

Viewpoints Supporting the Development of Interactive Software

T.C. Nicholas Graham

Department of Computer Science
York University

4700 Keele St., North York
Canada M3J 1P3

graham@cs.yorku.ca

Abstract

The use of a variety of software viewpoints is helpful in the user-
centered development of interactive software. Viewpoints of inter-
active software include paper and pencil mockups, task-oriented
specifications, architecture views, and code views. In our expe-
rience, however, programmers prefer to develop user interfaces
using prototyping tools that emphasize the code view only, poten-
tially resulting in both a lower quality of user interface and a poor
quality of delivered code. This paper surveys the role of different
software viewpoints in a user-centered development process. The
paper argues that to be successful, such a process must support in-
cremental development, easy movement between viewpoints, and
good tool support for manipulating different viewpoints.

Keywords: user-centered design, software viewpoints, user in-
terface toolkits, groupware development

1 INTRODUCTION

Interactive software permits people to interact with a computer
to perform some task. To make computer use more natural and
available to a broader population, much research effort has been
expended into how to create interactive software that is easier
to use, for example through the use of graphical user interfaces.
Modern interactive applications may involve multiple media such
as text, graphics, animation, sound and video, and may support
the collaborative work of multiple users.

The development of interactive applications differs from that
of traditional software in that it is highly experimental – it is hard
to determine the usability of a system before it is implemented and
tested with real users. Consequently, the design of an interactive
application evolves considerably throughout its development as
parts of the design are implemented, tested and redesigned. The
traditional waterfall model of software development therefore does
not work well with interactive software, since this model assumes
we know what we are going to implement before implementation
starts.

In response to the experimental nature of user interface de-
velopment, a variety of user centered development methods have

been proposed [2]. The key recommendations of these methods
are: make the design process participatory, where end users take
place in the design team along with graphic designers, domain ex-
perts and programmers; perform detailed user needs analysis prior
to design; evaluate the user interface as best as possible before
implementation, and plan to iteratively refine the design after test-
ing with users. These methods can also be seen as development
through the use of viewpoints – for example, graphic designers
use paper and pencil mockups; domain experts use task-oriented
specifications, and programmers use code.

User centered development methods are predicated on the as-
sumption that implementation is expensive, and that the overhead
of design and evaluation will therefore be amortized by reduced
implementation costs. However, new tools for user interface de-
velopment such as Tcl/Tk [9], Visual Basic [7] and Macromedia
Director have greatly reduced the cost of developing user inter-
face prototypes. These tools are typically visually oriented and
interpretive, allowing quick experimentation with new ideas. The
speed of modern computers has meant that such tools usually give
adequate performance for production purposes.

The result of such tools is that programmers have become less
willing to consider viewpoints other than code. In a tool like
Visual Basic, for example, it is almost as easy to implement a
screen layout as to draw it on paper. Programmers use tools to help
flesh out the design of a user interface, rapidly iterating between
testing and refining ideas. Programmers therefore see structured
methodologies for user interface development as cumbersome and
slow to produce results. The resulting tool-centered approach to
user interface design has, however, some serious problems:

Programmer in control: When the development process is cen-
tered around code development, the programmer becomes
the owner of the process. This discourages participatory
design, eventually leading to poorer quality user interfaces.

Unmaintainable code: Rapid development tools tend to sacrifice
structure for flexibility. Programs developed in an exper-
imental, evolutionary style tend to become unmanageable.
Products may execute fast enough for production purposes,
but may be unmaintainable.

Poor linkage to task analysis: Tool-based processes do not build
in appropriate analysis of the user interface design with re-
spect to the tasks being supported. The risk is high of
developing a product that does not actually perform what
the user group needs.

Poor support for modern user interfaces: Modern user interfaces
include such features as multiple users and multiple me-
dia. To support these features requires programming con-

User Needs
Analysis

User Interface
Design

Task-Oriented
Specification

Architecture
Design

Implementation

Usability
Testing

• Guidelines
• Heuristic Evaluation

Cognitive
WalkthroughUser

Evaluation

Figure 1: A critical path planner application implemented in Clock. Nick is moving a node while Tore is connecting two nodes.

currency, concurrency control, distribution and networking.
These features are not handled well by current rapid devel-
opment tools.

We have been researching a development process based on
combining the early evaluation and participatory nature of the
user-centered approaches with the flexibility of the tool-based ap-
proach. The key principles behind this process are:

• The various participants in the process should be able to
work in the representation they find most natural, at any
time;

• It must be easy to move back and forth between viewpoints.

In order to achieve this, we have found it necessary that:

• All notations must support an incremental development style,
where information can be added easily, and where sub-
descriptions can be easily composed;

• Related notations may differ in their points of view or in
their level of detail, but not both;

• Excellent tool support must be provided to encourage the
development team to keep views synchronized.

The next section briefly surveys the viewpoints we have found
to be useful in user-centered design. The following section then
argues why we believe an incremental approach to be necessary
in using these different viewpoints, and discusses the importance
of excellent tool support for the different viewpoints.

2 VIEWPOINTS AND USER-CENTERED DESIGN

Figure 2 shows the outline of our user-centered design process.
Each phase in the process works with a different representation Figure 2: A User-Centered Design Process.

Figure 3: Task-Oriented Viewpoint using the User Action Notation [6].

(or viewpoint) of the eventual system. These viewpoints carry
different information, and are appropriate for use by different par-
ticipants in the design process. As presented in this diagram, this
process is similar to other user-centered design approaches [2],
and in particular Boehm’s spiral model [1]. This process is called
the Clock methodology, in recognition of its basis in the Clock
programming language for interactive systems.

The following sections briefly describe the stages in this pro-
cess and the viewpoints used by the developers at each stage. To
help illustrate the process, we use a simplified multiuser program
for collaborative project planning. As shown in figure 1, multi-
ple users can add nodes to a critical path network, connect them,
and move them. In a more realistic version of the program, users
can also attribute times and costs to the nodes, allowing them to
experiment with trade-offs in resource allocation.

2.1 User Needs Analysis

This phase is concerned with characterizing the intended user
group of the system, and detailing the tasks that the system is
intended to support. Deliverables from this phase include a user
characterization and a hierarchical task analysis. Contributors to
this phase should include domain specialists, including members
of the intended user group.

2.2 User Interface Design

Here the design of the user interface is specified, typically based
on paper and pencil mockups and prose description. Contributors
to this phase should include user interface specialists and graphic
designers.

2.3 Task-Oriented Specification

In this phase, the user interface is evaluated with respect to the
tasks that are to be supported. Analysts demonstrate how each of
the users’ tasks can be accomplished using the proposed system,
evaluating the completeness, the ease of use and the consistency of
the user interface. Contributors to this phase include user interface
specialists and domain specialists. In this phase, we use Hartson,
Siochi and Hix’s User Action Notation [6].

Figure 3 shows an example of a UAN specification of how
a user adds a node to the network of figure 1. The user actions
column of the chart shows that to create a new node, a user must
first select the “new node” mode (by clicking on the new node
button), then move to some position on the screen (~[x,y]),
depress the mouse button (Mv), and then release the button (M^).

The interface feedback and interface state columns are used to
record the effects of each action on the display and on the internal
state of the user interface. This form of specification is called task-
oriented, since it describes how each of the user’s tasks is carried
out in the system.

Figure 3 is a screen snapshot taken from the Clock UAN
browser [11]. This browser allows UAN specifications to be
viewed in a hypertext form; for example, clicking on the “se-
lect mode” subtask would bring up the UAN chart showing how
a user changes modes.

2.4 Architecture Design

The architecture design of the system decomposes the system into
components and specifies how the components communicate. Fig-
ure 4 shows one view of the architecture of the planning program
of figure 1, encoded in the Clock architecture language [5]. The
architecture is developed by a programmer, based on information
in the user interface design and the task-oriented specification.
In Clock, architecture designs follow the hierarchical structure of
programs; for example, a network is composed of nodes, edges
and (possibly) a rubber-band line.

Figure 4 is a screen snapshot of the ClockWorks [4] environ-
ment used to build and browse Clock architectures.

2.5 Implementation

The components of the user interface must themselves be imple-
mented, providing a code view of the system. Figure 5 shows the
code used to handle mouse input in the CPMNetwork component
of figure 4. This code in fact implements the task of creating
a node, as described in figure 3. The code states that if this
component receives a “mouse button down” input event, then a
new node is to be added to the network, positioned at the current
mouse position, and the node id counter is to be incremented.
This code is clearly similar to the UAN specification of figure 3,
but is from the point of view of the system. The UAN specifica-
tion describes how a user adds a new node to the network, while
the code specifies how the system is to respond to mouse button
input.

2.6 Usability Testing

The final phase of the process involves testing the system with
real users, in order to identify user interface design errors. The
results from this testing are used to revise the user interface design,

mouseButtonUpdt "Down" =
 if mode = AddingNode then
 % Add a new node at this position
 let id = numstr getCount in
 all [
 addNode id,
 setNodePosition id mousePosition,
 incrementCount
]
 end let
 else
 % In any other mode, has no effect
 noUpdate
 end if.

mouseButtonUpdt "Up" = noUpdate.

Figure 4: Architecture viewpoint showing application structure.

Figure 5: Code viewpoint showing implementation details.

propagating changes through the task-oriented specification and
implementation.

3 AN INCREMENTAL APPROACH

The process described in the last section appears to engender an
inflexible order of operations – first the user needs analysis is
performed, then the design, then the task-oriented specification,
followed by the implementation. Developers, however, are un-
willing to follow such a structured process. For example, fine
distinctions in a task analysis might be brought out in the pres-
ence of a quickly prototyped system. A proposed design might
be easier to implement in prototype form than to describe using
pictures and prose. Parts of a system may be tested with users
prior to evaluation with a task-oriented specification.

As pointed out by Parnas and Clements [10], the quality of
delivered software can be improved by giving the appearance of a
rational software development process, even when it is impractical
to actually follow one. That is, as long as a full user needs
analysis is performed, and as long the the user interface design
is fully evaluated through task-oriented specification and usability
testing, it is unimportant in what order these steps were actually
performed.

For the development of interactive systems, we advocate an
incremental approach where different participants in the develop-
ment operate in parallel, in the notation most appropriate to their
role. For example, one of the strengths of the UAN notation is
that it is often possible to specify each task in isolation, without
having to worry about details of task interleaving or concurrency.
It is therefore highly helpful to develop a UAN specification as
a step towards implementation. Alternatively, when we wish to
experiment with a variety of possible designs, it can be tedious to
develop the UAN specification for each one prior to implementa-
tion. Instead, the designs can all be coded directly, and the UAN
filled in afterwards for the chosen design.

One crucial benefit of the incremental approach is that owner-
ship of the development process is distributed. Since developers
can work in parallel, each using their own representation of the
system, information can flow in any direction between implemen-
tation, testing and design.

4 EXPERIENCE

We have experimented with variants of this methodology for four
years in a senior undergraduate course at York University, allow-
ing over 100 students to build over 30 interactive systems. Addi-
tionally, we have performed three substantial case studies within
our research group [3, 8, 11].

Our major observations from these experiences are:

Tool support is critical: Programmers can be convinced to per-
form one iteration of developing a viewpoint if they believe
it will help them towards implementation. However, once
implementation has commenced, it is very difficult to con-
vince them to maintain alternative viewpoints. Excellent
tool support for quickly updating and modifying viewpoints
is essential. In our experience, it is very difficult to con-
vince programmers to maintain their UAN specifications
throughout the revisions their programs undergo. To help
alleviate this problem, Eric Telford has developed a UAN
browser [11], dramatically easing the task of working with
UAN specifications.

Viewpoints cannot differ too greatly: Representations of software
may differ in their point of view, or in their level of de-

tail, but not both. For example, our early experiments with
moving from UAN specifications to X/Motif code proved
unsuccessful, since the gap between the two viewpoints was
too large. Inserting the stage of developing a Clock archi-
tecture for the system led to far more successful results. As
can be seen by comparing figures 3 and 5, the Clock code
carries a similar level of detail to the UAN code, but from
a different point of view.

5 CONCLUSIONS

This paper has discussed the role of software viewpoints in a user-
centered process for user interface development. The paper has
argued that different viewpoints can aid in participatory design
of user interfaces by supporting developers with different roles,
and distributing ownership of the process. We have also argued
that multiple viewpoints are best used in an incremental fashion,
where information flows between the different representations. In
order to support this incremental approach, excellent tool support
is required.

6 ACKNOWLEDGEMENTS

Clock and ClockWorks were developed by the author, Tore Urnes,
Catherine Morton, Roy Nejabi and Gekun Song. The Clock UAN
browser was developed by Eric Telford. This work was carried
out at the York Laboratory for Computer Systems Research, and
was partially supported by the Natural Sciences and Engineer-
ing Research Council and the Information Technology Research
Centre.

References

[1] Barry W. Boehm. A spiral model of software development
and enhancement. IEEE Computer, 21(2):61–72, May 1988.

[2] Judy Brown. Methodologies for the creation of user inter-
faces. Technical Report CS-TR-96-1, Department of Com-
puter Science, University of Victoria at Wellington, 1996.

[3] Herbert Damker. Spezifizierung und Architekturentwurf
von Benutzungsschnittstellen: eine Fallstudie in der Clock-
Methodologie. Studienarbeit, Universität Karlsruhe, Septem-
ber 1992.

[4] T.C. Nicholas Graham, Catherine A. Morton, and Tore
Urnes. Clockworks: Visual programming of component-
based software architectures. Journal of Visual Languages
and Computing, July 1996. (To appear).

[5] T.C. Nicholas Graham and Tore Urnes. Linguistic support
for the evolutionary design of software architectures. In Pro-
ceedings of the Eighteenth International Conference on Soft-
ware Engineering (ICSE’18), pages 418–427. IEEE Press,
March 1996.

[6] H. Rex Hartson, Antonio C. Siochi, and Deborah Hix. The
UAN: A user-oriented representation for direct manipulation
interface designs. ACM Transactions on Information Sys-
tems, 8(3):181–203, July 1990.

[7] Microsoft Corp. Visual Basic User Manual, 1994.

[8] Catherine Morton. Tool support for component-based pro-
gramming. Technical Report CS-94-02, Department of Com-
puter Science, York University, May 1994.

[9] John K. Ousterhout. An X11 toolkit based on the Tcl lan-
guage. In Proceedings of the 1991 USENIX Winter Confer-
ence, pages 105–115, January 1991.

[10] David L. Parnas and P.C. Clements. A rational design pro-
cess: How and why to fake it. IEEE Transactions on Soft-
ware Engineering, SE-12(2):251–257, February 1986.

[11] Eric Telford. Developing a UAN browser in clockworks:
a case study of incremental development using the clock
methodology. Technical Report CS-96-03, Department of
Computer Science, York University, June 1996.

