2 Remote Request Handling Mechanism..100
5.5.2.3 Session Information...102

5.5.3 Constraint Maintenance Mechanism...102
5.5.3.1 Remote Component Tagging...104
5.5.3.2 Remote Invocation of View Regeneration...105

5.6 Concurrency Control..105
5.6.1 Definitions ...105
5.6.2 Assumptions ..107
5.6.3 Concurrency Control Requirements in Clock ...108
5.6.4 The Concurrency Control Mechanism in Multi-User Clock.............................108

5.7 Summary..113

Summary and Conclusion 114
6.1 Overview..114

6.2 Thesis Summary ..114

6.3 Thesis Contributions..115

6.4 Future Work ...116
6.4.1 Addressing Other Groupware Requirements...116
6.4.2 Performance Optimization...117
6.4.3 Providing a Suite of Distribution Architecture Options....................................117
6.4.4 Providing a Suite of Concurrency Control Mechanisms...................................117
6.4.5 Support for Component and Code Reuse ..118

6.5 Conclusion ...118

Glossary 119

References 123

ix

List of Figures

FIGURE 1.1 A time space taxonomy of groupware applications.....................................2
FIGURE 2.1 An example of a groupware application: A Shared Drawing Program.......8
FIGURE 2.2 The components and the data flow in GroupKit applications....................19
FIGURE 2.3 Architecture of the GroupKit system...21
FIGURE 2.4 Basic ALV architecture..24
FIGURE 2.5 The architecture of the Rendezvous system...25
FIGURE 2.6 The architecture of the Suite system..28
FIGURE 2.7 The Weasel System model...30
FIGURE 3.1 A simple groupware application: A polling program................................35
FIGURE 3.2 Two possible Clock programs displaying "Hello World"..........................37
FIGURE 3.3 A description of the event handler icon...38
FIGURE 3.4 Adding a sub-view to an event handler in ClockWorks environmen........39
FIGURE 3.5 A request handler in Clock:Id...40
FIGURE 3.6 A description of the request handler icon..41
FIGURE 3.7 An example to show the use of the request handlers.................................42
FIGURE 3.8 The requests needed to implement a set of radio buttons..........................43
FIGURE 3.9 The updates needed to implement a set of radio buttons...........................44
FIGURE 3.10 The input event needed to implement a set of radio buttons.....................45
FIGURE 3.11 The complete architecture and functional code for the polling program...48
FIGURE 3.12 The client and the server architecture of the polling program...................50
FIGURE 4.1 A groupware example: A shared drawing program...................................55
FIGURE 4.2 The architcture of the shared drawing program...56
FIGURE 4.3 The server architecture of the shared drawing program............................57
FIGURE 4.4 The client architecture of the shared drawing program.............................59
FIGURE 4.5 Support for different views is shown in the polling program....................64
FIGURE 4.6 Customization of static views in a multi-user Clock program...................65
FIGURE 4.7 A Terminal Reservation System developed in multi-user Clock...............67
FIGURE 4.8 An example of an input conflict...69
FiGURE 4.9 An example of an input thread...70
FIGURE 4.10 An example of a transparent constraint maintenance mechanism in multi-

user Clock..72
FIGURE 4.11 The pictorial presentation of a constraint maintenance mechanism..........73
FIGURE 5.1 The semi-replicated architecture as implemented in multi-user Clock.....78
FIGURE 5.2 Centralized Architecture..79
FIGURE 5.3 Replicated Architecture...82
FIGURE 5.4 Semi-Replicated architecture in multi-user Clock.....................................85
FIGURE 5.5 ClockWorks generates an Architecture Description File...........................87
FIGURE 5.6 Clock server program’s initialization procedure..88

x

FIGURE 5.7 Clock client program’s initialization procedure...89
FIGURE 5.8 Client-Server handshake procedure...92
FIGURE 5.9 Client program processes...94
FIGURE 5.10 Message format..95
FIGURE 5.11 The architecture of the shared drawing program.......................................96
FIGURE 5.12 Remote update handling in multi-user Clock ..98
FIGURE 5.13 An example of an update message...99
FIGURE 5.14 An example ofupdateArg message. ..99
FIGURE 5.15 Remote request handling. ..100
FIGURE 5.16 An example of a request message..101
FIGURE 5.17 An example of arequestResult message..101
FIGURE 5.18 Constraint mechanism in multi-user Clock..103
FIGURE 5.19 An example of a request handler’s user list ...103
FIGURE 5.20 An example of atagViewUser message...104
FIGURE 5.21 Event diagram showing causal relation ...107
FIGURE 5.22 Possible server states and permissible operations during these states.....110
FIGURE 5.23 The state diagram showing the possible server states and transitions

between states..110
FIGURE 5.24 A process view of the concurrency control mechanism as implemented in

multi-user Clock...112

1

Chapter 1

Introduction

1.1 Overview

Groupware refers to software systems which are designed to assist groups of people work-

ing together. This is in contrast with most traditional software, which only supports single-

user interaction. The research discipline which studies groupware, as well as the wider

context in which the groupware is used, is referred to asComputer Supported Cooperative

Work, or CSCW [Ellis 91]. This field has been the focus of much research in recent years,

resulting in the development of a number of groupware toolkits. Groupware toolkits pro-

vide a set of tools to facilitate the development of groupware systems. Although these

tools have led to great progress in the development of groupware systems, there remain

unsolved problems. These problems include providing transparent distribution and com-

munication mechanisms.

This thesis describes the design and implementation of a groupware toolkit:Multi-User

Clock. This toolkit is an extension of single-user Clock which was developed by Graham

[Graham 94]. Multi-User Clock addresses several problems associated with groupware

development, including transparent distribution of application parts, communication

between these parts, and controlling concurrent activities in various sites.

This chapter begins by presenting an overview ofsynchronous groupware systems, the

form of groupware which Multi-User Clock is intended to support. It then provides a brief

description of the motivation for this work and the contributions of this thesis. This chap-

ter concludes with an outline of the rest of the thesis.

2

1.2 An Introduction to Groupware Systems

Groupware falls into a relatively new research field called Computer Supported Coopera-

tive Work (CSCW). This field is an interdisciplinary research area focused on the role of

computer and communication technology to support group work. Groupware refers to

computer based systems which are explicitly designed to support groups of people work-

ing together. Although the roots of groupware can be traced to the late 1960s, the systems

have only recently begun to proliferate [Roseman 93a]. Examples of groupware systems

include desk top conferencing systems, shared editing and drawing applications and elec-

tronic mail applications.

Groupware systems are often divided into four categories, as shown in Figure 1.1 [Ellis

91]. This taxonomy is based on two dimensions: time and location. Groupware systems

can support users working at the same time (Synchronous) or at different times (Asynchro-

nous), as well as users working in the same physical location (Co-located) or at a distance

(Distributed).

FIGURE 1.1 A time space taxonomy of groupware applications from [Ellis 91]

Asynchronous groupware applications support collaboration that is spread in the time

axis. Examples of asynchronous groupware applications include electronic mail and sys-

tems implementing organizational memory (e.g., Lotus Notes [Lotus 93]). Synchronous

groupware systems, on the other hand, support collaboration which is performed in real-

3

time. Synchronous groupware, which is often referred to as desktop conferencing,

includes examples such as collaborative writing/drawing/design tools and group decision

support systems. Much of the recent research in groupware has been focused on real-time

synchronous systems. While most groupware toolkits should be developed to support both

synchronous and asynchronous work, the problems associated with building the two

classes of systems are sufficiently diverse that providing the necessary underlying support

for both would be a large undertaking. Hence, we have chosen to limit our research to syn-

chronous groupware systems. The term groupware is hereafter limited to synchronous

groupware applications.

1.3 Thesis Motivation and Contributions

Groupware applications are difficult to develop. There are significant challenges in the

design and the development of groupware systems that typically do not arise in other

applications [Urnes 94]. These difficulties are due to the basic nature of this class of appli-

cations, which is to support concurrent collaborative activities amongst a number of dis-

tributed users. As a result, developers of groupware systems must consider technical

issues such as communication between the distributed parts of the application, controlling

concurrent activities, and synchronization of multiple input and output events. They also

must address issues which concern group interactions and provide a medium through

which the collaboration is conveyed. Finally, all difficulties associated with single-user

systems remain present in the development of groupware systems. These issues place

many obstacles in the progress of groupware development. These obstacles deflect the

developers from their main goal, which is to design and develop a successful groupware

system.

Applications with special needs, such as groupware, can benefit from toolkit support.

Toolkits are designed to relieve the developers from many low-level details which can

impede the development process. Software toolkits provide a set of components with gen-

4

eral functionality, leaving only application specific functionality to be coded by the devel-

oper. This not only saves programing time, but can also increase the quality of the

resulting software.

Several toolkits have been developed in an attempt to address some of the difficulties

involved in developing groupware. The support of these tools is often in the form of

library of components and functions, added to an existing single-user toolkit. As a result,

the extent to which these tools can help is limited to the programming language underly-

ing the toolkit. The diversity and complexity of requirements which groupware toolkits

need to address justifies the need for a special purpose programming language.

This thesis describes the requirements for groupware toolkits and how they are addressed

in Multi-User Clock. Multi-User Clock is a toolkit, with a special purpose language, for

developing multi-user interfaces and groupware systems. This toolkit addresses several

unsolved problems in groupware development, including issues concerning application

distribution, networking, communication, and conflicts between concurrent processes. In

Multi-User Clock these issues are addressed by providing a mechanism for the transparent

distribution of the application architecture and data, a built-in communication infrastruc-

ture (including transparent event handling between the distributed applications parts) and

a transparent concurrency control mechanism. These facilities are intended to abstract the

inherent problems in distributed systems, giving the developers the illusion of developing

single-user applications. Multi-User Clock also provides support for development of a

customized user-interface for each participant of a multi-user application. Furthermore,

Multi-User Clock provides a transparent constraint maintenance mechanism which main-

tains consistency amongst user-interfaces of distributed users.

In short, the goal of Multi-User Clock is to ease groupware development using declarative

techniques. These methods allow the developers to specify ‘what’ they want to achieve

5

rather than ‘how’ to achieve it. This will allow the developers to focus their efforts on the

main task: developing a successful groupware system.

Many factors contribute to the success of a toolkit. First, the toolkit must provide the nec-

essary components and functionality to facilitate the construction of applications in the

target domain. Second, it must provide specialized support for the generic problems inher-

ent to the application domain. Third, it should be flexible to allow simple tasks to be done

quickly, and provide sufficient support so developers can design more complex systems.

The Multi-User Clock programming environment meets these objectives by providing

sufficient expressive power while maintaining ease of use. This not only facilitates the

development process, which leads to desired application, but can also expedite it.

Multi-User Clock is designed and developed as part of this thesis. It is currently a proto-

typing tool and has poor performance. This toolkit is intended to be used only by computer

science professionals for research purposes.

1.4 Thesis Outline

This thesis describes and evaluates the design and implementation of Multi-User Clock, a

tool for the development of groupware and multi-user user interfaces.

Chapter 2, “Related Work”, presents the characteristics and features of groupware systems

as well as the requirements which groupware toolkits need to address in order to support

these features. This chapter also surveys a number of existing groupware toolkits and

examines them in terms of the listed criteria.

Chapter 3, “An Introduction to Clock”, provides an overview of the Multi-User Clock-

Multi-User Clock language and its features.

6

Chapter 4, “Language Design” describes the selected requirements which are addressed in

Multi-User Clock.

Chapter 5, “Language Implementation”, describes the implementation techniques which

have been adapted to satisfy the design criteria outlined in Chapter 3.

Chapter 6, “Summary and Conclusion”, summarizes the contributions of this research and

presents several areas for future work.

7

 Chapter 2

Related Work

2.1 Overview

Chapter 1 presented a description of groupware systems and described the need for group-

ware toolkits. This chapter begins with a discussion of characteristics specific to group-

ware and the underlying technologies which support these characteristics. We then

identify the groupware requirements which have guided the design of Multi-User Clock.

Finally, a survey of existing groupware toolkits is presented in order to familiarize the

reader with other studies in groupware systems and toolkits.

2.2 Features of Groupware Applications

This section identifies and presents the characteristics of groupware systems. The purpose

of this presentation is to provide an in-depth understanding of groupware systems by

studying their behaviour. This also provides a basis for determining some of the features

of groupware that are important to its success. These features will later be viewed as

design requirements for a groupware toolkit.

Before opening our discussion, it would be appropriate to introduce some of the common

terminology in the groupware domain. To clarify this terminology, we present a simple

groupware system, a shared drawing program which was designed and implemented using

the Multi-User Clock toolkit. Figure 2.1 illustrates two windows which are generated by

this drawing program.

8

FIGURE 2.1 An example of a Groupware application: A shared drawing program. The figure
illustrates two windows, each of which belongs to one user of the program. The objects drawn by
each user are depicted on all users’ displays.

This simple drawing program demonstrates many aspects of groupware systems. Each

user can invoke the program from a different workstation connected to a different net-

work. An invocation of a groupware system is termed, informally, asession. A session

consists of a group of users calledparticipants and provides each participant with an inter-

face to a shared context. For instance, participants may see synchronized views of evolv-

ing objects on the drawing canvas. The drawing program provides a WYSIWIS (What-

You-See-Is-What-I-See) interface to the shared drawing. This means that, at any given

time, interfaces of all users portray the same images. In our drawing program, a colour

scheme is used to differentiate objects drawn by different users. Other forms of interfaces

are also possible, including a WYSINWIS (What-You-See-Is-NOT-What-I-See) interface,

in which each participant’s interface portrays different images.

The system’sresponse time (or feedback time) is the time necessary for the actions of one

user to be reflected by their own interface. Consider an example in which two users coop-

eratively draw an object, in this case drawing the word “Hi!”. Each user draws a line by

holding the mouse button and dragging it towards the final point. In this example, the

response time is calculated from the time the user drags the mouse until the time the line is

drawn on the screen. Thenotification time (or feed-through time) is the time necessary for

one user’s actions to be propagated to the remaining users’ interfaces. In the above exam-

9

ple this is the time necessary for the line to be drawn on the other participant’s screen. The

notification granularity may vary. The notification granularity is the frequency of (i.e.,

how often) reflecting one user’s action on other participants’ interfaces. In our case, the

interfaces of other users are notified after an object (line/box) is completely drawn on the

original screen. We could also allow all participants to view all the intermediate steps (i.e.,

drawing rubber band objects) involved in drawing an object. This would result in a finer

granularity in notification.

The remainder of this section presents the main features of groupware systems. The first

two features of groupware are shared by all multi-user systems. The last feature, however,

is exclusive to groupware systems. The main characteristics of groupware are:

• Supports Distributed Users: Groupware applications are inherently multi-user systems.

The users of these systems can be either temporally or geographically spread. In our

work we are mainly concerned with synchronous groupware systems. These systems

are designed to support geographically spread users. Although this class of applications

supports both co-located and distributed users, much of the research in synchronous

groupware has focused on systems which support geographically spread users. This is a

reasonable approach since most groupware systems designed for distributed users can

also be used by co-located users.

The distributed nature of synchronous groupware suggests that in general, one cannot

assume that the participants of a groupware application are all connected to the same

machine, or even to the same local area network. During an active session, the partici-

pants are free to join or leave the session at any time, thus making the sessions of the

synchronous groupware systems volatile.

• Supports Information Sharing: The sharing of information has a central role to play

within cooperative applications. In order to support collaboration, groupware applica-

tions must permit users to share data. In groupware applications, access to shared data

follows an ad-hoc method. This means that generally the participants do not follow a

10

pre-planned script, making it impossible to predict what information will be accessed in

the future. Due to the high level of concurrent activities during a session, there is a high

degree of access conflict as participants work on and modify the shared data.

• Supports Collaboration/Coordination: Typical multi-user applications (e.g., distributed

databases) strive to provide acollaboration-transparentenvironment. That is, they pro-

vide the illusion to each user that she/he is the sole user of the system. Conversely,

groupware applications provide acollaboration-aware working environment where

users’ actions are reflected on other participants’ work space, providing an awareness

of the other users’ activities.

To achieve collaboration, groupware systems must be highly interactive, with short

response to user actions. Since participants’ actions are based on other participants’

actions, the real-time notification times must also be short.

After identifying the major characteristics of groupware systems, we are now in a position

to look at the technologies which support these features. The following section discusses

the technologies which enable groupware systems to offer the features introduced in this

section.

2.3 Enabling Technologies in Groupware Development

This section identifies the technologies which are involved in the development of group-

ware systems. A successful synchronous groupware application involves expertise from

various technical domains. Groupware relies on the approaches and contributions of the

following disciplines [Baecker 93, Urnes 94]:

• Interaction Technologies: Groupware facilitates collaboration by employing computing

facilities to support interaction between groups of users. Interaction technologies

include those which are involved in the support of human-human and human-computer

interaction. Typical examples are direct manipulation, window systems, I/O devices,

discrete (e.g., text) and continuous (e.g., audio/video) media, and work space manage-

ment.

11

• Distribution Technologies: Since groupware applications are intended to provide col-

laboration between distributed users, they are inherently distributed systems. Distribu-

tion technologies provide variation in architectures and approaches to consistency

management. The architecture of a groupware application is determined by how the

application is distributed among a number of geographically spread workstations. Con-

sistency management techniques provide control mechanisms for accessing the shared

data as well as ensuring concurrency control.

• Communication & Networking Technologies: These technologies provide support for

the transportation of data between different hardware components. In particular these

technologies resolve such concerns as communication channels, network capacity, con-

nectivity and communication protocols.

Other researchers [Ellis 91, Baecker 93] suggest expanding the above set by including

other disciplines such as artificial intelligence and multi-media technologies. These disci-

plines are important in contributing to the development of many groupware systems (e.g.,

video conferencing). This contribution will become more apparent with the emergence of

future classes of groupware systems. However, for the purposes of this research, we will

limit our investigation to the above three domains. Incorporating other technologies may

be an interesting avenue for future research.

2.4 Requirements for Groupware Toolkits

Section 2.2 identified a set of characteristics typical of groupware applications. Based on

these characteristics, this section identifies a set of requirements which must be addressed

by a successful groupware toolkit. These requirements result from our experience devel-

oping and using various groupware toolkits. Although some of these requirements may

not be exclusive to groupware development toolkits, nonetheless they represent funda-

mental criteria which are crucial in the success of any user interface toolkit.

12

We organize these requirements into two inter-related groups: requirements forexpres-

siveness and requirements forease of use. The requirements for expressiveness are those

which must be addressed in order to allow the developers to construct the desired applica-

tion. The requirements for ease of use, however, are those which groupware developers

can benefit from during the development of a groupware application. These requirements,

if addressed, will help the developers to design better groupware systems.

2.4.1 Requirements for Expressiveness

In this section we review the requirements for expressiveness. These requirements, if

addressed, facilitate the development of any desired groupware system and contribute to

the quality of the end product. The quality of a groupware system can be loosely defined

as how accurately the application addresses the needs of the participants. This can deter-

mine a groupware’s success. Based on our research and experience, we believe that a

groupware toolkit should offer:

• Support for Multiple Group Activities: Groups exhibit a variety of behavioural charac-

teristics as part of their interaction. These include cohesion, commitment, relationship

with the organization, and use of time [Mandavida 94]. To support these characteristics,

groupware applications must provide support for a variety of collaborative activities.

• Support for Interchangeable Collaboration Methods: Group studies suggest that col-

laboration is the result of amixture of interaction methods such as: face-to-face meet-

ings, verbal, written, and non-verbal cues [Ishii 94]. The interchangeable collaboration

requirements stem from the need to accommodate group members as they switch back

and forth between the different interaction methods. Groupware systems should facili-

tate “seamless” switching between different interaction functions [Ishii 94].

• Support for Customization: A particular group has detailed knowledge about itself and

its needs. This knowledge can be used to customize the groupware application which is

used by the group. Hence, groupware systems should be adaptable to individual and

overall group needs.

13

• Support for Persistent Sessions: Groups need a record of past activities for future plan-

ning and growth [Mandavida 94]. A persistent session can behave as a group memory.

Information kept in the group memory will enable the current, as well as later, groups

to understand their development, learn from the past mistakes, and avoid session dis-

continuation.

• Support for Error Independence: A local application error, that is the execution of an

erroneous command whose results are not shared with other users (and which may

result in the loss of the connection) should not cause failures in connections between

other users and the program.

• Support for Developing Good User-Interfaces: The user-interface of a groupware sys-

tem not only provides a communication medium between the users and the system, but

also provides a channel through which the collaboration is conveyed to the participants.

This dual functionality places a burden on the design of groupware user-interfaces. As a

result, all the requirements necessary for a good user-interface apply to groupware

applications. The requirements for a good user-interface include:

Direct Manipulation:This refers to the manipulation of objects (e.g., buttons and

menus) in a user-interface in order to cause an action in the underlying application.

Event drivenprogramming is a common technique for implementing direct manipu-

lation. In this class of programs, unlike the conventional programs in which the user

must respond to prompts from the program, a user can initiate one or more dialogues

with the application at any given time. Furthermore, the user can switch between dif-

ferent dialogues at will. This implies that the application must be capable of han-

dling user inputs in a non-deterministic order.

Semantic Feedback: In order to alleviate the cost incurred by iterative refinement, it

is usually considered beneficial to separate the user-interface from the underlying

application. In order to allow the user-interface to correctly reflect the state of the

application’s data, it needs to constantly poll the underlying application in order to

14

acquire up-to-date information. This implies that user-interface systems must pro-

vide fast access to application data. This often conflicts with the clean separation of

the user-interface and the application.

User-Interface Consistency: The components of a user-interface should appear and

behave in the same way throughout the user-interface. Also, similar problems (e.g.,

selection) should be solved in similar ways. The user-interface tool must provide

support for maintaining consistency in user-interfaces.

• Good Performance: Performance is one of the major factors in the success of a graphi-

cal user-interface (GUI) with respect to user acceptance. A GUI application with poor

performance will lead to user frustration and eventual lack of use or re-use. In a multi-

user groupware setting, performance plays a more critical role. Since groupware appli-

cations are cooperative and support collaboration, the input of one user is greatly

dependent on the input of other users. Hence, users of such systems constantly need to

be informed of other participants’ actions within a reasonable feed-through time. Rea-

sonable timing, in this case, can be defined as the acceptable latency which does not

degrade or interfere with collaborative activities among participants. A groupware

application with good performance not only provides rapid feedback but also offers

rapid feed-through.

The list of requirements presented in this section is not complete. This incompleteness is

partly due to the fact that many aspects of group requirements still remain unknown. Many

researchers, from various interest groups, are currently studying groupware and its devel-

opment. The outcome of these studies will undoubtedly place additional requirements into

the design of groupware systems.

2.4.2 Requirements for Ease of Use

This section presents the requirements for ease of use. These requirements facilitate the

development of groupware systems. Although it may be argued that many groupware

requirements can be satisfied even in the absence of these tools, having these facilities

15

available will enable the developers to provide better groupware systems faster. We

believe that in order for a groupware toolkit to meet the level of support which developers

require, it must provide:

• A High-level Declarative Programming Language:Many aspects of a groupware appli-

cation are directly or indirectly related to the programming language which is used to

define it. The programming language that a groupware toolkit offers must be simple

and easy to learn. The shorter the learning curve, the more likely it will be adopted by

programmers. It is generally desirable to have as high a level of specification as possi-

ble. To achieve this, we need a declarative specification language. Declarative lan-

guages allow programmers to think at a much higher level than traditional imperative

programming languages. This feature enables programmers to concentrate on “what”

they want, rather than, on “how” to make it happen.

• Support for Iterative Refinement:Groupware design, like user-interface design,

requires user feedback. User involvement in the design process validates the predefined

groupware requirements and may establish new design elements. Iterative refinement

refers to the process of iterating between design, implementation, user testing, and

redesign. The difficulties in building and modifying groupware makes iterative refine-

ment an expensive technique. Hence, a groupware toolkit must provide support for the

easy creation and modification of user-interfaces.

Groupware developers need to consider a number of technical, psychological and

sociological issues. This makes groupware development an experimental task which

requires user feedback. To aid this experimental process, support forrapid prototyping

is needed. Rapid prototyping allows the groupware developer to perform usability eval-

uations by deploying working prototypes at early stages, thus providing a basis for

making early critical decisions about the application being developed. Rapid prototyp-

ing facilitates the process of iterative refinement and can be partially supported by pro-

viding a high-level programming language.

16

Support for iterative refinement also facilitatesincremental development. Using this

method, each part of an application can be designed and implemented individually.

Thus, the developer can focus on the functionality of one part of the application at a

time. The well-designed and implemented application parts can later be put together to

construct the main application.

• Support for the Customization of User-Interfaces: A groupware toolkit should provide

facilities for the development of applications in which different users of the program

have different user-interfaces. In particular, it should support the development of appli-

cations in which the users: (i) have different display images; (ii) have different access

rights and supporting roles; (iii) interact using different hardware, thereby allowing

users with different workstations and file systems to collaborate with each other.

• Support for Flexible Placement: In a distributed multi-user environment, programmers

should have the flexibility of choosing where the data and modules should reside. In

particular, they should have the flexibility of placing the data either on the local work-

station, for faster local response, or on the server machine [Dewan 92b].

• Support for Compatibility: A multi-user toolkit should allow single-user programs

developed by the tool to be transformed to the multi-user ones. This will promote reus-

ability within the application domain in which the toolkit is being used.

• Support for Session Management: An invocation of a groupware system is termed a

session. A groupware toolkit must offer support for creating a session, allowing partici-

pants to enter and leave a session, and finally terminating a session. Performing each of

these tasks involves a number of technical issues which must be handled in a transpar-

ent fashion, without imposing an additional burden on the programmer.

• Support for Transparent Distribution of Application and Data: The components of a

multi-user groupware application are distributed across a number of remote machines.

A distributed architcture may be designed in one of three ways: centralized, replicated,

or semi-replicated. In a centralized architecture, all messages are forwarded to the cen-

tral machine which in turn, forwards messages to other participants. In a replicated

17

architcture, no central machine is used and replicated processes communicate directly

with each other. A semi-replicated architecture is a hybrid between centralized and rep-

licated architectures. There are a number of trade-offs between the three architectures.

Chapter 5 presents a brief study of each of the three architectures. Groupware toolkits

must be able to distribute the application and the data among the distributed worksta-

tions in a transparent fashion.

• Support for a Transparent Communication Infrastructure:It is essential for the distrib-

uted application parts to communicate. These distributed parts must be capable of send-

ing and receiving messages to and from one another without concern for low-level

communication issues. Hence, a groupware toolkit must not only provide support for

establishment and maintenance of communication channels between the remote work-

stations, but it also must be capable of handling communication between the distributed

application parts in a transparent fashion.

• Support for Concurrency Control: Groupware tools must provide support for handling

concurrent activities. Concurrency control is needed within groupware systems to help

resolve conflicts between participants, and to allow them to perform tightly coupled

group activities. Coupling, in the context of groupware, refers to the degree which one

user’s interface state is dependant on other users’ actions [Dewan 93]. The overhead

which is associated with most concurrency control mechanisms typically has an impact

on the system’s performance. Groupware tools must provide support for handling con-

current activities without sacrificing the ease of programming or performance.

• Support for Collaboration Awareness: The toolkits should also support the develop-

ment of collaboration-aware programs, thereby allowing programs to exercise control

over the way their collaborative tasks are performed.

We shall use the above criteria as a guideline for our survey of existing toolkits, and as a

blueprint for our tool development.

18

2.5 An Overview of Some Existing Groupware Toolkits

In this section we provide a brief survey of the related work which is being conducted in

the area of groupware toolkits. The goal is to provide the reader with a broader under-

standing of different groupware toolkits, and familiarize her/him with various research

foci in this area. We also intend to evaluate these tools based on the criteria which are

detailed in Section 2.4. This evaluation may not present a fair comparison as each of the

surveyed toolkits was designed and developed to meet different goals. Rather, the intent is

to highlight the fact that current toolkits give limited attention to the programming aspect

of the groupware systems.

All of the examined systems (except for the Rendezvous and the Notes systems) are non-

commercial systems resulting from research efforts in academia. The order of presentation

is alphabetical.

2.6 The GroupKit System

GroupKit [Roseman 92, 93a, 93b] is built on top of Tcl/Tk [Ousterhout 94] by researchers

at the University of Calgary, Canada. It extends an existing toolkit, Tcl/Tk, for developing

single-user graphical user-interfaces. The developers of the GroupKit system argue that

much research effort in recent years concentrates on addressing problems which arise

when porting a single-user application to a multi-user one. Hence, in their effort to address

some of the CSCW related problems, the developers of GroupKit have placed much of

their effort into providing support for session management and multi-user widgets. While

these issues are important, the GroupKit developers did not address some other technical

issues such as concurrency control and communications between the application parts.

Figure 2.3 shows an schematic view of the GroupKit system. As is shown in the figure,

each user (client) interacts with its own application replica. Also, users also interact with

the localRegistrar Client process, in order to establish or terminate a session. TheCentral

Registrar maintains an up-to-date list of all active sessions.

19

FIGURE 2.2 The components and the data flow between these components in GroupKit
applications.

The main features or advantages of the GroupKit toolkit are:

• GroupKit provides a set of multi-user widgets, which are designed to address the spe-

cial user-interface needs of the groupware applications. These widgets are an addition

to the primary Tk [Ousterhout 94] widgets (i.e., buttons, scrollbar, menus and canvas).

The two multi-user widgets provided by the GroupKit are a “vertical remote scrollbar”

and a remote cursor [Roseman 92].

• The GroupKit session manager implementation is based on open protocols which facil-

itate flexibility in realizing different session management policies. The possible session

management policies include:Open Registration (in which the session manager pro-

vides a permissive policy of creating and joining conferences between equal status par-

ticipants), andCentrally Facilitated (which is designed for structured meetings

controlled by a facilitator).

Some of the shortcomings of the GroupKit system are:

• Groupware applications, which are generated by GroupKit, have a replicated architec-

ture. There is no built-in support for consistency control. Hence, in order to keep the

data consistent amongst all replicas, the programmer needs to multicast all the update

commands performed on the shared data.

• Lack of support for restricting user access to the shared data.

20

• Lack of support for providing WYSINWIS views.

2.6.1 Programming Environment of the GroupKit System

The GroupKit programming environment is based on Tcl/Tk and its Remote Procedure

Call (RPC) extension. Tcl/Tk provides a simple interface to the X window system, allow-

ing the programmer to write more concise programs than with the X/Motif toolkit. The

built-in RPC in Tcl provides simple mechanisms for establishing connections, sending and

receiving data, and closing connections. These calls are used for inter-process communi-

cation (IPC) among collaborative processes. Although Tcl is easy to learn and simple to

use, it falls short of being a full-fledged programming language. For instance, it does not

support any complex data structures, such as arrays or linked lists. Any complex program

must be written in an auxiliary language (e.g., C) and linked into a Tcl script.

GroupKit does not provide any explicit support for concurrency control. The toolkit run-

time support provides a broadcast mechanism which can be used by client applications to

deliver any updates (on the shared data) to the peer client applications. This broadcast

function, however, is unaware of any simultaneous update on the same data. Hence, it is

the programmer’s responsibility to create client programs that coordinate and synchronize

peer applications. Except for the broadcasting functions that can be used in any applica-

tion, there are no data flow features built into this toolkit. GroupKit does not provide new

shared data types above Tcl/Tk data types. Similarly, debugging options of the toolkit are

inherited from the Tcl interpreter.

2.6.2 Architecture of the GroupKit System

The architecture of the groupware applications, which are built with GroupKit, are com-

posed of three different parts: a centralized name server (called theregistrar), a decentral-

ized conference manager (called theregistrar client) and synchronized client applications.

For a given shared environment, only one centralized name server is needed. However,

21

there should be one decentralized conference manager available for each collaborative

user. The centralized name server and the decentralized conference managers are in con-

stant communication with each other in order to maintain an up-to-date list of all active

users as they join and leave a shared application. The name server maintains a list of all

active users and ongoing sessions. It also serializes all updates to these lists. This control

information (i.e., user and session information) is replicated to each conference manager.

The conference managers spawn a new application process for each new participant. They

also register each process with the central name server. A newly spawned local application

process establishes a communication channel with every peer application. The informa-

tion about the peers is retrieved from the local conference manager. Figure 2.4 illustrates

the architecture of the GroupKit system. As can be seen in the figure, each client station

has its own copy of the application. Clients are in constant, direct communication with

each other in order to keep the application state and data consistent. Each client also has its

own conference manager. The GroupKit session manager, which consists of conference

managers and the central name server, is responsible for the initiation, maintenance and

termination of sessions.

FIGURE 2.3 Architecture of the GroupKit system.

22

Client applications built with this toolkit use a replicated data architecture. The replication

is done through a peer-to-peer communication channel between each application client.

The application processes can multicast any update directly to peers and not through the

centralized name server or conference managers. The advantage of using this replication

method is that control is distributed among the conference managers. The disadvantage of

this architecture mechanism is the high number of communicating ports which are used

between each group of peer applications. These ports form a complete connected graph

with redundant information. Another disadvantage of the GroupKit architecture is the lack

of communication channels between the conference managers.

2.7 The Rendezvous System

The Rendezvous [Hill 90,92a,92b,93] programming toolkit was developed by Hill and

Patterson as a tool for constructing synchronous groupware applications. Rendezvous pro-

vides an object-oriented language, derived from Common Lisp and the Common Lisp

Object System (CLOS). The Rendezvous system is based on a programming model which

separates the underlying data structure and its presentation. The system extends this model

one step further for CSCW applications. The separation between the data and its presenta-

tion is achieved via a link layer which maps the underlying data to its view and vice versa.

That is, a program which is generated by the Rendezvous system consists of three layers:

Application (data), Link, and View layers. Each of these layers is implemented as a set of

lightweight processes that interact with each other through two mechanisms: constraints

and event handlers. Constraints are used at the link layer in order to express a relationship

between data layer and view layer variables. Rendezvous provides support for multi-way

constraints. This mechanism is used at the link layer to ensure consistency among all

views. The event handling mechanism is employed to service any internal (inter-object

signaling) and external (mouse button press) events. In this model, each function is associ-

23

ated with a number of events. Each of the events on the event list of a function will trigger

the invocation of the procedure.

The Rendezvous system runs on SUN workstations, connected via Ethernet. These work-

stations run the Unix operating system with BSD (Berkeley Software Distribution) Unix

sockets for inter-processes communication and the X Window System for user-interface

programming. It incorporates the Common Lisp X interface (CLX) to handle the commu-

nications between view programs and the X server. The main feature of Rendezvous can

be summarized as:

• Complete separation of underlying objects and their view, thereby allowing different

users to have different views of the same objects.

The main shortcomings of the Rendezvous system are:

• Rendezvous applications are expected to run slowly, due to a strong reliance on Lisp

and the elaborate constraint mechanisms.

• Rendezvous uses a centralized architecture. Although this communication architecture

gives good performance for a small number of users, it is not scalable [Ahuja 90]. This

means that the performance of an application will degrade with a large number of users.

2.7.1 Programming Environment of the Rendezvous System

The underlying design of the Rendezvous system is based on the common approach of

UIMS (User-Interface Management System) developers of separating the underlying

application and data structures from the application’s user-interface. To achieve this goal,

the Rendezvous introduces and employs theALV (Abstraction Link View) mechanism.

ALV is an architecture and programming method for building interactive multi-user appli-

cations, and is based on separating an interactive program into three main components:

abstractions, views and links. A typical multi-user application, developed using ALV, con-

sists of one abstraction and several views. The individual views do not have to be the

24

same. Each view can display a portion of the shared data, or two views can provide differ-

ent presentations for the same set of data. The ALV model is depicted in Figure 2.5.

FIGURE 2.4 Basic ALV architecture

The run time architecture of an application developed using the Rendezvous system is

based on a dynamic tree structure. In addition to the abstract data (called objects) which

form a tree, each view forms a separate tree structure. The view trees need not be isomor-

phic to the abstraction tree. Hence, it is quite possible for a node in the view tree not to be

linked to the abstraction tree. Since the structure of the trees can be changed during the run

time, links are empowered to move objects within the hierarchy, as well as to create and

destroy them.

2.7.2 Architecture of the Rendezvous System

A centralized server approach is used for applications developed with the Rendezvous

system. In using the Rendezvous system, a programmer needs to develop three separate

programs: an application server, links and views. The application server contains the

underlying data structure of the system which resides at the server. Hence, only one copy

of this program needs to be run for each session. The multiple updates from different sites

are queued at the server and are serviced in a FIFO fashion. Links are a set of lightweight

processes which act as a two-way constraint between the underlying application data and

its various views. The link processes have a common object area (address area) as the

25

application’s data. As a result, the link processes also reside on the central server machine.

This provides a consistent state among the single copy of the data and its views.

FIGURE 2.5 The architecture of the Rendezvous system

Figure 2.6 presents a schematic view of the Rendezvous system. As is shown in the figure,

the application and the session manager processes both reside at the (central) Rendezvous

server. Clients need to communicate with the Rendezvous server in order to establish a

session and also to pass calls and receive call-backs. Special interaction processes act like

a mediator between the underlying application process and client processes.

The run-time support of the Rendezvous system also includes a session manager (called

the name server) which registers every active user and session. Once a session has been

set up, the users can join the active session by querying the session manager.

26

2.8 The Suite System

Suite [Dewan 92a,92b,93] (a System of Uniform Interactive Type-directed Editors) was

developed by researchers at Purdue University. The primary goals of the Suite system are

to provide support for editor-based user interfaces in a distributed environment, while

maintaining compatibility with a conventional operating system (UNIX) and program-

ming language (i.e., C). The Suite design is based on a generalized editing model, which

allows users to view programs as active data that can be concurrently edited by multiple

users. Dialogue control is declaratively specified by issuing calls to the dialogue manager,

while the application code is specified using the C programming language.

Suite consists of three constituent parts: Remote Procedure Call (RPC), persistent mem-

ory, and user-interface management. Suite RPC allows applications executing in different

address spaces, and possibly on different hosts, to communicate with each other by via

high-level remote procedures. Suite persistent memory consists of persistent applications

whose data are saved on persistent storage. These persistent data are active in that they can

trigger actions in response to the modification of data. Suite user-interface management is

provided by dialogue managers which display selected data structures of applications.

These dialogue managers provide the user with a generic editor-based user interface to

modify the data structure in a syntactically correct fashion. They also allow the applica-

tions to trigger semantic actions (such as displaying results and communicating with other

applications) in response to user changes to the data structures. Applications specify the

display properties of the displayed data structures, and a multiple-inheritance scheme is

provided for specifying default values of these properties. Applications and dialogue man-

agers can execute on separate computers on a network.

The major features of the Suite systems can be summarized as:

• An elaborate coupling model, allowing different coupling strategies to be adapted in

different situations.

27

• A broad range of collaboration schemes, allowing collaboration transparent applica-

tions to be incrementally made more collaboration aware.

• Automatic deployment of single-user codes in multi-user settings. This includes sup-

port for multi-user primitives (for programming multi-user-interfaces), based on the

existing single-user interface primitives.

Some shortcomings of the Suite system are:

• The groupware applications that can be developed by using the tool are restricted to

those which do not require support for direct manipulation interaction.

• The toolkit provides limited support for session management. Suite does not provide a

facility through which the users can access the session’s information.

2.8.1 Programming Environment of the Suite System

Developers using Suite are required to write two sets of programs: dialogue managers and

the application itself. As mentioned above, the dialogue control is declaratively specified

by issuing calls to a dialogue manager, while the application code is specified using the C

programming language. Although Suite is largely based on the imperative C language, the

presence of a declarative dialogue manager adds some declarativeness to the language.

In Suite, programmers are forced to resort to global variables to implement semantic feed-

back. Furthermore, the only kind of module or object which is available in Suite is a C file

(a file containing C codes), called a heavyweight object, that is compiled into a stand-alone

executable program. This lack of fine-grained objects burdens the modularization of the

code in Suite.

While slow compilation substantially hinders the incremental development process, the

expressiveness of the language is good. Suite does not provide support for the develop-

ment of graphical groupware systems with a direct manipulation style of user-interface.

This restricts the range of groupware applications that can be developed using the Suite

28

system. Reuse of existing single-user codes is handled very well in Suite. The built-in cou-

pling support in the dialogue managers makes it possible to develop groupware by simply

developing a single-user application.

2.8.2 Architecture of the Suite System

In multi-user Suite, each user’s interaction with a multi-user application is managed by a

separate dialogue manager, which manages all interaction entities created for its user. The

dialogue managers of different users of a multi-user application are separate Suite objects

and hence run as separate heavy-weight system processes, have separate address spaces,

access rights and environments, and can be placed on different hosts. They are indepen-

dently and dynamically placed, created, connected to, and disconnected from the applica-

tion by their users. Figure 2.7 presents a schematic view of the Suite systems architecture.

As is shown in the figure, each Suite client has its own dialogue manager, which is respon-

sible for any communication between the client and the servers and/or other peer clients.

Also note that all shared data (objects) are maintained at the server.

FIGURE 2.6 The architecture of the Suite System

29

The architecture of the Suite system can be regarded as a semi-replicated architecture.

Suite supports a central semantic component (application object) and local user-interface

components (dialogue managers). The Suite multi-user architecture allows user-interface

tasks to be performed locally, and the computations tasks to be performed remotely on the

server machine. Under this architecture, the user has to wait for communication delays

involved in receiving results, but their displays are formatted locally by the dialogue man-

agers.

2.9 The Weasel System

The Weasel system [Urnes 92] was developed partly at Queen’s University and partly at

the GMD, Karlsruhe. In Weasel applications, the base application code is completely sep-

arated from the user-interface code. Weasel employs a relational view model to achieve

this separation. The idea is that application data structures and user-interface views are

linked by relations. These relations map application data onto graphical views and vice

versa. A special purpose functional language (RVL) is used to specify the relations. RVL

offers easy customization of views for different users and limited support for providing

collaboration aware constructs. Applications are specified using the Turing Plus language,

and user-interfaces are generated automatically from the RVL specifications. All issues

concerning distribution, communication, and synchronization are handled automatically

by Weasel. Generated applications have a semi-replicated architecture and have been

proven to scale well as the number of users increase [Graham 92a]. In their study Graham

et al., measured the cost of adding a new client (user) to a session of up-to 22 clients. They

further normalized the results so that the cost of a view update in a single-user session is

one. They acknowledge that the time per client to update views does rise as new clients are

added to the session, however, this increase is reported to be modest. In a ten user session,

clients are reported to take approximately 1.5 times as long to make updates as in a one

30

user session. In a twenty user session, this number is reported to increase to approximately

2.5 times longer.

Figure 2.8 presents a pictorial representation of the Weasel system. As illustrated in the

figure, the user interface state and the abstraction (i.e., data) are related via constraints.

Updates to the user interface are received by interactors which in turn modify the user

interface state. Should the state of the user interface change, constraints force the abstrac-

tion to change. Since RVL functions, which generate the views, are bound to abstraction, a

change in abstraction triggers a recomputation of RVL functions which in turn cause the

user interface to be updated. The main features of the Weasel system are:

• Support for incremental development.

• Reuse of single-user code in a multi-user setting.

• Good scalability.

The shortcomings of Weasel are:

• The RVL language provides limited expressiveness. Also, the syntax of the RVL lan-

guage is somewhat clumsy

FIGURE 2.7 The Weasel system model

31

2.9.1 Programming Environment of the Weasel System

Weasel is based on the Relational View Model (RVL). The principle underlying the rela-

tional view model is the specification of a relation to facilitate bi-directional mapping

between an abstract and a pictorial form of the same data. The abstract form of the data is

typically represented as an abstract data type (i.e., part of the functional core of an applica-

tion). The states of these data types are represented as graphical views. Both the abstrac-

tion and the view can be manipulated; the former by the application program, and the

latter by an end user. Continuous maintenance of the relations will map the updates, made

to the views, to the abstractions and vice versa. Using Weasel, the programmer need to

provide a central application program, written in a traditional imperative programming

language (i.e., Turing), and a set of view specifications, written in the declarative RVL lan-

guage.

2.9.2 Architecture of the Weasel System

Weasel has a semi-replicated architecture. Under this architecture, the application and the

shared data reside at the central server. The information pertaining to the user-interfaces

and client views are replicated for each client. This distribution architecture is employed

to improve the scalability of the applications. A full description of this architecture

method is given in Section 5.2. Note that the semi-replicated architecture used in the Wea-

sel system is different from Multi-User Clock implementation of semi-replicated architec-

ture. First, in Weasel all data structures are maintained at the central server. Second, the

separation of the client and the server data and programs are explicit, such that the execut-

ing application resides on the server and only the user interface is kept at the client sites.

2.10 Other Groupware Toolkits

In this section we present a brief description of some other toolkits which have influenced

many concepts in groupware design and development.

32

2.10.1 GroupIE

The Group Interaction Environment (GroupIE) [Rudebucsh 91, 92] is a “generic environ-

ment offering high-level development and run-time support for cooperative applications”

[Rudebucsh 92]. GroupIE is developed on top of Smalltalk-80 (extended with distribution

support) at the University of Karlsruhe in Germany. The development support is in the

form of a library of reusable Smalltalk classes. The use of the Smalltalk environment auto-

matically includes good support for iterative and incremental development. The object-

oriented nature of Smalltalk also makes component reuse possible. The shortcomings of

GroupIE include the lack of support for session management, as well as the lack of sup-

port for converting single-user applications into multi-user applications. Also, while the

performance of GroupIE is acceptable for prototyping, it is not suitable for production use

[Urnes 94].

2.10.2 Lotus Notes

The most successful groupware application and programming tool in the industry is Lotus

Notes [Lotus 93]. Notes can not only be used as an electronic mailing system (an example

of asynchronous groupware), but it can also be used to build complex work flow applica-

tions. Notes can be classified as a replicated database infrastructure for asynchronous

groupware applications. In a Notes session, the server processes can run on OS/2 and

UNIX platforms. The client applications on the other hand, can run under Microsoft Win-

dows, MacIntosh System(6.0), OS/2 and UNIX.

Notes has a number of advantages, including a flexible multi-server architecture where

servers can co-exist in the same machine, same network, or remote sites. The developers

of Notes also claim that a transparent communication layer allows the applications to send

(or receive) message to (from) different platforms seamlessly. Notes, however, does not

support a built-in session management.

33

2.10.3 MMConf

This toolkit was developed by Crowley et al. [Crowley 90] for building real-time tele-con-

ferencing applications. The toolkit has basically two components: a distributed conference

manager and a user-interface toolkit. The conference manager which is replicated at each

site is in charge of communication with other conference managers and local applications.

The user-interface toolkit, on the other hand, handles data access and synchronization,

floor control policies and the file transfer mechanism. MMConf also provides some sup-

port for annotations and gestures, including a telepointer and audio/video conferencing.

2.11 Summary and Conclusion

This chapter reviewed several design features and requirements which are important for

real-time (synchronous) groupware systems. These requirements were classified in terms

of their contribution to the expressiveness and the ease of use of the groupware toolkit.

The requirements for ease of use include support for distributed processes, transparent

concurrency control, a flexible data architecture, a high-level abstraction model and a

declarative specification language.

The current generation of synchronous groupware toolkits have addressed many of the

groupware requirements. However, there are a number of requirements which still remain

unresolved. The purpose of this thesis is to satisfy many of the groupware requirements by

providing sufficient constructs in the specification language.

We believe that in order to prove themselves useful, the future generation of groupware

toolkits need to address the requirements for both the expressiveness and the ease of use.

34

 Chapter 3

An Introduction To Clock

3.1 Overview

This chapter provides an overview of Multi-User Clock, a programming environment for

developing groupware and multi-user interfaces. Multi-User Clock is an extension of sin-

gle-user Clock [Graham 94, Morton 94], a programming environment for developing sin-

gle-user interfaces. Single-user Clock was developed by Nicholas Graham, Tore Urnes,

Catherine Morton and the author. Multi-User Clock was designed and developed by the

author.

This chapter will show how groupware systems are developed via the Multi-User Clock

language. The chapter is structured around an example which is developed and extended

throughout. All the examples of Clock architectures are screen snapshots of the actual

architecture developed within the ClockWorks environment (as described in Section 3.2),

and the examples of output generated by programs are screen snapshots of the running

Clock program. The functional code given is the code required to create the example

applications. The current implementation of Multi-User Clock is a prototype, and not all

the presented examples run fully robustly. In addition Multi-User Clock applications have

poor performance.

3.2 The Clock Language

The Clock language consists of two parts: a visual, object-oriented language which is used

to specify the architecture (i.e., structure) of Clock programs, and a functional language

(similar to Haskell [Davie 92]) which is used to specify the components of the architec-

ture. Architectures are built using a visual programming tool calledClockWorks[Morton

94]. This tool enables the programmer to construct, edit and view architectures via direct

35

manipulation. The functional language is used to specify how the components are to

appear on the display, how components react to input, and how components are made

internally consistent. Special request handler components represent persistent state. The

states of these components, cumulatively, constitute the state of the application as a whole.

Figure 3.1 illustrates a simple groupware application: a polling program. This program

allows any user to make a proposition, and all participants to submit a vote regarding the

proposal. While simple, this example serves to demonstrate a number of issues in group-

ware development. This application provides the users with both shared and private views.

While the view containing the proposition and the ballot result are shared by all the users,

the view containing the buttons is private for each user. The private views are designed to

maintain the anonymity of the participants.

FIGURE 3.1 A simple groupware application: A polling program. This example illustrates how
shared and private views can co-exist in Multi-User Clock applications. In this application, while
the views pertaining to the proposition and the poll result are shared by all the users, the view of
the radio buttons is private for each user. The private views in this application are intended to
maintain the anonymity of the users.

The remainder of this chapter introduces the features of the Clock language through a

number of simple examples. The components of these examples are later used as building

blocks to construct the polling program described above.

36

3.2.1 Tree of Components

In Clock, programs consist of trees of communicating components. Clock has two basic

components:event handlers andrequest handlers. An event handler defines an event han-

dler component in terms of its appearance, its initial value, and its response to events.

Event handlers are also responsible for handling I/O including mouse and keyboard input.

In other words, event handlers are used to create an interactive display views. Since event

handler components are stateless, request handlers are introduced. Request handlers

implement abstract data types, which maintain a program’s state.

Clock components communicate with each other through a series of internal events. There

are two types of internal events in Clock: requestsandupdates. Request events are issued

by the event handlers to access the state of the request handlers. Request handlers’ infor-

mation is used by event handlers to correctly generate their views and also to make them-

selves internally consistent. Update events are issued by the event handler components to

change the state of a request handler. Input events, which are generated as a result of end-

user actions, form the external type of events. In general, an architecture tree may have an

arbitrary number of event handler and request handler components. In addition, each event

handler component may issue, and each request handler may receive, an arbitrary number

of requests and updates.

The remainder of this chapter presents an in-depth discussion of each of the Clock compo-

nents and features. These presentations are accompanied with example programs to fur-

ther familiarize the reader with the Clock language.

3.3 Event Handler Components

Clock programs are built as architectures of connected components. These architectures

are specified in a graphical architecture editor within the ClockWorks programming envi-

ronment. Event handler components form the main structure of the architecture tree.

37

Request handler components can be associated with event handlers. Each event handler

component is an instance of a Clock event handler class. A Clock program may contain

more than one instance of a particular event handler class.

Event handlers are responsible for the construction and maintenance of the view of Clock

programs, as well as for handling end-user input. Figure 3.2 illustrates a simple example

of an event handler component. In this example there is a single component of classBut-

ton. Clock programs correspond to tree components, and since the component is the root

of the tree it is calledroot. While in Clock, simple views can be generated with minimal

code, the construction of more complex views is also possible via built-in view constructs.

As is shown in the figure, two different views can be defined for the component. Both of

these views display a box containing the text “Hello World”. This example is intended to

show that components’ code can be arbitrarily complex.

FIGURE 3.2 Two possible Clock programs displaying “Hello World”.

Figure 3.2(a) shows how “Box”, “Text”, and “pad” primitives can be used to construct a

simple view. These primitives are used to draw a box, a text, and to add spacing between

objects respectively. The functional code for the view in Figure 3.2(b) makes use of the

predefined view primitives in Clock. The primitives in the Clock view language allow the

specification of font, shadowing, relief, colour, border and positioning of display objects.

Display

Component Code

simpleBox = groovyBox 1
(FillColour snow

(pad 2
(Text “Hello World”))).

view = Box
(groovyBox 2

(pad 10
(simpleBox))).

view = Box
(pad 2

(Text “Hello World”)).

Component Code

Display

3.2(a)3.2(b)

38

The “groovyBox <borderWidth>” function is an example of these predefined functions

provided in the Clock library. In particular thegroovyBox function maps an arbitrary view

to the same view with a “grooved” border around it. The “borderWidth” specifies the

width of thegroovyBox border.

In addition to predefined view functions, programmers can also develop their own func-

tions to manipulate views. The code implementing the view in Figure 3.2(b) illustrates this

capacity. In this example, thesimpleBox function is defined by the user.

As shown in Figure 3.2, each event handler component contains a number of icons. Figure

3.3 gives a brief description of each of the icons and their functionality.

FIGURE 3.3 A description of the event handler icon.

The event handler components in an architecture tree are linked together viasubview rela-

tions. This directive resembles the parent and child relationship common in most tree-like

data structures. To illustrate how subviews are used, consider a case where we would like

to display a view which contains multiple instances of theButton component introduced in

Figure 3.2. Figure 3.4 illustrates how subviews can be added to a Clock component using

a ClockWorks dialogue box. The figure also presents the resulting architecture, and the

functional code for theTwoViewscomponent. Note that the code pertaining toButton

component is the same as presented in Figure 3.2(b) and is not shown in Figure 3.4.

Interface Icon :This icon allows
the programmer to view or hide
the interface of the event han-
dler component. Placing the
mouse on the icon and pressing
the mouse button reveals the
component’s interface (i.e.,
requests, updates and input
events issued or taken by the
component). Once the interface
of the component is revealed, a
second mouse button click hides
the component interface.

Open-Close Icon s: These icons
serve a number of purposes:
- First they enable the program-
mer to view the request handler
components associated with the
event handler.
- Second, they allow the pro-
grammer to view the functional
code for the event handler.
- Third, they allow the program-
mer to hide or reveal the event
handler subviews. Consecutive
mouse button clicks initiate
each of the above tasks.

The event
handler Name

The event
handler Class

39

In addition to the parent-child relationship, Clock maintains inheritance over the subview

boundaries. This means that all the graphical and view properties of a parent event handler

component are inherited by all the subview components. The subviews are also treated as

first class values in the Clock language. In programming terminology, the first class values

refer to those values within the program which all the operations supported by the lan-

guage can be applied to. In functional languages, these operations are for a value to be

passed as an argument to a function or to be returned as a result of a function. In Clock,

subviews can be used as an argument to the view function. That is, the view function of a

parent component can refer to the subview components through their subview names. For

instance, the view function of theTwoViews component, shown in Figure 3.4, specifies the

view of twobutton subviews, framed by agroovyBox.

FIGURE 3.4 Adding a subview to an event handler in the ClockWorks environment.

Event handlers do more than display views. They are also responsible for handling the

end-user input (e.g., mouse button). Section 3.5 illustrates how event handlers are able to

handle users’ input.

3.4 Request Handler Components

In the previous section we studied event handler components. These components are used

to create an interactive display view. However, event handlers are stateless. In order to

view =
 groovyBox 2

(pad 10
(beside

[button “1”,
 space 10,
 button “2”
])).

Component Code

Resulting View

40

provide state, a second type of component, called request handlers are provided. Request

handlers are a form of abstract data type which maintain an internal state. An arbitrary

number of request handler components can be associated with each event handler compo-

nent in the architecture tree. Although multiple instances of a request handler component

can exist within a Clock application, each instance is associated with exactly on event han-

dler. Request handler components provide an interface through which the event handler

components can query or update their internal state.

In the following sections we first present an example of a request handler component, and

then show how request handlers are used.

3.4.1 Example Request Handler

Request handlers are used to maintain and manipulate persistent state, thereby playing the

role of data structures in Clock programs. Figure 3.5 shows an example of a request han-

dler Id which implements a simple string identifier. As shown in the diagram,Id has two

interface operations:setMyId is used to update the string identifier, andmyId is used to

query the value of the identifier.

FIGURE 3.5 A request handler in Clock: Id. The “_” represents the current state of the
component.

As shown in Figure 3.5, the code for a request handler requires: a type definition of the

request handler’s state, a function for each update and request which the request handler is

Component
Code

%% Request Handler Id

%% Type Defenition of the state
type State = String .

%% Functions to handle update
setMyIdUpdt _ s = s .

%% Functions to handle requests
myIdReq s = s .

%% Initial state
initially = ““ .

Request handler Id takes
update setMyId and handles
myId request.

41

handling, and aninitially function specifying the component’s initial state. The state type

specifies the component’s state. The type of a request handler’s state can be arbitrarily

complex. InId request handler, the type of the state is string. Theinitially function returns

a value of state type (i.e., string), and initializes the request handler to the initial state. In

the above example theinitially function sets the initial state to a null string. The update

function in a request handler responds to update events sent to the request handler compo-

nent. An update function takes the current state of the request handler and returns a new

state as its result. The request function, on the other hand, responds to the request events

directed to the request handler. In the above example, thesetMyId update sets the state of

the request handler to the given string value and the requestmyId returns the current status

of the request handler.

As shown in the Figure 3.5, each request handler component contains a number of icons in

its display view. Each of these icons serves a different purpose. Figure 3.6 gives a brief

description of each of the icons and its functionality.

FIGURE 3.6 A description of the request handler icon.

3.4.2 Using Request Handlers

As an example of how request handlers are used, consider a case where we would like to

construct two buttons which have the same functionality and interface but bear different

labels. Since the code for both components are similar, we can make use of theId request

Interface Icon :This icon allows
the programmer to view or hide
the interface of the request
handler component. Placing the
mouse on the icon and pressing
the mouse button reveals the
component’s interface (i.e.,
requests and updates events
taken by the component). Once
the interface of the component
is revealed, a second mouse but-
ton click hides the component
interface.

Open Icon : This enables the pro-
grammer to view and edit the
functional code for the request
handler component. A mouse but-
ton click on the icon invokes
the preferred editor with the
request handler code file.

Thumb Icon : This icon allows the programmer to grab the
request handler and change the placement of the request
handler in the architecture tree (i.e., from one event
handler to another).

The request
handler Name

.

42

handler to create the desired interface. Figure 3.7 shows the component tree, the compo-

nent code and the resulting interface view.

FIGURE 3.7 An example to show the use of request handlers.

Our example in Figure 3.7 is similar to excerpts from the polling program presented in

Figure 3.1. However, we need to make the buttons presented in Figure 3.7 behave asradio

buttons, so that clicking a button selects it. As with mechanical radio buttons, only one

radio button may be selected at a time; so selecting a new button must cause all of the

other buttons to be deselected. The selected button must convey its state (selected or not

selected) to the user via graphical cues (e.g., by being highlighted or depressed). To

accomplish this, a second request handler,Selection, is added to the architecture tree. The

resulting architecture can be seen in Figure 3.11.

Clock maintains a library of predefined components. The radio buttons are one of the pre-

defined components in the Clock library. These components can be directly incorporated

in any Clock program. Other components which are defined in the Clock library include

scroll bars and menus.

The resulting view

Component
view Code

Component
view Code

view = Relief “raised”
(Box

(Font largeBoldText
(Text myId))) .

initially id = setMyId id .

view =
Box

(pad 3
(beside

[buttons “Button1”,
 space 10,
 buttons “Button2”])).

43

The placement of a request handler in an architecture tree determines the set of event han-

dler components which can have access to the request handler state. In our example the

Selection request handler is added to theroot component in order to make it accessible to

all the instances of theRadioButton class. In this particular case, theSelection request han-

dler could have been added to thebuttons event handler without modifying the semantics

of the program.

3.5 Request, Update and Input Events

In order to provide an up-to-date view, event handler components need to be able to have

access to the state of request handlers. Event handler components can query the state of a

request handler by issuing a request directed to the request handler component. For

instance, in the radio button example of Section 3.4.2, theButtons component needs to be

able to query the state of the request handlerId (in order to portray the correct label) and

Selection (in order to present the correct view: selected or deselected). Hence, two

requests are added to the interface of theButton component. Figure 3.8 shows the result-

ing architecture.

FIGURE 3.8 The requests needed to implement a set of radio buttons. Requests, in the Clock-
Works environment, are represented as double headed arrows. A request icon on the right side of a
component indicates that the request is issued by the component. A request icon on the left side of
a component indicates that the request is received by the component. The figure also shows how a
request is added to a component class via theadd request to class dialogue box.

44

Note that a request must be added to both the event handler component which issues the

request, and the request handler component which receives the request. The dialogue box

depicted in Figure 3.8 shows how programmers can use a high-level mechanism to add

request events to an event handler’s interface.

The event handler components should also be able to modify the state of a request handler

to reflect the changes in the programs. The event handler components can modify a

request handler’s state by directing an update event to the request handler. For instance, in

the radio button example of Section 3.4.2, theButton event handler needs to be able to set

the initial state of theId request handler. It also needs to be able to change the state of the

Selection request handler, to indicate that it is the current selected button. Hence, two

update events are added to the interface of theButtoncomponent. Figure 3.9 shows the

resulting architecture. Notice that, as with requests, an update must be added to both the

event handler component which issues the update, and the request handler component

which receives the update. While both requests and updates can be issued by one or more

event handler components, they can only be received by one request handler component.

The dialogue box depicted in Figure 3.9 shows how programmers can use a high-level

mechanism to add update events to an event handler’s interface.

FIGURE 3.9 The updates needed to implement a set of radio buttons. Updates, in the Clock-
Works environment, are represented as single headed arrows. An update icon on the right side of a
component indicates that the update is issued by the component. An update icon on the left side of
a component indicates that the update is received by the component. The figure also shows how an
update is added to a component class via theadd update to class dialogue box.

45

To make Clock programs interactive, we also need to enable event handlers to receive

input events issued by the user. For instance, in the radio button example of Section 3.4.2,

the buttons must be made sensitive to the mouse button, so that they can react to the

mouseButton input. ThemouseButton is one of a set of predefined inputs defined in Clock.

Other forms of input which are supported by Clock include mouse motion and keyboard

input. Figure 3.10 shows the resulting architecture and the ClockWorks dialogue box for

adding an input event to an event handler component.

Once a component is made sensitive to an input, for example the mouse-button-click,

whenever the mouse is depressed or released over the view generated by the component, a

mouseButtonUpdatefunction is invoked with appropriateString parameter (i.e., “up” or

“down”). The mouseButtonUpdate is a built-in function which handlesmouseButton

input. The code pertaining to theRadioButton component in Figure 3.11 illustrates how

this function is used. In the Button component, this function specifies that when a button is

clicked, it is to be selected.

FIGURE 3.10 ThemouseButton input event needed to implement a set of radio buttons. Inputs, in
the ClockWorks environment, are represented as single headed arrows, appearing on the left side
of a event handler component. The figure also shows how an input t is added to an event handler
class via theadd input to EH class dialogue box.

46

3.6 Declarativeness in the Clock Language

Clock is a declarative language. Clock programmers provide a specification of ‘what’ the

program should do. The run-time system then determines ‘how’ to implement this specifi-

cation. The main advantage of using a declarative language is that the programmer need

not be concerned about the execution order of the program.

There are several properties which contribute to the declarativeness of the Clock language.

The first property is automatic view updating. In Clock, views are declared via a set of

specifications. These specifications dictate what the view should look like. The run-time

system automatically determines when a view is out-of-date and how to bring the view up-

to-date. This mechanism relieves the programmer from such concerns as to when views

need to be updated. For example, consider the radio buttons in the polling program of Fig-

ures 3.1 and 3.11. In this example, the programmer need only provide a specification of

what the radio buttons should look like in normal and selected states. The run-time system

determines when a button is selected, and automatically updates the view of the selected

button. It also maintains view consistency among the set of radio buttons as a whole.

The second way in which Clock is declarative is the automatic handling of events in a cor-

rect order. As discussed in Section 3.5, a number of internal events (i.e., requests and

updates) are issued during the execution of a Clock program. Clock allows a number of

input threads to co-exists in a Clock program. Each input thread refers to a number of

chained events which is initiated as a result of a user input (see Section 4.4 for more

details). Events within each input thread, and belonging to different concurrent input

threads must be handled in an order that guarantees a correct result. The Clock run-time

system guarantees an illusion of single-threadedness to the application users. The system

behaves as if only one active input thread exists within the system. This mechanism frees

the programmer from sequencing the internal-events in a correct order. A formal descrip-

tion of Clock and its declarative properties are given in [Graham 95].

47

Multi-User Clock extends the Clock language functionality in order to support develop-

ment of groupware and multi-user user interfaces. This extension however, does not alter

the semantics of the Clock language. In fact one of the main objectives of Multi-User has

been to maintain the declarativeness properties of the Clock language.

3.7 A Simple Multi-User Groupware Program

The previous sections introduced the basic Clock components and illustrated how these

components communicate with each other. The presented features thus far, are common to

both single and Multi-User Clock. These features were presented to familiarize the reader

with the Clock programming environment. The remainder of this thesis presents the mate-

rial which are exclusive to Multi-User Clock. Multi-User Clock is designed and developed

as part of this thesis, using existing infrastructure provided by single-user Clock.

The following sections describe the Multi-User Clock features and show how they can be

used to develop groupware using the example of the simple polling program presented

earlier in this chapter. The polling program is designed for distributed users to organize a

poll in order to decide on a proposition. All the users of the polling program view a propo-

sition, and make their vote known confidentially. The following describes how this simple

groupware application is developed using Multi-User Clock.

Figure 3.11 illustrates the complete architecture tree of the polling program. As the figure

shows, the views ofTextView, ResultView and ButtonView are composed to obtain the

complete polling program. TheTextView subview is designed to display a textual message

on the screen (i.e., the proposition). TheResultView displays the poll result. TheButton-

View provides a set of radio buttons through which the users can make their votes known.

The complete functional code for each of these components is presented in Figure 3.11.

Note that each of the components is responsible for a sub-section of the view generated by

the polling program.

48

FIGURE 3.11 The complete Clock architecture and functional code for polling program

The first step in developing a Multi-User Clock program is to identify the building blocks

or the components which are needed to construct the application. Each Multi-User Clock

application can have an arbitrary number of event handler and request handler compo-

nents. These components can be arbitrarily large or small, and they can handle an arbitrary

number of inputs, requests and updates. The second step in developing a Multi-User Clock

application is to structure the application’s components in an architecture tree. The com-

ponents of a Multi-User Clock are structured, in a single architecture tree, via the subview

relation. This relation corresponds to the parent and child relation in the architecture tree.

proposition = “Are Humans Mortal?”.
view =

groovyBorder 1
(FillColour snow

(Box
(pad 3

(Text proposition)))).

view =
groovyBorder 1

(Font largeBoldText
(beside

[Text “ Total Agreed = ”,
space 3,
NumText getCount ,
space 5])).

view =
groovyBorder 1

(beside
[button “Agree” ,

space 13,
 button “Disagree”]).

mouseButtonUpdt “Down” = all [grabMouseButton,
select myId] .

mouseButtonUpdt “Up” = all [releaseMouseButton,
if myId = “Agree” then

incrementCount
else

decrementCount
end if] .

buttonView =pad 5 (Font largeBoldText (Text myId)).

view = if isSelected myId then
Relief “sunken” (buttonView)

else
 Relief “raised” (buttonView)

end if.

initially id = setMyId id.

49

Under the current implementation of Multi-User Clock, the components of an application

are distributed in asemi-replicated fashion. A full description of the various distribution

architectures is given Section 5.1. In order to provide a semi-replicated distribution model,

the architectures of the Multi-User Clock applications are split into two sub-architectures:

the server and the client architectures. The server architectures contain the components

which are to be placed at the server machine. These components are used by the server

programs. The request handler components which are contained in the server program

constitute the shared data in the application. Likewise, the client architectures contain the

components which are to be situated at the client machines. These components are used by

the client programs. The client architectures are replicated for each client. This implies

that each client has its own copy of the client architecture.

Each of these sub-architectures could contain an arbitrary number of event handlers and

request handlers. It must be noted that the server and the client components do not corre-

spond to two different architecture trees; rather they together constitute the application

architecture tree as a whole. The server and the client architecture of the polling program

are shown in Figure 3.12.

As is shown in the Figure 3.12, the server architecture consists only of theServerView

component. The client architecture however, consists ofClientView, ButtonView, Result-

View andTextView components. Note that the placement of theCounter request handler at

the server architecture decides that the state of the component is a shared data and hence it

is accessible to all replicas of the client architectures. This mechanism allows all the client

views to be able to query the up-to-date state of theCounter in order to display the correct

poll result.

50

FIGURE 3.12 The client and the server architecture of the Polling program.

In an attempt to maintain the compatibility between single-user and Multi-User Clock

applications, the subview directives are made such that they span over the network bound-

aries. For instance, the view function ofServerView component of the polling program is

defined as:view = client “”. This definition is the same as other subview declarations.

For instance, the view of theClientView component is defined as:view=above[textView

“”,space 10,resultView “”,space 10,buttonView “”]). Note that the format in

which the subviews are used are exactly the same.

In a semi-replicated distribution architecture, the application data is split into shared and

private data. While the shared data resides at the server machine, the private data are repli-

cated to each client machine. Shared data make the construction of WYSIWIS, or shared

views, possible. Shared views are parts of the applications interface which display the

same views on all participants’ interface. Private or WYSINWIS views are constructed

based on the shared data. In Multi-User Clock all interface views are WYSIWIS by

default. However, these views can be customized by using built-in requests including

Server
Architecture

Client
Architecture

51

myClientId andmyClientName. The built-in requests allow the programers to query the

session information. This information include the unique identifier for each client applica-

tion and the client name which is assigned by the user of the program upon initialization.

A full description of view customization in Multi-User Clock is presented in Section 4.3.

All issues pertaining to the partitioning of the architecture tree and the replication of the

client architectures are transparent to the programmers. This mechanism allows the pro-

grammers to be able to develop multi-user and groupware applications, with the same ease

as single-user applications, without concern about the issues which are inherent in distrib-

uted applications. Clock programmers can develop applications without regard to distribu-

tion of the application components and communication between these components. The

architecture of Multi-User Clock applications is presented in a cohesive form as a single

tree of communicating components.

As can be inferred from Figure 3.11, the client components issue a number of requests and

updates, some of which are handled by the request handlers within the client architecture,

while others are handled by the request handlers residing at the server architecture. For

instance, whilemyId and isSelected requests are handled by theId and theSelection

requests handlers respectively (i.e., two local request handlers), thegetCount request is

handled by theCounter request handler (i.e., a remote request handler). Likewise, while

setMyId and select updates are handled by the localId andSelection request handlers, the

updatesincrementCount anddecrementCount are handled by the remoteCounter request

handler. As is evidenced by the functional codes for these components, all these requests

and updates are defined using the same syntax. Note that there is no annotation to mark the

getCount as a remote request, or to markincrementCount anddecrementCount as remote

updates.

Multi-User Clock abstracts all details pertaining to the handling of the local and remote

events. This implies that programmers need not be concerned where in the architecture

52

tree a request or an update is issued or where it is handled. Clock guarantees the correct

delivery of requests and updates to the receiving components. This feature allows the

Clock programmers to develop multi-user applications, without being concerned about the

internal event handling mechanisms between local and remote components. This provides

the illusion of developing single-user applications for the developers.

3.8 Transparent Constraint Maintenance

As we observed in the previous section, the view function of an event handler component

dictates how the view of that component is to appear on the display. We also noted how

the view of an event handler component can be constrained to the state of one or more

request handlers. For instance, thepollResult does not always display the same value.

Whenever a user agrees or disagrees, anincrementCount or decrementCount update is

issued. As a result, the display presentation ofpollResultis changed to reflect the new

state ofCounter request handler.

In Clock, the programmer need not be concerned about when a view function is updated.

The language guarantees that whenever a view function is out of date it will be evaluated,

and the result of the new function will be displayed automatically. Hence, view functions

are a form ofconstraint, specifying the appearance of the display as a function of the cur-

rent state of the program. The constraint mechanism in Multi-User Clock spans across the

distributed copies of the client architecture and the server architecture. All the issues

regarding the registration, maintenance and activation of constraints are handled by Clock

without involvement of the programmer. The current implementation of Clock performs

data flow analysis to determine when views are potentially out of date, providing incre-

mental display updates.

53

3.9 Summary

This chapter introduced the Clock language and many of its features. First, it was shown

that the Clock language consists of two constituent parts: an object-oriented visual lan-

guage and a functional language. While the visual language is used to structure the archi-

tecture of the application components, the functional code is used to specify the

components’ display view, their response to events and their consistency. Second, it was

shown that Multi-User Clock applications are represented as communicating components.

It was noted that these components communicate via a set of internal events.

We saw how Clock provides a high-level graphical language for structuring Clock archi-

tecture trees and how constraints are used to provide consistency in Clock. We also

reviewed the features of the Multi-User Clock. This groupware toolkit is designed and

developed as part of this thesis. Through simple examples it was shown that the Multi-

User Clock programming tool can be used to develop groupware systems.

Chapter 4 will illustrate how Clock provides adequate support for many of the groupware

requirements numerated in Chapter 2.

54

 Chapter 4

Language Design

4.1 Overview

Chapter 3 illustrated the features of the Multi-User Clock language. The purpose of the

present chapter is to show how these features address some of the groupware requirements

outlined in Chapter 2. Although all the requirements listed in Chapter 2 are important and

contribute to the success of a groupware toolkit, due to the time constraint, our work pro-

vides support only for a subset of the listed requirements. The supported requirements

constitute the fundamental criteria for groupware toolkits. Future work will result in more

of the design requirements being satisfied.

In developing Multi-User Clock, we had two design objectives. The first objective was to

extend the Clock language while maintaining its declarative properties. The second objec-

tive was to provide a high-level programming environment in which all distribution issues

are hidden from the programmer.

These objectives are met by providing support for the following requirements: support for

transparent distribution of applications and data, a built-in communication infrastructure

with a transparent event handling mechanism, support for session management, support

for development of collaboration aware applications, support for customization of user

interfaces, support for concurrency control and support for a transparent constraint main-

tenance. The following sections discuss how these requirements are addressed in Multi-

User Clock.

The presentation of this chapter is based on the three examples which were designed and

developed using Multi-User Clock. These examples are: a multi-user drawing program, a

polling program and a Terminal Reservation System (TRS). Each of these applications was

55

designed to illustrate a subset of requirements supported in Multi-User Clock. We draw

examples from these applications to show how the selected requirements are supported in

Multi-User Clock.

4.2 A Shared Drawing Program

Chapter 2 introduced the shared drawing program. This application provides a shared can-

vas-like interface on which participants can draw objects. These objects are currently lim-

ited to boxes and lines. Each participant can add an object onto the shared canvas. All

objects drawn by one user are represented by a unique colour. At any given time, each par-

ticipant’s interface depicts all objects on the canvas. This example is used to demonstrate

how Multi-User Clock provides support for transparent distribution of application archi-

tecture, transparent communication infrastructure including a transparent event handling

mechanism, roles, session information, and collaboration aware interactions.

FIGURE 4.1 A groupware example: A Shared Drawing program.

A communication infrastructure is a set of facilities which enables the remote programs or

processes to communicate with each other.Session information is the data pertaining to

the active connections during a session.Collaboration aware interaction allows the partic-

ipants to be aware of each other’s actions. According to Ellis, “Arole is a set of privileges

or responsibilities attributed to a person or to a system module” [Ellis 89].

56

Transparent Distribution of Application Architecture and Data

Figure 4.2 illustrates the architecture of the shared drawing program. Multi-User Clock

architectures are split into client and server sub-architectures. The shared drawing archi-

tecture consists of three event handler components. While theClientView andButton com-

ponents reside on the client architecture, theServerView component resides on the server

architecture. The client and the server architectures of the shared drawing program are

shown in Figure 4.2. A single copy of the server architecture remains on the server. The

client architecture, however, is replicated and one copy is used by each client. The split of

the architecture tree and the replication of the client architectures are transparent to pro-

grammers. Programmers view the architecture tree as one structure. This automatic repli-

cation of architecture and application data provides partial support for the high-level

abstraction model.

FIGURE 4.2 The architcture of the shared drawing program

As shown in Figure 4.2, the shared drawing program also contains six request handler

components. While theCoordinates, Status, Selection, Id and theColours request handlers

Client ‘B’Client ‘A’

Client

server
Architecture

Architecture

ReplicationReplication

Server

57

are part of the client architecture, theObjectsInfo request handler is part of the server

architecture. Figure 4.3 illustrates the server architecture of shared drawing program along

with the functional code for theObjectsInfo request handler. The placement of the

ObjectsInfo request handler in the server architecture determines that the state of this

request handler be part of the shared data and be accessible to all clients. TheObjectsInfo

request handler maintains the coordinates and the ownership information of the objects

currently on the display. TheCoordinates andStatus request handlers are used for drawing

rubber band objects as the end-user drags the mouse from the point of origin to the final

point. TheId andSelection request handlers are used to implement a set of radio buttons.

These radio buttons allow an end-user to select the object type which he/she wishes to

draw. TheColoursrequest handler maintains a table, in which a unique colour is assigned

to each client identification number. In Multi-User Clock, client programs are identified by

a unique identification number.

FIGURE 4.3 The server architecture of the shared drawing program and the code forObjectsInfo
request handler. The code illustrates how objects are stored internally. Each object is identified by
its coordinates and the client site where it was created.

Transparent Communication Infrastructure

Multi-User Clock consists of two executable programs: the server and the client. The

server program runs on the server machine and uses the server architecture. The client pro-

gram, however, is run on the client machines, each of which has its own copy of the client

type ObjType = Num.
type ObjOwner = Num .
type ObjCoord = (Num, Num).
type Object = ((ObjType, ObjOwner), ObjCoord, ObjCoord).
type State = [Object].

numObjectsReq objs = length objs .

getObjectReq objs n = objs @ n.

%% In following line, arg1=(Type, Owner) and arg2-3 are the
%% coordinates of the newly drawn object.
addObjectUpdt objs arg1 arg2 arg3 = objs ++ [(arg1,arg2,arg3)].

initially = [].

Component

 Code

58

architecture. In theory, the server and client programs can run on any machines on the

Internet. Note that the server and the client programs can also be run on the same machine.

To demonstrate the invocation mechanism of Multi-User Clock programs, consider that

one desires to run the server program on tivoli[tivoli.cs.yorku.ca] , and run a client

program onspruce[spruce.cs.yorku.ca] . Both of these machines are part of the Com-

puter Science graduate laboratory at York University. To invoke the server program, an

end-user would type:goServer MU-Drawing . This will start the server program on the

workstation where the command is issued. To invoke the client program, an end-user

would type:goClient MU-Drawing “Roy” tivoli.cs.yorku.ca . The first argument

specifies the multi-user program which the end-user wishes to run. The second argument

specifies the desired name for the user of the program. The third argument is the network

name of the server machine where server program is being run.

The Multi-User Clock programmer need not specify a single line of code for establish-

ment, maintenance, or termination of the communication channels between the server and

the client programs. In Multi-User Clock, the establishment of communication channels

between the clients and the server, management of call and callback messages, and main-

tenance of session information are all handled transparently. This transparent mechanism

relieves the developers from all the issues related to the distributed processes and commu-

nication between them. This provides an illusion to the developers as if they were devel-

oping single-user applications.

 Transparent Event Handling

Figure 4.4 shows the complete client architecture of the shared drawing program. The cli-

ent architecture issues a number of requests and updates, some of which are handled

locally by the client program and others handled remotely by the server program. The

requests which are handled locally includegetOrigin, getFinal andcurrentColour. These

requests are used to query the original and final points of a newly drawn object, and also to

59

draw the objects in the appropriate colour. Likewise, the updates which are handled

locally by the client architecture includesetCoord andresetCoord updates. These updates

are used to specify coordinates of a rubber band line or box as the end-user drags the

mouse from the origin to the final point.

FIGURE 4.4 The client architecture of the shared drawing program and the code for theColour
request handler. The figure also illustrates a segment of code for theCanvas event handler which is
responsible for addition of a new line to the central data and also for drawing a new line on the
canvas.

In this example, theaddObject update, which adds a new box or a new line to the central

shared data, is treated as remote update. In addition,numObjects andgetObject requests,

which query the quantity and the coordinates of the objects respectively, are treated as

remote requests. Multi-User Clock handles both local and remote requests and updates in

a transparent fashion. This means that all the requests and updates are declared and used

via the same mechanism and syntax. This occurs regardless of which part of the architec-

ture tree the requests are being issued from or where they are handled. The Multi-User

Clock run-time system automatically decides when a request or an update needs to be

mouseButtonUpdt “Down” =
all [grabMouseButton, setActive, resetCoord].

mouseButtonUpdt “Up” =
all [addObj, setInactive, releaseMouseButton].

addObj = if isSelected “lineButton” then
addObject 1 myClientId getOrigin getFinal

else ...

drawOneObject n =
let (arg1,arg2,arg3) = getObject n in

let (obj,clr) = arg1,
(x1, y1) = arg2,
(x2, y2) = arg3 in

 if obj = 1 then
LineColour currentColour clr

(Line (x x1, y y1) (x x2, y y2)
 else ...

Remote
Requests

Remote
Update

Component Code

type State = [Colours].

currentColourReq ObjColour clientId = ObjColour @ clientId.

initially = [red, blue, , green, yellow, snow,
 azure, orange, beige, lightBlue,
 lightGreen, pink, violet].

Component Code

60

issued and whether it can be handled locally or remotely. This transparent handling of the

internal events is part of the Multi-User Clock goal to abstract the execution details from

the programmers. The code forCanvas event handler andColour request handler compo-

nents of the client architecture, which are presented in Figure 4.4, illustrate how local and

remote requests and updates are defined and used via the same mechanism and syntax. For

instance, consider the following code segment which adds a new object (i.e., a line) to the

ObjectsInfo. In this example, whileaddObj is a local update function,addObject is a

remote update. As it is evident by the code, both local and remote updates are used in the

same fashion.

addObj = if isSelected “lineButton” then
addObject 1 myClientId getOrigin getFinal

else ...

Also, consider the local requestsgetOrigin andgetFinal, and remote requestgetObject.

Note that the syntax for using both types of requests is the same.

Supporting Roles and Session Information

A colour coding mechanism is employed to identify the objects drawn by different users.

This colour coding scheme not only provides partial support for collaboration between the

users of the shared drawing program, but also provides support forroles which is pre-

sented in the form of the ownership of an object.

To support roles in shared drawing application, a particular colour is assigned statically to

each client (user) of the program. Figure 4.4 illustrates the client architecture of the shared

drawing program. The figure also presents the code for theColour request handler. This

request handler maintains a static colour table, one colour for each client. The figure also

shows a portion of the code for theClientViewevent handler. This code segment is respon-

sible for issuing an update to add the information pertaining to a new line to the central

data, and also to display a new line on the canvas. Once an object is drawn on the canvas

61

(i.e., when mouse button is released)addObj function is invoked. As shown in Figure 4.4,

the code for adding a newly drawn line to theObjectsInfo request handler is:

addObj = if isSelected “lineButton” then
addObject 1 myClientId getOrigin getFinal

else ...

This function generates anaddObject remote update to add the newly drawn line to the

central data (i.e.,ObjectsInfo request handler). TheaddObject update has four parameters:

the object type (i.e., 1=a line, 2=a box),myClientId and the two coordinates. In Multi-User

Clock, each client is given a unique identifier during the initialization procedure. The

myClientId request returns this unique identifier. This information is used to assign owner-

ship information to each object.

ThemyClientId is one of the built-in requests which allows the programmers to query the

session information. These requests are used with the same syntax as a regular request.

Multi-User Clock maintains session information. This information includes the unique cli-

ent identifier and client name of each active client program. While the client identifier is

assigned by the internal system, the client name is specified by the end-user of the pro-

gram. The Multi-User Clock programmers have access to the session information. This

information can be accessed via a set of built-in requests in Multi-User Clock. The client

identifier and name can be queried viamyClientIdandmyClientName built-in requests.

The client identifiers of all clients can be queried viaallClientId, and can be translated to

client names viaclientIdToName built-in requests. The session information is used in the

drawing program to provide the colour coding scheme. The code for drawing a line in the

correct colour which is presented in Figure 4.4, is shown below:

drawOneObject n =
let (arg1,arg2,arg3) = getObject n in

let (obj,clr)=arg1,(x1,y1)=arg2,(x2,y2)=arg3 in
if obj = 1 then

LineColour currentColour clr
(Line (x x1, y y1) (x x2, y y2)) ...

62

The drawOneObject function takes theObjNum parameter. Since objects are stored in a

list, this number represents the object index in the list. This function makes a remote

request,getObject, in order to fetch the information for theObjNum object from the

ObjectsInfo request handler, residing at the server. The result of this function is a triplet:

consisting of two end coordinates and a numerical identifier (i.e.,clientId) which represent

the owner of the object, and the object’s type. TheLineColour is a built-in view command

which changes the default colour for drawing lines. ThecurrentColour is a local request

which is handled by theColour request handler. This request takes theclientIdas its argu-

ment. Upon receipt of this request theColour request handler looks up the colour value in

the colour table corresponding toclientId and returns that value.

As is evidenced by the code segments presented above, the built-in requests are specified

using the same syntax as other requests and are allowed anywhere general requests are

allowed.

Support for Collaboration Awareness

Groups sense collaboration in various ways. Often the collaboration is supported through

a combination of audio-visual and non-verbal cues [Ishii 94]. There are many ways

through which a groupware system can convey a sense of collaboration among its partici-

pants. These methods include support for audio and video communication, shared view-

ing, annotation of the shared objects and tele-pointers (for pointing to the shared objects).

The ideal groupware toolkit would provide support for all these methods so that the devel-

opers can select the collaboration techniques which best suit the developing application.

Due to time constraints, our support for collaboration aware techniques is limited to

shared viewing only. The shared viewing properties of Multi-User Clock follow directly

from its support for development of WYSIWIS (What-You-See-Is-What-I-See) user-inter-

faces. For instance, in the shared drawing program, the collaboration is sensed among par-

ticipants by allowing all users to observe the objects drawn by other users.

63

The shared drawing program provides WYSIWIS views. This implies that all the users of

the shared drawing program view the same objects at any given time. The interface of

Multi-User Clock applications by default provide WYSIWIS views. That is, the program-

mer need not provide additional code to provide shared viewing.

In order to provide WYSIWIS views which are dependant on the state of a request han-

dler, the programmers need to place the request handlers which maintain the shared data at

the server architecture. In this case, information pertaining to the drawn objects (i.e., own-

ership and coordinates) which are maintained by theObjectsInfo request handler is treated

as shared data and is placed in the server architecture. The placement of theObjectsInfo

request handler at the server architecture makes the data maintained by the request handler

accessible to all client programs and enables the desired WYSIWIS viewing in the shared

drawing program.

Multi-User Clock also provides support for control of the granularity of the update events

in WYSIWIS interfaces. For example, in the shared drawing program, an object drawn by

a user on her/his canvas, is drawn on other participants’ canvas only after the object is

fully drawn on the owner’s canvas. This could be altered so that all participants could

view the intermediate steps involved in drawing the objects (i.e., all participants would

view the rubber band line or box).

The shared drawing example demonstrated the transparent architecture distribution, trans-

parent communication infrastructure and collaboration aware capabilities of Multi-User

Clock. The polling program andTRS systems will further demonstrate Multi-User Clock

functionality which satisfy other groupware design requirements.

4.3 A Polling Program

The polling program example was introduced and discussed in detail in Chapter 3. In this

section, this example is revisited to show how Multi-User Clock provides support for cus-

64

tomized views. The view customization facilities are methods which make the construc-

tion of both WYSIWIS (What-You-See-Is-What-I-See) and WYSINWIS (What-You-See-

is-Not-What-I-See) views possible.

Support for Customized Views

The shared drawing program introduced in Section 4.2 only provides WYSIWIS views.

Multi-User Clock also supports the development of WYSINWIS views. In WYSINWIS

views, the user-interface of each user may display different images. Figure 4.5 shows how

both types of views co-exist in the polling program. While the views for the poll result and

the proposition are WYSIWIS, the view for radio buttons are WYSINWIS views.

FIGURE 4.5 Support for different views is shown in the polling program.

The interface of Clock applications consists of two distinct views:static anddynamic. The

static views are those which remain the same during the course of an application execu-

tion. For example, in the polling program, the views for proposition and the button labels

are static views. The dynamic views, however, are changed during the execution of the

application as a result of users’ input. The poll result and the state of the radio buttons (i.e.,

raised/sunken) of the polling program are examples of dynamic views.

In Multi-User Clock, static views are, by default, purely WYSIWIS. These views, how-

ever, can be customized to produce WYSINWIS views. Static WYSINWIS views can be

WISIWIS views

WISINWIS views

65

constructed for each client interface based on the clients’ unique identifiers and/or clients’

names. For instance, consider that we would like two users of the polling program to have

different views for the radio buttons. More precisely, we would like each set of radio but-

tons to bear a different labels. Figure 4.6 illustrates the functional code, which makes these

static WYSINWIS views possible, as well as resulting views. Note that the colour of each

user’s interface is also customized in that each has a different background colour.

Dynamic views are a function of the request handlers’ states. For instance, the view for the

poll result is a function ofCounter request handler state (Figure 3.12, Section 3.6). That is,

whenever the state of theCounter is changed, so is the view for the poll result. The con-

struction of dynamic WYSIWIS and WYSINWIS views in Multi-User Clock is made pos-

sible by support for the flexible placement of data.

FIGURE 4.6 Customization of static views in a Multi-User Clock program

In distributed Multi-User Clock, programmers have the flexibility of choosing where the

data should reside. In particular, they have the flexibility of placing the data anywhere on

buttonLabels = if myClientId = 1 then
(“Agree”, “Disagree”)

else
(“Yes”, “No”)

end if .

view = let (label1, label2) = buttonLabels
in beside [button “label1”,

space 10,
button “label2”

]
end let .

Component
Code

66

the local workstation or on the server machine. The support for flexible placement of data

is provided by the ClockWorks [Morton 94] visual programming environment. In Clock-

Works, the programmer has the advantage of manipulating the placement of any data

structure in the architecture tree, using a direct manipulation interaction technique.

The support for the flexible placement of data allows the programmers to place the data at

the server or at the client architectures. This mechanism permits the specification of shared

and private data. In a groupware application, the shared data is the information which is

accessible by all users. The private data, on the other hand, is the set of information to

which a particular user has exclusive access. In a Multi-User Clock application, the shared

data are maintained by the request handlers which reside in the server architecture. The

private data, however, is maintained by the request handlers in the client architecture.

Since client architectures are replicated, each client maintains its own copy of private data.

In Multi-User Clock, while shared data can be used to construct dynamic WYSIWIS

views, private data make the dynamic WYSINWIS views possible. For example, in the

polling application, the poll result information which is maintained by theCounter request

handler is treated as shared data and hence is placed in the server architecture. However,

the state of the radio buttons, which is maintained by theSelection request handler, is pri-

vate data and is only available to individual users. As a result, while all users have the

same view of the poll results, the state of radio buttons may be different for each user.

In this section, the polling program was revisited to illustrate how Multi-User Clock pro-

vides support for construction of WYSIWIS and WYSINWIS views. It was shown how

development of both static and dynamic WYSIWIS and WYSINWIS views are possible

in Multi-User Clock.

67

4.4 A Terminal Reservation System

Figure 4.7 shows an example multi-user program built in Multi-User Clock. This system

is a Terminal Reservation System (TRS), which was designed to be used for the York Uni-

versity undergraduate lab. (The single-user version of the application was designed and

implemented by Nicholas Graham. We have extended this application to the multi-user

version.) Each student is allowed to have three hours of terminal time per week. The inter-

face of this program consists of three parts: a terminal room map, a reservation panel and a

reservation buttons panel. Colour coding is used to show how long each terminal is avail-

able. Each terminal’s colour ranges from dark green (to show that terminal is available for

the next three hours) to grey (meaning that the terminal is not free at all).

FIGURE 4.7 A multi-user Terminal Reservation System developed in Multi-User Clock

The reservation panel shows the reservations which the student currently holds, and

allows reservations to be cancelled. The reservation buttons panel allows the student to

select a particular day, time and duration in order make a reservation. This example is used

to demonstrate how Multi-User Clock provides support for built-in concurrency control,

68

transparent constraint maintenance and customization of views based on roles and privi-

leges.

Concurrency Control

Groupware applications by nature support collaboration and multiple activities among a

number of users. These activities are often performed concurrently. This concurrency of

events often leads to conflict between parallel processes in gaining access to the services

provided by a common resource. Concurrency control is the activity of coordinating the

potentially interfering actions of processes that operate in parallel.

The TRS program is a typical example of an application in which potential conflicting

events can occur. Consider the example in Figure 4.8. In this example two users of theTRS

program are trying to reserve the same terminal for the same day and time.

In general, there are three types of events in any Multi-User Clock application: input,

request and update events. While input events are triggered by the users of the application,

the request and update events are triggered by the Clock processes in response to these

input events.

Clock applications are reactive systems. This means that the application remains in an

equilibrium state until an input event is received. In an equilibrium state there are no pend-

ing events in the system, and the application is ready to receive a new user input. An input

event received by the program triggers a sequence of internal events (updates and

requests). The internal events are meant to bring the state of the application and the user-

interface up-to-date according to the user input.

In Multi-User Clock, events which are triggered as a result of an input event form aninput

thread. Input threads consist of a series of chained events which are triggered as a result of

single user input. To further clarify the notion of input threads, consider the example in

69

Figure 4.9. This example describes the events which are triggered as a result of the addi-

tion of a new reservation.

FIGURE 4.8 An example of an input conflict. In this example both users are attempting to reserve
the same terminal for the same day and time.

Concurrency control in Multi-User Clock operates at the input thread level. Furthermore,

the concurrency mechanism in Multi-User Clock is only concerned with concurrent input

threads originating from two different client applications. These may trigger an update

event which modifies the shared data residing on the server application.

In Multi-User Clock two concurrent input threads are allowed to run concurrently as long

as the update events generated by these threads are restricted to the local (private) data.

Client ‘B’Client ‘A’

Server

70

The conflicting threads are input threads which cause concurrent updates to the shared

data. The concurrency control mechanism in Multi-User Clock guarantees that all the

events pertaining to one of the conflicting threads are serviced, and that a state of equilib-

rium is reached prior to servicing the events pertaining to a second conflicting thread. This

concurrency control mechanism strives to provide the illusion of single threadedness; that

is, the illusion that at any given time there is only one active thread in the system.

FIGURE 4.9 An example of an input thread. This input thread is triggered as a result of addition
of a new reservation by a user of TRS program

Transparent Constraint Maintenance

In Multi-User Clock, the relation between the states and the views which represent these

states is maintained via a number of internal constraints. The result is that whenever a dis-

play view is out of date, the Clock system automatically forces the view function to be

recomputed. The maintenance and triggering of constraints are all transparent to the

Multi-User Clock programmer, and are performed automatically without the program-

mer’s intervention.

User Input

A ‘reserve’ update is issued. Since the
update cannot be handled locally, it is
sent to the server program. The state of
the Reservation request handler is
updated to reflect the new reservation.

A user selects a terminal and the time
and clicks on the ‘Reserve’ button

The view of the components which are
constrained to the state of the Reserva-
tion request handler are tagged out-of-
date. This triggers the recomputation of
the constrained views.

During the recomputation of its view, the
Terminal event handler issues a hours-
Free request. This request is passed on
to the server architecture.
The request is captured by the Reserva-
tion request handler and the total number
of available hours for the given terminal is
returned. The terminal is drawn in the cor-
rect colour.

The ReservationPanel also issues a
myReservations request to obtain the up-
to-date reservation information for the user
of TRS. This request is passed on to the
server architecture.
The request is captured by the Reserva-
tion request handler and reservations’ info
is returned. The user’s reservation infor-
mation is displayed on ReservationPanel
view.

71

For instance, in theTRS program the colour of each terminal provides some visual cues

with respect to its availability. The display view of each terminal (i.e., the terminal display

colour) is constrained to the reservations which are currently made for that terminal (i.e.,

the state of theReservation request handler). The constraint between the terminals’ view

and the central reservation data spans across multiple users of theTRS program. It is cru-

cial for all the users’ views to display the correct information with respect to the availabil-

ity of a terminal to avoid over-booking. Once a user reserves a particular terminal, the

display colour of the terminal on all users’ interface will change to reflect the new

reservation. Figure 4.10 illustrates how transparent constraint mechanisms maintain the

correct display colour of terminal views.

In theTRS program, the reservation information is treated as the shared data and is kept at

the server architecture. To illustrate the reservation information correctly, the view func-

tion of Terminalcomponent queries the reservation information from the server. This is

done viahoursFree remote request. The exact code for querying the terminal availability

is: myHoursFree = hoursFree myId currentDay myUserId .

Once a component has made a request for the state of a request handler, the Multi-User

Clock constraint mechanism forms a constraint between the state of the request handler

and the component view function which requested it. This constraint guarantees that the

user component is informed of any changes made to the state of the request handler in the

future.

As shown in Figure 4.10, once a user selects and reserves a terminal, an update (i.e.,

reserve) is issued by the client program to inform the central shared data of the new reser-

vation. The exact code for adding a reservation is:reserve termId day time userId .

72

FIGURE 4.10 An example of the transparent constraint maintenance mechanism in Multi-User
Clock.

Each new update which is applied to the state of a certain request handler activates the

constraint bound to the request handler component. Since the views of terminals are con-

strained to the state of a shared request handler, the constraint mechanism informs the

view functions that their views are now out-of-date. Consequently, the view functions

request the up-to-date state of the reservations in order to recompute their views. Once

1

1

2

3

3

4

4

1 A user selects a terminal and the time in order to make a reservation. This causes a
reserve update to be issued by the client program and received by the server program.
The reserve update modifies the reservation information at the Reservation request handler.
This change of state triggers the constraints.
The activation of constraints triggers the recomputation of the terminal’s view. The Terminal
makes a hoursFree request to obtain the total number of reservations for the selected
terminal. The terminal is then redrawn in the correct colour.
The activation of constraints also triggers the recomputation of the CurrentReservation
component. This component makes the myReservations request to display the current
reservations for the current user of the TRS.

2

3

4

buttonClickUpdt “Reserve” =
reserve termId day time userId .

view = terminalView
terminal colour myHoursFree.

myHoursFree =
hoursFree myId currentDay myUserId .

terminalColour 0 = grey76.
terminalColour 1 = darkOliveGreen1.
terminalColour 2 = darkOliveGreen3.

x xInitiation of an Event Receipt of an Event

73

their view is regenerated, the reserved terminal colour is changed to reflect the new reser-

vation.

The transparent maintenance and triggering of constraints in Multi-User Clock relieve the

programmers from the low-level details pertaining to consistency control and maintenance

of an up-to-date view. The terminal reservation system demonstrated the implementation

of transparent concurrency control and transparent constraint maintenance. Transparent

concurrency control is designed in such a way as to give the illusion of single threaded-

ness resolution to parallel events which have the potential of conflict. Transparent con-

straint maintenance is designed to trigger a series of recomputations of interdependent

components based on the constraints.

FIGURE 4.11 The pictorial presentation of constraint maintenance mechanism in Multi-User
Clock

74

4.5 Summary

This chapter discussed how the various design requirements detailed in Chapter 2 are sat-

isfied in Multi-User Clock. The chapter was organized around three applications devel-

oped using Multi-User Clock. By means of examples, we showed how Clock provides

support for the selected requirements. The selected requirements which are supported in

Multi-User Clock are:

• A High-Level Declarative Programming Language:Multi-User Clock programmers

need only specify a set of rules and logic which specifies the problem without providing

additional information as to how to solve the problem. The run-time processes are

capable of determining the execution order. Multi-User Clock also provides a high-

level programming environment in which all the issues pertaining distribution and

remote event handling are transparent to programmers.

• Transparent Distribution of Application Architecture:Multi-User Clock provides sup-

port for the transparent distribution of the server and the client architectures to their

respective machines. The programmers construct and edit the application tree as if they

were constructing single-user applications.

• Transparent Communication Infrastructure: Multi-User Clock establishes and main-

tains the communication channels between the distributed multi-user programs. These

procedures are all transparent to the programmer. As part of the communication infra-

structure, Multi-User Clock manages all communication between the applications

transparently.

• Session Information:Multi-User Clock programmers have access to the session infor-

mation which includes the unique clients’ identifiers and the clients’ names. This infor-

mation can be queried via a set of built-in requests.

• Support for Development of Customized Views:Multi-User Clock provides support for

development of customized views. This is achieved via support for construction of both

WYSIWIS and WYSINWIS user interfaces.

75

• Support for Development of Collaboration Aware Applications: The construction of

collaboration aware applications are supported in Multi-User Clock through shared

views.

• Transparent Constraint Maintenance:Multi-User Clock provides a transparent con-

straint maintenance mechanism. This mechanism establishes the dependence relations

between the data and the views which represent these data. The mechanism triggers the

recomputation of the components’ views should the data which they represent change.

• Transparent Concurrency Control: The transparent concurrency control mechanism, as

implemented in Multi-User Clock, resolves any conflicts which may arise as multiple

client processes work concurrently.

The following chapter discusses the implementation of Multi-User Clock.

76

 Chapter 5

Language Implementation

5.1 Overview

This chapter discusses the various implementation techniques involved in the develop-

ment of Multi-User Clock. The chapter begins by describing the distribution architecture

used in Multi-User Clock and the transparent distribution of application parts based on

this architecture. It then proceeds to discuss other technical issues involved in Multi-User

Clock’s communication infrastructure (such as remote event handling). A description of

the technical issues involved in providing a transparent concurrency control mechanism

concludes this chapter. Multi-User Clock is implemented on SUN workstations, running

under UNIX. The Multi-User Clock is developed using Turing and C programming lan-

guages.

5.2 Distribution Architecture

One of the primary design decisions in a groupware system is selecting a distribution

architecture. The difference between various architecture implementations lies in how the

application and its data are distributed over the participating machines, and how these

parts communicate. The choice of architecture directly impacts various aspects of a group-

ware system. For instance, performance has been considered to be one of the most impor-

tant requirements of distributed groupware systems. Protocols for communication,

concurrency and synchronization influence the performance of a groupware system. These

protocols, in turn, depend on the architecture of the application. This section discusses the

various communication architectures, their advantages and disadvantages, and our design

decisions.

77

There are three basic architecture alternatives to consider when implementing interactive

multi-user applications. The first approach is thecentralized architecture which is basi-

cally a client-server architecture where a single instance of the multi-user application is

shared by all users [Lauwers 90]. In this scheme, all user inputs are forwarded to the single

instance of the application, running on the server machine, and the application’s output is

multiplexed to all the clients’ machines.

The second alternative is referred to as areplicated architecture [Crowley 90]. Under this

approach, a copy of the multi-user application is replicated, and executed locally on each

user’s workstation. User input to a shared application is distributed from the user’s win-

dow system to all instances of the application. Output from each copy (i.e., application

feedback), however, is delivered only to the local window system.

The third alternative, thesemi-replicated architecture, is a hybrid between the replicated

and the centralized architectures [Graham 92a]. Under this architecture the application

consists of two parts: the server and the client. Also, the application data is distributed

among the server and the clients such that the shared data is maintained at the server and

the local data is replicated between each client.

All of these methods bear a number of advantages and disadvantages. A brief description

of each communication architecture, as well as their advantages and disadvantages, will

be presented below.

The architecture of Multi-User Clock applications can be mapped to any of the above

mentioned architectures. The current implementation of Multi-User Clock is based on a

semi-replicated architecture. The architecture of a program is split into the server and the

client sub-architectures which are distributed to the server and the client machines respec-

tively. A schematic presentation of the distributed Clock programs is depicted in Figure

5.1. The figure illustrates Multi-User Clock’s two executable programs: the server and the

78

client program. The figure also shows how the server and the client programs, which run

on the server and client machines respectively, communicate with each other using a mes-

sage passing scheme. In addition, the figure illustrates how the architecture of a Multi-

User Clock application is divided into the server and the client architectures, and how the

server architecture is used by the server executable program and how the client architec-

ture is replicated to each client executable program.

FIGURE 5.1 The semi-replicated architecture as implemented in Multi-User Clock.

A description of each of the above architectures is given below to justify our decision. A

discussion of server and client programs in Multi-User Clock follows. The server and the

client programs each consist of a number of processes, which communicate with each

other via a number of messages. A description of these processes and their communication

methods is also presented.

5.2.1 Centralized Architecture

This architecture is based on a client-server model, in which a single instance of a multi-

user application is shared by all users. In this model, each participant’s workstation has a

minimal program (the client) which handles the screen and accepts the participant’s input.

The real work of the application is performed by the server, which runs on the central

computer and holds all application’s data. An example of a system based on a centralized

architecture would be the Rendezvous system by Hill, et. al [Hill 92]. Figure 5.2 illustrates

Server

ClientClient

Remote

Requests and Updates

TagComponent
and

View Update

Server Arch.

Client Arch.

79

the architecture of a centralized system in a schematic form. As is shown in the figure,

user’s inputs (from host A and Host B) are passed to the communication manager. The

communication manager in turn issues a call to the server, where the application resides.

The call to the server is captured by the communication manager at the server (e.g., X-

Multiplexor) which in turn issues a local call to the application program. The application

program will issue a call-back to the communication manager residing on the server, and

the communication manager will dispatch the call-back to the communication manager on

the client machine. The communication manager on the client machine at last passes the

call-back to the terminal to reflect the changes triggered by the user’s input.

FIGURE 5.2 Centralized Architecture

The advantages of having a centralized architecture are:

• Simple implementation: This is due to the fact that only one copy of the multi-user

application exists. Hence the programmer need not be concerned with issues such as

data coherence, concurrency control and synchronization.

• Good performance with small number of users:If the number of users of a groupware

application is known to be small, a centralized architecture is the best choice. The

application programmer can take advantage of the simplicity of the architecture without

80

sacrificing overall performance. While simplicity is achieved by avoiding complex

concurrency and synchronization mechanisms, the performance advantage is achieved

by avoiding the overheads which are typically associated with these mechanisms.

Under this scenario, it is less likely that participants will experience delayed feedback

or feed-through due to network congestion or server overload.

• Existing Support: The joint viewing requirement of computer supported cooperative

work (CSCW) applications can be addressed by an X Protocol Multiplexor (MUX)

[Baldesch 93]. A MUX is a special program which exploits properties of the X Window

System to allow joint viewing of X applications. The MUX achieves its objectives by

intercepting the X client/server connection. This allows the MUX to filter the calls from

the X server to the client and conversely multiplex the call-backs from the client appli-

cation to all X servers. Note that in X terminology, the X server is the portion of the

system which resides on the client machine and the X client refers to the application

program which is on the server machine.

• Easier to port a single-user application to multi-user application: With the aid of exist-

ing support such asX Protocol Multiplexor (MUX)a single-user X application can be

used in a multi-user setting with minimal modification. However, this mechanism only

provides support for development of interfaces with WYSIWIS views. In other words,

the feedback generated by the central application, in response to a user action, is multi-

plexed to all participants’ display.

The main disadvantage of a centralized architecture is that it haspoor scalability [Graham

92a]. Poor scalability can be defined as the inability of a system to maintain a relatively

constant performance level as the number of users grow. The poor scalability will result

in:

• Delayed feedback and poor response time with a large number of users: As the number

of users increase, the server and network eventually becomes overloaded and perfor-

mance degrades. Since all requests must be passed from all clients to the server, and the

responses then passed back to the clients, an increase in the network traffic can also be

81

experienced. This will eventually lead to a scenario in which all users experience a

delay in response time (i.e., feedback and feed-through). This is due to the fact that the

centralized architecture does not take advantage of the larger number of available pro-

cessors as the number of users increases.

5.2.2 Replicated Architecture

In this model, each workstation runs its own copy of the application. These copies need to

communicate in order to keep their data structures consistent with one another. Systems

with a replicated architecture need an efficient synchronization and concurrency control

mechanism to ensure that replicas remain synchronized, consistent, and that they process

inputs from different users in the same order. Such mechanisms are usually hard to imple-

ment. The synchronization and consistency maintenance in these applications is likely to

have an impact on applications’ performance. In a replicated architecture, each replica

handles its own user’s feedback, as a result this architecture provides the most rapid feed-

back. Each replica must also update the screen in response to messages from other repli-

cas. Examples of applications which employ a replicated architecture are: the MMConf

System by Crowley, et. al [Crowley 90], and GroupSketch by Greenberg et al [Greenberg

92]. The remainder of this section discusses the advantages and disadvantages of having a

replicated architecture. Figure 5.3 illustrates the replicated architecture in pictorial format.

As is shown in the figure, all the calls (generated as a result of user’s input) are serviced by

the local copy of the application. The localization of the services naturally leads to faster

response time and hence better performance since the user is able to see the result of his/

her action faster(e.g., faster screen updates). As is shown in the figure however, the appli-

cation replicas need to interact with each other to ensure data coherence. The line across

the network which links two communication managers together represents the replicas

inter-communication. The remainder of this section discusses the advantages and disad-

vantages of having a replicated architecture.

82

FIGURE 5.3 Replicated Architecture

The advantages of a replicated architecture are:

• Good Performance with Large Number of Users: The main advantage of the replicated

architecture is its rapid response time and fast feed-through which, in turn, translates

into improved performance [Crowley 90]. Response time is better than in a centralized

system because all requests and computations are captured and serviced locally by the

local copy of the shared application. As a result, the response time is independent of the

number of participants. In contrast to the centralized architecture in which output data

must be sent across the network to all window servers (as implemented on each partici-

pant’s workstation), in a replicated architecture each replica sends output only to the

local window server, and no output data needs to be distributed across the network

(excluding the communication between replicas for concurrency control).

• Versatility: In contrast to centralized architectures, replicated architectures work

equally well withserver-based or kernel-based systems. In a server-based window sys-

tem, input events and output requests pass through a network connection, which pro-

vides a good handle for obtaining the output to distribute (e.g., X Windows). These

systems are the only environments in which a centralized architecture can be utilized.

In a kernel-based window system, library or system calls handle input events and out-

put requests, leaving no handle on the output (e.g., Microsoft Windows). Hence, a cen-

tralized architecture cannot function in a kernel-based system. Replicated architectures,

83

on the other hand, need only a handle on the input, which is much easier to intercept

(window systems typically offer a single entry point for obtaining input, but a multitude

of entry points for generating output). More importantly, however, replicated architec-

tures appear much better suited to accommodating heterogeneous hardware environ-

ments. “Replicated applications running on different workstations with window

systems need only translate the input events. Centralized systems on the other hand

must struggle even to adapt to minor discrepancies in display geometry or colour maps”

[Lauwers 90].

• Fault Tolerance: Under this architecture each client machine has an identical copy of

the application and the data. Hence, failure of a single processor/client will not lead to

the failure of the application as a whole. Under the centralized architecture, however,

the failure of the server machine will result in failure of the whole application. In a rep-

licated architecture, failure of one client will lead to termination of the application on

the faulty machine only.

The disadvantages of a replicated architecture are:

• Difficult Implementation: The replicated architecture is difficult to implement [Crowley

90, Lauwers 90]. The difficulty arises since one needs to maintain consistency among

all application replicas. In addition, the concurrency maintenance requires sophisticated

schemes to prevent concurrent updates by two users. The concurrent events often lead

to race conditions, in which two input events compete to make use of services provided

by a common source. A CSCW system must properly handle race condition.

• Multiple Semantic Operations:In addition to the above mentioned problems, replicated

architectures further complicate matters by executing semantic operations several

times, once for each application copy. Semantic operations are those operations which

influence the state of the system [Lauwers 90]. For example, consider a scenario in

which the users of an application with a replicated architecture need to read a data file.

In this setting, we need to open/read/close the file as many times as the number of cli-

84

ents. A related problem is maintainingsingle-execution semantics [Lauwers 90]; that is,

to ensure that executing multiple replicas would have the same effect on the global

application state as running a single replica.

• Lack of a Globally Available State:Full replication also leads to difficulties when

bringing late-comers into a group session. Since there is no globally available state,

fully replicated systems may have to keep a full history of actions performed by all

users in order to allow a late-comer to attain the state currently held by other partici-

pants. A global state represents the state of the application as a whole.

These disadvantages will lead to such impediments as: mis-ordered input events, non-

deterministic applications and accommodation of late-comers into an active session

[Crowley 90]. Despite the potential benefits of replicated architectures, most groupware

applications have avoided this type of architecture, due to the significant synchronization

problems that are associated with replicated execution [Lauwers 90]. Keeping replicas of a

shared application consistent requires that each replica receive (semantically) equivalent

input from each input source, and that input events originating from different sources be

delivered to all replicas in the same order. The reader is advised that many of these issues

are application dependant.

5.2.3 Semi-Replicated Architecture

The problems associated with the two previous architectures have motivated the imple-

mentation of a hybrid system which adapts the benefits of the two basic architectures

while avoiding their drawbacks. The new approach is known as a semi-replicated architec-

ture. In a semi-replicated architecture, only a portion of the application and data are repli-

cated to each client. The most typical approach is to keep the main application and the

shared data on the server, while the code and the data related to user interface are repli-

cated to client machines. Examples of systems which make use of this architecture are the

Weasel System [Urnes 92] and the Suite System [Dewan 92b].

85

Figure 5.4 illustrates how a semi-replicated architecture is implemented in Multi-User

Clock. In this model, the executable programs and the architecture tree are divided into

two portions: the client and the server. While the server executable and the server portion

of the architecture tree are kept on the server machine, the client executable and the client

portion of the architecture tree are replicated to each client. As is shown in the figure, the

server and the client executable programs communicate with each other via a set of mes-

sages. The communication between the server and client programs is handled by the

server and client communication managers respectively. The communication managers’

task is to hide distribution and networking issues from both the server and the client pro-

grams. Note that here the server and the client programs refer to Multi-User Clock execut-

able programs, not the application program which is written by Multi-User Clock

programmers.

We believe that employing a semi-replicated architecture has a number of advantages over

the centralized and/or the replicated architectures. These advantages are listed below with

annotation to identify the respective architectures.

FIGURE 5.4 Semi-Replicated architecture in Multi-User Clock

86

• Improved Scalability (vs. Centralized): Compared to a centralized architecture, the

semi-replicated architecture maintains better performance as the number of users

increase. Empirical studies of Weasel [Urnes 92], a system with a semi-replicated

architecture, have shown that adding new participants to a session does not degrade the

overall system performance as much as it would in a centralized setting.

• Reduced load on the server (vs. Centralized):In comparison with centralized architec-

tures, in a semi-replicated architecture the load on the server is possibly reduced by

placing some of the computation on client machines.

• Improved accommodation of late-comers (vs. Replicated): In a semi-replicated archi-

tecture, the application state is divided into a sharedglobal state at the server, and a

local state for each participant at the client. The global state represents the state of the

shared data while each local state represents the state of private client data. Thus, the

local state of two applications can be different. Under a semi-replicated architecture, a

late-comer is brought up-to-date by obtaining the global state from the server and ini-

tializing a new local state.

• Simplified consistency mechanism (vs. Replicated): Under the semi-replicated architec-

ture, the shared data is placed at the server. Since there is only one copy of the shared

data, there is no need for a mechanism to ensure consistency among shared data repli-

cas as required in replicated architectures.

Semi-replicated architectures are not, however, free from faults. Under the current imple-

mentation of Multi-User Clock, when a client program issues a remote request call it

blocks, and the client program remains idle, until it receives the result of the request from

the server. The latency associated with this mechanism may degrade the application’s per-

formance in two ways. First, in certain applications (e.g., shared editing) the client pro-

cesses need to constantly poll the central server for the up-to-date state of the shared data

(i.e., edited document). As a result of high frequency of the client calls to the server, the

cumulative idle time will result in poor response time. Second, as the number of the users

87

grows, the server processes need to process more number of calls from clients. This will

result in a longer idle time as client processes wait for a response from the server.

5.3 Transparent Distribution of Application Architecture

Section 5.2.3 described the semi-replicated distribution architecture as it is implemented

in Multi-User Clock. This section presents the communication protocols in the semi-repli-

cated implementation of Multi-User Clock. Moreover, it shows how the client and the

server components of the architecture tree are distributed to their respective sites in a

transparent fashion. Multi-User Clock consists of two distinct executable programs: the

server program and the client program. These programs reside and run on the server and

the client machines respectively.

Clock programmers use the ClockWorks visual programming environment to construct

the application architecture tree. ClockWorks generates anarchitecture description file in

which all the architecture tree specifications are saved in textual format. This file contains

all the information pertaining to all the classes, request handlers and event handlers for

both the server and the client programs. Figure 5.5 shows how this file is used by both the

server and the client programs to extract architecture information.

FIGURE 5.5 ClockWorks generates an Architecture Description File, in which all the
architecture specifications are stored in textual format. This file is used by the server and client
programs to extract architecture specifications.

Generates Is Used By

88

The programmer does not need to specify two distinct architectures. ClockWorks automat-

ically annotates the components as being a server or a client component. As shown in Fig-

ure 5.1, both the server and client programs infer their component architectures from the

architecture description file upon initialization.

The server and client programs are only aware of the part of the component architecture

which pertains to their program. These two programs communicate with each other via

request and update messages.

To further familiarize the reader with the functionality of these two programs, a brief

description of their start-up procedure (already outlined in Section 4.2) follows. The

server and client programs have similar start-up procedures. Figure 5.6 illustrates the

server programs’s initialization procedure. The syntax for invocation of the server pro-

gram is:goServer <program name> , where<program name> is the multi-user pro-

gram which an end-user wishes to run. For instance, to run the server program of the

shared drawing program, an end-user would type:goServer MU-Draw .

FIGURE 5.6 Clock server program’s initialization procedure. The cylinder with two arrows
represents a communication channel.

As is shown in figure 5.6, upon invocation, the server program first reads in the architec-

ture description file which is generated by ClockWorks. The server program then reads in

all the specification files pertaining to the different server components. The component

specification files are written by Multi-User Clock programmer as part of the application

89

being developed. It then opens a communication channel (a socket) and registers its name

with the operating system. This allows future connection requests to be routed to the

server program process. Once the communication channel is established, the server pro-

gram listens to the socket for any connection request originating from the client programs.

The client program’s initialization procedure is shown in Figure 5.7. The syntax for invo-

cation of a client program is:goClient <program name> <client name>

<server host> . The<program name> is the multi-user program which an end-user

wishes to run. The<client name> is a string identifier which is chosen by the end-user.

The Multi-User Clock processes maintain a unique numerical identifier for each client.

Since mapping a client numerical identifier to actual participants is rather hard for the

application users, Multi-User Clock allows the users of a program to assign a preferred

name to themselves. This information is maintained as part of the session information and

can be queried by the Multi-User Clock programmers. The<server host> is the unique

network name of the server machine where the server program is being run. For instance,

if the server program of the shared drawing program is known to be running on

tivoli.cs.yorku.ca , an end-user can invoke the client program by typing:

goClient MU-Draw “Roy” tivoli.cs.yorku.ca .

FIGURE 5.7 Clock client program’s initialization procedure. The cylinder with two arrows
represents a communication channel.

90

As is shown in figure 5.7, upon invocation, the client program creates a communication

channel in order to establish a dialogue with the server program. Having done this, it then

reads the architecture description file and specification files pertaining to all the client

components. After successful completion of the initialization procedure, the client pro-

gram initializes the display view and begins to accept and process user inputs.

The server and client programs each serve a different purpose. The primary purpose of the

client program is to provide an up-to-date view of the user interface, and to obtain and pro-

cess user inputs. The client program is also responsible for receiving the updates sent from

the server and modifying the user interface accordingly. The server program, on the other

hand, acts as the central data repository where all the shared data are stored. The server

program services client requests for the state of the shared data, and also multicasts the

updates made to the shared data to all clients.

5.4 Communication Infrastructure

Sections 5.2 and 5.3 described the client and the server programs, and showed how the

application architectures are distributed and used by these programs in a transparent fash-

ion. In Multi-User Clock, each of these programs consists of a set of processes. More spe-

cifically, Multi-User Clock applications consist of several processes arranged in a semi-

replicated architecture. The communication infrastructure in Multi-User Clock serves two

objectives: first, to establish, maintain and terminate communication channels between

remote processes, and second, to handle remote events in a transparent fashion. This sec-

tion describes how the communication infrastructure in Multi-User Clock meets its first

objective. Section 5.5 will discuss the transparent event handling mechanism.

We will now examine a process view of the communication architecture. Some example

scenarios are presented to elaborate on the processes’ behaviour. Our goal is to describe

the motivations behind each of these processes and explain their tasks. In addition, we

91

describe how these processes communicate with each other and how their tasks are syn-

chronized.

5.4.1 Server Processes

This section introduces the different processes that comprise the server run-time program.

The server run-time program consists of a number of light-weight Turing processes. These

processes execute within and share the same address space. The invocation of the server

program instantiates one process on the server machine. The purpose of this process, the

client registrar process, is to listen to the server socket for any connection request from

the clients. Once the process detects a new client’s connection request, it initiates a client

connection procedure and forks a new process responsible for communicating with the

new client. This procedure is called client-serverhandshake. The handshake procedure

involves assignment of a unique identifier for the newly connected client, informing the

client of the new identifier, obtaining the new client’s name and including the client’s data

in the central data base. After successful completion of the handshake procedure, the serv-

er’s registrar process forks a new process which handles all communication calls from the

client in the future. This process is named thecommunication handler process. Hence, at

any given time forN clients, there areN concurrent communication handler processes and

a total ofN+1 processes at the server. This naturally limits the system’s scalability to a

maximumMAX_USER_PROCESSES-1 clients, where MAX_USER_PROCESSES is the

maximum number of processes allowed by the system, in which the server program runs.

The remainder of this section briefly describes the client-server handshake procedure. Fig-

ure 5.8 illustrates the client-server handshake procedure in pictorial format. A handshake

procedure begins with one client sending a connection request to the central server. The

server acknowledges the connection acceptance by sending a“connectionGranted” mes-

sage. This message also contains the unique identification of the client which is assigned

by the server. This unique identification is used in all future client-server communications.

92

Having received this message, the client sends another message informing the server of its

preferred ‘name’. Although client names are not used by the internal processes, they are

available to the programmers. After successful completion of the above message

exchanges, the server’s registrar process forks a new process to handle all the communica-

tion to/from the newly connected client.

All information pertaining to the active clients (clients with live communication sockets)

is kept by the central registrar process at the server. The programmer can query this infor-

mation through a set of built-in requests, such as:myClientId, which returns the unique

client identifier in a session, andmyClientName, which returns the name which end-user

has chosen during the start-up procedure.

FIGURE 5.8 Client-Server handshake procedure

5.4.2 Client Processes

Each client application consists of two light-weight Turing processes. These processes

execute within and share the same address space. These processes communicate with each

other via shared memory. Each of these processes serves a different purpose. This section

introduces these processes and discusses their functionality. The client processes are:

93

• Event Handler Process: This process is instantiated after completion of a communica-

tion handshake with the server. The purpose of this process is to handle all user interac-

tions (local events) and update the interface accordingly. This process is unaware of the

distribution issues. Note that this process has nothing to do with event handler compo-

nents.

• Communication Handler Process: This process is instantiated during the client pro-

gram initialization. The purpose of this process is to handle all communication between

the client event handler process and the remote server process. As well, it acts as a

mediator between the local event handler process and the remote server process, mak-

ing the distribution transparent to the local event handler process.

To further illustrate the functionality of these processes we revisit the shared drawing pro-

gram introduced in Chapter 4. Recall that the drawing application would allow all the

users to concurrently draw objects on their own display canvas. Due to the WYSIWIS

nature of this application, all objects are synchronously displayed on all of the partici-

pants’ screens. Consider the example in Figure 5.9. This example illustrates how pro-

cesses of the client program handle two input events: a local input event (local user draws

a rectangle) and a remote input event (a remote user draws another rectangle). Since the

state of the drawn objects are considered to be shared data, addition of an object will cause

a remote update which passes the information pertaining to the newly drawn object to the

server processes.

In the case of the first input event, the event handler process obtains the local user’s input.

In this example, the local user draws a rectangle. The screen is updated accordingly to

reflect the changes made by the user. Since the drawing program provides WYSIWIS

views, the information pertaining the drawn objects are treated as shared data and are kept

at the server. Hence, after applying the changes to the local interface, an update is passed

to the communication handler process to inform the server process of the changes.

94

FIGURE 5.9 Client program processes

Now consider the second event: an update made by a different user. The communication

handler process receives an update from the server indicating addition of another rectangle

by some other user. The communication handler process passes the information to the

event handler process, which in turn initiates a screen update to reflect the remote update.

5.5 Transparent Event Handling

Multi-User Clock can be described (in distributed system terms) as a loosely coupled sys-

tem in which each client has (and operates in) its own address space. The server also oper-

ates in its own address space. The central server and the clients communicate with each

other via remote events. These events, which consist ofremote requests andupdates, are

those which are initiated locally by a site (client or server), and are serviced remotely.

As part of the built-in communication infrastructure, Multi-User Clock provides support

for transparent handling of local and remote events. The event handling mechanism

extends over network boundaries so that it is able to handle remote requests and updates

transparently.

95

To further clarify the remote message handling in Multi-User Clock, we revisit the shared

drawing program introduced in Chapter 4. Each of the remote message descriptions is

accompanied by an example of a typical execution of the shared drawing program. In what

follows, a brief description of the drawing program architecture, and the client and server

programs pertaining to this application is provided.

Figure 5.10 illustrates the architecture of the shared drawing program. To simplify the

architecture, only remote requests and updates are shown in the picture. As shown in the

figure, theaddObject update, which adds a new object (box or a line) to the central shared

data, is treated as a remote update. In addition, thenumObjects, getObject requests, which

query the quantity and the coordinates of the objects respectively, are treated as the remote

requests.

FIGURE 5.10 The architecture of the shared-drawing program, showing the remote requests and
updates.

When a client program determines that an event cannot be handled locally, the event is

assumed to be handled by the server program and hence is sent to the remote server

machine. In response to an update event, the server program initiates a tagging procedure

to inform the remote clients’ components of the update. The following sections present a

discussion of the client and the server remote calls.

96

5.5.1 Message Structure

In this section we briefly describe the Clock message structure. All communication mes-

sages in Clock follow a predefined format. All the data included in a message are of char-

acter type. Any other data types are converted to the character format prior to their

inclusion in the message. Figure 5.11 presents a pictorial description of the Clock mes-

sages. In what follows we describe each data field included in a Clock message.

FIGURE 5.11 Message Format

• Client Id: This field holds the id of the sending host. Each client is assigned a unique id

during the initial connection with the server. Id (0) is reserved for the server.

• Message Id: This field indicates the message payload type. Each of the client’s and the

server’s messages are given a unique identifier. This field is used by the message recip-

ient to determine the type of the message payload.

• Extra Info: Several messages need to carry additional information. For instance, when

passing arguments over the network it would be convenient to know the number of

these arguments when they are being extracted from a message. The high number of

messages which require an additional form of information justifies the use of this field.

• Message Payload:This field, which is 253 bytes long, contains the actual message.

Placing a limitation on the message length has a number advantages and disadvantages.

The disadvantage is that messages which are longer than 253 bytes must be split into

two (or more) ‘shipments’. Also, for any message length less than 253 bytes, we still

need to send 253 bytes. The advantage is that both sender and recipient know the length

of each message in advance.

Client Id Msg Id Extra Info. Message Payload

Byte [0] Byte [255]Byte [1] Byte [2]

97

5.5.2 Remote Event Handling

This section describes the remote events which are initiated by a client machine and are

executed at the server machine. Client programs may issue two remote calls: a remote

request or a remote update. While a remote update modifies, a remote request queries the

state of the shared data at the server. These remote calls are discussed in more details in

the next two sections.

5.5.2.1 Remote Update Handling Mechanism

The goal of this section is to introduce and discuss the remote update handling concept

and mechanism. The aim is to demonstrate how shared data are updated in Multi-User

Clock.

Figure 5.12 illustrates a schematic presentation of a remote update handling mechanism in

Multi-User Clock. A remote update is considered to be an update event which is issued by

a client program to make changes to the shared data residing on the server. As is illustrated

in the figure, a remote update mechanism begins with an ‘update’ message followed by

zero or more ‘update argument’ messages, and concludes with an ‘end update argument’

message. To further clarify remote update handling in Multi-User Clock, we incorporate

an example pertaining the shared drawing program and show how a simple update (i.e.,

addObject update) is handled in the Multi-User Clock.

98

FIGURE 5.12 Remote update mechanism in Multi-User Clock.

Figure 5.13 shows the update message specifying the addition of a box on the display can-

vas. A remote update procedure begins with the client sending an ‘update’ message to the

server. This message conveys a variety of information. First, it informs the server process

that the client wishes to make a change to the shared data. Second, it carries the update

identifier, allowing the server process to know which update must be applied. All update

events are internally represented with a unique numerical identifier. TheaddObject update

is internally represented as update number 14. Third, it advises the server of the number of

argument messages which follow this update message. The updates often carry an arbi-

trary number arguments. Each of these arguments are sent via a separate message. The

number of arguments in the update message instructs the server process to defer the update

procedure (in the case where one or more arguments are to follow), or to initiate an update

procedure immediately.

If the update message has a number of arguments associated with it, the server process ini-

tiates a loop to obtain all the arguments. The update arguments are sent in anupdateArg

message form. In the case ofaddObject update there are four arguments: the object’s type,

the object’s owner and two end coordinates of the object. Figure 5.14 illustrates a possible

99

example of anupdateArgmessage pertaining to theaddObject update. This example

shows theupdateArgmessage for one of the end coordinates of a newly drawn object.

FIGURE 5.13 An example of an update message. This update message pertains to theaddObject
update of the shared drawing program. This update is internally represented with update number
14. This update also has four arguments which correspond to the type, owner, and coordinates of
the object.

An endUpdateArgs message terminates the loop and signals the server to initiate the

update procedure with the given update and arguments. No extra message is sent back to

the calling client to inform it about the status of the update.

FIGURE 5.14 An example ofupdateArg message. This message shows the third argument of
addObject update. The third argument carries the coordinates of the one end point of the object, in
this case (2, 5).

Byte[0] [255][1] [2]

1 6 4 14 $

Client Numerical Update has

Client Id Msg Id Extra Info. Message Payload

Unique Id
MsgId

(6=Update)
4arguments

Msg
Terminator

Numerical
Update

Identifier

Msg
Template

Actual Msg

Msg
Decoded

Byte[0] [255][1] [2]

1 7 0

Client Numerical Msg has no

Client Id Msg Id Extra Info. Message Payload

UniqueId
MsgId

(7=UpdateArg)
extra info

Msg
Terminator

Update
Argument

Msg
Template

Actual Msg

Msg
Decoded

(2 , 5) $

100

5.5.2.2 Remote Request Handling Mechanism

This section describes the remote request handling mechanism in Multi-User Clock. It

also describes the protocols and mechanisms used to implement this feature. Figure 5.15

presents an schematic presentation of a remote update handling mechanism in Multi-User

Clock.

FIGURE 5.15 Remote request handling. The client first sends a request message to the server.
Subsequently, an argument message is sent for each argument associated with the request. The
server then returns a message containing the result of the request.

A remote request is considered to be a request event which is issued by a client program to

query the state of a request handler residing at the server architecture tree. To further clar-

ify remote request handling in Multi-User Clock, we incorporate an example pertaining to

the shared drawing program to show how a simple request (querying the coordinates of an

already drawn object) is handled.

A remote request handling procedure is initiated by a client program upon realization that

it is incapable of servicing a request locally. Consequently, the client program sends a

request message to the server program. A request message informs the server of a client’s

need for the certain shared data. This message carries the request identifier (each request

has a unique identifier) and the number of arguments which the client will be sending fol-

lowing this message. If the number of arguments is determined to be zero, the server pro-

cess initiates request handling immediately; otherwise it proceeds to receive the expected

101

number of arguments. Figure 5.16 illustrates a typical request message issued by a client

of the shared-drawing program.

FIGURE 5.16 An example of a request message. This request message pertains to thegetObject
request of the shared drawing program. This request is internally represented with request
number 23. The request also has one argument which corresponds to the object number.

If the request carries one or more arguments, arequestArg message is sent following a

request message. This message carries one of the arguments associated with the sent

request. TheendRequestArgs message informs the server of the termination of all request

arguments. After receiving this message, the server proceeds with the request handling

process. The server returns the result of the request via arequestResult message. Figure

5.17 illustrates a typical server message which may be sent in response to thegetObject

request of Figure 5.16.

FIGURE 5.17 An example of arequestResult message. This message returns the type, owner and
the coordinates an object in response to agetObject request.

Byte[0] [255][1] [2]

1 2 1 23 $

Client Numerical Request has

Client Id Msg Id Extra Info. Message Payload

UniqueId
MsgId

(2=Request)
1 argument

Msg
Terminator

Numerical
Request

Identifier

Msg
Template

Actual Msg

Msg
Decoded

Byte[0] [255][1] [2]

0 3

server’s Numerical Msg has no

Client Id Msg Id Extra Info. Message Payload

reserved Id
MsgId

(3=ReqResult)
extra info Request Result

Msg
Template

Actual Msg

Msg
Decoded

((2 , 5)0) (, 99 (...9

102

5.5.2.3 Session Information

As it is described in Chapter 4, Multi-User Clock programmers have access to the session

information. For instance, in the shared drawing program of Chapter 4, it was shown how

the unique client identification number of each client program was used to assign a unique

colour to objects drawn by the user of a client program. Multi-User Clock programmers

can query the session information via a set of built-in requests. These requests are used

with the same syntax as other requests in Multi-User Clock programs. A brief description

of these built-in requests are presented in this section.

• myClientId: This local request returns the unique id of the client. This information is

determined during the connection establishment with the server and is kept at the client

machine.

• myClientName: This local request returns the ‘name’ of the client. This information is

passed to the client application as command line argument during the program invoca-

tion and is kept at the client machine.

• allClientId: This remote request returns a list of all client unique ids. This information

is maintained by the server application.

• clientIdToName: This remote request takes a client id as its argument and returns the

client ‘name’. All client information is maintained by the server application.

5.5.3 Constraint Maintenance Mechanism

This section describes the techniques used in implementing the transparent constraint

mechanism. In particular, it illustrates how constraints are generated and maintained in

Multi-User Clock. There are two remote messages which are implemented as part of the

constraint maintenance mechanism. These messages which are issued by the server pro-

gram and are executed at the client machines, are:tagComponent andupdateView. A tag-

Component informs the client’s components of a recent change on the shared data. An

updateView triggers a view recomputation at the client’s sites. As described in Section 4.4,

103

constraints are relations which link data to their visual representations. Figure 5.18, illus-

trates the constraints between the views and the shared data in a schematic format.

FIGURE 5.18 Constraint mechanism in Multi-User Clock.

In Clock, request handlers are abstract data structures where data is kept. The constraint

mechanism forces each persistent data structure (request handler) to maintain a dynamic

list of components which make use of their services (i.e., a user’s list). These lists are

transparently maintained by Multi-User Clock. Figure 5.19 shows a schematic view of the

user’s list maintained by theObjectsInfo request handler of the shared-drawing program.

FIGURE 5.19 An example of a request handler’s user list. In this example, the first node in the list
indicates that event handler [223467] which resides in the client architecture of client 1, has
previously made a request handled by theObjectsInfo request handler.

ObjectInfo User’s List

1
223467 346778 556789

3 2

ClientId
Event Handler Idof the owner

104

Should one of the Clock data structures be modified, the Clock run-time processes make

use of these users’ lists to inform the client component of the changes made to the data

structure. Clock notifies these components by invalidating their old copy of the data. This

mechanism is called component tagging. This, in turn, initiates a procedure forcing the

components to obtain the updated value from the request handler. This procedure will also

lead to a re-evaluation of the functions which makes use of the affected components.

5.5.3.1 Remote Component Tagging

To further illustrate the tagging procedure, consider an example in which a client of the

shared drawing program makes an update to the shared data (e.g., addition of a new box).

This update triggers a tagging procedure, by the server (communication handler) process,

in order to invalidate the data kept by the users of theObjectsInfo request handler. In order

to tag a remote component the server program walks through the user’s list of the

ObjectsInfo request handler and sends atagViewUser message to each of the client pro-

grams whose name is found in the user’s list. The purpose of this message is to inform the

clients of the changes made to the shared data. This message triggers an action to tag those

client components whose view functions are dependant on the server data that was just

updated. Figure 5.20 presents a schematic presentation of a typicaltagViewUser message

issued by the server program.

FIGURE 5.20 An example of atagViewUser message.

Byte[0] [255][1] [2]

0 5 0 223467 $

server’s Numerical No Extra

Client Id Msg Id Extra Info. Message Payload

Reserved Id
MsgId

(5=TagView Info
Msg

Terminator

Component
Address at

Client Prog.

Msg
Template

Actual Msg

Msg
Decoded

User)

105

5.5.3.2 Remote Invocation of View Regeneration

TheViewUpdate message, initiated by the server (communication handler) process, causes

client programs to update their interface views. This call is forwarded to those clients with

a component which makes use of the shared data that has been recently updated. This call

is typically issued following an invalidation of the client copy of the shared data (i.e.,tag-

ViewUsers). The invalidation, in turn, is performed following an update on the shared

data. Any input thread is concluded by triggering a view update for all the clients’ inter-

face which contain components that are effected by the updates initiated by the input

thread.

5.6 Concurrency Control

As mentioned in Chapter 2, groupware systems should provide support for: (i) concurrent

access to the shared data, and (ii) a mechanism guaranteeing fair access to shared data.

Fair access refers to preventing any one user (client) from monopolizing the use of central

resources. Concurrency control mechanisms are a set of constraints which are imposed on

the concurrent processes to satisfy these requirements.

This section describes the concurrency control requirements and mechanisms in Multi-

User Clock, and illustrates how these mechanisms satisfy the above two requirements.

The section begins by presenting the terminology and implementation assumptions that

are relevant to the concurrency control mechanism. We then proceed to identify the con-

currency requirements in Multi-User Clock, and how our solution satisfy these require-

ments. A description of the implementation of the concurrency control in Multi-User

Clock concludes this section.

5.6.1 Definitions

The goal of any concurrency control mechanism is to maintain:temporal orderand/or

causal order among a number of concurrent processes. Both of these orderings attempt to

106

define theprecedence (or happen before,) relation between a number of concurrent

events. In the following definitions we assume that each process executes its events

sequentially. Furthermore, sending and receiving a message in the system are each

assumed to be one atomic action. These relations are defined as follows.

• Temporal Order: Is the ordering of concurrent events, according to a common (univer-

sal) clock. This states that if an evente1 occurs at timet1, and another evente2 occurs at

time t2 and t1<t2 then , (i.e., e1 happens before e2) and hencee1 must be pro-

cessed beforee2.

• Causal Order: Is the ordering of concurrent events, according to theircausal relation.

The following description is a variation of casual relation defined in [Lamport 78]. In

Multi-User Clock there are three types of events: requests (req), updates (updt), and

user input (inpt). A user input event triggers a number of updates and requests to be

issued in the system. These chained events form an input thread (see Section 4.4). The

causal relation is defined as: (i) ifinptThrd1 andinptThrd2 are two input threads initi-

ated at the same client, and the client executesinptThrd1 prior to inptThrd2 then

, (ii) if inptThrd1 andinptThrd2 are two input threads initiated

at two different clients, and both cause an update on the shared data, then if the update

of inptThrd1 gets executed at the server first then , else

, (iii) if and

 then , in other words, the

relation is transitive; (iv) within each input thread the causal relation is as follows:

. (v) two eventse1 and e2 can be executed concurrently if

 and . To illustrate the causal relation between concurrent events,

consider the example presented in Figure 5.21. The figure shows three processes and a

number of events initiated in the system. In particular the figure illustrates three input

threads caused by input events 1.1, 2.1, and 3.1. While input threads caused by inputs

1.1 and 1.3 contain updates which modify the shared data, input thread caused by input

1.2, causes only local updates. Thus, the causal relation for clientB is:

. However, causal relation for clientA is:

→

e1 e2→

inptThrd1 inptThrd2→

inptThrd1 inptThrd2→

inptThrd2 inptThrd1→ inptThrd1 inptThrd2→

inptThrd2 inptThrd3→ inptThrd1 inptThrd3→ →()

inpt updt req→ →

e1 e2→() e2 e1→()

inptThrd1 inptThrd2 inptThrd3→ →

107

. In Clock, the concurrency control mechanism preserves

causal relation between input threads. This may violate the temporal order among the

two input events (with respect to a common/universal clock).

FIGURE 5.21 Event diagram showing causal relation between input threads in Multi-User Clock
applications. Input threads caused by input 1.1 and 3.1 cause updates to shared data. The input
thread caused by input 2.1 however makes local updates only.

In addition to temporal and causal relations we also need to define the following:

• ReadSet (inptThrd) = Set of all the request handlers that will bequeried as a result of all

the requests triggered withininptThrd.

• ModSet (inptThrd) = Set of all the request handlers that will bemodified as a result of

all updates triggered withininptThrd.

5.6.2 Assumptions

The concurrency control requirements and mechanisms which are presented in the follow-

ing sections are based on a number of assumptions. These assumptions are:

• We assume a perfect client/server network. In particular, our model does not consider

any network and/or machine failures.

• We assume a perfect message handling system in which all message/packets will get

delivered to their respective destinations in the same order as they are generated, with

no packet loss.

inptThrd1 inptThrd3→

108

• The number of the input events generated by the users of a CSCW application is insig-

nificant compared to the number of events which are generated by internal processes.

Most concurrency control methods which are designed for the CSCW applications have

been borrowed/inspired from the distributed systems domain [Greenberg 94]. In this

domain, the researchers are concerned with providing concurrency control among

events generated by different processes. There are two major differences between the

two systems: (i) In a given period of time, the system processes generate more events

than events produced as a result of human inputs in an interactive application. (ii) The

processes generate events more frequently than humans (i.e., machine processes pro-

duce events at a rate of one per fraction of a second vs. CSCW users who generate

inputs at one per every few seconds).

5.6.3 Concurrency Control Requirements in Clock

Here we present the concurrency control requirements for the Multi-User Clock system.

These requirements are a simplified extract from the formal semantics of the Clock lan-

guage which is presented in [Graham 95].

Two input threadsinptThrd1 andinptThrd2 can be processed concurrently iff:

ModSet(inptThrd 1) ModSet(inptThrd 2) =

ModSet(inptThrd 1) ReadSet(inptThrd 2) =

ReadSet(inptThrd 1) ModSet(inptThrd 2) = .

That is the set of request handler components which are modified or queried as a result of

events triggered byinptThrd1 and the set of request handler components which are modi-

fied or queried as a result of events triggered byinptThrd2 must be mutually exclusive.

5.6.4 The Concurrency Control Mechanism in Multi-User Clock

The concurrency control mechanism, as it is currently implemented in Multi-User Clock,

is based on theserialization model. There are a number of serialization algorithms devel-

oped in research and practice. A full discussion of these concurrency algorithms can be

∩ ∅ ∧

∩ ∅ ∧

∩ ∅

109

found in [Bernstein 87]. Based on the terminology of [Bernstein 87], the adapted serializa-

tion model can be considered to benon-optimistic. The serialization algorithms work by

synchronizing events so that atomic transactions (which may consist of several events) are

executed serially across the entire system. The input threads form the atomic events in

Multi-User Clock. Hence, the concurrency control mechanism ensures that the input

threads are executed serially. However, events within each input thread may be executed

in parallel. The concurrency control mechanism ensures that all events will be received by

all processes in the same order. This guarantees that events are executed in the correct

order by all processes, and that no further repair is needed in the future (i.e., all the execu-

tions are final). However, this assurance is likely gained at the cost of slowing down the

execution of a sequence of events.

The serialization of events is achieved by enforcing a locking mechanism for the use of

the server resources. This method provides privileged access to the shared objects for a

period of time. Hence, at any given time, only the lock holder(s) can have access to the

shared objects. Two distinct types of locks are employed in the implementation of the

Multi-User Clock: Write Lock andRead Write Lock. Placing a write lock on the server

(i.e., shared data) prevents any client process (including the lock holder) from modifying

(writing) the shared data. In other words, when a write lock is issued, the clients can only

query (read) the shared data. Placing a read-write lock on the server, provides exclusive

read/write access to the shared data for the lock holder. Hence, when a read-write lock is

issued no client other than the lock holder can query or modify (read or write) the shared

data.

Based on this locking mechanism, at any given time, a server program can be in one of the

three possible states:Idle, WriteLocked, ReadWriteLocked. Figure 5.22 presents a table

which illustrates server states and all permissible operations during these states.

.

110

FIGURE 5.22 Possible server states and permissible operations during these states.

In order to obtain a lock, each client process needs to issue a lock request. There are two

types of requests for two types of locks:WriteLock RequestandRead-WriteLock Request.

While in the idle state, the server grants both write lock and read-write lock on a first-

come-first-serve basis. Although multiple write locks may be granted at a time, only one

read-write lock is granted at any given time. This implies that the clients can query the

state of the shared data in parallel, but only one client can modify the shared data at any

given time. Once the process with the lock no longer needs access to the shared object, it

releasesthe lock. As is shown in the table, after granting a read-write lock the subsequent

requests for the same type of lock are queued.

FIGURE 5.23 The state diagram showing the possible server states and transitions between
states.

Server
States

IDLE

ReadWrite
Locked

Write Locked

ReadWrite
Lock Request

Write Lock
Request

Release

Lock
ReadWrite

Release
Write Lock

Request Update

Client
Operations

GRANTED GRANTED

QUEUED GRANTED

QUEUED

ERROR ERROR

QUEUED

ERROR

RW Lock
RELEASED

W Lock
RELEASED

ERROR

ERROR ERROR

If requester in

then

else
service request

ERROR

If updater=C

service update

ERROR

then

else

ERROR

If requester=C

[LockHolders]
then OK else

ERROR

(by client C)

(by [LockHolders])

IDLE

RW
LOCKED

RW Lock
Request

W Lock
Request

RWLock
Release

Release WLock
(and a client is waiting for RW Lock) W

LOCKED (WLock Release

WLock Holders > 0)

WLock = Write Lock

(WLock Request)
OR

WLock Release
and

WLockHolders=0

and

RWLock = ReadWrite Lock

111

Figure 5.23 illustrates the state diagram for the server program. While in anIdle state, the

server may grant a write lock or a read-write lock. Granting a read-write lock will change

the server’s state to theReadWriteLocked state. While in this state, the server does not

grant any additional locks. Once the lock is released (i.e.,ReadWriteLockRelease) by the

holder, the state of the server is modified toWriteLocked state. This automatic transition

permits all the client sites to obtain write locks, and hence update their views prior to

admittance of a second read-write lock. While in aWriteLocked state, the server grants

multiple write locks. This is to allow the server to service the requests of all clients in par-

allel. The state of the server is not altered until all write lock holders release their locks.

Once all the lock holders release their locks, if there is a pending request for a read-write

lock the server’s state is altered to aReadWriteLocked state to accommodate the request.

Otherwise, the server returns to anIdle state.

Figure 5.24 presents a process view of the concurrency control mechanism in Multi-User

Clock. As can be seen in the diagram, while only one read-write lock is granted to a client

process, multiple write locks may be granted to the client processes.

The concurrency control method in Multi-User Clock enforces anon-optimistic locking

mechanism. This method forces the requesting site to wait until a request is granted before

it is allowed to manipulate the shared objects. In current implementation of Clock, this

request mechanism isblocking. That is, after issuing the request the requester should wait

for a grant before it proceeds with manipulation of the object. This can be improved by

employing anon-blocking request handling mechanism. A non-blocking locking mecha-

nism permits the requester to perform other actions while waiting for the resources to be

granted. However, under no circumstances should the requester be allowed to manipulate

the object prior to receiving a lock grant.

112

FIGURE 5.24 A process view of concurrency control mechanism as implemented in Multi-User
Clock. The figure shows that the lock request mechanism is blocking. Also it illustrates that while
multiple client processes can obtain a write lock, only one client process may have a read-write
lock at a time.

The concurrency control mechanism, as implemented in Multi-User Clock, satisfies the

concurrency requirements which were presented in section 5.7.2. To illustrate this point,

consider that two input threadsinptThrd1 andinptThrd2 initiated in two client programs:

CP1 andCP2. According to the specified requirements, we need to ensure that:

ModSet(inptThrd 1) ModSet(inptThrd 2) =

ModSet(inptThrd 1) ReadSet(inptThrd 2) =

ReadSet(inptThrd 1) ModSet(inptThrd 2) = .

Let us further assume thatinptThrd1 is registered earlier than theinptThrd2. Based on our

assumptions, we can make this arbitrary decision. As described in section 5.7.4, the serial-

ization of the input threads guarantees that one input thread is completed prior to admit-

tance of a second input thread. Thus, a second input thread will not be serviced while the

server is servicing the calls pertaining to a prior input thread.

Prior to applying any update to the shared data,CP1 needs to obtain a read-write lock. Let

us further assume that the server is in theIdle state and a read-write lock is granted toCP1.

As a result, the state of the server is altered to aReadWriteLocked state. While in this state

∩ ∅ ∧

∩ ∅ ∧

∩ ∅

113

no additional lock is granted. Upon completion of the update,CP1 issues a read-write lock

release. The state of the server is then automatically changed toWriteLocked state. While

in this state no read-write lock is granted. After all of the client programs obtain the new

state of the shared data, the write lock is released and the state of the server is changed to

Idle. Only at that time may a read-write lock be granted toCP2.

5.7 Summary

This chapter presented a detailed description of implementation techniques employed in

Multi-User Clock. It began by providing a description of several existing distribution

architectures and their advantages and disadvantages. Later, it described how Multi-User

Clock is implemented to provide a semi-replicated architecture. A description of server

and client programs and processes within these programs was presented. It was also

shown how distributed processes communicate with each other via a message passing

mechanism. A description of the concurrency control mechanism concluded this chapter.

As mentioned in Chapter 3, the current implementation of Multi-User Clock is a prototype

and Multi-User Clock applications have poor performance.

114

Chapter 6

Summary and Conclusion

6.1 Overview

This chapter presents a summary of the thesis, and its contributions to the field of group-

ware toolkit design. It also suggests future research directions for Multi-User Clock.

6.2 Thesis Summary

Groupware and multi-user applications are inherently difficult to develop due to the need

to support concurrent collaborative activities between distributed users. The design of

groupware applications is also, by its very nature, multi-disciplinary. Having a set of tools

available to groupware developers will accelerate the development process and lead to a

better product. The tools necessary for developing groupware must provide support for the

transparent distribution of application parts, a built-in communication infrastructure, and

support for the development of collaboration aware applications.

Multi-User Clock assists developers by providing a high-level of abstraction which hides

the low-level details of networking and concurrency. This mechanism relieves the pro-

grammer of the problems inherent in distributed systems and allows her/him to concen-

trate on the application itself. More specifically, Multi-User Clock provides a mechanism

for the transparent distribution of application codes and data, and a communication infra-

structure which handles all internal events in a transparent fashion. Multi-User Clock pro-

vides a built-in concurrency control mechanism, and a transparent constraint mechanism,

to maintain consistency amongst the application’s components. Support for these require-

ments is intended to give the illusion that the developer is designing a single-user applica-

tion which is to be run on a single machine. Other groupware requirements, which are

115

addressed in Multi-User Clock include support for the development of customized views

and collaboration aware interfaces.

6.3 Thesis Contributions

Multi-User Clock provides support for a number of groupware requirements which have

not been addressed by existing groupware toolkits. Identifying and supporting these

requirements provides insight and guidance for future generations of groupware toolkits.

The particular features of Multi-User Clock, which can be extended to other environ-

ments, include:

• Use of Declarative Languages: There are many difficulties associated with the devel-

opment of groupware and multi-user applications. Developers of such applications

should be able to express what they ‘want’ to achieve, rather than ‘how’ to achieve it.

Declarative techniques, as used in Multi-User Clock, allow issues of replication, com-

munication, concurrency control and consistency maintenance to be largely hidden

from the programmer.

• Transparent Event Handling: Multi-User Clock offers a transparent communication

infrastructure. This includes a number of facilities which handle establishment, mainte-

nance and termination of communication channels between distributed programs. But

more importantly this infrastructure allows all the internal events to be handled in a

transparent fashion. As far as a programmer is concerned there is no difference in defi-

nition or handling of an internal event (i.e. requests and updates). This mechanism

abstracts all of the networking and communication issues from the programmer.

• Constraint Maintenance: In Multi-User Clock, the relation between the states and

views which represent these states is maintained via a number of internal constraints.

The result is that whenever a display view is out of date, the Multi-User Clock system

automatically forces the view function to be recomputed. The maintenance and trigger-

ing of constraints are all transparent to the Multi-User Clock programmer, and are per-

formed automatically without the programmer’s intervention. This mechanism relieves

116

groupware programmers from maintaining consistency amongst the user interfaces of

distributed users. This constraint mechanism is one of the declarative techniques which

is used in Multi-User Clock.

• Concurrency Control: Concurrency control mechanisms are the factors which encour-

age or discourage the use of a particular groupware system. Thus, they are vital to the

acceptance of any (synchronous) groupware system. The concurrency control mecha-

nism as implemented in Multi-User Clock not only resolves possible conflicts between

concurrent processes, but also provides fair access to the shared data such that all par-

ticipants have equal access to it.

• Customized views: Multi-User Clock supports the development of both WYSIWIS and

WYSINWIS views. More specifically, Multi-User Clock permits both static and

dynamic views to be constructed in a WYSIWIS or WYSINWIS fashion. In Multi-User

Clock, all views are by default WYSIWIS. That is, the programmer need not add addi-

tional code to obtain these type of views. The development of static and dynamic

WYSINWIS views are made possible by Multi-User Clock’s support of allowing

developers to query the session information, and by the flexible placement of data in

the application’s architecture trees.

6.4 Future Work

The work presented in this thesis offers a useful framework for the design and develop-

ment of toolkits which are aimed to facilitate and ease the construction of groupware and

multi-user applications. While the current implementation of Multi-User Clock satisfies a

number of requirements, there are other issues left to be resolved. The following list indi-

cates the future plans for enhancing the Multi-User Clock system.

6.4.1 Addressing Other Groupware Requirements

Although all of the requirements listed in Chapter 2 are important and contribute to the

success of a groupware toolkit, due to time constraints, this thesis provided support only

117

for a subset of the listed requirements. Future work will result in more of the design

requirements being satisfied, and new design requirements being derived.

6.4.2 Performance Optimization

The current implementation of Multi-User Clock suffers from relatively poor perfor-

mance. As a result, it is only practical for development of certain applications. Some

experimental research is currently being conducted to locate the source of the latency in

Multi-User Clock applications. The optimization methods will follow.

Furthermore, the remote request handling mechanism is currently blocking. That is, a cli-

ent, after issuing a remote request message, blocks until the result of the request is

received from the server. This can be altered to a non-blocking mechanism in which the

requests are pipelined during view generations.

Also, the view generations in each client of a Multi-User Clock program are currently per-

formed serially. To improve the performance, the computation of subviews in each client

can be done in parallel.

6.4.3 Providing a Suite of Distribution Architecture Options

As described in Sections 5.2-5.4, there are various distribution architectures from which

the groupware developer can choose. The current implementation of Multi-User Clock is

based on a semi-replicated architecture (see section 5.4). Ideally developers should be able

to select different architectures for different applications. Furthermore, the developers

would be able to conduct experimental research to establish which architecture would bet-

ter suit the application being developed.

6.4.4 Providing a Suite of Concurrency Control Mechanisms

There is no single concurrency control mechanism which works best with all groupware

applications. The right choice is based on the nature of the application, type of users, and

118

the implementation environment. Hence, groupware toolkits must provide an array of con-

currency control mechanisms. This will enable the developers to select the mechanism

which is most suitable to the application which is being developed. This will also assist the

iterative refinement of the groupware applications with respect to performance.

6.4.5 Support for Component and Code Reuse

A suite of well-designed, generic components which can be readily incorporated in the

developing application, accelerate the development process and possibly lead to develop-

ment of a better product. Clock already provides a library of generic components, includ-

ing scrollbar and radio buttons, which can be incorporated into Clock applications. These

components, however, do not include groupware specific components like tele-pointers

and shared scrollbars. Incorporating a set of groupware specific components, similar to

multi-user widgets provided in GroupKit [Rose 92], will assist in the development of a

wider range of collaboration aware applications.

6.5 Conclusion

The goal of this thesis has been to identify the requirements which facilitate the develop-

ment of groupware and multi-user user interfaces, and to validate these requirements by

addressing them in a toolkit with a special purpose language.

This research classified these requirements into two inter-related groups: requirements for

expressiveness, and requirements for ease of use. A number of requirements were identi-

fied for each class, and Multi-User Clock was shown to satisfy many of these require-

ments.

As noted in the introduction of this thesis, the field of computer supported cooperative

work and groupware are relatively recent and are still evolving. This thesis by expanding

on the requirements, and supporting these via a customized programming language estab-

lishes a new framework for future research in this domain.

119

 Glossary

• Abstraction Mechanisms: A set of facilities to hide the low-level details from the pro-

grammer. These mechanisms provide a system model which more closely represents

the programmer’s mental model.

• Asynchronous Groupware:Groupware systems which support users working at differ-

ent times (e.g. e-mail).

• Centralized Architecture: A distribution architecture for distributed applications. This

architecture is based on a client-server model, in which a single instance of multi-user

application is shared by all users.

• Client Architecture:The portion of multi-user Clock applications architecture tree

which is replicated to each client.

• Clock Events: Clock components communicate with each other through a series of

internal events. There are two types of internal events in Clock: requestsandupdates.

Input events, which are generated as a result of end-user actions, are the external

events.

• Clock Language:The Clock language consists of two parts: a visual, object-oriented

language which is used to specify the architecture of Clock programs, and a functional

language which is used to specify the components of the architecture.

• ClockWorks: An object-oriented visual programming environment. This environment is

used by the Clock programmers to construct the application architecture.

• Collaboration Aware: A class of interaction techniques in which users’ actions are

reflected on other participants’ work space, in order to provide an awareness of the

other users’ activities.

• Concurrency Control: A mechanism for resolving conflicts between the concurrent pro-

cesses.

120

• Constraints: A relation between the states, and the views which represent these states.

These relations force view recomputation should the view become out-of-date.

• Computer Supported Cooperative Work (CSCW): An interdisciplinary research area

focused on the role of computer and communication technology to support group work.

• Declarative Programming: A programming model which allows high-level specifica-

tion of applications. Declarative languages allow the programmers to think at a much

higher level than the traditional imperative programming languages. This feature

enables the programmers to concentrate on ‘what’ they want, rather than, on ‘how’ to

make it happen.

• Direct Manipulation: The manipulation of objects (e.g. buttons and menus) in a user-

interface in order to cause an action in the underlying application.

• Ease of Use: The simplicity of developing, desired applications using a programming

language.

• Event Handlers: One of the two primary components of the Clock language. Event

handlers are responsible for generation of interface views and handling input events.

• Expressiveness: The extent to which a programming language supports the develop-

ment of diverse applications. This capability allows the developers to construct the

desired application.

• Feedback Time:Or response time, is the time necessary for the actions of one user to be

reflected by his/her own interface.

• Feed-through Time: Or notification time, is the time necessary for one user’s actions to

be propagated to the remaining users’ interfaces.

• Groupware: Computer based systems which are explicitly designed to support groups

of people working together.

• Input Thread:A series of chained update and request events, which are triggered as a

result of a single-user input.

121

• Iterative Refinement:The process of iterating between design, user testing, and rede-

sign.

• Local Events: Events which are initiated and serviced at the same site.

• Private Data:In multi-user Clock programs, the private data are those which are repli-

cated to each client. Private data make the construction of WYSINWIS, or private

views, possible.

• Rapid Prototyping: Rapid prototyping allows the groupware developer to perform

usability evaluation by deploying working prototypes at early stages, thus providing a

basis for making early critical decisions about the application being developed.

• Remote Events: Events which are initiated locally at a site (client or server), and are

serviced remotely, in a site other than the one from which they are issued.

• Replicated Architecture: A distribution architecture in which each workstation runs its

own copy of the application. These copies need to communicate in order to keep their

data structures consistent with one another.

• Request Handlers: One of the two primary Clock components. These components are

abstract data structures which maintain the state of the application as a whole.

• Role: “A role is a set of privileges or responsibilities attributed to a person or to a sys-

tem module” [Ellis 89].

• Semantic Feedback: The system response to a user input. This type of response modi-

fies the system state.

• Semi-Replicated Architecture: A distribution architecture for distributed applications,

in which the application and the data are split into two parts: server and client. The

components of the server part stay at the server, the components of the client part are

replicated to each client.

• Session:An invocation of a groupware system is informally called asession. Formally,

session (in groupware terminology) is defined as “a period of time when two or more

members of a group are working together synchronously” [Ellis 91].

122

• Server Architecture: The portion of multi-user Clock applications architecture tree

which is resident at the server machine.

• Shared Data: In multi-user Clock programs, the shared data are those which are kept at

the server. Shared data make the construction of WYSIWIS, or shared views, possible.

• Sub-views:The parent-child relation between the components of a multi-user Clock

architecture tree. This relation corresponds to the containment relation in user-interface

views.

• Synchronous Groupware: Groupware systems which support users working at the same

time (e.g. video-conferencing)

• WYSIWIS (What-You-See-Is-What-I-See): A kind of interface for multi-user user inter-

faces, in which all participants share the same views.

• WYSINWIS: (What-You-See-Is-Not-What-I-See):A kind of interface for multi-user user

interfaces, in which each participant may have a different interface view.

123

References

[Ahuja 90] Ahuja, S. R., Ensor, J. R. and Horn, D. N., “The Rapport Multimedia
Conferencing System”,Proceedings of the Conference on Office Infor-
mation Systems, SIGOIS Bulletin, Vol. 11, Iss. 2, pages 238-248, ACM
Press, 1990.

[Baldesch93] Baldeschwieler, J. E., Gutekunst, T., and Plattner, B., “A Survey of X
Protocol Multiplexors”,Computer Communication Review, Vol. 23, Iss.
2, pages 16-24, ACM Press, April 1993.

[Baecker 93] Baecker, R. M.,Readings in Groupware and Computer-Supported
Cooperative Work, Assisting Human-Human Collaboration, Morgan
Kaufmann Publishers, 1993.

[Bass 93] Bass, L., “Architectures for Interactive Software Systems: Rationale and
Design”, In Bass, L. and Dewan, P. editors,User Interface Software,
Chapter 2, John Wiley & Sons., 1993.

[Bernstein 87] Bernstein, P., Goodman, N. and Hadzilacos, V.,Concurrency Control
and Recovery in DataBase Systems, Addison-Welsley Publishing Com-
pany, 1987.

[Bowers 93] Bowers, J. and Rodden, T., “Exploding the Interface: Experiences of a
CSCW Network”,Proceedings of INTERCHI, (Amsterdam, The Nether-
lands, April 24-29),pages 255-262, ACM Press, 1993.

[Budde 92] Budde, R., Kautz, K., Kuhlenkamp, K. and Zullinghoven, H.,Prototyp-
ing, An Approach to Evolutionary System Development, Springer-Ver-
lag, 1992.

[Cortes 94] Cortes, M.,“CSCW Survey: Concepts, Applications and Programming
Tools”, Technical Report, Dept. of Computer Science, State University of
New York, Stony Brook, 1994.

[Crowley 90] Crowley, T. and Milazzo, P. et al., “MMConf: An Infrastructure for
Building Shared Multimedia Applications”, In Haslasz, F. editor,Pro-
ceedings of the Fourth Conference on Computer Supported Cooperative
Work (Los Angeles, Ca., Oct 7-10), pages 329-342, ACM Press, 1990.

[Davie 92] Davie, A. J. T., An Introduction to Functional Programming Systems
Using Haskell, Cambridge University Press, 1992.

[Dewan 92a] Dewan, P., “A Guide to Suite”, Technical Report SERC-TR-60-P, Soft-
ware Engineering Research Centre, Purdue University, February 1992.

124

[Dewan 92b] Dewan, P. and Chudhary, R., “A High-Level and Flexible Framework for
Implementing Multiuser User Interfaces”,ACM Transactions on Infor-
mation Systems, Vol. 10, Iss. 4, pages 345-380, October 1992.

[Dewan 93] Dewan, P., “Tools for Implementing Multiuser User Interfaces”, In Bass
L. and Dewan, P. editors,User Interface Software, Chapter 8, John
Wiley & Sons, 1993.

[Ellis 89] Ellis, L. and Gibbs, S. J., “Concurrency Control in Groupware Systems”,
Proceedings of the International Conference on The Management of
Data (Portland, Or., May 31- June 2),Vol. 18, Iss. 2, pages 399-407,
ACM Press, 1989.

[Ellis 91] Ellis, L. and Gibbs, S. J. and Rein, G. L., “Groupware: Some Issues and
Experiences”,Communications of the ACM, Vol. 34, Iss. 1, pages 38-58,
January 1991.

[Graham 92a] Graham, T. C. N. and Urnes, T., “Relational Views as a Model for Auto-
matic Distributed Implementation of Multi-User Applications”,Proceed-
ings of the Fourth Conference Computer Supported Cooperative Work
(Toronto), pages 59-66, ACM Press, 1992.

[Graham 92b] Graham, T. C. N., “Constructing User Interfaces with Functional and
Temporal Constraints”, In Myers, B. A. editor,Languages for Develop-
ing User Interfaces, Chapter 16, pages 279-302, Jones and Bartlett,
1992.

[Graham 92c] Graham, T. C. N., “Future Research Issues in Languages for Developing
User Interfaces”, In Myers, B. A. editor,Languages for Developing User
Interfaces, Chapter 22, pages 401-418, Jones and Bartlett, 1992.

[Graham 95] Graham, T. C. N., “Declarative Approaches to User Interface Develop-
ment”, Ph.D. Thesis dissertation, Technishe Universitat Berlin, 1995.

[Greenberg 92]Greenberg, S. and Roseman, M., “Issues and Experiences Designing and
Implementing Two Group Drawing Tools”,Proceedings of the Twenty-
fifth Annual Hawaii International Conference on the System Sciences,
Vol. IV, IEEE Computer Press, pages 139-150, January 1992.

[Greenberg 94]Greenberg, S. and Marwood, D., “Real Time Groupware as Distributed
System; Concurrency Control and its Effect on the Interface”, Research
Report 94/534/03, Department of Computer Science, University of Cal-
gary, February 1994.

[Grudin 90] Grudin, J., “Groupware and Cooperative Work: Problems and Pros-
pects”, In Laurel, E. editor,The Art of Human-Computer Interface
Design, pages 171-185, Addison-Wesley, 1990.

125

[Grudin 91] Grudin, J., “CSCW: The Convergence of Two Development Paradigms”,
Proceedings of Conference on Human Factors in Computer Systems,
pages 91-97, ACM Press, 1991.

[Hill 90] Hill, R. D. and Patterson, J. F., “Rendezvous: An Architecture for Syn-
chronous Multi-User Applications”, In Haslasz, F. editor,Proceedings of
the Fourth Conference on Computer Supported Cooperative Work (Los
Angeles, Ca., Oct 7-10), pages 317-328, ACM Press, 1990.

[Hill 92a] Hill, R. D., “Languages for the Construction of Multi-User Multi-Media
(MUMMS) Applications”, In Myers, B. A. editor,Languages for Devel-
oping User Interfaces, Chapter 9, pages 125-143, Jones and Bartlett,
1992.

[Hill 92b] Hill, R. D., “The Abstraction-Link-View Paradigm: Using Constraint to
Connect User Interfaces to Applications”,Proceedings of Conference on
Human Factors in Computer Systems (Monterey, Ca., May 3-7), pages
335-342, ACM Press, 1992.

[Hill 93] Hill, R. D., “The Rendezvous Language and Architecture”,Communica-
tions of the ACM, Vol. 36, Iss. 1, pages 62-67, ACM Press, Jan. 1993.

[Hudak 89] Hudak, P., “Conception, Evaluation, and Application of Functional Pro-
gramming Languages”,ACM Computing Surveys, Vol. 21, Iss. 3, Sep-
tember 1989.

[Ishii 94] Ishii, H, Kobayashi, M. and Arita, K., “Iterative Design of Seamless Col-
laboration Media”,Communications of the ACM, Vol. 37, Iss. 8, pages
83-97, August 1994.

[Kawell 88] Kawell, L., et al., “Replicated Document Management in a Group Com-
munication System”, In Marca D. and Bock, G. editors,Proceedings of
the Second Conference on Computer Supported Cooperative Work, pages
226-235, ACM Press, 1988.

[Lamport 78] Lamport, L., “Time, Clocks and the Ordering of the Events in a Distrib-
uted System”,Communications of the ACM, Vol. 21, Iss. 7, pages 558-
565, ACM Press, July 1978.

[Lauwers 89] Lauwers, J. C. and Lantz, K. A., “Desktop Teleconferencing and Existing
Window Systems: A poor match”, Technical Report, Olivetti Research
California.

[Lauwers 90] Lauwers, J. C. et al., “Replicated Architecture for Shared Window Sys-
tems: A Critique”,Proceedings of the Conference on Office Information
Systems (Cambridge, Ma), pages 249-260, ACM Press, April 1990.

[Lotus 93] Lotus Development Inc., “Lotus Notes: An Overview”, October 1993.

126

[Mandavida 94]Mandavida, M. and Olfman, L., “What Do Groups Need? A Proposed
Set of Generic Groupware Requirements”,ACM Transactions on Com-
puter Human Interactions, Vol. 1, No. 3, pages 245-269, September
1994.

[Morton 94] Morton, K., “Tool Support for Component-Based Programming”, Mas-
ter’s thesis, York University, North York, Canada, June 1994.

[Myers 92] Myers, B. A., “Ideas from Garnet for Future User Interface Programming
Languages”, In Myers, B. A. editor,Languages for Developing User
Interfaces, Chapter 22, pages 401-418, Jones and Bartlett, 1992.

[Ousterhout 94]Ousterhout, J. K.,Tcl and the Tk Toolkit, Addison-Wesley Publishing
Company, 1994.

[Peyton 86] Peyton Jones, S. L., editor,The Implementation of Functional Pro-
gramming Languages, Prentice Hall International, 1986.

[Peyton 89] Peyton Jones, S. L., Clack, C. and Salkild, J., “High-Performance Paral-
lel Graph-Reduction”,Proceedings of PARLE, pages 193-206, 1989.

[Roseman 92] Roseman, M. and Greenberg, S., “GroupKit: A Groupware Toolkit for
Building Real-Time Conferencing Applications”, In Turner, J. and Kraut,
R. editors,Proceedings of the Fourth Conference on Computer Sup-
ported Cooperative Work, pages 43-50, ACM press, November 1992.

[Roseman 93a]Roseman, M., “Design of a Real Time Groupware Toolkit”, Master The-
sis, Department of Computer Science, University of Calgary, February
1993.

[Roseman 93b]Roseman, M., Yitbarek S. and Greenberg, S., “GroupKit Tutorial”.
Included in the public domain GroupKit distribution, available by anony-
mous ftp from ftp.cpsc.ucalgary.ca under pub/grouplab/software,
December 1993.

[Rudebucsh 91]Rudebucsh, T. D., “Supporting Interaction within Distributed Teams”, In
Gorling, K. and Sattler, C. editors,International Workshop on CSCW,
Berlin, Germany, pages 17-33, 1991.

[Rudebucsh 92]Rudebucsh, T. D., “Development and Runtime Support for Collaborative
Applications”, In Bullinger, H. J. editor,Proceedings of the Fourth Inter-
national Conference on Human Computer Interactions, Stuttgard, Ger-
many, pages 1128-1132, Amsterdam, 1991.

[Urnes 92] Urnes, T., “A Relational Model for Programming Concurrent and Dis-
tributed User Interfaces”, Master’s thesis, Norwegian Institute of Tech-
nology, University of Tronheim, Norway (also available as
Arbeitspapiere der GMD 643, Germany), 1992.

127

[Urnes 94] Urnes, T. and Nejabi, R., “Tools for Implementing Groupware: Survey
and Evaluation”, Technical Report No. CS-94-03, York University, 1994.

