

Efficient Distributed Implementation of Semi-Replicated
Synchronous Groupware

T.C. Nicholas Graham Tore Urnes Roy Nejabi

Department of Computer Science
York University

4700 Keele St., North York
Canada M3J 1P3

{graham,urnes}@cs.yorku.ca

ABSTRACT
The Model View Controller (MVC) architecture has proven
to be an effective way of organizing synchronous group-
ware applications. Distributed implementations of MVC,
however, can suffer from poor performance. This paper
demonstrates how optimized semi-replication of MVC ar-
chitectures can lead to good performance over both local and
wide area networks. We present a series of optimizations to
network communication based on specific communication
properties of groupware. These optimizations have been
implemented in the Clock groupware development toolkit,
allowing programmers to develop applications directly in
the high-level MVC style, with Clock automatically pro-
viding optimized performance. Timings of an application
developed in Clock show that usable speed was obtained in
a highly interactive groupware application running between
Toronto and Calgary, with a typical latency of 190 ms per
round trip message. The paper discusses the tradeoffs in-
volved in the algorithms, and presents timings to demon-
strate the effectiveness of the different approaches. The
timings show that when running over a wide area network,
the best optimization can achieve a factor 60 speedup over
the naive implementation of distributed MVC.

KEYWORDS: groupware, groupware toolkits, performance
evaluation

1 INTRODUCTION
The implementation of groupware is challenging, due to
the need to support a high-level, iterative and incremental
development method, while at the same time requiring ex-
cellent performance. Considerable research effort has been
devoted to finding means of providing high level support
for the development of groupware while also providing suf-
ficient performance in the resulting applications.

One promising approach has been to organize groupware ap-
plications around derivatives of the Model-View-Controller
(MVC) architecture [7]. The key idea of MVC is that
the data underlying the application (the model) is sepa-
rated from input handling code (the controller) and display
maintenance code (the view). In a groupware application,
each user forms a separate view-controller pair, while the
model represents the shared data and application function-
ality. The MVC architecture frees the programmer from
issues of maintaining consistency between user’s views,
even in the presence of relaxed WYSIWIS (what you see is
what I see) behaviour. Groupware toolkits based on MVC-
like architectures include RendezVous [6], Weasel [4] and
GroupIE [11].

Efficient distributed implementation of groupware based on
MVC has proved difficult, due to the latency of network
communication between the distributed components of the
user interface. As will be seen in section 4, our experi-
ments show that in a straightforward implementation of a
distributed MVC architecture, as much as 95% of view up-
date time can be spent waiting for the network.

This paper presents techniques for optimizing the imple-
mention of distributed groupware based on the MVC ar-
chitecture, and demonstrates experimentally how effective
each technique is. The three optimizations, caching, request
prefetch and request presend identify communication pat-
terns typical of groupware, and provide optimal behaviour
for those patterns. Experiments show that request presend,
the most effective of the optimizations, leads to usable per-
formance in a highly interactive groupware application run-
ning on a standard Internet connection between Toronto and
Calgary, a distance of 3,000 km.

The paper is organized as follows. Section 2 presents the
MVC architecture, and shows how MVC can be imple-
mented in a distributed setting. Section 3 describes the
optimizations. Section 4 then reports experimental perfor-
mance results when these optimizations are applied to the
Clock groupware development tool.

2 MVC AS THE BASIS FOR GROUPWARE
To help motivate how groupware is organized under the
MVC architecture, figure 1 shows an example of a syn-

updates/requests requests

ViewController

Model

user
inputs

view
updates

notifications

Figure 1: A critical path planner application implemented in Clock. Nick is moving a node while Tore is connecting two
nodes.

Figure 2: The MVC Architecture.

chronous groupware application, a simplified planning tool
based on the critical path method. Any number of users may
view and modify a network representing the scheduling of a
set of tasks by moving, adding or connecting nodes. The ap-
plication is relaxed WYSIWIS (what you see is what I see),
where each user sees the same network and immediately
sees the results of changes made by other users, but where
users may select different modes; for example, one user
may be connecting while another adds a new node. The ap-
plication enforces automatic node locking, so that only one
user may move any given node at a time. Implementing
this application involves maintaining consistent displays for
all users, arbitrating concurrent actions, and customizing the
appearance and behaviour of each user’s view. This appli-
cation was developed using the Clock groupware develop-
ment tool, and forms the basis of the experiments described
in this paper.

Figure 2 shows the MVC architecture as implemented by
Clock. Applications are split into three parts – a controller
responsible for input handling, a view responsible for output,
and a model implementing the underlying application and
data. The controller translates user inputs into updates to the
model state. When its state has been modified, the model
notifies the view that view updates may be necessary. The
view then recomputes what (if any) display updates must be
made. This architecture frees the model from details of how
views are updated, and frees the controller from having to
determine which views must be modified as a result of user
inputs. Modern user interface toolkits derived from MVC
include layered extensions such as PAC [2], and constraint-
based approaches such as Garnet [8].

Server

Client 1 Client n

Model

View/Controller
for Participant n

View/Controller
for Participant 1

remote updates / requests

notifications notifications

remote updates / requests

ooo

Figure 3: The semi-replicated implementation of MVC in Clock. The model is implemented on a centralized server, while
each user’s view/controller is implemented on his/her client machine. The left side of the model is annotated to show
the methods it provides, while the right side of the view/controllers are annotated to show the methods they invoke. In
Clock, controllers are implemented via event rules, and views are implemented via constraints.

following user input,
send updates to

shared state

Server

Client

update (u1,p1)

update (um,pm)
ooo

rqChanged (r1)

rqChanged (rn)
ooo

carrry out state
modifications, notify
clients of changes

recompute constraints
triggered by changes, making

any necessary requests

block

request (r1,p1)

response (v1)

block block

request (rn,pn)

response (vn)

ooo

update
complete

respond to requests
as they arrive

indicate no more
requests required

makeConsistent

Figure 4: Naive protocol for updating views in response to changes in the model.

MVC provides an excellent conceptual organization for pro-
gramming groupware. Figure 3 shows how the planner ap-
plication of figure 1 is organized in Clock. The model im-
plements all data and operations shared by the users of the
planner. The shared information includes the structure of
the network, the positions of the nodes and locking informa-
tion. The operations provided by the model include request
methods (shown with a horizontal double-headed arrow) for
querying the shared state, and update methods (shown with
a horizontal single-headed arrow) for modifying the shared
state. Example requests include nodePosition (obtain the
position of a node), allNodes (obtain the list of all nodes)
and allEdges (obtain the list of all edges). Example updates
include setNodePosition, addNode and addLink.

A view/controller pair is dynamically provided for each par-
ticipant in the current groupware session. Each view/controller
pair is responsible for implementing the user interface of
that participant. A controller may update the shared state
by invoking one of the update methods provided by the
model. When the model state is modified, the model noti-
fies the views of all participants that display updates may be
required. The views can then update themselves in parallel,
making necessary requests to the model.

This architecture provides a good separation of concerns.
The model contains no information on how views are com-
puted. This avoids the complexity of centrally keeping track
of a dynamically changing number of customized views.
Since views contain no shared data, bringing latecomers
into a session is also straightforward. Since the model au-
tomatically triggers view computation in the different views,
controllers do not need to be aware of how the inputs of
one user affect the displays of other users. This approach
is similar to the organization of groupware applications in
the RendezVous ALV model [6], where constraints (rather
than requests) are used to propagate information from the
model to the view/controllers, and to the program organiza-
tion under GroupIE [11], which follows a more traditional
MVC organization.

The MVC architecture is also straightforward to implement

in a distributed setting. In what has come to be called a hy-
brid centralized-replicated architecture (or semi-replicated
architecture [4]), the model is implemented on a central
server machine, while the view/controller pair for each user
is implemented on the user’s local client machine. This
approach aids scalability, since the main work of imple-
menting the user interface of each user is distributed to the
clients.

The Clock run-time system maps high-level architecture
specifications in the MVC style into distributed implemen-
tations, where all requests, updates and notifications are
automatically implemented over the network. This allows
programmers to operate within a high-level programming
framework, leaving the run-time system to automatically
take care of issues of distribution, network communication,
and concurrency control.

The serious drawback of semi-replicated architectures is that
the networked implementation of requests from the view to
the model quickly dominate view update time. As will
be seen in section 4, our experiments show that with the
naive implementation of remote requests (i.e., simply mak-
ing requests when necessary and blocking until the response
is received), performance is unacceptably slow even in a
local-area context, and completely unusable in a wide-area
context. In computing a view over a wide area network,
as much as 95% of the client’s time can be spent blocked,
waiting for responses to requests.

To address this problem, we have developed and tested three
algorithms for optimizing network communication. As sum-
marized in section 4, when running on a standard Internet
wide area network between Toronto and Calgary, the best
optimization gives up to a factor 60 improvement over the
naive approach, making the example application acceptably
responsive. These optimizations have been built into the
Clock groupware development tool. This means that Clock
programmers do not have to optimize communication them-
selves – they simply write code directly in the MVC style,
and leave optimization to the run-time system.

Cache

nodePosition “1” (50,50)

nodePosition “3” (160,48)

allEdges [(“1”,“2”), (“1”,“3”)]

nodePosition “2” (150,150)

allNodes [“1”,“2”,“3”]

uncached
requests

state change
notifications

Client

Server

Cache

requestChanged: nodePosition
makeConsistent

nodePosition “1” (50,50)

allEdges [(“1”,“2”), (“1”,“3”)]

nodePosition “2” (150,150)

allNodes [“1”,“2”,“3”]

nodePosition “3” (160,48)

(1) client updates:
 setNodePosition
 “1” (52,103)

(2) Server notifies which requests
 may have changed value

(3) Possibly incorrect cache
 values are tagged as stale

Client

Server

3 OPTIMIZING DISTRIBUTED MVC
In order to understand the optimizations to distributed MVC,
it is first necessary to look at why a naive implementation
is slow. Consider the sequence of communication that is
required when a user performs an update to the model. The
update must be sent from the controller (implemented on
the client machine) to the model (implemented on the server
machine.) The model responds by informing the client that
its view may be out of date. The view is then recomputed,
potentially requiring information from the server. Figure 4
shows the messages exchanged between a client and server
in updating the model and then computing a new view.
Following a user update, the client generates a series of
updates u1(p1), . . . , un(pn) which are sent to the server. The
server carries out the updates, and then notifies each of the
clients of request values that may have changed (through the
messages rqChanged (r1), . . . ,rqChanged (rn).) The
clients then recompute those parts of their views that may
be affected by the change, generating requests for the server.
Following each request, the client blocks until the response
is returned.

As the distance between the client and server increases, net-
work latency increases, and the time spent blocking quickly
dominates the view update time. The optimizations pre-
sented in the next three subsections all aim to reduce the
time clients spend waiting for the network, at the cost of
performing extra work in both the client and server to avoid
or optimize communication. The timing results of section 4
show that even in the relatively low-latency case of a local
area network, these optimizations all improve performance.

In order to implement this protocol correctly, some kind
of concurrency control scheme is required [5]. Any scheme
can be used; for now, the Clock system uses a simple server
locking scheme that in effect serializes user updates. On-
going work is directed at more sophisticated schemes for
ensuring the atomicity of updates without necessarily re-
quiring central locking.

3.1 Optimization 1: Request Caching
The idea behind request caching is to dynamically collect
the values of remote requests in a cache. As long as we
can prove that the value of the request has not changed
since we last made it, we can use the local cache value
rather than the remote value. As will be shown in section 4,
this optimization alone improves performance by a factor of
seven in our example application.

Figure 5 shows how a request cache is constructed. When-
ever a client makes a request, the request and its value are
entered into a cache list attached to the client. For example,
here the position of node 1 was last reported to be the coor-
dinate (50, 50). When subsequent requests are made, they
are compared to the requests in the cache. If the request is
available in the cache, the local result is used, saving the
cost of a remote request.

The server is responsible for invalidating cache entries. When-
ever an update is made to server state (step 1 of figure 6),
all requests implemented by the handling component po-
tentially change value. The server then informs the clients

Figure 5: Cache optimization: remote requests can
be reduced by maintaining a request cache in the
client.

Figure 6: When a node position is changed (i.e., node
“1” is moved to position (52, 103)), the server no-
tifies that client that the “nodePosition” request has
changed. The client tags all “nodePosition” entries in
the cache as stale (shown by greying out the cache
values).

following user input,
send updates to

shared state

Server

Client

update (u1,p1)

update (um,pm)
ooo

rqChanged (r1)

rqChanged (rn)
ooo

carrry out state
modifications, notify
clients of changes

prefetch stale
cache values

block

request (r1,p1)

response (v1)

block block

request (rn,pn)

response (vn)

update
complete

respond to requests
as they arrive

indicate no more
requests required

makeConsistent

ooo

ooo

recompute constraints
triggered by changes, making

any necessary requests

request (r?,p?)

response (v?)

Cache

(1) client updates:
 setNodePosition
 “1” (52,103)

(3) server presends
 changed cache entries:

nodePosition “1” (50,50)

allEdges [(“1”,“2”), (“1”,“3”)]

nodePosition “2” (150,150)

allNodes [“1”,“2”,“3”]

nodePosition “3” (160,48)

(2) server
 recomputes
 values of stale
 cache entries

requestChanged:
 nodePosition “1”
 -> (52,103)

Client

Server

Figure 7: Protocol for updating views including request prefetching.

of these potential changes (step 2), causing the clients to
tag all cache entries for these requests as “stale” (step 3).
The results attached to stale cache entries are potentially
incorrect, and therefore may no longer be used.

This algorithm is simple and conservative: the fact that data
flow analysis is used to predict which requests may be out
of date results in all stale cache entries being identified, but
can invalidate many cache entries whose values have not
changed. Despite this conservatism, section 4 shows that
the algorithm produces substantial savings over both local
and wide area networks.

In Clock, caching is also used as the basis of an algorithm
for incremental display recomputation, similar to lazy con-
straint evaluation [12]. The savings brought from incremen-
tal display recomputation are insignificant, however, com-
pared to the savings in networking.

Caching can be seen as a form of data replication, in that
data of interest to clients is represented locally. Request
caching differs from standard replicated approaches (e.g.,
as used in GroupKit [10]), since only data that is actually
used by clients is replicated, as opposed to the complete
shared context.

3.2 Optimization 2: Request Prefetch
The motivation behind the second optimization is that we
could dramatically reduce the time waiting for request re-
sults if we could predict exactly what requests were to be
made, make them all at once, and then compute the updated
view. This way, instead of having to wait for each request
value as we make the request, we collapse all latency into
a single request/response pair consisting of all requests and
responses.

Predicting exactly what requests will be made in updating
a view is in general uncomputable. However, a reasonable
guess can be obtained by simply looking at the client’s cache
– in practice, chances are high that a view will make exactly
the same set of requests this time as it made last time it was
evaluated. Therefore, when evaluating a client’s view, all
stale requests made by the client are first prefetched.

Figure 8: Presend optimization: By maintaining a re-
quest cache in the server, prefetches can be antici-
pated.

following user input,
send updates to

shared state

Server

Client

update (u1,p1)

update (um,pm)
ooo

rqChanged (r1,p1,v1)

rqChanged (rn,pn,vn)
ooo

carrry out state
modifications,

presend changes

block block

update
complete

respond to requests
as they arrive

indicate no more
requests required

recompute constraints
triggered by changes, making

any necessary requests

request (r?,p?)

response (v?)

makeConsistent

Figure 9: Protocol for updating views including request presending.

Figure 7 shows how request prefetching is performed. As-
sume the client has a cache with some stale entries (as in
figure 6.) The client then sends the stale requests to the
server in a batch. The server sends back all responses in
a batch, allowing the cache to be updated. The view is
computed; if any additional requests are required, they are
made synchronously.

Our experiments show that in practice, the cache is a good
predictor for what requests will be made in updating a view.
When a user moves a network node, for example, the cache
perfectly predicts what requests will be made, so that no
additional synchronous requests are required. This speeds
up client view updates by a factor of 1.5 to 5 over caching
alone.

Request prefetching is a protocol optimized around knowl-
edge that we are implementing a groupware application. In
other application domains, it would not necessarily be the
case that just because a request was made in the past, it is
worth prefetching the request prior to future computation.
As shown by our experiments, however, in groupware the
same requests tend to be made repeatedly. Intuitively, this
is to be expected – groupware programs typically involve
some shared artifacts that are manipulated by different users.
As the artifacts are modified, the view makes a similar se-
quence of calls to derive an updated display. In addition to
the application formally tested in this paper, our experience
has been that other applications also have this property that
past requests are a good predictor for future requests.

3.3 Optimization 3: Request Presend
A refinement to the prefetch optimization of section 3.2 is
request presend. The motivation behind presending is to
collapse the three steps of request change notification, re-
quest prefetching and response into a single step. Figure 8
shows how presending works. In addition to the client, the
server also maintains a request cache, recording what re-
quests have been made, and who made them. Based on this
cache, the server can compute what requests a client would
make if it were to perform a prefetch operation. The server
then anticipates the prefetch, and presends the information

without having to be asked.

That is, when a client updates the server state, the server
determines which cache entries are stale. The server then
recomputes the values of stale cache entries to determine
which requests have actually changed value. The server
then sends change notifications, including the new request
values, to the clients. The clients update their local caches,
gaining the same information as would be obtained in a
prefetch operation.

Figure 9 shows the updated protocol for request presending.
From the protocol, it can be seen that the three messages
required for request prefetching have been collapsed into
one. Despite the extra work of maintaining caches at both
the server and client side, the next section shows that this
optimization provides no worse performance over a local
area network, while providing a factor two speedup over the
prefetch optimization when run over a wide area network.
The factor two speedup is not surprising, given that the
protocol collapses two synchronous requests into one.

Request presending can be seen as addressing the funda-
mental problem of MVC, that change notification messages
do not adequately specify what has changed in the model,
requiring the view to request more information. Presending
allows the model to guess what changes are of interest to the
view, and send the updated values together with the change
notification message. This can be seen as an automatic re-
alization of the Suite [3] toolkit’s relaxed MVC approach,
where programmers augment update messages with infor-
mation as to what changed in the model.

Systems such as Garnet [8] and RendezVous [6] implement
the MVC model using a more restricted form of constraints
than used in Clock. These systems permit values to be
constrained to other values, but not to the values of meth-
ods. For example, in the critical path planning application
(figure 3), the view depends on the value of the nodePo-
sition method: whenever nodePosition “1” changes value,
the view must be updated. In restricted constraint systems,
this dependence would have to be expressed differently, ei-

1000
960

920
880
840

800
760

720
680
640

600
560

520
480
440

400
360

320
280

240
200
160

120
8 0

4 0
0

T
i

m
e

(

m
s
)

Location of Server
Toronto Kingston Calgary

Naive

Cache
Prefetch

Presend

2.8s 16.3s 2.6s Naive Cache P r e f e t c h Presend
Toronto 478± 18 71± 4 48± 1 46± 2

Kingston 2,820± 77 407± 24 159± 5 88± 3

Calgary 16,307±1459 2,649±306 556±85 256±45

Figure 10: Timing results comparing the four algo-
rithms with a client in Toronto and the server at three
different sites.

ther by linking the view directly to a data structure con-
taining all node positions, or by introducing intermediate
value slots representing the values of each of the node po-
sitions. The former approach violates information hiding
by revealing the data structure’s format to the view, while
the second places the burden on the programmer of having
to dynamically create the intermediate objects and links to
them. These restricted constraints have the advantage that
the presend optimization can be implemented more easily
than we have presented here, since the restriction to first
order values simplifies data flow analysis used to predict
what values will be needed in the future. However, the re-
strictions also imply a loss of notational flexibility for the
programmer. Bharat and Hudson’s Doppler algorithm [1] is
also based on this restricted form of constraint.

4 EXPERIMENTAL RESULTS
In order to test the properties of the algorithms described in
section 3, we carried out a series of experiments. The first
experiments were designed to demonstrate the relative per-
formance of the different communication algorithms, rang-

Figure 11: The raw times underlying the graph of fig-
ure 10. The times are in milli-seconds, and express
a 90% confidence interval based on 100 samples.

ing over local and wide area networks. The second ex-
periments were designed to show how well each of the al-
gorithms scales as additional participants are added to the
session. The experiments clearly show that presending is
the best approach in both local and wide area contexts, pro-
viding both the best overall performance and the best scal-
ability of all algorithms presented. The experiments further
show that when applying presend, the example application
is very responsive between Toronto and Kingston, and us-
able between Toronto and Calgary.

4.1 Algorithm Speeds over Wide Area
For each of the four algorithms and for local and wide area
networks, the first experiment measures how quickly user
inputs translate into view updates. To achieve this, we timed
how long it takes for the system to respond to a user moving
a node in the critical path network of figure 1. Precisely,
we measured the real time in milli-seconds from the mo-
ment the client starts processing user input to the time the
updated view has been displayed. Some concurrency con-
trol overhead common to all views is not included in the
times. (This is because our experiments are not aiming to
test the effectiveness of our concurrency control algorithm;
in fact Clock currently uses a naive central locking scheme
for concurrency control. Typical times to obtain a lock are 1
ms in the local area context, and up to 200 ms in the wide
area context.) In the experiment, the client machine was
always a Sun SparcStation 10 (75 MHz SuperSparc proces-
sor) located at York University in Toronto. We timed the
same operation using server machines at three different lo-
cations: at York University in Toronto (SGI Indy, 174 MHz
MIPS R4400), at Queen’s University in Kingston, 260 km
from Toronto (SGI Indy, 100 MHz MIPS R4000), and at the
University of Calgary, 3,000 km from Toronto (SGI Indy,
133 MHz MIPS R4600.) Therefore, the view and controller
were located in Toronto, while the model was located up to
3,000 km away. 100 samples were taken of each optimiza-
tion level at each location. The local area experiments were
carried out over ethernet. The links to Kingston and Cal-
gary were via the internet. At the time of the experiments,
the latency of a round-trip message was approximately 30
ms between Toronto and Kingston, and 190 ms between
Toronto and Calgary.

Figure 10 shows the results of this experiment. Figure 11
shows the actual numbers obtained, and provides a 90%
confidence interval. These results demonstrate that the rank-
ings of the methods within each location are statistically
significant, with the exception that the difference between
the prefetch and presend algorithms is insignificant in the
local area context.

300

200

100

0

T
i

m
e

(
m
s
)

Number of Clients
1 2 3 4

Cache

Prefetch

Presend

Naive Cache P r e f e t c h Presend
1 Client 519±62 68± 2 61±1 50±1

2 Clients 750±72 118±40 64±1 58±2

3 Clients 867±82 250±70 74±1 67±2

4 Clients 1,150±82 267±70 86±1 70±2

Figure 12: The time to update the views of 1 – 4
clients using the three optimizations.

The results show that in the Toronto and Kingston locations,
display updates are basically instantaneous when using the
presend optimization. This is a very positive result, given
that the application is running over the internet between two
locations separated by 260 km. The 1/4 second update time
between Toronto and Calgary is no longer instantaneous, but
remains usable.

4.2 Algorithm Scalability
The second set of experiments was designed to demonstrate
the scalability of the different algorithms, since potentially
an algorithm designed to work well with one client might
behave poorly with multiple clients. These experiments
show that the presend algorithm, in addition to being the
fastest algorithm for one user, also posesses the best scala-
bility.

Figure 13: The raw times underlying the graph of fig-
ure 12. The times are in milli-seconds, and express
a 90% confidence interval based on 100 samples.

The experiments were performed with the server (Sparc-
Station 10) and all clients (SGI Indy) located at York Uni-
versity. We repeated the experiment of moving a node in
the critical path example of figure 1, except that this time
the node was moving simultaneously on the displays of up
to four other participants. We measured at the server the
real time elapsed from the time a user requested permission
to perform an update, to the time that all clients reported
the update had been reflected on their display. This time
is slightly longer than that measured in section 4.1, since
the measurements were at the server and therefore included
the time for concurrency control arbitration. (The client and
server machines were also swapped with the faster machine
now acting as server instead of client.) 100 samples were
taken for each of one through four clients.

Figure 12 shows the results of these experiments. (The
figures for the naive implementation are not included since
they dwarf those of the other algorithms.) The raw numbers
are shown in figure 13, demonstrating that the differences
between the algorithms are statistically significant.

The graph of figure 12 clearly shows that both the prefetch
and presend approaches give excellent scalability, at least up
to the four clients measured. Both algorithms scale roughly
equally, with presend remaining the faster of the two.

5 RELATED WORK
Our main intention in presenting these optimizations is to
demonstrate that it is possible to implement efficiently dis-
tributed groupware structured using the MVC architecture.
We believe that MVC and its derivative architectures pro-
vide a natural way of implementing groupware, allowing
developers to spend more time investigating groupware de-
sign and less time programming. The MVC organization
for groupware was investigated in the RendezVous tool [6],
using constraints as the basis of notification of change in
shared data. RendezVous was implemented purely central-
ized, and hence suffered scalability problems.

Bharat and Hudson [1] have also examined distributed con-
straints as the basis for groupware implementation, and have
presented the Doppler algorithm for optimized concurrent
evaluation of distributed constraints. The primary contribu-
tion of Doppler is to maximize the concurrent processing
of updates performed by different users, as opposed to the
problem we have tackled, of trying to process a single user
action as quickly as possible.

Another approach to implementing groupware is full repli-
cation, as supported (for example) by the GroupKit [10]
toolkit. In this approach, every user has a complete copy of
the application and its data. State updates are broadcast, and
processed locally by each user’s machine. Display updates
in response to local changes are immediate, since all neces-
sary data is available locally. Full replication can be more
scalable than our semi-replicated approach, since there is
no contention for a shared server machine. Full replication
is not always possible, however: applications may depend
on large data bases or media servers that reside in only one
location and cannot readily be replicated, or may depend on
proprietary data which may be queried but not replicated.

For some applications, processing updates to shared state
may be computationally expensive, requiring special, cen-
tralized hardware. Therefore, our semi-replicated approach
is a necessary alternative when full replication is not pos-
sible. We are currently investigating whether performance
gains can be realized from a hybrid scheme in which some
shared data is centralized and some replicated.

Another approach to reducing network communication is
the use of optimistic concurrency control, such as in the
Jupiter collaboration system [9]. In Jupiter, users maintain
some shared state locally. By using the local state, imme-
diate feedback can be provided in response to user actions
without any need for network communication at all. Con-
flicting actions can only be detected after the fact, and are
arbitrated by a server. Pessimistic concurrency control such
as used in Clock gives perfect synchronization of conflicting
actions, and is therefore preferable if the network can sup-
port it. Optimistic concurrency control is preferable in sit-
uations where latency is too high to support the pessimistic
approach. Our optimizations can be seen as extending the
distance over which the pessimistic approach is practical.

We are currently examining how information present in
client caches can be exploited to permit more optimistic con-
currency control, allowing clients to compute views based
on current cache values. We believe this has the potential in
most cases to eliminate the concurrency control overheads
reported in section 4 while still preserving pessimistic se-
mantics.

6 CONCLUSIONS
This paper has demonstrated that it is possible to efficiently
implement groupware using an architecture based on MVC.
Programmers can therefore develop software using a model
that hides the difficult problems of network communica-
tion, distribution and consistency maintenance among dif-
ferent users, and still receive reasonable performance in a
wide area setting. The paper has presented three algorithms
for optimizing network communication, and demonstrated
through timings how much improvement each optimization
brings.

7 ACKNOWLEDGEMENTS
Clock and ClockWorks were developed by the authors, as
well as Catherine Morton and Gekun Song. This work
was carried out at the York Laboratory for Computer Sys-
tems Research, and was partially supported by the Natural
Sciences and Engineering Research Council, the Informa-
tion Technology Research Centre, and the Royal Norwegian
Research Council. We would like to thank Jim Cordy of
Queen’s University at Kingston and Saul Greenberg of the
University of Calgary for the use of their equipment in the
experiments described in this paper.

REFERENCES
1. Krishna A. Bharat and Scott E. Hudson. Supporting

distributed, concurrent, one-way constraints in user
interface applications. In Proceedings of the Eigth
Annual Symposium on User Interface Software and
Technology (UIST’95), pages 121–132. ACM Press,
November 1995.

2. Joelle Coutaz. The construction of user interfaces and
the object paradigm. In Proceedings of ECOOP ’87,
pages 121–130, 1987.

3. P. Dewan and R. Choudhary. A High-Level and Flex-
ible Framework for Implementing Multiuser User In-
terfaces. ACM Transactions on Information Systems,
10(4):345–380, October 1992.

4. T.C. Nicholas Graham and Tore Urnes. Relational
views as a model for automatic distributed implemen-
tation of multi-user applications. In Proceedings of the
Fourth Conference on Computer-Supported Coopera-
tive Work (Toronto, Oct. 1992), pages 59–66, 1992.

5. Saul Greenberg and David Marwood. Real time group-
ware as a distributed system: Concurrency control and
its effect on the interface. In Proceedings of the ACM
1994 Conference on Computer Supported Cooperative
Work (CSCW’94), pages 207–217. ACM Press, Octo-
ber 1994.

6. Ralph D. Hill, Tom Brinck, Steven L. Rohall, John F.
Patterson, and Wayne Wilner. The Rendezvous lan-
guage and architecture for constructing multiuser ap-
plications. ACM Transactions on Computer-Human
Interaction, 1(2):81–125, June 1994.

7. Glen E. Krasner and Stephen T. Pope. A cookbook for
using the Model-View-Controller interface paradigm.
Journal of Object-Oriented Programming, 1(3):26–49,
1988.

8. Brad A. Myers, Dario A. Guise, and Brad Vander Zan-
den. Declarative Programming in a Prototype-Instance
System: Object-Oriented Programming Without Writ-
ing Methods. In Proceedings of OOPSLA’92, pages
184–200. ACM Press, October 1992.

9. David A. Nichols, Pavel Curtis, Michael Dixon, and
John Lamping. High-latency, low-bandwidth window-
ing in the jupiter collaboration system. In Proceedings
of the Eigth Annual Symposium on User Interface Soft-
ware and Technology (UIST’95), pages 111–120. ACM
Press, November 1995.

10. Mark Roseman and Saul Greenberg. Building real
time groupware with GroupKit, a groupware toolkit.
ACM Transactions on Computer Human Interaction,
3(1):66–106, March 1996.

11. T. Rüdebusch. CSCW: generische Unterstützung von
Teamarbeit in verteilten DV-Systemen. Doctoral dis-
sertation, Deutscher Universitäts-Verlag GmbH, Wies-
baden, ISBN 3-8244-2043-0, University of Karlsruhe,
Germany (in German), 1993.

12. Brad Vander Zanden. An incremental algorithm
for satisfying hierarchies of multiway dataflow con-
straints. ACM Transactions on Programming Lan-
guages and Systems, 16(1):30–72, January 1996.

