

Linguistic Support for the Evolutionary Design of Software
Architectures ∗

T.C. Nicholas Graham Tore Urnes
Department of Computer Science

York University
4700 Keele St., North York

Canada M3J 1P3
{graham,urnes}@cs.yorku.ca

Abstract
As a program’s functionality evolves over time, its

software architecture should evolve as well, so that it
continues to match the program’s design. This pa-
per introduces the architecture language of Clock, a
language for the development of interactive, multi-
user applications. This architecture language pos-
sesses three properties supporting the easy restructur-
ing of software architectures: restricted scoping sup-
ported by a constraint-based communication system,
automatic message routing, and easy hierarchical re-
structuring of architectures. Clock’s architecture lan-
guage has a visual syntax, supported by the Clock-
Works programming environment.

1 Introduction
Garlan and Perry describe the process of develop-

ing a software architecture as “[exposing] the dimen-
sions along which a system is expected to evolve”, and
identifying the system’s “load-bearing walls” [3]. Im-
plicit in this analogy is that the internals of the archi-
tecture’s components may evolve over time, but that
changing the system decomposition or the interfaces
between architecture components is to be avoided.

Evolution of software architectures is, however, im-
portant for many kinds of software. As software is
moved from one organization to another, or as re-
quirements change over time, an initial software ar-
chitecture may become cumbersome and inappropri-
ate to the software’s evolving functionality [21]. As
an extreme case, interactive systems are developed
using the process of iterative design [17], where the
design of the software evolves through iterations of
user testing and redesign. To support evolution of the
functionality of an existing program, architecture lan-
guages should therefore support the evolution of the
program’s architectural structure.

Support for the evolution of software architectures
must come at two levels. First, the programmer must
be motivated to provide architecture information and

∗To appear in ICSE’18, March 1996

to keep it up to date. This means that architecture in-
formation must not be just documentation, but must
also improve the implementation of the program. Sec-
ondly, the architecture language and its supporting
tools must permit easy and rapid modification of the
architecture structure.

This paper shows how support for evolution can
be integrated into a software architecture language.
These ideas have been implemented in Clock [5], a
language for the development of interactive systems,
including distributed multi-user systems and group-
ware. Clock is supported by the visual ClockWorks [6]
programming environment, which allows the develop-
ment, refinement and execution of Clock architectures,
and provides linkage to a library of predefined Clock
components.

Information provided in Clock architectures is used
to automatically provide distributed implementations
of multi-user applications and to optimize incremen-
tal display updating. The time that programmers
spend on developing and refining software architec-
tures therefore leads to time saved in network pro-
gramming and tuning.

Through our experience with Clock, we have iden-
tified a desired list of properties of architecture lan-
guages to help them better support the evolutionary
development of software architectures. These are:

Restricted communication among components: A lan-
guage should provide scoping rules restricting the
visibility of components. Restricting visibility re-
duces the potential for direct dependencies among
components, which in turn reduces the impact of
modifying or replacing components. In Clock,
very restrictive scoping rules are made possible
by integrating a constraint system into the archi-
tecture language.

Automatic routing of communication: As architec-
tures evolve, components may be split, removed,
or merged with other components. In order to

Figure 1: A terminal reservation system implemented in Clock.

localize the effects of such changes, components
should not have to name the recipient of mes-
sages they send (or of other communication they
initiate.) Thus, when a component is changed,
the users of that component will not have to be
changed. In Clock, delegation is used to automat-
ically route messages to the correct component.

Easy restructuring of abstraction hierarchies:
Software architecture languages typically pro-
vide abstraction by allowing components to be
grouped in a hierarchical fashion. During evolu-
tion of architectures, it should be easy to break
apart such hierarchies and refashion them to bet-
ter reflect the intended structure. The Clock-
Works environment provides simple facilities for
grouping and ungrouping sets of components.

The paper is organized as follows. The next sec-
tion introduces the problem of architectural evolution
by showing how an example program can evolve due to
changing requirements. Section 3 introduces the Clock
architecture language on which this work is based.
Section 4 shows how integrating a constraint mech-
anism into the architecture language permits the in-
troduction of restrictive scoping rules and automatic
message routing, reducing the impact of architectural
change. Finally, section 5 shows how the architecture
language can support easy hierarchical restructuring.

Although the work described in this paper was car-
ried out in the context of the Clock language, these
properties are not intended to be specific to Clock or
to the specific application domain of interactive sys-

tem development.

2 Architecture Evolution
To help motivate the problem of supporting evo-

lution in software architectures, figure 1 presents an
example system implemented in Clock. This example
implements a terminal reservation system, in which
students are permitted to reserve three one-hour slots
per week. As seen in the figure, a terminal map shows
the layout of terminals in the terminal room. A colour
coding scheme is used to show how long each terminal
is available, ranging from grey to indicate unavailable,
to dark green, indicating the terminal is available for
three hours or more. To reserve a terminal, a student
clicks on the terminal to be reserved, selects a duration
from one to three hours, and clicks on the “Reserve”
button.

Figure 2 shows a view of the Clock architecture for
this program (more detailed views will be presented
throughout the paper). The architecture tree repre-
sents the compositional structure of the system, where
for example the TRSView component is composed of
the three components ReservationPanel, Reservation-
Buttons and Terminals. As shown in the figure, these
components in turn implement the display of the cur-
rent reservations, the buttons for making reservations,
and the pictorial view of a room of terminals.

Over time, a system such as this one might need to
be modified in response to changing requirements. For
example the number of terminals available for reser-
vation might become too large to be conveniently rep-
resented as a map of a terminal room. The program

implements

implements
implements

Terminal
reservation
data base

implements

implements

implements
implements

Terminal
reservation
data base

Figure 2: The Clock architecture of the terminal reservation system of figure 1.

Figure 3: The terminal reservation system of figure 1
is modified to use a text browser rather than a map.

might be modified to the version of figure 3, in which
a scrollable list of terminals is provided. In this ver-
sion, only the terminals which are available for the
selected duration can be reserved; all other terminals
are greyed out.

Ideally, since the change in functionality of this ver-
sion is limited to the way in which the list of termi-
nals is presented, the modification should be as sim-
ple as replacing the Terminals component with a new
component implementing the terminal browser. This
updated architecture is shown in figure 4. In fact,
the ReservationPanel, ReservationButtons and Ter-
minals components are highly interdependent, poten-
tially spreading the ramifications of the change over
many parts of the program. To understand these in-
terdependencies, consider the effect of cancelling the
reservation of terminal “xt018” from figure 1:

• The TRS component must be informed of the can-
cellation;

Figure 4: The Clock architecture of the modified ter-
minal reservation system of figure 3.

• The colour of the “xt018” terminal must be
changed to indicate that the terminal is now free
for a longer period of time;

• The inactive “Three Hours” button must be re-
activated, since the user now has three free reser-
vation slots available instead of just two.

A survey of existing user interface software has con-
cluded that such interdependence among components
leads to a “spaghetti” program structure, providing a
“maintenance nightmare” [13].

Clock’s architecture language so localizes the effects
of change that the modification is as simple as chang-
ing the architecture from the version of figure 2 to that
of figure 4. Following an overview of the Clock ar-
chitecture language, the remaining sections show how
Clock’s architecture language localizes the effects of

Figure 5: A more detailed view of the architecture of the terminal reservation system from figure 1.

architectural change.

3 The Clock Architecture Language
The Clock architecture language was designed to

support the evolutionary design of architectures for
interactive, multi-user systems. As discussed in sec-
tion 1, the language provides the properties of re-
stricted scoping to reduce direct dependencies among
components, automatic message routing via delega-
tion, and easy modification of the hierarchical struc-
ture of architectures. Clock is supported by the visual
ClockWorks programming environment.

As shown in the more detailed view of figure 5,
Clock architectures consist of a tree of communicating
components. Components may respond to user input
(or input from other components), and may produce
graphical output to be placed on the display. Compo-
nents may also contain instances of abstract data types
(ADT’s), such as the the Reservations data base at-
tached to the TRS component. Each component has
a name (e.g., trs) and a class (e.g., TRSView.)

Components may be grouped to form higher-level
components. The contents of groups can be seen by
opening them. The open door (“ ”) icon opens groups
to reveal more detail. The close door (“ ”) icon elides
detail. Completely opening a component invokes an
editor for the program code. Therefore, ClockWorks
is a complete programming environment for Clock, al-
lowing architectures and code development, and pro-
gram execution.

The interface of a component can be shown by tog-

gling the interface (“ ”) icon. Components commu-
nicate via input, request and update messages. For
example, the Terminal component is capable of re-
sponding to the mouseButton input (generated when
a user clicks on a terminal picture), may make the
hoursFree request (to find out how many hours a ter-
minal is free), and may issue the setCurrentTerminal
update (to specify that a terminal has been selected by
the user). In general, the arrows on the left side of a
component indicate the messages the component may
receive, while the arrows on the right side indicate the
messages the component may issue.

Messages are automatically routed up the tree to
the nearest component capable of handling them. This
routing mechanism provides a form of inheritance by
delegation, where components inherit all the facilities
of the components appearing above them in the tree.
This communication mechanism means that compo-
nents can only access the data of components appear-
ing above them – components may not directly com-
municate with their children or siblings. Section 4
shows how a constraint mechanism built into the ar-
chitecture language allows components to communi-
cate indirectly, allowing fully general communication
without the need for explicit communication links.

Components in Clock are implemented using a
scripting language similar to the functional language
Haskell [9]. The architecture language, however, does
not depend on the implementation language used for
components – an earlier version of Clock was based on
Turing [8], a Pascal-like language.

mouseButtonUpdt "Down" = incrementCount.
mouseButtonUpdt _ = noUpdate.

view = NumText getCount.

code

output

Figure 6: Simple example of a constraint. When the user clicks on the displayed number, the count is incremented.
The view is then automatically recomputed to reflect the changed value of getCount. The view is therefore
constrained to display the current value of the counter. The code shown is the complete implementation of the
CountButton component.

4 Communication via Constraints
Clock’s architecture language imposes restrictive

scoping rules, reducing the ways in which components
can directly communicate. These restrictions have the
positive effect of reducing the number of direct depen-
dencies among components, in turn reducing the im-
pact of architectural change. In order to allow com-
ponents to indirectly communicate, Clock embeds a
constraint mechanism into its architecture language.
First, we shall introduce a simple example of these ar-
chitectural constraints, and then show how the mech-
anism can be used to simplify the communication be-
tween the components of the terminal reservation sys-
tem.
4.1 Simple Constraint Example

Figure 6 shows a simple program written in Clock.
The output of the program is an integer number ap-
pearing on the screen. When the user clicks on the
number, it is incremented.

The architecture for this program consists of a sin-
gle component, root of class CounterButton. This
component makes use of a Counter ADT taken from
the Clock library. The Counter maintains an inte-
ger value, which can be incremented, decremented or
queried. CounterButton uses the incrementCount up-
date to increment the counter, and the getCount re-
quest to query the counter value. CounterButton also
takes the mouseButton input, in order to respond to
the user’s mouse clicks.

The code for CounterButton is simple: the mouse-
ButtonUpdt function specifies that when the user clicks
on the number, the number is to be incremented:

mouseButtonUpdt "Down" = incrementCount.
mouseButtonUpdt _ = noUpdate.

(The second line of this function definition specifies
that any mouse button update other than “Down” re-
sults in no update.) The view function specifies that
the component’s display view is to be the current value

of the counter (as obtained via getCount), displayed as
numeric text:

view = NumText getCount.

This view function is a constraint in that its value is al-
ways automatically updated when the counter’s value
changes (and hence the value of getCount changes.)
This constraint has the effect that the displayed num-
ber is always the value of the counter, without the
programmer having to explicitly update the display.
As we shall see, constraints provide a mechanism for
components to respond to changes in other compo-
nents without explicit communication.
4.2 Constraints and the TRS

Figure 7 shows how the terminals in the terminal
room are drawn. Here, the view function states that
each terminal is to be drawn as a terminalView, filled
with the appropriate terminalColour:

view = FillColour terminalColour terminalView.

The terminalView function (not shown here) imple-
ments the picture of a terminal. The terminalColour
function specifies the colour of the terminal based on
the number of hours for which it is free:

terminalColour =
case
hoursFree (myId,currentDay,currentTime)

of
0 -> grey76

| 1 -> darkOliveGreen1
| 2 -> darkOliveGreen3
| _ -> chartreuse4
end case.

Here, hoursFree is a request, taking the three param-
eters of the terminal id (myId), and the day and time
the user has selected (currentDay and currentTime).

view = FillColour terminalColour terminalView.

terminalColour =
 case hoursFree (myId,currentDay,currentTime) of
 0 -> grey76
 | 1 -> darkOliveGreen1
 | 2 -> darkOliveGreen3
 | _ -> chartreuse4
 end case.

code

example
output

Figure 7: An example of the use of constraints in the terminal reservation system of figure 1. The colour of the
terminals is constrained to depend on the current day and time, and the amount of time for which the terminal
is currently free. Therefore, components that change the day or time, or make or cancel reservations do not have
to directly communicate with the Terminal component.

As shown in figure 7, hoursFree is implemented in
the Reservations ADT, and currentDay and current-
Time are requests implemented in the TRSView com-
ponent. This means that the terminal’s colour is con-
strained to these three values of date, time and hours
the terminal is free: if any of these values changes, the
colour on the display is automatically updated.

Figure 8 shows how these constraints allow indirect
communication between components. For example, if
the user advances the time using the arrow buttons in
the reservation buttons display, the DayTimeSelector
component issues the update incrementTime, which
is handled by the TRSView component. Increment-
ing the time changes the value of currentTime, there-
fore automatically triggering the recomputation of the
colour of all terminals, and the redisplay of those ter-
minals whose colour has changed.

This example shows how constraints reduce the
direct dependencies among components. When the
user advances the time, somehow the DayTimeSelec-
tor component must inform the Terminal component
that the terminal colours may be out of date. By us-
ing a constraint, the need for this update is automat-
ically inferred by the Clock run-time system. There-
fore, the DayTimeSelector and TRSView components
need have no direct knowledge of the existence of the
Terminal component. This means that when the pro-

grammer replaces the terminal map functionality with
the browser version, it is guaranteed that there will be
no direct references to Terminal in any other compo-
nent in the system.
4.3 Modifying the Architecture

Figure 9 shows how the architecture can be mod-
ified to implement the browser version of the termi-
nal reservation system. The Terminals component is
replaced by a tree of components implementing the
scrollable list of terminals. In this version, the compo-
nent TerminalLine uses constraints to determine the
appearance of each line in the browser. The complete
view function from TerminalLine is:

view =
let terminalLine = Text myId in
if hoursFree (myId,currentDay,currentTime)

< duration then
TextColour inactiveColour terminalLine

elsif isCurrentTerminal myId then
inverted terminalLine

else
terminalLine

end if
end let.

The basic view of each line is simply the terminal
id as a text string (“Text myId”). If the duration

indirect dependence

update

constraint

Figure 8: Example of how constraints reduce direct dependencies among components. Here the DayTimeSelector
modifies the current time (via the incrementTime update.) The Terminal component depends on the currentTime
request (also defined in the TRSView component) via a constraint. When the time is incremented, the system
automatically infers that an update to the view of terminal may be required.

the user has selected is longer than the number of
hours the terminal is available (“hoursFree (myId,
currentDay, currentTime) < duration”), then the
terminal id is greyed out. If the terminal is the cur-
rently selected one (“isCurrentTerminal myId”), it
is drawn inverted (“inverted terminalLine”). Since
this component is connected into the architecture via
constraints, it is not necessary to modify the exist-
ing architecture components in order to implement its
functionality.

Note that in order to make the duration request
available to the Terminal component, the implemen-
tation of the request was moved up to the TRSView
component. The next section will detail how this was
accomplished.

5 Restructuring of Architectures

While constraints significantly simplify the modifi-
cation of architectures, not all modifications are as
simple as plug-replacing components. To support
more complex evolution, the architecture language
must support easy restructuring of architectures. In
Clock, we have found two techniques to be crucial
in aiding restructuring: communication by delegation,
and easy grouping and ungrouping of components.

5.1 Delegation for Automatic Routing
As architectures evolve, it is common to move

ADT’s, split or combine components, and otherwise
change the locations of where updates and requests
are handled. In typical architecture descriptions, com-
munication is bound to specific components. I.e., it is
necessary to specify exactly where a method call is
directed. This form of explicit targeting makes code
less robust to change, since as components evolve, the
method may no longer be handled by the same com-
ponent. In Clock, requests and updates are automat-
ically routed to the nearest component above the is-
suer of the message that is capable of handling it. This
mechanism is a form of inheritance by delegation. This
automatic routing of messages means that as the im-
plementations of messages evolve, the code that uses
them does not have to be modified. In the Duration
example above, the only operation required to move
the location of the Duration ADT is to drag it up the
tree – none of the code using the messages defined in
the ADT needs to be modified.

The use of delegation to implement routing is only
possible due to Clock’s restricted visibility rules, which
are in turn made possible by the use of constraints in
the architecture language. If components were allowed
to communicate arbitrarily, then some form of explicit
routing would be required.

view =
 let terminalLine = Text myId in
 if hoursFree (myId,currentDay,currentTime)
 < duration then
 TextColour inactiveColour terminalLine
 elsif isCurrentTerminal myId then
 inverted terminalLine
 else
 terminalLine
 end if
 end let.

codeexample
output

Figure 9: The modified architecture supporting the modified terminal reservation system of figure 3.

5.2 Hierarchical Restructuring

As with most architecture languages, Clock allows
components to be grouped together to form higher-
level components. As was shown in section 3, this
grouping mechanism is used extensively in our exam-
ple architectures.

Many tools provide easy support for creating
groups, but not necessarily for modifying them. As ar-
chitecture structures evolve, however, it must be pos-
sible for group structures to easily evolve with them.

A typical use of group restructuring is shown in fig-
ure 10. This example shows how groups can be created
to help create a simpler program structure, and even
to provide reusable components for later use. When
the programmer created the scrollable list of terminal
lines, the browser was composed of a set of terminal
lines, and a scroll bar. The programmer noticed that
the browser and the scroll bar logically belonged to-
gether, as a scrolling browser. To group the browser
view and the scroll bar, the programmer first selects
them, and then groups them. The resulting Browser
component is a browser over arbitrary display objects
(in this case, terminal id’s). By performing the group-
ing operation, the programmer has cleanly separated
the browsing capability from the particular details of
a terminal id browser. By replacing the TerminalLine
component, this browser can be used as a browser for
any other textual or graphical data.

This form of grouping cannot necessarily be per-

formed in advance. Since programmers don’t know
in advance exactly what the functionality of the pro-
gram will be, it is not possible for them to know what
grouping abstractions will be appropriate.

Grouping of this form can be used to implement a
visual form of architecture pattern [1]. The Browser
component is a pattern for how to implement a
browser. When instantiated in a program, the pro-
grammer must provide some component to be the
items over which the browser operates. Such pat-
terns from the library can be treated as black boxes,
where the component is simply instantiated and the
necessary children components filled in; otherwise, the
component can be ungrouped and customized to the
particular application. In practice, Clock program-
mers commonly use both forms of reuse of architecture
groups.

6 Related Work
The design of the Clock architecture language and

the supporting ClockWorks environment owes much
to earlier work in software architecture languages and
environments. This section reviews this earlier work,
based on the desired properties of software architec-
ture languages that we identified earlier.

The notion of using constraints to reduce the direct
dependencies among components is not new to Clock.
The first version of the idea was seen in the Smalltalk
MVC model for user interface development [10]. In
MVC, callbacks are used to automatically trigger view

Figure 10: The BrowserView and ScrollBar components are grouped to create a new Browser component.

recomputation following modification in the state of
an underlying model. The idea of using constraints
as programming language constructs has been exten-
sively developed in the Garnet [15] and RendezVous [7]
systems. Garlan and Scott have also demonstrated
how a constraint-like mechanism can be introduced
into the module systems of traditional languages such
as Ada [4]. Clock differs from these systems in that
the constraint mechanism is tightly bound into the
architecture language, not the underlying program-
ming language. While these earlier approaches per-
mit components to communicate in arbitrary ways,
Clock’s scoping rules imply what communication may
be done directly, and what communication should be
performed using constraints. These scoping rules lead
to the ease of modification of Clock programs.

Other environments build knowledge of scoping into
architecture development. One interesting approach
is the Star system [11] which generates architecture
editing and checking environments from the high-level
specifications of scoping rules. The PegaSys environ-
ment [12] exploits hierarchical architectural structure
to support the formal synthesis of architectures.

Clock’s ability to perform automatic routing of
messages made possible by the architecture language’s
restrictive scoping rules: if components are allowed to
communicate arbitrarily, there is no automatic way of
determining which component should handle a given
message. Systems such as Garnet [14] and Ren-
dezVous [7] use the alternative mechanism of pointer
variables [20] to allow indirect references to compo-
nents. This mechanism allows components to commu-
nicate without explicit reference to the target compo-
nent. Programmers must, however, explicitly main-
tain the values of indirection variables, meaning that
the routing is not completely automatic.

Most tools for implementing architecture languages
are not designed to support easy ungrouping and re-
grouping of architectural components. One notable
exception is the Darwin system [16], which provides
grouping and ungrouping mechanisms very similar to

those of Clock. Darwin’s approach is, however, strictly
hierarchical, and does not allow the parameterization
of component groups seen in the Browser example of
figure 10. Advantages of Darwin over Clock are that
multiple architectures can be edited concurrently and
easily combined, and that both automatic and user-
directed architecture layout are provided.

Numerous authors have pointed out that there are
many styles of software architecture [2, 18] , and that
architecture languages must support this heterogene-
ity [19]. Clock’s architecture language, however, sup-
ports only a single style. To address this problem,
Clock architectures can be treated as primitive units
for composition using other architectural techniques.
There is no reason, for example, why a complete Clock
architecture could not be combined in a pipe and filter
pattern with other architecture components. Another
interesting topic for future research would be to see
how the techniques from Clock’s architecture language
could be integrated into more traditional architecture
languages.

7 Conclusion
This paper has argued that software architectures

cannot be treated as static entities, unchanging over
the life of a program. As the requirements of pro-
grams evolve, so will the architecture appropriate for
implementing them. We have seen that this kind of
evolution is particularly prevalent in interactive sys-
tems.

We have proposed that software architecture lan-
guages should have three properties to better help
them support evolution: communication patterns
should be restricted, communication should be auto-
matically routed, and it should be easy to modify the
hierarchical structuring of the program. These proper-
ties were demonstrated in the Clock architecture lan-
guage. Clock shows how the integration of constraints
into an architecture language reduces the direct de-
pendencies among components, reducing the impact
of architectural modifications. A visual programming

environment supports easy hierarchical restructuring
of Clock architectures.

Ongoing work with Clock is aimed at integrating
support for distributed multi-media into the architec-
ture language, and investigating how Clock architec-
tures can be mapped to different forms of hardware
architectures, including fully replicated architectures
with ATM-based communication.

Acknowledgements
Clock and ClockWorks were developed by the au-

thors, Catherine Morton, Roy Nejabi and Gekun Song.
This work was carried out at the York Laboratory for
Computer Systems Research, and was partially sup-
ported by the Natural Sciences and Engineering Re-
search Council, the Information Technology Research
Centre, and the Royal Norwegian Research Coun-
cil. This paper benefited from helpful comments from
Judy Brown.

References
[1] Kent Beck and Ralph Johnson. Patterns generate ar-

chitectures. In Proceedings of ECOOP ’94, pages 139–
149, 1994.

[2] Thomas R. Dean and James R. Cordy. A syntactic
theory of software architecture. IEEE Transactions
on Software Engineering, 21(4):302–313, April 1995.

[3] David Garlan and Dewayne E. Perry. Introduction
to the special issue on software architecture. IEEE
Transactions on Software Engineering, 21(4):269–274,
April 1995.

[4] David Garlan and Curtis Scott. Adding implicit invo-
cation to traditional programming languages. In Pro-
ceedings of the 15th International Conference on Soft-
ware Engineering, pages 447–455. IEEE Computer
Society Press, April 1993.

[5] T.C. Nicholas Graham. Declarative Development
of Interactive Systems, volume 243 of Berichte der
GMD. R. Oldenbourg Verlag, July 1995.

[6] T.C. Nicholas Graham, Catherine A. Morton, and
Tore Urnes. Clockworks: Visual programming of
component-based software architectures. Journal of
Visual Languages and Computing, July 1996. (To ap-
pear).

[7] Ralph D. Hill, Tom Brinck, Steven L. Rohall, John F.
Patterson, and Wayne Wilner. The Rendezvous lan-
guage and architecture for constructing multiuser ap-
plications. ACM Transactions on Computer-Human
Interaction, 1(2):81–125, June 1994.

[8] Richard C. Holt and James R. Cordy. The Turing pro-
gramming language. Communications of the ACM,
31(12):1410–1423, December 1988.

[9] Paul Hudak and Philip Wadler. Report on the func-
tional programming language Haskell (v1.1). Tech-
nical Report YALEU/DCS/RR777, Yale University,
August 1991.

[10] Glen E. Krasner and Stephen T. Pope. A cook-
book for the using the Model-View-Controller inter-
face paradigm. Journal of Object-Oriented Program-
ming, 1(3):26–49, 1988.

[11] Spiros Mancoridis and Richard C. Holt. Extending
programming environments to support architectural
design. In Proceedings of CASE’95, pages 110–119.
IEEE Computer Society Press, July 1995.

[12] Mark Moriconi and Dwight F. Hare. Pegasys: A sys-
tem for graphical explanation of program designs. In
ACM SIGPLAN 85 Symposium on Language Issues
in Programming Environments, pages 148–160, July
1985.

[13] Brad A. Myers. Separating application code from
toolkits: Eliminating the spaghetti code of callbacks.
In Proceedings of the Fourth Annual Symposium on
User Interface Software and Technology, pages 211–
220. ACM Press, November 1991.

[14] Brad A. Myers, Dario A. Giuse, Roger B. Dannen-
berg, Brad Vander Zanden, David S. Kosbie, Edward
Pervin, Andrew Mickish, and Philippe Marchal. Gar-
net: Comprehensive support for graphical, highly in-
teractive user interfaces. IEEE Computer, 23(11):71–
85, November 1990.

[15] Brad A. Myers, Dario A. Guise, and Brad Vander
Zanden. Declarative Programming in a Prototype-
Instance System: Object-Oriented Programming
Without Writing Methods. In Proceedings of OOP-
SLA’92, pages 184–200. ACM Press, October 1992.

[16] Keng Ng and Jeff Kramer. Automated support for dis-
tributed software design. In Proceedings of CASE’95,
pages 381–390. IEEE Computer Society Press, July
1995.

[17] Jakob Nielsen. Usability Engineering. AP Profes-
sional, Cambridge, MA, 1993.

[18] Mary Shaw, Robert DeLine, Daniel V. Kline,
Theodore L. Ross, David M. Young, and Gregory
Zelesnik. Abstractions for software architecture and
tools to support them. IEEE Transactions on Soft-
ware Engineering, 21(4):314–335, April 1995.

[19] Mary Shaw and David Garlan. Characteristics of
higher-level languages for software architecture. Tech-
nical Report CMU-CS-94-210, School of Computer
Science. Carnegie Mellon University, December 1994.

[20] Bradley T. Vander Zanden, Brad A. Myers, Dario
Giuse, and Pedro Szekely. The importance of pointer
variables in constraint models. In Proceedings of the
Fourth Annual Symposium on User Interface Software
and Technology, pages 155–164. ACM Press, Novem-
ber 1991.

[21] M. Wein, S.A. MacKay, D.A. Stewart, C.-A. Gau-
thier, and W.M. Gentleman. Evolution is essen-
tial for software tool development. In Proceedings
of CASE’95, pages 196–205. IEEE Computer Society
Press, July 1995.

