
GroupScape: Integrating Synchronous Groupware and
the World Wide Web

T.C. Nicholas Graham

Department of Computer Science
York University

4700 Keele St., North York
CANADA

graham@cs.yorku.ca

ABSTRACT Synchronous groupware applications support people collaborating in real time over a distance. The
world wide web supports asynchronous collaboration by allowing people to share distributed information repositories.
This paper presents a new technique for creating applications that tightly integrate synchronous groupware with the
world wide web. The key points of the technique are: two new HTML tags allow synchronous views to be embedded
within WWW pages without programming; lightweight connection of WWW documents and applications is achieved
through the use of constraints, and the use of the model-view-controller architecture allows easy integration of
applications and WWW pages that were developed separately. This technique has been demonstrated in the context of
the new multiuser GroupScape HTML browser, developed using the Clock groupware development toolkit.

KEYWORDS CSCW, Groupware Development, HTML, WWW

 1. INTRODUCTION

 Synchronous groupware applications support people
collaborating in real time over a distance. Example
applications include multiuser text editors,
teleconferencing applications and collaborative software
engineering tools. The defining property of synchronous
groupware is that it helps people to work together at the
same time, allowing participants to immediately see the
effects of other participants' actions. Synchronous
groupware is meant to create group awareness, allowing
people to work with the kind of direct communication
they would have if they were all in the same room.
 The world wide web (WWW) supports a different kind
of collaboration, allowing distributed groups to share
information, but not supporting the direct person-to-
person communication of synchronous groupware. For
example, the WWW has been effectively used to support
the collaborative development of documentation in a

software reengineering project (Finnigan et al., 1997)
and in the collaborative development of an information
repository on the Boreal forest (Freemantle et al., 1996).
The web therefore supports asynchronous group work.
 With the growth of the WWW as a dominant
technology for information dissemination and
collaboration, it is natural to want to integrate
synchronous and asynchronous collaboration in a
WWW-based tool. Such integration should support
people in collaboratively finding and analyzing
information on the WWW (Greenberg and Roseman,
1996) and should support the integration of web
browsing and applications. Current approaches typically
provide restricted integration between web pages and
synchronous applications (Rees and Woo, 1994) or
require complicated programming in CGI, Java or Olé
(Rex, 1996).
 This paper presents a new technique for tightly
integrating synchronous groupware applications with the

Figure 1: A collaborative project scheduling tool integrating the GroupScape web browser and a synchronous critical
path planning application.

world wide web. The technique provides tight coupling
of WWW pages and synchronous applications without
programming. The technique has three features:

• An object-oriented design pattern, based on the
model-view-controller architecture (Krasner and
Pope, 1988), is used to permit easy integration of
synchronous groupware and a multiuser web
browser;

• To bring synchronous functionality into web
documents, two new HTML tags are introduced.
These tags support synchronous functionality
without programming;

• The connection of synchronous applications and
web documents is achieved through declarative

constraints, allowing a web browser to be connected
to synchronous applications without programming.

To demonstrate this technique, we have developed the
GroupScape browser, a multiuser HTML browser
supporting our extended HTML language. GroupScape
itself was written using the Clock groupware
development tool (Graham et al., 1997).
 The paper is structured as follows. The next section
introduces an example applicatison to motivate the
problems in integrating a synchronous application with
the WWW. The following sections introduce the design
pattern used to structure applications, the extended
HTML language, and the use of constraints to connect
the GroupScape browser to standalone applications.

Figure 2: Users can select between private and group
browsing modes

2. A GROUPWARE PROJECT
SCHEDULER

 Figure 1 shows an example application integrating
synchronous groupware and the world wide web. The
application allows a group of people to schedule
resources in a fictional compiler development project.
The application window shows the steps involved in
carrying out the project and the number of weeks
allocated to each step. The critical path through the
network is shown in grey. The participants in the
planning session can add new nodes to the network,
connect nodes and move nodes. This is an example of a
synchronous groupware application since all participants
see the same network, and changes perfomed by one
participant are immediately reflected on the displays of
the other participants. When this application is
augmented by a voice channel (e.g., using a telephone),
managers in the compiler development project can use it
to negotiate the allocation of project resources. To help
increase group awareness, telepointers are used to show
the positions of the other participants' pointers.
 The GroupScape browser window is used to view
information describing the project phases. By default,
all participants see the same page, and all navigation
commands apply to the displays of all users. If a
participant selects the private viewing mode, however,
his/her browser decouples from the shared page, allowing
browsing independent of the other participants (figure 2).
The telepointers from the application window also apply
to the GroupScape window, allowing participants to see
who else is viewing the same WWW page as they are.
 The application window and the GroupScape browser
are connected in several ways to allow them both to be
used in the planning and negotiation process:

• Whenever a participant clicks on a node in the
network, the page describing that node is displayed
in the browser on all participants’ displays;

• In the browser, the text describing a given project
step contains the number of weeks allocated to the
project. When the allocation is changed, the value
displayed in the browser changes in real time;

• In the browser, buttons allow allocations to be
increased or decreased. When these buttons are
clicked, the allocation on the WWW page is
changed, the allocation on the node in the
application window is changed, and the critical path
is updated as necessary. These effects are carried out
in real time on the displays of all participants.

2.1 Requirements of Integration
 This application contains a set of features that serve to
motivate the ways in which synchronous group
interaction may be integrated with web browsing. These
forms of integration are:
 Group web browsing: Facilities should be available to
allow a group to browse the web together. Participants
should be able to synchronize the pages they are
viewing, to drop out of the group and rejoin it, and to
easily see who else is on the same page.
 Application based browsing: It should be possible
for the groupware application to control which page is
being viewed. In our example, clicking on a node in the
critical path network directs GroupScape to load that
page.
 Embedded synchronous views: It should be possible
to embed application-dependent views in web pages.
These views should be updated in real time, without
requiring the page to be reloaded. In our example, the
number of weeks allocated to each job step is embedded
as a synchronously updated view.
 Embedded application events: It should be possible
for web pages to control the application. In our
example, web pages have embedded hot areas allowing
participants to modify the time allocated to job steps.

 This paper presents a technique for performing all
these styles of integration without programming.
Section 3 presents an object-oriented design pattern for
integrating the GroupScape browser with synchronous
groupware applications. This pattern is expressed in the
Clock groupware development language (Graham et al.,
1997), but should be adaptable to other object-oriented
user interface development languages. Section 4 then
shows how extending HTML with two new constraint
tags makes it easy to introduce application functionality
into web pages without programming.

Update Change
Notifications

Participant 1 Participant n

Model: Shared Data:
• URL of current page
• Session information
• Shared application data

Figure 3: An MVC-based run-time architecture integrating GroupScape and synchronous applications. Each participant
node contains view and controller components implementing that participant’s user interface.

3. INTEGRATION ARCHITECTURE

 In order to integrate web browsing and synchronous
applications, we adopt a layered model-view-controller
(MVC) architecture (Krasner and Pope, 1988) for the
run-time organization of the multiuser browsing and
application session. This architecture reduces the direct
links between components in the session, simplifying
the programming of inter-component communication.
To allow the use of this model without programming,
an object-oriented design pattern is provided that captures
the details of the MVC communication protocol. To
link a synchronous groupware application to the
GroupScape browser, the programmer simply
instantiates the pattern with the application. As will be
seen in section 4, the GroupScape browser recognizes
two new constraint tags that allow the browser to
interact with the application without programming.
 This design pattern was developed in the Clock
groupware development toolkit, but should be easily
adaptable to other object-oriented languages.

3.1. Run-Time Architecture
 MVC has proven to be a natural way of organizing
groupware applications, and can be implemented
efficiently in a distributed context (Graham et al.,1996b,
Kindberg et al., 1996). MVC allows the GroupScape
browser to be connected to applications without any
direct communication between the application and the
browser. This means that GroupScape can be integrated
with applications without reprogramming either the
application or GroupScape itself.

 To demonstrate how this architecture works, figure 3
shows the run-time organization of the integrated
scheduling application of figure 1. A model component
implements all data shared by the application and the
browsers of the participants in the groupware session.
The model contains information about who is in the
session, the URL of the page currently being viewed,
and shared application information such as the structure
of the critical path network and the number of weeks
allocated to each job step. For each participant, an
instance of the application and of the GroupScape
browser is connected to the model.
 All communication between components in the run-
time architecture is performed through the model. When
a participant performs an action, an update is sent to the
model to indicate the change that has taken place. The
model then notifies the application and browser
components of all participants that they must update
their displays. For example, if a participant decreases the
number of weeks allocated to a job step (by clicking on
the “decrease” button in the browser), an update is sent
to the model to set a new time for that job step, and all
participants are notified of the change.
 The advantage of this architecture is that the browser
and application do not need to communicate directly.
This means that the browser does not need to know what
kind of application it has been connected to, or how to
communicate with that application. Section 4 shows
how this allows us to use constraint tags to embed
application knowledge in the browser without
programming.

Figure 4: An object-oriented design pattern for coupling
GroupScape to synchronous applications.

3.2. A Pattern for Integration
 Object-oriented design patterns encode standard ways of
organizing programs (Beck and Johnson, 1994).
Patterns help programmers apply an existing program
organization in new contexts by showing what program
components are required, and how they are parameterized
to the new context.
 Figure 4 shows a pattern for integrating the
GroupScape browser with synchronous groupware
applications. This pattern was developed using the
visual ClockWorks programming environment (Graham
et al.,1996a), and was used to implement the application
of figure 1. In ClockWorks, patterns are available from a
library, and can be instantiated and manipulated visually.
 In the pattern, the Groupware component is used to
implement the shared data of the model. The abstract
data types implementing this data are attached to the
component: the HTML ADT represents the URL of the
current page, with methods goToPage to set the current
page and currentPage to return the current URL; the
Session ADT represents information on the current
participants in the session, and the Telepointers ADT
represents the positions of each participant’s mouse
pointer.
 For each participant, an instance of the GSAggregate
class is created, in turn creating an instance of the
browser and the application. GSAggregate is

responsible for maintaining the coupling status of the
browser, supporting group and private navigation.
 The GroupScape component implements the multiuser
browser. The browser always displays the page at URL
currentPage, so that whenever the current page is
modified in the HTML ADT, the browser automatically
updates the page displayed.
 The application itself is given class NullClass in the
pattern. The application is a parameter to the pattern
that must be filled in when the pattern is instantiated.
To integrate an application with the browser, the
programmer instantiates the pattern, fills in the correct
application class, and makes any shared application data
visible in the model. Normally, this can be done with
no programming whatsover, simply by positioning
objects in the visual environment.
 This pattern encapsulates the difficult programming
problems of the run-time architecture of figure 3, so that
programmers do not have to solve them every time the
browser is integrated with a groupware application. In
order to instantiate the pattern, the programmer must fill
in the class of the application component, and add any
new shared ADT’s to the model. In ClockWorks, this
can be done purely visually, with no programming
whatsoever.

4. CONSTRAINT TAGS

 In the application of figure 1, the GroupScape browser
is used to display pages that are integrated with the
project planning application. These pages contained
views that needed to be updated in real time (the time
allocated to each project) and hot areas that invoked
functionality in the application (the increase and decrease
buttons.) Using the GroupScape pattern, this linkage is
achieved by embedding special constraint tags in the
HTML document being viewed, requiring no
modification of the browser code itself. The constraint
tags are: the CLOCKVIEW tag which allows a
synchronous view to be embedded in an HTML
document, and the CLOCKUPDT tag, which allows hot
areas to be defined that will cause updates to the
application state.
 Figure 6 shows the complete HTML code for the
document displayed in figure 1. This document contains
a description for step “3” in the project, the step of
implementing the front-end of the compiler. Other than
the new CLOCKVIEW and CLOCKUPDT tags, this
document is composed of standard HTML, and will
therefore display correctly in any browser (but without
the groupware functionality.)

<HTML>
<HEAD>
<TITLE>Build Front End</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">

<HR>
<H1>Implement Front End</H1>
<P>
<HR>
The front end is composed of a scanner,
parser and semantic analyzer.
<P>
This step involves designing and
implementing these three components.
<P>
There are
<CLOCKVIEW VIEW=(
 TextColour red (NumText (jobTime "3")))
>???</CLOCKVIEW>
weeks allocated to this job step. (
 <CLOCKUPDT UPDT=(
 setJobTime "3" (jobTime "3"-1))
 >Decrease</CLOCKUPDT>/
 <CLOCKUPDT UPDT=(
 setJobTime "3" (jobTime "3"+1))
 >Increase</CLOCKUPDT>)
</BODY>
</HTML>

Figure 6: The HTML code displayed in figure 1.

 The CLOCKVIEW tag is used in this document to
embed a synchronously updated view in the HTML page.
The general form of the tag is:

<CLOCKVIEW VIEW=view>alt</CLOCKVIEW>

which states that the given view is to be embedded in the
document at this point. The alt text provides an
alternate view (expressed in HTML) that will be
displayed by browsers that are not aware of GroupScape
tags. In the example of figure 6, the document contains
the tag:

<CLOCKVIEW
 VIEW=(
 TextColour red (
 NumText (jobTime "3")))
>???</CLOCKVIEW>

which states that the current job time of step “3” is to be
displayed as red numeric text. If the browser does not

support GroupScape tags, the text “???” will be
displayed.
 The view embedded in the tag is a constraint that is
implicitly attached to the model. The request ‘jobTime
“3”’ is used to obtain the time currently allocated to job
step “3”. As was seen in figure 4, this request is
implemented in the JobTimes ADT in the model.
Therefore, whenever the time allocated to this step is
modified by any participant, the MVC functionality of
the GroupScape pattern will ensure that the embedded
view is automatically updated. The CLOCKVIEW tag
therefore allows synchronously updated views to be
embedded in HTML documents, and ensures that they
will be connected to the shared application data in the
model, and automatically updated in response to any
changes. It is important to note that these changes do
not require the page to be reloaded, only the view to be
updated locally by GroupScape.
 The view constraints themselves are expressed in
Clock’s view language, allowing arbitrarily complex
views involving text, graphics, sound and video.

 The CLOCKUPDT tag allows updates to the model to
be embedded within HTML documents. The general
form of this tag is:

<CLOCKUPDT UPDT=updt>text</CLOCKUPDT>

 The effect of the tag is to display the text text;
whenever a participant clicks on the text, the message
updt is sent to the model. In browsers that do not handle
GroupScape tags, the text is displayed but is not
sensitive to input. For example, the tag:

<CLOCKUPDT
 UPDT=(
 setJobTime "3" (jobTime "3"-1))
>Decrease</CLOCKUPDT>

implements the Decrease button of figure 1. Whenever a
participant clicks on Decrease, the time allocated to job
step “3” is decreased by 1 week: the setJobTime method
is invoked to set the time of step “3” to 1 week less than
the current time allocated to the step (as obtained
through the method invocation jobTime “3”). The
MVC functionality of the GroupScape pattern allows
simple modifications in the model to implicitly update
the application state, so the application windows and
browsers of each participant are automatically informed
of the change in the time for the job step, and can update
their views accordingly.

 Embedding constraint tags into HTML documents
provides a flexible means of integrating the GroupScape
browser with synchronous groupware applications. The
CLOCKVIEW tag allows documents to contain
synchronous views that are updated in real time without
reloading the page; the CLOCKUPDT tag allows
documents to contain hot areas that cause real time
modification to applications. Since these tags embed
communication with the application, no reprogramming
of the browser itself is necessary.

5. ANALYSIS

 The technique described in this paper simplifies the
process of integrating group web browsing with
synchronous groupware applications. By making it
easier to connect a groupware web browser with
applications, we hope it will be easier to experiment
with different styles of collaboration based both on the
information repositories of the web and on the
immediate communication of synchronous groupware
applications.
 Through the example of figure 1, we have shown that
there are four important ways that synchronous
groupware should be integrated with the world-wide-web:
through multiuser web browsing, through embedding
synchronous views in web documents, through
navigation controls in the application, and through
application controls in the browser.
 The techniques described in this paper support all four
of these integration forms: the GroupScape browser is
itself a synchronous groupware application, supporting
browsing both privately and in a group. Through two
new constraint tags (CLOCKVIEW and CLOCKUPDT),
GroupScape allows synchronous views and application
events to be embedded with HTML documents. Through
an object-oriented design pattern, programmers can easily
couple synchronous applications to GroupScape without
programming.
 The main advantage of this approach is the ease with
which integrated WWW/groupware applications can be
created. Once the design pattern has been developed once
and placed in a library, programmers can rapidly develop
new integrated applications. Once the application itself
has been created, programmers can customize the
integrated behaviour by experimenting with the
definitions of the tags, without having to modify the
application itself. The tags are designed so that people
using a standard browser will still see a reasonable

result, but will not receive the synchronous
functionality. This allows pages designed for
GroupScape to be used for standard browsing as well.
 The primary disadvantage of our approach is that the
design pattern and the new constraint tags require the
custom-built GroupScape browser. To be successful in
practice, an integration technique should be based on the
features of the standard web browsers that are installed on
millions of machines. We view our work as providing
direction for how standard browsers could be extended to
better support synchronous interaction.

5.1 Related Research
 There has been substantial earlier research on the
integration of synchronous groupware with the WWW.
Many of these systems have been a strong influence on
our own work.
 Systems integrating synchronous groupware and the
WWW can be roughly divided into two categories: those
that provide multiuser web browsing and those that
allow on-the-side synchronous groupware applications to
be invoked through web pages. A major goal of the
GroupScape project is to combine these two styles,
facilitating tight integration of group web browsing and
on-the-side applications.

5.1.1 Group Web Browsing
A number of tools aim to allow groups to browse the
web together. The GroupWeb browser (Greenberg and
Roseman, 1996) allows multiple participants to view
the same web page simultaneously, slaving views so
that as one participant changes pages, the views of the
other participants are also updated in real time. To
promote group awareness, telepointers, a multiuser
scroll bar and a group annotation facility are provided.
 The Sociable Web browser (Donath and Robertson,
1994) aims to make web browsing a more communal
activity by providing dynamic information about who
else is viewing the same page, and by providing chat
communication tools that can be invoked directly from
the current page. People browsing the web can therefore
not only find out information about a given topic, but
can also find out who else is looking for similar
information at the same time.
 Group web browsers provide excellent facilities for
collaborating on finding and analyzing information.
Group browsers (including GroupScape) have the
disadvantage, however, of requiring a custom-built
browser that supports its synchronous use.

5.1.2 Applications on the Side
 Another approach to integrating synchronous
groupware and the WWW is to use a standard browser,
but to permit web pages to invoke synchronous
applications that run on the side. Typically these
approaches require participants to run a separate client
application for the synchronous application, and provide
only limited interaction between web browsing and the
synchronous application.
 One of the earliest applications in this style was Yarn
Web (Rees and Woo, 1994), an electronic meeting
system. Yarn Web combines a chat program for
synchronous communication with web pages for session
management and activity logging. Despite being based
on a standard browser, Yarn Web allows a simple form
of view slaving by having Yarn clients send page change
notifications to the browser.
 The Como system (Rex, 1996) allows synchronous
groupware applications to be launched within web pages.
Como applications are written as Java applets, and
include chat, voting and shared drawing programs.
 The Mushroom system (Kindberg et al.,1996) also
takes this approach, providing the abstraction of the
MROOM, a virtual room in which shared work can be
carried out by one or more participants. MROOMS can
be accessed by clicking on links in standard HTML
documents,but are themselves synchronous applications.
MROOMS are in effect places for synchronous
interaction that can be found by traversing the web.

6. CONCLUSIONS

 This paper has demonstrated a technique for integrating
synchronous groupware applications with the WWW.
The technique allows applications to be coupled with the
new multiuser GroupScape browser. The connection is
performed using a design pattern based on the model-
view-controller architecture. To provide a wide range of
integration styles, the GroupScape browser supports
two new constraint tags, permitting application views to
be embedded in HTML pages, and permitting pages to
contain application controls.

7. ACKNOWLEDGEMENTS

 GroupScape was developed by the author using the
Clock groupware development toolkit. Clock and
ClockWorks were developed by the author, Tore Urnes,

Catherine Morton, Roy Nejabi and Gekun Song. This
work was partially supported by NSERC and the ITRC.

8. REFERENCES

Beck, K. and Johnson, R. (1994) Patterns Generate
Architectures, in Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP‘94), 139-149.

Donath, J.S. and Robertson, N. (1994) The Sociable
Web, in Proceedings of the Second International WWW
Conference.

Freemantle, J.R., Shepherd, P.R., Dunlop, J.D., Gray,
L. and Miller, J.R. (1996) An Integrated Approach to
Collection and Dissemination of Airborne Remote
Sensing Imagery, in Proceedings of the Second Annual
Airborne Remote Sensing Conference and Exhibition.

Finnigan, P.J., Holt, R., Kalas, I., Kerr, S.,
Kontogiannis, K., McDaniel, J., Müller, H.A.,
Mylopoulos, J., Perelgut, S., Stanley, M., Tourlakis,
I., Tzerpos, V., Uhl, J., Wong, K. (1997) The
Software Bookshelf. IBM System Journal (to appear).

Graham, T.C.N., Morton, C.A., Urnes, T. (1996a)
ClockWorks: Visual Programming of Component-
Based Software Architectures. Journal of Visual
Languages and Computing 7, 175-196.

Graham, T.C.N., Urnes, T. and Nejabi, R. (1996b)
Efficient Distributed Implementation of Semi-
Replicated Synchronous Groupware, in Proceedings of
the ACM Symposium on User Interface Software and
Technology (UIST'96), ACM Press, 1-10.

Graham, T.C.N., Rasouli, R. and Urnes, T. (1997) The
Clock Language Reference. http://www.cs.yorku.ca/
~graham/reference.html.

Greenberg, S. and Roseman, M. (1996) GroupWeb: A
WWW Browser as Real Time Groupware. In Human
Factors in Computing Systems, CHI Companion
Proceedings, ACM Press, 271-272.

Kindberg, T., Coulouris, G., Dollimore, J. and
Heikkinen, J. (1996) Sharing objects over the Internet:
the Mushroom approach. In Proceedings of Global
Internet '96, IEEE Press, 67-71.

Krasner, G.E. and Pope, S.T. (1988) A Cookbook for
Using the Model-View-Controller Interface Paradigm.
Journal of Object-Oriented Programming.(1):3,26-49.

Rees, M.J. and Woo, T.K. (1994) A World-Wide-Web
User Interface for an Electronic Meeting Tool. In
Proceedings of OZCHI, 187-192.

Rex, M. (1996) Welcome to COMO Professional 1.0.
http://www4.informatik.uni-erlangen.de/Projects/como
/www/products/comopro1.0/www/doc/index.html

