

The Clock Methodology: Bridging the Gap
Between User Interface Design

and Implementation

by

T.C. Nicholas Graham, Herbert Damker1,
Catherine A. Morton, Eric Telford and Tore Urnes

Technical Report No. CS-96-04
1996

Department of Computer Science
York University

North York, Ontario
Canada M3J 1P3

1Author’s Affiliation: Institut für Informatik und Gesellschaft der Albert-Ludwigs Universität Freiburg, Abteilung
Telematik, Friedrichstr. 50, D-79098 Freiburg, Germany, damker@iig.uni-freiburg.de

Abstract

Hartson, Siochi and Hix’s User Action Notation allows development teams to specify and evaluate
user interface designs prior to their implementation. The UAN is a key feature of user-centered
design methodologies, allowing non-programmers to take an active role in the design process. Devel-
opers, however, have been slow to adopt the UAN, largely because they do not see it as contributing
to implementation. This paper shows how UAN specifications can be methodically transformed
into user interface implementations, helping programmers to exploit the information contained in
UAN specifications. The paper shows the importance of modern programming language features in
supporting this process, in particular, the importance of separating architecture from code, using
constraints to separate input from output specifications, and providing high level support for con-
current user interfaces. These features are present in a number of modern research tools, including
the Clock language used in the paper. Our method has been applied to the development of over
thirty interactive systems, including three well-documented case studies.

Keywords: User Action Notation, User-Centered Design, User Interface Tools, Processes for Group-
ware Development

Contents

1 Introduction 5

2 Task-Oriented and Constructional Specifications 6

2.1 User Action Notation . 8

2.2 Clock . 9

2.3 Deriving Implementations from Task-Oriented Specifications 10

3 Task-Oriented Specification in the User Action Notation 12

3.1 Task Analysis . 13

3.2 Task-Oriented Specifications and UAN . 13

3.2.1 Advantages of UAN . 15

3.2.2 Disadvantages of UAN . 16

4 Deriving Implementations from UAN Specifications 16

4.1 Develop a Skeleton Architecture . 17

4.2 Partition Interface State into ADT’s . 18

4.2.1 Explicit State . 19

4.2.2 Implicit State . 20

4.3 Position the ADT’s . 20

4.4 Assign Inputs . 23

4.5 Encode View Functions . 23

4.6 Encode Input Functions . 25

4.7 Summary of Derivation Process . 27

5 Concurrency 27

5.1 Clock and Concurrency Control . 29

6 Analysis 30

7 Conclusion 31

A Collected Transformation Rules 34

3

B UAN for the CPM Example 35

4

1 Introduction

It is well understood that the design and development of user interfaces is difficult [20]. User in-
terfaces cannot be designed a priori and implemented: they must instead be iteratively refined,
involving implementation, testing with users, and redesign. Because of the expense of iterative re-
finement, much effort has been expended in developing techniques of evaluating user interfaces before
they are implemented. Additionally, user interface design involves the coordinated participation of
people with a variety of backgrounds: in addition to computer scientists, the development group
should ideally include domain experts, graphic designers, human-factors specialists and representa-
tives of the ultimate user group. The process of user interface development therefore requires formal
techniques for describing and evaluating user interfaces that do not necessarily assume programming
knowledge.

Hartson, Siochi and Hix developed the User Action Notation (UAN) [11] as an attempt to bridge the
communication gap between programmers and other members of user interface development teams.
The UAN permits the specification of user interfaces and provides a basis for evaluating designs.
The key idea of the UAN is that it records a task-oriented specification of user interfaces, where for
every task a user may wish to perform, the UAN is used to record how the task would be carried
out. This approach specifies the behaviour of a user interface by showing how people use the system
to achieve their goals. At the same time, UAN specifications help evaluate the effectiveness of a
user interface design, by showing which tasks are hard (or even impossible) to carry out. The UAN
provides a precise specification of the dynamic behaviour of a user interface, providing the eventual
programmer with detail to help with implementation.

The UAN would therefore appear to be a highly useful tool for user interface development. Our
initial experience with the notation, however, has been that developers do not like it, do not feel
that task-oriented specification contributes enough to the development process to be worth the
effort, and would not be likely to use it again.2 Largely, this unhappiness with the UAN stems
from a feeling that UAN specifications do not contribute in a direct way to implementation. UAN
specifications are in fact very far from implementations, for two reasons: first, moving from UAN to
code requires a change in point of view, from the behavioural view of UAN to the implementation
view of code. Secondly, the UAN is much higher level than code, and does not apparently help with
the programming problems of modern user interfaces, such as handling direct-manipulation input,
maintaining consistency among user interface components, and synchronizing the concurrent actions
of multi-media streams and multiple users operating over a network.

This paper presents an approach to better integrating UAN into the user interface development
process. The key to the method is that UAN specifications are directly used to derive user interface
implementations. Our presentation is based on the Clock [6] user interface development language.
Clock is a declarative language for the development of multi-user, multi-media applications with
high-level level support for concurrency, distribution and consistency maintenance over multiple
users. Clock has been implemented, and runs over both local and wide-area networks [8]. Since
the level of specification in Clock is so much higher than in traditional languages, the main issue
of moving from UAN to Clock is the change in point of view, not the change in level of notation.
Based on this, we are able to show how translating from task-oriented specification to user interface
implementation can be carried out in a methodical fashion, even when the user interface involves
multiple users and concurrency.

The key features of Clock that help in this derivation are present in numerous other user interface

2Our experience with UAN comes from three substantial case studies performed within our own group [2, 19, 26]
and from the experience of over 100 students using the technique to develop over 30 systems in a fourth year University
course.

5

Click on “Norsk”

Figure 1: A simple user interface allowing a user to select the language of choice. Clicking on one
of the languages changes the selection.

tools and languages. The features we found to be important are: the architecture (or high-level
design) of a user interface should be specified separately from the actual user interface code (as in
the PAC model [1], the InterViews toolkit [17], the RendezVous language [14] and the CHIRON-I
toolkit [25]); input and output should be handled separately through the use of constraints or other
forms of implicit invocation (as in the MVC model [16], the Garnet toolkit [21] and RendezVous);
and high level support should be provided for concurrency and concurrency control. We therefore
believe that this method should be applicable using target languages other than Clock.

In summary, the primary contributions of this paper are:

• We show how UAN specifications can be transformed in a methodical manner into user interface
implementations, helping programmers produce better implementations faster. This derivation
of implementations from task-oriented specifications helps demonstrate to programmers the
utility of task-oriented specification, and encourages them to participate in a user-centered
design process.

• Through the process of deriving implementations, we demonstrate what properties are desirable
in a language for implementing user interfaces. Researchers in user interface tools have been
converging on a similar set of desirable properties. Our work therefore provides a new validation
of the direction of user interface tools research.

• Based on our experience with using the UAN in the development of over thirty interactive
systems over the last five years (including three well-documented case studies [2, 19, 26]), we
discuss the strengths and weaknesses of the notation.

The paper is organized as follows. Section 2 presents an overview of the Clock methodology for
deriving user interface implementations from specifications, introducing the UAN and Clock nota-
tions. Section 3 describes the User Action Notation in detail, showing how it can be used to specify
the behaviour of a simple groupware application, and analyzes the strengths and weaknesses of the
notation. Section 4 then shows how the UAN notation can be used to methodically derive imple-
mentations in high level languages such as Clock. Section 5 then shows how the difficult problems
of concurrency are handled by the method.

2 Task-Oriented and Constructional Specifications

This section introduces the Clock methodology for deriving implementations from task-oriented
specifications. This overview briefly introduces the UAN notation for task-oriented specification

6

Mockup of user
interface presentation

Task-Oriented
Specification in UAN

Constructional
Specification in Clock

Derive basic
architectural

structure

Derive data
struictures,

communication, and
system beviour

Figure 2: The process of deriving implementations from design documents.

TASK: Select Norwegian Language
USER ACTIONS INTERFACE STATE INTERFACE FEEDBACK
~[Norsk] Mv language := “Norsk” Norsk!

∀b ̸= Norsk. b! : b-!
M^

Figure 3: UAN specification of the task of setting the language to Norwegian.

and the Clock language for user interface implementation, and shows how information in UAN
specifications can be used to derive Clock programs. Section 3 will describe the User Action Notation
in greater detail, while section 4 describes the derivation process in more detail.

This overview shows the derivation of a simple interaction technique, shown in figure 1, that allows
users to select their language of choice among German, English and Norwegian. The currently
selected language is always shown with a white button. To change language, a user simply clicks on
the desired button.

In the Clock methodology, information contained in user interface design documents is used to
derive implementations. High level features of Clock (also found in other modern user interface
development tools) simplify this derivation. Since the methodology allows design documents to be
of direct use in implementation, programmers are more likely to buy in to a user-centered design
process.

Figure 2 shows the process of deriving implementations of interactive systems from designs. Mock
ups of the user interface (such as those of figure 1) are used to specify the graphical presentation of
the user interface. A task-oriented specification in the UAN records how the user performs his/her
tasks with the system, thereby providing a dialogue-level specification. Together, these capture a
complete specification of the system which can be used to derive an implementation in Clock. We
shall first present how UAN is used to develop a task-oriented specification, and then show how this
specification leads to a Clock implementation.

7

ADT’s representing
interface and system state

Input Specification View Specification

state updates state requests

user actions
display updates

Figure 4: The model underlying Clock programs.

2.1 User Action Notation

Hartson, Siochi and Hix [11] pioneered the concept of task-oriented specifications of user interfaces
using their User Action Notation, or UAN. A task-oriented specification shows how a system is
used to perform tasks of interest to its users. As such, a task-oriented specification forms a precise
specification of the user interface of a system, but from the point of view of a user.

Figure 3 shows a UAN specification recording what actions a user must perform to change the current
language to Norwegian. The UAN chart breaks the specification into user actions, specifying what
the user must do to perform the task, interface state, showing how the user’s actions affect the
internal state of the user interface, and interface feedback, specifying the visible effects of these
actions.

The specification shows that to select the Norwegian language, the user first moves the mouse over
the “Norsk” button, as indicated by the special symbol “~[Norsk]”. The user then depresses the
mouse button (“Mv”). When the button is depressed, the current language of the user interface is
changed to Norwegian. This is recorded using the pseudo-code notation of “language := “Norsk” ”.
The interface feedback column records that the Norsk button is highlighted (“Norsk !”), and that
whatever other button was highlighted is dehighlighted (“b-!”). The user then releases the mouse
button (“M^”), which has no further effect on the user interface.

As will be seen in section 3, the UAN notation allows the expression of complex tasks and user
actions, including the concurrent interaction of multiple users.

A complete UAN specification shows how each task of interest to the user is carried out with the
system. UAN is therefore useful in evaluating a user interface, since a complete specification shows
whether all tasks of interest to the user can be accomplished in a reasonable way. UAN also helps
evaluate the consistency of a user interface, showing whether similar tasks are carried out in similar
ways.

8

% Input specification
mouseButton "Down" = setCurrentLanguage myId.
mouseButton "Up" = noUpdate.

% View specification
view = FillColour fillColour (Box (pad 2 (Text myId))).
fillColour =
 if currentLanguage = myId then
 white
 else
 grey80
 end if.

Figure 5: Clock code implementing UAN specification of figure 3.

2.2 Clock

Clock programs are specificational. As opposed to the task-oriented specification of UAN, however,
Clock specifications are constructional, or from the point of view of the system. In Clock, for each
component of the user interface, a specification is given stating how the component responds to
input, and a view specification states how the component appears on the display (figure 4). This
program organization completely separates input from output: whenever an input modifies the
system state, the runtime system automatically updates the display to maintain its consistency with
the view specification. This implicit triggering of displays is derived from the Smalltalk Model-
View-Controller paradigm [16], and is found in other constraint-based user interface tools, such as
Garnet [21], RendezVous [14] and Amulet [18].

Figure 5 shows how this UAN chart is implemented in Clock. The high-level structure of Clock
programs is specified in a visual architecture language using the ClockWorks [7] visual programming
environment. Clock architectures consist of a tree of components, arranged according to the com-
positional structure of the user interface. Here, the user interface consists of three radio buttons,
represented by the LanguageChooser component. The radio buttons are composed of three buttons,
each of which is represented by an instance of the LanguageButton component. Therefore, a parent
component (such as LanguageChooser) may compose any number of instances of its children (here,
LanguageButton) in creating its own view.

Components communicate via messages, termed requests (requests for information), and updates
(state modification). The arrows on the right side of a component indicate the messages a component
uses, while the arrows on the left side indicate the messages a component is capable of handling.
Therefore, each instance of the LanguageButton component can respond to mouse button input
directed to it, may request which language is currently selected (via the currentLanguage request),
and may update the current language (via the setCurrentLanguage update.)

Attached to components may be Abstract Data Types (ADT’s), which are used to represent state.
Here, the Language ADT is used to represent which language is currently selected, and implements
the currentLanguage request and the setCurrentLanguage update.

Components in Clock contain specifications of how the component responds to inputs directed to

9

it, and how the component appears on the display. These specifications are encoded in a functional
language similar to Haskell [15]. As an example, figure 5 shows the implementation of the Lan-
guageButton component. Intuitively, this specification states that whenever a button with text id
is clicked, then id should become the current language. The view of the component is to be a box
containing the text id; if id is the current language, then the button is to be drawn in white, and
otherwise in grey.

The following encodes the input specification:

mouseButton "Down" = setCurrentLanguage myId.

This code simply states that whenever the mouse button is depressed over this component, the
current language is to be set to this component’s identifier (i.e., either “Deutsch”, “English” or
“Norsk, as specified by the request myId).

The view function is a specification of the component’s view:

view = FillColour fillColour (Box (pad 2 (Text myId))).
fillColour =

if currentLanguage = myId then
white

else
grey80

end if.

This function states that the view is a box surrounding the button text, and that the fill colour of
the box (either white or grey80) depends on whether the button represents the current language.
The key notion behind this view specification is that the programmer does not need to worry about
how the specification is maintained. Whenever the current language changes, the view function is
automatically updated so that the button appears in the correct colour. View functions are therefore
truly specificational, describing the appearance of the display without giving an algorithm for how
display updates are to be implemented.

Transforming UAN specifications to Clock programs is therefore a question of changing one specifi-
cational notation to another. UAN specifications are written from the point of view of a user, and
are therefore a natural notation for discussing user interface design. Clock programs are written
from the point of view of the system, and are therefore natural for discussing implementation. Since
both notations are specificational, Clock forms a natural bridge between design and implementation
of user interfaces.

2.3 Deriving Implementations from Task-Oriented Specifications

User Action Notation specifications contain information that permits implementations to be derived
from specifications in a methodical manner. The Clock methodology for deriving implementations
consists of four major activities:

• Use mockups of the user interface presentation to derive a skeleton architecture.

• Use information in the interface state column to derive ADT’s; use the user actions, interface
feedback and interface state columns to position these ADT’s in the architecture, and to develop
component interfaces.

10

Figure 6: A multiuser project planning application, derived using the Clock methodology. “Tore”
is connecting nodes two and three while “Nick” repositions node 6.

• Use decision trees to derive view functions from the interface feedback column.

• Use decision trees to derive input functions from the user actions column.

These steps are described in detail in section 4, and collected in reference format in appendix A.

This method depends on several features of the Clock language. Clock’s separation of architecture
from code allows the derivation of the program’s skeleton architecture, ADT’s and inter-component
communication independently of coding details. Clock’s separation of input and output allows the
derivation of view and input functions to be treated as two separate steps, avoiding the complexities
of interaction between input and output. As will be seen in section 5, Clock’s implicit concurrency
control allows the derivation to avoid complex issues of concurrent behaviour. Since these features are
also found in other modern user interface development tools, we believe that the Clock methodology
should be adaptable to other target languages.

The next section introduces the User Action Notation in more depth, and presents our experiences
with the notation. A simple groupware application is introduced that will be used throughout the
paper to illustrate the Clock methodology.

11

Plan a project

Specify job steps
and dependencies

Create a CPM
network

Specify job steps

Specify a job step

Create a new node
in CPM network

Specify
dependencies

Specify a dependency
among two job steps

Connect two nodes
in CPM network

Allocate
resources

Perform initial
allocation

Adjust allocation

Allocate resources
to job steps

Allocate resources
to a job step

Assess current
allocation

Reallocate
resourcesBeautify

network

Reposition
nodes

Reposition
a node

Figure 7: Task analysis for planning a project using the CPM method.

3 Task-Oriented Specification in the User Action Notation

This section presents the User Action Notation, and describes how it used to record hierarchical task
analysis and to describe and evaluate the behaviour of interactive systems. The section describes
why we think the UAN is an important tool in user interface development, but also details the
problems we have had with the notation.

As a motivating example, we use the task of planning a project using the critical path method (or
CPM), as described by Dilworth [3]. Using this method, projects are decomposed into a series of
job steps. Dependencies among job steps are recorded by arranging them into a network. Resources
are allocated to the job steps, and reallocated based on identification of the critical path through
the network.

Figure 6 shows an example CPM planner implemented in Clock. (This program was simplified from
the more extensive Clock program for exposition in this paper.) The program permits users to
create nodes in a critical path method network. Nodes are assigned numbers sequentially as they
are created. Nodes can be linked by drawing a line from the source to the target node, and can be
repositioned. Mode buttons select between modes for repositioning, creating and connecting nodes.
In a complete CPM planning application, weights are also added to each node, allowing computation
of the critical path through the network.

The application is multi-user, meaning that a group of people can collaborate to create a network.
Each user sees the same network display. As users move and connect nodes, the other users’ displays
are updated to reflect the changes. In order to avoid competing actions, a simple locking protocol
is used. For example, if a user starts moving a node, no other user can move the same node until
the first user has released it. To help participants be aware of the ongoing actions of other people,
locked nodes appear with a grey background on the displays of all users other than the lock holder.

The remainder of this section shows how task analysis and task-oriented specification helped in the

12

TASK: Plan a project
USER ACTIONS
(Identify job steps and dependencies)

|| (Allocate resources)

TASK: Identify job steps and dependencies
USER ACTIONS
Create a CPM network

TASK: Create a CPM network
USER ACTIONS
(Specify job steps) || (Specify dependencies) || (Beautify network)

Figure 8: Top nodes from HTA recoded in UAN

design of this application. Section 4 then shows how the implementation of the application was
derived using the Clock methodology.

3.1 Task Analysis

A task-oriented specification of a user interface is derived from a task analysis of the problem domain.
A task analysis records all the tasks that a potential user of the system may need to perform. The
design of an interactive system is based on supporting these tasks. Figure 7 gives a hierarchical
task analysis of the problem of planning a project using the critical path method (CPM). (This task
analysis was partially derived from Dilworth’s description of critical path planning [3].) The root
task of planning a project is split into the two subtasks of specifying the steps involved in the project
and how they depend on each other, and of allocating resources to each step. (The first of these tasks
is supported by the program of figure 6, while the second is not.) The task of specifying job steps
and dependencies is solved via the task of creating a CPM network, which in turn consists of the
subtasks of specifying the job steps, specifying their dependencies, and beautifying the presentation
of the network.

A hierarchical task analysis (e.g., as presented by Preece [24]) describes the tasks people need to
perform to do their jobs, not the details of dealing with a particular computer system. The tasks
presented in an HTA do not necessarily have to be performed in sequence or even independently.
For example, a planner using the CPM method might switch back and forth between adding nodes
and addding dependencies. Similarly, when a group of people are planning a project, one person
may be specifying dependencies while another beautifies the network. One of the strengths of the
UAN notation is that it encodes the information in the task analysis, while specifying precisely how
these tasks may be sequenced, interleaved, or performed concurrently.

3.2 Task-Oriented Specifications and UAN

A task-oriented specification of a system in UAN shows how a person uses the system to accomplish
his/her goals. A UAN specification starts by encoding the information derived in the hierarchical
task analysis. The UAN uses a chart notation to encode each task in the HTA, showing how the
task is performed in terms of atomic actions and subtasks. For example, as shown in figure 8, the
root task of the HTA is encoded as the “Plan a project” chart. The chart states that to plan a
project, a user must carry out the actions of identifying job steps and dependencies, and allocating

13

TASK: Reposition a node
USER ACTIONS INTERFACE STATE INTERFACE FEEDBACK
select mode “move”
~[n] Mv lock n n!

n locked
(~[x,y] nodePos(n) := (x, y) display n at (x,y) on all users’ dis-

plays, moving all connected lines
and rubber-band lines.

)* M^ unlock n n-!
n unlocked

Figure 9: UAN for repositioning a node

resources to each job step. The “||” symbol means that these tasks can be carried out concurrently
– either by a single user moving back and forth between the tasks, or even by two users working on
different parts at the same time.

The “Plan a project” task utilizes two subtasks (also appearing in the HTA), each of which is
specified through its own chart. For example, the “Create a CPM Network” task is carried out
by specifying job steps, specifying dependencies among the job steps, and beautifying the network.
Once again, these tasks can be carried out in parallel, possibly by different people cooperating
on developing the CPM network. In addition to the “||” symbol for specifying that tasks can be
performed concurrently, the UAN also provides symbols specifying interleaving (“<=>”), conjunction
(“&”), disjunction (“OR”), repetition (“*”) and sequencing of tasks. Therefore, the UAN carries more
information than a standard HTA, by clearly specifying task dependencies and alternatives between
tasks.

As the leaves of the task hierarchy are reached, UAN specifications shift emphasis from describing
the task hierarchy itself, to describing how tasks are carried out using the system. For example,
figure 9 shows how the task of repositioning a node is carried out in the CPM system. This UAN
chart has three columns. The first (user actions) shows the actions the user performs to reposition
a node. The second (interface state) shows how these actions affect the internal state of the user
interface. The third (interface feedback) shows how the system responds to the user’s actions.

The first user action is to select the move mode, specified in the select mode subtask (not shown
here.) The second action is to move over some node n (~[n]), and depress the mouse button (Mv).
Clicking down on a node has the effect of locking the node so that nobody else can move it. The
visible effects of this action are: the node moves to a sunken relief (n!) to indicate that it has been
depressed, and the node appears locked (i.e. with a grey background) on all other users’ displays (n
locked).

The next line of the UAN chart specifies that as the mouse is moved to each new (x, y) position
(~[x,y]), the position of the node is updated, and the node (and all connected lines) are redrawn
on each users’ display. The movement may occur any number of times (as indicated by the “*”.)
When the mouse button is released (M^), the node is unlocked, released from its depressed state
(n-!), and redrawn as unlocked on all users’ displays.

The repositioning task shows that even with something as simple as dragging a node, there is
considerable complexity in a multi-user environment. The UAN notation serves to clarify the effects

14

of each stage of the repositioning dialogue.

It is important to note how the UAN simplifies the specification of concurrency. In the task hierarchy
of figure 7, “Reposition a Node” appears as a subtask of “Specify job steps and dependencies”. As was
seen in figure 8, this means that multiple users can be concurrently contending to move and connect
nodes. UAN charts can be read as guaranteeing atomicity at the level of primitive operations in
the user interface. For example, the second line of the “Reposition a Node” task consists of the user
actions: “~[n] Mv”. That is, the user moves the mouse over an unlocked node n, and depresses the
mouse button. The UAN guarantees that, assuming the node is unlocked at the instant the user
depresses the mouse, the subsequent modifications to interface state and interface feedback will be
treated as atomic. This guarantees that two users cannot lock the same node at the same time.
If the user interface is to provide concurrency control at a higher level than primitive operations,
a higher level mechanism (such as the locking applied in this example) must be used. Section 4
provides a more detailed analysis of concurrency in the UAN.

3.2.1 Advantages of UAN

We have found task-oriented specification in UAN provides a wide range of benefits. These include
helping to link task analysis and user interface design, helping to implement a user interface design,
and in determining how to test a user interface’s design and implementation:

Demonstrating task coverage: The purpose of the UAN is to show how each task identified in the
hierarchical task analysis can be carried out using the system. This shows whether all tasks
are supported in a reasonable and consistent way, and verifies that the system indeed supports
the tasks it is meant to support.

Delineation of system’s boundaries: Typically, interactive systems do not support all tasks required
to carry out a process. A hierarchical task analysis can be used to identify all tasks required
by the process. Using the UAN to explicitly show which of these tasks are supported by the
system helps in understanding how the system fits within the context of its use.

Feedback on task analysis: Task analysis itself is an iterative process. Performing task-oriented spec-
ification presents an opportunity to analyze the correctness and completeness of the task anal-
ysis, helping to identify potentially erroneous or unclear features.

Basis for testing: It is very difficult to test that interactive systems have been correctly implemented.
While errors in implementing a user interface’s presentation are easy to see in a running
program, errors in implementation of concurrency or in responding to erroneous use can be hard
to find. A UAN specification provides a set of precise test cases, showing realistic sequences
of user actions and intended feedback.

Precise specification: UAN provides a useful specification of the operation of the system that can
be used by the system’s implementers. UAN specifications are more precise than specification
by scenarios, mockups or prose. Areas where the UAN is particularly useful include consis-
tency maintenance among different components of a user interface, and concurrency. Both of
these areas are particularly of interest to groupware developers, where consistency must be
maintained among the user interfaces of different users, and where the concurrent activities of
multiple users must be arbitrated.

15

3.2.2 Disadvantages of UAN

Despite its many advantages, we have found that user interface developers are highly reticent about
using UAN in system development. In our four years of experience with variants of the Clock
methodology, feedback from designers has consistently indicated that they felt UAN did not help in
developing their systems, and that they would not be inclined to use it again. This dislike of UAN
comes from a number of sources:

Tedious: UAN specifications are tedious and time consuming to create. Specifications for complex
systems can run over dozens of pages. Long specifications become hard to read, requiring
indexes to locate subtasks buried within the document. The underlying tree structure of the
system can become lost in the many pages of detailed charts. Typesetting UAN is particularly
tedious.

Hard to maintain: Even fairly minor changes in the design of a user interface often require sub-
stantial changes in the UAN specification. Often it is difficult to isolate all the parts of the
UAN where changes are required. Modifying typeset UAN documents is time consuming and
tedious. As the design evolves, the UAN is typically left behind, as designers become unwilling
to spend the time updating it.

Poor linkage to implementation: Programmers do not clearly see the linkage between UAN speci-
fications and their implementation. The gap between task-oriented specification and imple-
mentation is sufficiently large that developers do not see performing the specification as a step
towards implementation. Our experience is that implementation is in fact simplified, since pro-
grammers have a more clear understanding of the details of the system, but that programmers
do not recognize that this simplification has occurred. In short, programmers do not believe
that the costs of performing a UAN specification are amortized by reduced development costs.

We believe that the first two points are best addressed through improved tool support for the UAN.
To this end, we have developed an experimental hypertext browser for the UAN [26], supporting
easy navigation of UAN specifications. Future work involves upgrading this browser to a complete
editor.

The methodology presented in this paper aims to address the last point. The Clock methodology
links the UAN to implementations by providing programmers with a means of deriving implemen-
tations from specifications.

4 Deriving Implementations from UAN Specifications

This section gives a detailed overview of the Clock methodology, showing how user interface imple-
mentations can be derived from task-oriented specifications expressed in the UAN. The presentation
emphasizes the importance of high-level features of the Clock language, in order to establish that
the methodology should be applicable using other languages with similar features.

The goal of the Clock methodology is to convince developers that it is worthwhile to invest time
in creating and maintaining UAN specifications. As is shown in this section, programmers benefit
from specifying complex user interface behaviour in the UAN prior to implementation. The UAN
notation provides the context in which user actions may occur. This simplifies the description of
user actions that may have different meanings in different contexts, and simplifies the description of
tasks that may be interleaved or carried out concurrently.

16

Figure 10: Skeleton architecture for the CPM planning program of figure 6.

This section presents the steps of the methodology, illustrating them with examples from the CPM
planner of figure 6. These steps are summarized in reference format in appendix A.

4.1 Develop a Skeleton Architecture

The first step in the methodology is to use mockups or drawings of the user interface presentation to
derive a skeleton architecture for the system. An architecture represents the components from which
the system is built, and how they communicate. In Clock, similarly to InterViews [17], PAC [1], and
RendezVous [14], user interface architectures are structured as a tree of components. The skeleton
architecture for the CPM planner of figure 6 is shown in figure 10.

In Clock, architectures represent the compositional structure of programs. A parent component in
the tree is permitted to use zero or more instances of a child component when computing its own
view. For example, the CPMNetwork component is composed of some number of nodes, edges, and
possibly a rubber band line.

Once the skeleton architecture has been identified, later steps in the methodology consist of filling
in the blanks: that is, deriving the code and data represented in each component, and deriving
the precise interfaces that components will use to communicate. Typically, the initial skeleton
architecture will also be refined as more information is gained in later steps.

The Clock language’s separation of architecture from code is crucial to this first step. The skeleton
architecture can be created without having to know the details of the code contained in each archi-
tecture component, or even the details of how components communicate. Filling in the code of each
component can then be done relatively independently, allowing the decomposition of the derivation
process into simpler subproblems.

17

TASK: Connect two nodes in CPM network

USER ACTIONS
INTERFACE

STATE
INTERFACE FEEDBACK

CONNECTION TO
COMPUTATION

Select mode “connect”
~[n1] Mv n1!
((~(x,y) rubber band line follows

from n1 to currentPos
) *

(~[n’] unlocked n′ : have lock n′:
lock n′ n′ locked

n′!
[n’]~ have lock n′ : n′-!

unlock n′ n′ unlocked
)*)*

~[n2] lock n2 n2 locked
n2!

M^ unlock n2 n2 unlocked connect n1 to n2

n1-! n2-!
Remove rubber band line
Show solid line from n1 to n2

on all users’ displays

Figure 11: UAN specification for the task of connecting two nodes.

4.2 Partition Interface State into ADT’s

The next step in the methodology is to determine what data is required to represent the system
state, and to partition this data into ADT’s with well-defined interfaces. The UAN specification
contains the information necesary to derive ADT’s: the interface state column explicitly shows what
state is required, and how it is modified. The interface state, interface feedback and connection to
computation columns all make reference to system state. Therefore, by examining the state and its
use in the UAN specifications, it is possible to derive ADT’s and suitable interfaces.

For example, the task “Reposition a node” (figure 9) indicates that when a node is clicked, it
becomes locked; as the node is moved, its position (nodePos) should be updated. When a node is
displayed, its position state is used in determining where it should should be drawn. In addition to
this explicit use of state, the node is implicitly enters a depressed state when the mouse is clicked
down, and a non-depressed state when the mouse is released. In UAN specifications, this access to
state is informal, typically written in pseudo-code (such as “nodePos(n) := (x, y)”), or described in
prose. The process of deriving ADT’s from state in UAN specifications from explicit state in UAN
specifications is detailed in section 4.2.1.

Deriving ADT’s represents the first step in changing point of view from the task-oriented view of
the UAN to the constructional view of programs. UAN specifications implicitly contain contextual
information. For example, in the task of repositioning a node (figure 9), it is implicit that the mouse
motions (~[x,y]) in the second line of the chart follows clicking down on the node, and therefore
should be interpreted as moving a node. In the constructional domain, in order to allow tasks to
be interleaved or carried out concurrently, state must be introduced to represent such contextual

18

Figure 12: ADT’s explicitly supporting the node connection task.

information. Section 4.2.2 shows how such implicit state is derived.

4.2.1 Explicit State

As a more complex example of how ADT’s are derived from UAN specifications, consider the task of
connecting two nodes (figure 11). In this task, interface state is explicitly referred to and modified.
The interface state column queries whether a given node is unlocked, and whether the current user
is the owner of the lock. Locks on nodes are set and released. The interface feedback column refers
to the locking status of nodes, and refers to the positions of the nodes n1 and n2 when drawing a
line between them. The connection to computation column modifies the structure of the network by
connecting the two nodes n1 and n2.

The state that is explicitly used in UAN tasks must be represented in Clock via ADT’s. To design
these ADT’s, a developer must identify what state is being used, and partition the state into logical
units. Here, for example, we identify that the state can be logically partitioned into ADT’s repre-
senting the network structure, the positions of the network nodes, and current locking information.
Figure 12 shows the resulting ADT’s and their interfaces. For example, the NodePositions ADT
represents the positions of the nodes in the network. The request “nodePosition n” specifies the
position of node n on the display. The update “setNodePosition n (x,y)” sets the position of node
n to the coordinate (x, y).

Similarly, the CPMStructure ADT records which nodes are in the network and how they are con-
nected. The rootNode request returns the root node in the network; “followingNodes n” returns the
list of nodes connected to node n. The “addNode n” update adds a new node called n; “addLink n1

n2” connects nodes n1 and n2.

Finally, the Lock ADT is used to record locking of nodes on a per-user basis. The request “locked
n” reports whether node n is locked; “haveLock user n” reports whether user holds the lock for node
n. The updates “lock user n” and “unlock n” are used to obtain and release locks.

The references to state in the UAN description of figure 11 can then be expressed in terms of the
updates and requests defined by these new ADT’s. For example, drawing a rubber band line from
n1 to (x, y) will be implemented by drawing a line from “nodePosition n1” to (x, y). The nodes n1

and n2 will be connected via the update “addLink n1 n2”.

19

Figure 13: ADT’s derived from the node connection task.

4.2.2 Implicit State

Derivation of ADT’s from UAN specifications represents the first step in changing point of view from
task-oriented specifications to implementations. Contextual information implicit in UAN charts must
be made explicit in implementations where such context is not available. For example, moving the
mouse pointer before the mouse button has been depressed has no observable effect. Moving the
mouse after the mouse button has been depressed on a node causes a rubber band line to follow the
mouse pointer. Depressing the mouse on a node therefore causes the dialogue to enter a “connecting”
state, in which mouse motion is tracked by a rubber band line. The “connecting” state is exited
when the mouse button is released. Such dialogue state is implicit in the sequencing notation of
UAN tasks. However, to permit tasks to be interleaved or performed concurrently, Clock requires
dialogue state to be encoded explicitly, using ADT’s.

Figure 13 shows the Connecting ADT used to record dialogue state in the node connection task.
The “startConnecting n1” update records that the user has started connecting from node n1. The
“setConnectionTarget n2” update records that the user has placed the mouse over node n2. stop-
Connecting exits the connecting state. The isConnecting request determines whether the user in
carrying out a connection; connection returns the current connection source and target.

Figure 14 shows the revised UAN for connecting two nodes, where the new updates and requests
replace the earlier state references. Note that depressing the node n1 starts the “connecting” state.
Moving over a second node n2 sets the connection target; moving away from that node resets the
connection target to the nullNode. Releasing the mouse over a target exits the “connecting” mode,
and adds a new link into the CPM structure.

In summary, this stage of the transformation requires the developer to identify all state, both
explicit and implicit, used in the UAN task descriptions. From this state, the developer designs
ADT’s. Finally, he/she updates the UAN to use the updates and requests of the ADT’s to refer to
state.

4.3 Position the ADT’s

Once the necessary ADT’s have been defined, they must be placed in the component tree. ADT’s
are positioned at the lowest point in the tree where they continue to be visible to all components
that use them. For example, the NodePosition ADT is shared by all users of the system, and
must therefore appear in the root CPM node, where it is visible to all instances of the CPMView.
The Connection ADT is shared by the children of the CPMNetwork component, and is therefore
positioned at CPMNetwork. Note that at run-time, one instance of each ADT is created for each
component instance. There will therefore be instance of the NodePosition ADT shared by all users,
while there will be one instance of Connection per user. This means that all users see the nodes at
the same position, while each user can separately carry on his/her own connection activities.

20

TASK: Connect two nodes in CPM network

USER ACTIONS INTERFACE STATE INTERFACE FEEDBACK
CONN’N TO

COMPUTATION
Select mode

“connect”
~[n1] Mv startConnecting n1 n1!
((~(x,y) draw rubber band line be-

tween nodePositon n1 and
mousePosition

) *

(~[n’] unlocked n′ : haveLock myUserId n′:
lock myUserId n′ n′ locked
setConnectionTarget n′ n′!

[n’]~ have lock n′ :
unlock n′ n′-!
setConnectionTarget n′ unlocked

nullNode

)*)*

~[n2] Mv lock myUserId n2 n2 locked
setConnectionTarget n2 n2!

M^ unlock n2 n2 unlocked addLink n1 n2

stopConnecting n1-! n2-!
Remove rubber band line
Show solid
line from nodePosition n1

to nodePosition n2 on all
users’ displays

Figure 14: UAN for connecting two nodes, updated to use the ADT’s identified in figures 12 and 13.

21

Figure 15: Architecture of figure 10 once ADT’s have been positioned.

22

Is the node locked
by somebody else?

Is the node
depressed?

Is the node
depressed?

yes no

yes noyesno

Figure 16: Decision tree specifying appearance of a network node.

Figure 15 shows the final results of positioning these ADT’s.

4.4 Assign Inputs

The next stage is to determine which components are responsible for handling user actions, and
to annotate the components as such. For example, the BrowseNode component responds to mouse
button clicks, while the CPMNetwork component responds to mouse motion.

4.5 Encode View Functions

The next major shift in point of view from task-oriented specification to implementation consists of
encoding the appearance (or view) of the user interface on the display. In the behavioural domain
of task-oriented specifications, display updates are distributed throughout the specification, appear-
ing in the interface feedback column in response to user actions. This form of output specification
is appropriate in the behavioural domain, since it clearly demonstrates the effects of user actions
in context. The UAN’s organization of output specifications is, however, less suitable for imple-
mentation: the same output actions appear repeatedly in the specification, leading to unnecessary
redundancy. The close linkage of input (user actions) and output (interface feedback) leads to diffi-
culties in maintenance. Finally, since output is stated only as a consequence of input, it is hard for
programmers to be sure that every output case has been identified.

Modern languages for user interface development address these problems by separating output spec-
ifications from input specifications. This separation is realized through implicit invocation of views
in response to changes in system state, either using callbacks (such as in MVC [16]) or contraints (as
with Garnet [21] and similar systems.) This section shows how task-oriented output can be mapped
to view specifications using Clock’s constraint-based view functions.

Each component in a Clock program possesses a view function specifying its appearance on the
display. View functions are specificational, in that they describe how the display is to appear
independent of any input specification. The implementation of the Clock language is responsible for
automatically determining when and how views are to be updated.

23

The next step in transforming UAN to Clock is to identify how Clock view functions can be used
to encode the display feedback described in the UAN task descriptions. At first glance, Clock view
functions would seem to be very far from UAN descriptions – view functions provide a declarative
specification of a view, giving in effect a rule for how the view is to be constructed based on the
current system state. These functional specifications do not explicitly refer to time – the specification
holds regardless of when it is viewed. UAN specifications, on the other hand, are based on explicit
user actions, in effect entirely based on time and context. It is however, quite straight-forward to
translate the UAN style of display specification into the Clock style.

As an example of how to perform this transformation, we shall consider the example of how the
individual nodes of a network are displayed. The basic form of a node is a box, containing some
text (e.g., “Step 1”), with relief shading to give the illusion of three dimensions.

We first examine all UAN tasks that refer to nodes in their interface feedback. These involve the
task to reposition a node (figure 9), and the task to connect two nodes (figure 14). From these tasks,
we can see that there are four actions that modify the appearance of a node n:

Interface Feedback Effect on Display
n! n is displayed using sunken relief
n-! n is displayed with raised relief
n locked n is displayed with a grey background on all other users’ displays
n unlocked n is displayed with a white background on all users’ displays

These display changes all correspond to changes in system state. For example, when we start
connecting a node, we also depress it. Whenever we lock a node, we display it as locked on all other
users’ displays. By examining the locations where these changes are meant to occur, we can derive
a decision tree showing how the appearance of a view can be determined from the current interface
state.

The decision tree for drawing a node is shown in figure 16. The leaves of the tree show the four
possible display states of a node. The node must be displayed with a grey background if it is currently
locked by someone else, and must be displayed with sunken relief if it is currently depressed.

The Clock code implementing this decision tree is shown in figure 17. The basic view of a node
is encoded in the nodeBox function, specifying that a node is a box, filled in white, surrounding
text specifying the step number. The view itself consists of a nodeView with either a white or grey
background, and either sunken or raised relief. The decisions on text colour and relief are encoded
in separate functions. The structure of the view function is the same as that of the decision tree:
the two decision points are encoded in the relief and textColour functions. Depending on the values
of these functions, the view function may evaluate to one of the four possible presentations of the
node.

Typically, deriving view functions from UAN specification is a straight-forward process. Once the
UAN descriptions have been modified to access state through updates and requests (as described in
section 4.2), it is usually simple to express the conditions that trigger a change in view in terms of
requests. This expression then becomes a split point in the decision tree specifying the view.

The process of developing views from UAN specification gives feedback on the complexity and
modality of a user interface. If it is hard to develop the condition specifying when a view has a
particular presentation, it means that there is no simple rule specifying why a particular presentation
may arise. This in turn might imply that the presentation is giving inadequate or misleading cues
to a user of the system.

24

text = "Step " + myId.
nodeView = Box (pad 2 (Text text)).

fillColour =
if not (locked myId) or (haveLock myUserId myId) then

white
else

% I don’t have the lock
grey90

end if.

relief =
if isDepressed then

"sunken"
else

"raised"
end if.

view = FillColour fillColour (Relief relief nodeView).

Figure 17: Code implementing the view of a network node, based on the decision tree of figure 16.

4.6 Encode Input Functions

The final stage in deriving implementations from task-oriented specifications is to encode the han-
dling of user inputs. Most modern languages treat user inputs as events, and require the programmer
to provide code mapping input events into modifications to system state. This modification is cap-
tured in UAN specifications, where inputs appearing in the user actions column result in state
updates in the interface state column. For example, the chart of figure 14 specifies that clicking
down on a connection node (~[n1] Mv) causes the node to be depressed (n1!) and the “connecting”
state to be entered (startConnecting n1).

UAN specifications differ from input handling code in two respects. First, the same user action
may occur more than once in the specification, whereas it must be implemented by a unique input
handler. Secondly, the sequencing of user actions implicitly gives context to user actions. For
example, the “~[n]” action (moving the mouse over a node) occurs at three places in the connection
task of figure 14. This sequencing implies, for example, that we know that when the mouse is moved
over the n2 node (~[n2]), we must be in the “connecting” state, and that therefore some node n1

has been specified as the connection source.

When user actions are translated to input handlers, one function must handle all cases of input
being sent to a given component. This means that explicit state must be used to reconstruct the
context of the user action being performed. In order to derive how input to a component should be
handled, we use a decision tree similarly to how view functions are derived (section 4.5).

Figure 18 shows how moving the mouse pointer over a ConnectNode network node is handled.
The decision tree shows how the three cases of moving over a node are distinguished. First, if no
connection is being performed (as in the case of ~[n1] at the start of the dialogue), moving over a
node has no effect. Assuming a connection has been started, the effect of moving over a node is to

25

Has a connection
been started?

No connection is
underway – do

nothing

Is the node locked?
Is it the same as the

fromNode?

lock myUserId myId
setConnectionTarget myId

Not a valid toNode –
do nothing

no yes

no yes

% fromNode and toNode are the
% current ends of the connection.
fromNode = fst connection.
toNode = snd connection.

% Handle: ~[myId] Mv
mouseButton "Down" =
 startConnecting myId.

% Handle: M^
mouseButton "Up" =
 if toNode = nullNode then
 stopConnecting
 else
 all [stopConnecting,
 unlock toNode,
 addLink fromNode toNode]
 end if.

% Handle: ~[myId]
enter =
 if not isConnecting
 or myId = fromNode
 or locked myId then
 noUpdate
 else
 all [
 lock myUserId myId,
 setConnectionTarget myId]
 end if.

% Handle: [myId]~
leave =
 if not isConnecting
 or myId = fromNode then
 noUpdate
 else
 all [
 unlock myId,
 setConnectionTarget nullNode]
 end if.

Figure 18: Decision tree specifying how entering a network node is handled.

Figure 19: Code handling the input to a ConnectNode. The encoding of the enter function is based
on the decision tree of figure 18

26

depress and lock the node, and to enter “connecting” state. However, the node must not already be
locked, and must not be the start node for the connection.

This decision tree can be easily transformed into Clock code:

enter =
if not isConnecting

or myId = fromNode
or locked myId then

noUpdate
else

all [
lock myUserId myId,
setConnectionTarget myId]

end if.

The function enter is automatically invoked by the Clock runtime system whenever the mouse pointer
is moved over the node. The request myId represents the name of this node. This function encodes
that when this node is entered, as long as we have started connecting two nodes, this node is not
locked and this node is not the connection source, then the node becomes locked and is set as the
connection target.

Figure 19 shows the complete input code for the connection target. The mouseButton function
handles the mouse button being depressed and released over this node. Depressing the mouse
button (Mv) appears in only one context, and results in starting a connection from this node (as
named by myId.) Releasing the mouse button (M^) can occur in two contexts – either to connect
two nodes, or to cancel a connection operation. The leave update ([myId]~) occurs in two contexts
– either we are not connecting, in which case there is no effect, or we were potentially connecting to
this node and decided against it.

4.7 Summary of Derivation Process

This section has shown how UAN specifications help in the derivation of user interface implementa-
tions. While the derivation process has been demonstrated using the Clock language, we have argued
throughout that the same techniques should be applicable using languages with similar features, in
particular languages providing a strong separation of architecture from code and a clean separation
of input from output.

Another feature that is highly useful is implicit concurrency control. This feature is found in some
user interface languages (e.g., Sassafras [12] and RendezVous [14]), but is less common than the other
features we have discussed. The next section demonstrates how the UAN helps in the specification
of concurrency, and how building concurrency control into the target language greatly aids the
derivation process.

5 Concurrency

Numerous researchers have discussed the difficulty of programming concurrent user interfaces [12,
13, 4, 5]. Concurrency arises in user interfaces through concurrent dialogues such as simultaneous

27

TASK: Create a new node
USER ACTIONS INTERFACE STATE INTERFACE FEEDBACK
Select mode “new node”
~[x,y] Mv n := nodeCounter Display n at (x, y) on all users’

nodePos(n) := (x, y) displays
nodeCounter += 1

M^

Figure 20: UAN describing the task of creating a new node.

interactions of multiple users and through the concurrent playback of multimedia clips.

Concurrency is hard to implement because concurrent actions may conflict, potentially resulting in
erroneous, unintuitive, or annoying system behaviour. Concurrency control [9] is required to restrict
concurrency to avoid undesired behaviour. UAN specifications implicitly involve concurrency control.
One of the great benefits of deriving Clock implementations from UAN specifications is that the Clock
language also provides concurrency control, and that Clock’s concurrency control rules are identical
to those of UAN. These means that the difficult issues of how to arbitrate between concurrent users
of a system need only be solved once, at the conveniently high level of UAN specifications. While
automatic concurrency control is not yet a common feature of user interface languages, we believe
that this derivation process lends convincing evidence to its importance.

Concurrency is introduced into UAN via the “||” operator. For example, the task of creating a
CPM network (figure 8) specifies that creating nodes and links between nodes, and beautifying the
presentation of the network are all concurrent activities, where one user can be linking two nodes,
while another creates a node, and a third moves some part of the network.

The task of creating a new node (figure 20), however, shows that this concurrency cannot be un-
restricted. Consider the possibility that two users create a new node at exactly the same time. A
node counter is used to generate a unique identifier for each node that is created. If two nodes are
created simultaneously, however, a race condition might occur, allowing both nodes to be assigned
the same counter value. This would lead to the erroneous condition of two nodes being created with
the same identifier.

UAN solves this problem with a simple concurrency control rule: once a sequence of user actions has
been completed, the updates to interface state, interface feedback and connection to computation
must be performed atomically. In this example, the final action is the Mv that creates the node.
The UAN specification guarantees that between the time the user depresses the mouse button and
the time the new node is created and displayed, no conflicting user actions may be processed. (See
Hartson and Gray [10] for a formalization of the temporal aspects of the UAN.)

This rule means that if two users try to create a node simultaneously, one user will be considered,
by however small a fraction of a second, to have been first. This user’s node will be created and
displayed, and then the second user’s node will be created and displayed.

It should be noted that the UAN does not oblige an implementation to sequentialize all user actions
– only those where the actions would otherwise conflict.

The need for concurrency control is also demonstrated by the task of repositioning a node. As
was see in figure 9, dragging a node causes the position of the node and all attached lines to be

28

mouseButton "Down" =
 if mode = AddingNode then
 % Add a new node at this position
 let id = numstr count in
 all [
 addNode id,
 setNodePosition id mousePosition,
 incrementCount
]
 end let
 else
 noUpdate
 end if.

mouseButton "Up" = noUpdate.

Figure 21: Code handling a node creation, taken from the CPMNetwork component. This code
implements the “add node” task of figure 20.

updated on all users’ displays. The UAN’s implicit concurrency control guarantees that when a
node is moved, the display will be correctly updated before other users modify the positions of other
nodes. This avoids the possible situation of lines being redrawn to connect to nodes that have in
the meantime been moved by someone else.

This example also shows, however, that as well as being used to avoid race conditions, concurrency
control is also an important part of user interface design. Consider for example, that two users try
to simultaneously move the same node in opposite directions. UAN’s concurrency control would
guarantee a logical but annoying result – the users would engage in a tug of war, where the node
would jump back and forth in response to each mouse movement. A better design (as shown in
figure 9) is to allow the first user to obtain a lock on the node, move the node, and then release
the lock. Other users are then forbidden from moving a node which is locked by someone else. As
was shown in figure 16, we then augment the display of nodes so that a locked node appears with
a grey background, making it easier for users to see where other people are working. The locking
mechanism is not built in to UAN – we are simply using interface state to record who has a lock.
Of course, UAN’s concurrency control is being exploited to ensure that no race conditions occur in
the assignment of locks.

This form of concurrency control is not to prevent race conditions or inconsistent state, but simply
to provide a better user interface. It should therefore not be suprising that we have to explicitly
perform node locking in our UAN specification: the UAN is not intended to arbitrate what is good
user interface design, but rather to allow us to describe any design we like, good or bad.

5.1 Clock and Concurrency Control

The Clock language provides built-in concurrency control in order to shield programmers from the
details of avoiding race conditions. Clock’s concurrency control mechanism follows exactly the same
rule as the UAN concurrency control: whenever a user input is handled, a Clock implementation
must behave as if all consequent state and view updates are atomic. That is, in cases where inputs
conflict, the Clock run-time system must introduce synchronization to ensure that the earlier input
completes before the later input begins. Since Clock uses exactly the same concurrency control rules
as UAN, mapping concurrent tasks from UAN to Clock is straightforward.

29

Figure 21 shows the Clock code implementing the “add node” task of figure 20. This code states
that if the mouse is depressed on some empty part of the canvas in the context of the “Adding Node”
mode, then a new node is to be created at that location, with a node identifier obtained via the
Count ADT. Similarly to the UAN specification, the node is created, positioned, and the counter is
incremented to provide a unique identifier for the next new node.

Clock’s automatic concurrency control guarantees that race conditions cannot lead to two new
nodes being assigned the same identifier. When the mouse is depressed, the system must permit all
state and view updates resulting from the input to take place before any later inputs refer to the
state. Therefore, when two nodes are created almost simultaneously, the later node creation is not
permitted to reference the counter before it has been updated. This means that simple writing the
UAN description as Clock code guarantees the same concurrent behaviour.

Similarly to the UAN, Clock allows higher-level concurrency control to be built from this primitive
level. For example, as was seen in section 4.6, the UAN description of connecting two nodes (fig-
ure 14) mapped directly into the the Clock code of figure 19. The Lock ADT provided the locking
operations developed in the UAN description. Clock’s low-level concurrency control guarantees that
race conditions cannot occur in the assignment of locks.

The ability to easily specify concurrent dialogues is one of the UAN’s greatest strong points. Be-
ing able to solve concurrency problems at the UAN’s high level and then methodically derive an
implementation provides a strong incentive for creating and maintaining UAN specifications.

6 Analysis

The previous sections have presented the Clock methodology for deriving implementations from task-
oriented specifications. We have argued that the derivation process helps motivate programmers to
utilize UAN specifications, and helps them appreciate the value of user-centered design processes.

The main contribution of the derivation process is that it allows designers to specify the behaviour
of a user interface in a task-oriented setting. Particularly with modern user interfaces, which may
involve multiple users and multiple media, it is helpful to be able to design at the more natural task-
oriented level. From the task-oriented specifications, the general case of view and input handling
functions can be derived using the simple decision tree method shown in sections 4.5 and 4.6. This
process provides a useful form of user interface evaluation: if it is hard to derive decision trees from
the UAN specification, it often means that the user interface is overly complex or inconsistent.

An obvious question is whether this derivation could be performed automatically. With the UAN
in its current form, automatic derivation is not possible. The UAN contains pseudo-code and prose
descriptions that are too imprecise to implement without human intervention. More seriously, UAN
descriptions tend to be incomplete: for example, the UAN specification of the CPM planner presented
in appendix A fails to consider some cases of erroneous use. Tightening up UAN specifications to
make them complete and precise risks making the notation so cumbersome that it is no longer of
interest to designers.

Another approach to deriving implementations from task-oriented descriptions can be found in the
area of programming by demonstration. For example, the Marquise [22] tool allows developers to
demonstrate the dynamic behaviour of user interfaces. Demonstrations are in effect task-oriented,
since developers walk through a sample use of the system they are creating, showing how the
system is meant to respond to user inputs. From multiple demonstrations, Marquise automatically
generates user interface code. Programming by demonstration approaches are highly promising, but

30

require further research before being practically usable. In particular, it is not yet clear how well
demonstrational approaches handle concurrent user interfaces.

One of the strongest motivations for using the UAN is its high level handling of concurrency and
concurrency control. It is very difficult for a programmer to anticipate and correctly handle all
possible concurrent uses of a system. Even in a system as simple as the CPM planner, concurrent
behaviour is complex. Consider, for example, the rules when a node may be locked: from a task-
oriented point of view, it is clear that a node should be locked in two instances: when we are moving
it, and between the time that we move over it as a connection target and the time we release the
mouse. For a programmer to correctly isolate these cases using the implementation point of view
would be challenging.

The treatment of concurrency in user interface development tools is, however, still controversial.
In our Clock system, we have adopted concurrency control rules identical to those of the UAN,
supporting a simple mapping from UAN specifications to Clock code. Some researchers argue that
this level of concurrency control is inherently too inefficient, and advocate instead optimistic (or
relaxed) concurrency control schemes [9, 23]. Even when the target language does not support
full concurrency control, we believe it is still beneficial to use the UAN to specify what concurrent
behaviour we would like to have, even if our tools do not guarantee that they will support it.

7 Conclusion

This paper has presented the Clock methodology, a process for deriving user interface implemen-
tations from task-oriented specifications in the User Action Notation. We have demonstrated the
methodology by showing how an interactive system implementing a critical path method planner
can be first specified in UAN, and then methodically derived from the specification.

The User Action Notation is an important tool in supporting participatory, user centered design of
interactive systems. By directly aiding programmers in their implementation, the Clock methodology
encourages programmers to participate in such processes.

While our presentation of the methodology is based on the Clock language for interactive system
development, the methodology is primarily based on features present in many modern user interface
tools: a strong separation of architecture from code; a clean separation of input and output, and
high-level treatment of concurrency and concurrency control.

Acknowledgements

Clock, ClockWorks and the Clock UAN Browser were developed by the authors, Roy Nejabi and
Gekun Song. This work was carried out at the York Laboratory for Computer Systems Research
(LCSR) and the German National Research Centre for Computer Science (GMD), and was partially
supported by the Natural Sciences and Engineering Research Council, the Information Technology
Research Centre, and the Royal Norwegian Research Council. This paper benefitted from numerous
discussions with Judy Brown of the University of Victoria at Welland, New Zealand.

31

References

[1] Joelle Coutaz. PAC, and object-oriented model for dialog design. In Proceedings of INTERACT’87,
pages 431–436, 1987.

[2] Herbert Damker. Spezifizierung und Architekturentwurf von Benutzungsschnittstellen: eine Fallstudie
in der Clock-Methodologie. Studienarbeit, Universität Karlsruhe, September 1992.

[3] James B. Dilworth. Production and Operations Management: Manufacturing and Services, Fifth Edi-
tion. McGraw Hill, New York, 1993.

[4] Emden R. Ganser and John H. Reppy. A foundation for user interface construction. In Brad A. Myers,
editor, Languages for Developing User Interfaces, chapter 14, pages 239–260. Jones and Barlett, 1992.

[5] T.C. Nicholas Graham. Constructing user interfaces with functions and temporal constraints. In Brad A.
Myers, editor, Languages for Developing User Interfaces, chapter 16, pages 279–302. Jones and Bartlett,
1992.

[6] T.C. Nicholas Graham. The Clock Language. Technical Report CS-ETR-95-01, Department of Com-
puter Science, York University, 1995.

[7] T.C. Nicholas Graham, Catherine A. Morton, and Tore Urnes. Clockworks: Visual programming of
component-based software architectures. Journal of Visual Languages and Computing, 1996(7):175–196,
July 1996.

[8] T.C. Nicholas Graham and Tore Urnes. Efficient distributed implementation of semi-replicated syn-
chronous groupware. In Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST’96). ACM Press, November 1996. (To appear).

[9] Saul Greenberg and David Marwood. Real time groupware as a distributed system: Concurrency control
and its effect on the interface. In Proceedings of the ACM 1994 Conference on Computer Supported
Cooperative Work (CSCW’94), pages 207–217. ACM Press, October 1994.

[10] H. Rex Hartson and Philip D. Gray. Temporal aspects of tasks in the User Action Notation. Human-
Computer Interaction, 7(1):1–45, 1992.

[11] H. Rex Hartson, Antonio C. Siochi, and Deborah Hix. The UAN: A user-oriented representation for
direct manipulation interface designs. ACM Transactions on Information Systems, 8(3):181–203, July
1990.

[12] Ralph Hill. Supporting concurrency, communication and synchronization in human-computer interac-
tion: the Sassafrass UIMS. ACM Transactions on Graphics, 5(3):179–210, July 1986.

[13] Ralph D. Hill. Languages for construction of multi-user multi-media synchronous (MUMMS) applica-
tions. In Brad A. Myers, editor, Languages for Developing User Interfaces, pages 125–146. Jones and
Bartlett, 1992.

[14] Ralph D. Hill, Tom Brinck, Steven L. Rohall, John F. Patterson, and Wayne Wilner. The Rendezvous
language and architecture for constructing multiuser applications. ACM Transactions on Computer-
Human Interaction, 1(2):81–125, June 1994.

[15] Paul Hudak and Philip Wadler. Report on the functional programming language Haskell (v1.1). Tech-
nical Report YALEU/DCS/RR777, Yale University, August 1991.

[16] Glen E. Krasner and Stephen T. Pope. A cookbook for using the Model-View-Controller interface
paradigm. Journal of Object-Oriented Programming, 1(3):26–49, 1988.

[17] Mark A. Linton, John M. Vlissides, and Paul R Calder. Composing user interfaces with InterViews.
IEEE Computer, 22(2):8–22, February 1989.

[18] Rich McDaniel and Brad A. Myers. Amulet’s dynamic and flexible prototype-instance object and
constraint system in c++. Technical Report CMU-CS-95-176, School of Computer Science, Carnegie
Mellon University, July 1995.

[19] Catherine Morton. Tool support for component-based programming. Technical Report CS-94-02, De-
partment of Computer Science, York University, May 1994.

[20] Brad A. Myers. Why are human-computer interfaces difficult to design and implement? Technical
Report CMU-CS-93-183, School of Computer Science, Carnegie Mellon University, July 1993.

32

[21] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden, David S. Kosbie, Edward
Pervin, Andrew Mickish, and Philippe Marchal. Garnet: Comprehensive support for graphical, highly
interactive user interfaces. IEEE Computer, 23(11):71–85, November 1990.

[22] Brad A. Myers, Richard G. McDaniel, and David S. Kosbie. Marquise: Creating Complete User
Interfaces by Demonstration. In Proceedings of ACM INTERCHI’93 Conference on Human Factors in
Computing Systems, pages 293–300, 1993.

[23] David A. Nichols, Pavel Curtis, Michael Dixon, and John Lamping. High-latency, low-bandwidth
windowing in the jupiter collaboration system. In Proceedings of the Eigth Annual Symposium on User
Interface Software and Technology (UIST’95), pages 111–120. ACM Press, November 1995.

[24] Jenny Preece. Human-Computer Interaction. Addison-Wesley, Wokingham, 1994.

[25] Richard N. Taylor, Kari A. Nies, Gregory Alan Bolcer, Craig A. MacFarlane, Kenneth M. Anderson, and
Gregory F. Johnson. Chiron-1: A software architecture for user interface development, maintenance,
and run-time support. ACM Transactions on Computer-Human Interaction, 2(2):105–144, 1995.

[26] Eric Telford. Developing a UAN browser in clockworks: a case study of incremental development using
the clock methodology. Technical Report CS-96-03, Department of Computer Science, York University,
June 1996.

33

A Collected Transformation Rules

1. Develop a skeleton architecture:

• From the design of screen layouts, identify the compositional structure of the system, and map
it to a parent-child structure.

• Implement alternatives (e.g., alternative screens) as siblings, with a parent to choose which is
active.

2. Partition interface state into ADT’s:

• Partition logically separate parts of the interface state into separate ADT’s, each responsible for
maintaining some part of the interface state.

• Assignments to interface state in the interface state column become updates; references to inter-
face state in the interface state, interface feeback and connection to computation columns become
requests.

• The collection of updates and requests handled by an ADT become the ADT’s interface.

3. Position the ADT’s:

• Position ADT’s at the lowest point in the tree where they are visible to all components that use
them.

4. Assign inputs:

• Add inputs to the interfaces of components that are responsible for parts of the interface that
take user input (e.g., mouse clicks, key clicks, mouse motion).

5. Encode view functions:

• Add a view function to each component, expressing the component’s appearance as a function
of the current system state. Use the design documents as a basis for specifying this presentation.

• For each change in view expressed in the interface feedback column, first determine which com-
ponent handles the aspect of the view that has changed. Then link the change in view to an
accompanying state change.

• Encode the view function as a decision tree, where the composition of the view depends on the
current state. if and case expressions are used to select among the different possible view states.

6. Encode input functions:

• For each type of input a component handles, provide an input function.

• For each input specified in the user actions column, the corresponding input function should
generate updates to effect the state changes specified in the interface state and connection to
computation columns.

• When the an input can have more than one interpretation (i.e., if the user interface is modal), each
interpretation will be specified in the user actions column of some task. Use the interface state
to distinguish between the different input interpretations. Encode these in the input function
with an if or case expression.

34

B UAN for the CPM Example

TASK: Plan a project
USER ACTIONS
(Identify job steps and dependencies)

|| (Allocate resources)

TASK: Identify job steps and dependencies
USER ACTIONS
Create a CPM network

TASK: Create a CPM network
USER ACTIONS
(Specify job steps) || (Specify dependencies) || (Beautify network)

TASK: Specify job steps
USER ACTIONS
(Specify job step) +

TASK: Specify a job step
USER ACTIONS
Create a node in CPM network

TASK: Specify dependencies
USER ACTIONS
(Specify a dependency among two job steps) +

TASK: Specify a dependency among two job steps
USER ACTIONS
Connect two nodes in CPM network

TASK: Allocate resources
USER ACTIONS
Perform initial allocation
(Adjust allocation) *

TASK: Perform initial allocation
USER ACTIONS
Allocate resources to job steps

TASK: Allocate resources to job steps
USER ACTIONS
(Allocate resources to a job step) *

TASK: Create a new node
USER ACTIONS INTERFACE STATE INTERFACE FEEDBACK
Select mode “new node”
~[x,y] Mv n := nodeCounter Display n at (x, y) on all users’

nodePos(n) := (x, y) displays
nodeCounter += 1

M^

TASK: Select mode (mode)
USER ACTIONS INTERFACE STATE INTERFACE FEEDBACK
{ ~[mode] Mv mode!
M^ currentMode := mode mode-!

∀m′.m′!! : m′−!!
mode!!

}

TASK: Beautify network
USER ACTIONS
Reposition nodes

TASK: Reposition nodes
USER ACTIONS
(Reposition a node) *

35

TASK: Reposition a node
USER ACTIONS INTERFACE STATE INTERFACE FEEDBACK
select mode “move”
~[n] Mv lock n n!

n locked
(~[x,y] nodePos(n) := (x, y) display n at (x,y) on all users’ dis-

plays, moving all connected lines
and rubber-band lines.

)* M^ unlock n n-!
n unlocked

TASK: Connect two nodes in CPM network

USER ACTIONS
INTERFACE

STATE
INTERFACE FEEDBACK

CONNECTION TO
COMPUTATION

Select mode “connect”
~[n1] Mv n1!
((~(x,y) rubber band line follows from

n1 to currentPos
) *

(~[n’] unlocked n′ : have lock n′:
lock n′ n′ locked

n′!
[n’]~ have lock n′ : n′-!

unlock n′ n′ unlocked
)*)*

~[n2] lock n2 n2 locked
n2!

M^ unlock n2 n2 unlocked connect n1 to n2

n1-! n2-!
Remove rubber band line
Show solid line from n1 to n2

on all users’ displays

36

