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ABSTRACT

As computers are increasingly used for communicating
information, multimedia has become an important com-
ponent of interactive applications. Effective communi-
cation with multimedia requires tight media integration,
highly interactive control over multimedia, and the use
of multimedia to support group interactions. This pa-
per shows how the MVC paradigm for user interface
development can be extended to support temporal me-
dia. The resulting framework allows easy specification
of media-integrated interactive applications, including
multimedia groupware. All examples in this paper have
been implemented in Clock, a novel programming envi-
ronment, and run on IBM, SGI, and Sun workstations.
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INTRODUCTION

Computers are increasingly being used as tools for com-
munication, supporting the dissemination of informa-
tion and aiding people in collaboration over a distance.
In addition to the traditional static media of text and
graphics, the temporal media of sound, video, music
and animation have become increasingly important in
improving the quality of communication supported by
user interfaces.

Programming multimedia applications, particularly
those involving multiple users, has traditionally been
a complex task. Most of the problems of multimedia
programming relate to its temporal nature — sound
and video clips have duration, requiring the program-
mer to orchestrate the concurrent playout of multime-
dia streams and to synchronize them with the views
and actions of multiple users. It is difficult to integrate
temporal media with static media, for example associ-

ating a drawing with a particular frame of a video, or
making a particular object in a video sensitive to input.
These difficulties have led to limited use of multime-
dia in a multiuser context, and limited integration of
multiple media within user interfaces. Since user inter-
face development already accounts for 50% of the cost
of software development [17], it is important to explore
how software engineering tools can aid the integration
of multimedia into graphical user interfaces.

This paper demonstrates how the use of a high-
level software architecture based on the model-view-
controller (MVC) architecture [14] can aid in the de-
velopment of multiuser, multimedia applications. We
present an extension to MVC that removes the temporal
problems from multimedia programming, allowing easy
synchronization of multimedia over multiple users, and
easy integration of temporal media with static media.
This architecture has been implemented in the Clock
groupware development toolkit which runs on UNIX
workstations.

In order to motivate why programming multimedia ap-
plications is difficult, an example multimedia applica-
tion is presented. The key properties of the MVC archi-
tecture are then introduced, and illustrated using the
Clock groupware development toolkit. Our earlier work
[10, 11] showed how Clock’s composite MVC architec-
tural style is appropriate for the development of highly
interactive groupware systems. This paper shows how
this architectural style can be extended to support mul-
timedia. The following sections show how support for
temporal media is a natural extension of the MVC archi-
tecture, and discusses how this high-level architecture
can be mapped to concrete implementations.

Example Multimedia Application

To illustrate the problems of programming multiuser,
multimedia applications, we introduce an example of a
collaborative video annotator. This application allows a
group of users to simultaneously annotate a video as it
is playing. As shown in figure 1, multiple users can add
annotations and view the annotations of other users as
they are made in real time. A video annotator could
be used to aid in distance learning or for collaborative
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Figure 1: A multimedia application: collaborative video annotation

analysis of the contents of a video. The annotator of
figure 1 was implemented in Clock, and runs on SGI
and Sun workstations.

We first briefly describe the user interface of the collab-
orative video annotator before explaining some of the
difficulties in implementing this class of application.

The main component of the user interface shown in fig-
ure 1 is a shared whiteboard. The whiteboard allows
users to simultaneously make sketches and type in text.
The video being studied is played back in the back-
ground of the whiteboard. Annotations may be drawn
on top of the video literally as it is playing. Subsequent
playouts of the video will include the annotations.

A shared video control panel appears below the white-
board in figure 1. It offers standard VCR controls in
addition to a scale for setting the playout rate. A cus-
tomized scale widget is provided for directly jumping
to positions in the video playback. In addition to re-
flecting the playout position, the scale also provides a
simple time-line chart detailing the positions of annota-
tions made so far. A Clear button erases all annotations
from the current frame.

The top portion of the user interface contains a private
menu bar that offers a range of commands allowing users
to customize the operation of the annotator, including
setting font and line sizes and turning telepointers on

or off.

Finally, interaction mode radio buttons allows selection
between shared and private operation. In shared inter-
action mode, when a user commences an annotation, the
playout stops for all users, and all users can contribute
to the annotation of the current video frame. When a
user starts to annotate a video frame in the private in-
teraction mode, however, the playout seen by the other
users continues uninterrupted. Even when a private an-
notation is made, other group members can be aware of
the annotation through its appearance in the time-line
chart

This example illustrates some of the issues that need to
be tackled in interactive multimedia applications. First,
video images have a prominent role in the user interface.
It must be possible to integrate them seamlessly into
the interface and to allow overlapping of annotations,
menus, and telepointers. Second, substantial interac-
tive control over the video playout is required. It must
be possible to pause, play backwards, fast-forward, and
jump to an arbitrary position in the video should any
of the users desire to do so. Similarly, users need to
have full control over the playback speed. Third, it is
often beneficial to have multiple users collaborate on an-
alyzing a video. Therefore, it is required that annotated
video views be kept consistent across the interfaces of all
users without sacrificing responsiveness. Below, we will
show how these issues are tackled by our MVC-based
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Figure 2: The Model-View-Controller Architecture for
organizing interactive applications.
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approach to supporting multimedia programming.

The MVC Architecture

Variants of the model-view-controller architecture have
been widely adopted in the user interface community as
a high-level way of organizing user interfaces [1, 16, 12].
Advantages of MVC and its derivatives include sepa-
ration of concerns, simplified maintenance, and ease of
evolution. Below, we shall see that by extending MVC
to handling temporal media, these advantages can ex-
tend to providing easy media integration and easy syn-
chronization of the multimedia interfaces of multiple
users.

As seen in figure 2, the MVC architecture partitions
interactive applications into three separate parts: the
model implements the application’s data state and se-
mantics; the view is responsible for the graphical output
of the application, and the controller takes care of in-
terpreting inputs.

An important aspect of the MVC paradigm is the set
of rules governing how model, view, and controller com-
municate [14]. The controller transforms user actions
into updates that are sent to the model. The updates
cause the model to change its data state. Changes to
the model, in turn, result in notifications being sent to
the view and controller. When notified about a state
change in the model, the view starts computing the dis-
play. During computation, the view will issue requests
to the model to query the new data state. The con-
troller may also need to request data from the model
when transforming user actions.

A key consequence of the MVC communication rules
is the absence of a notion of time in the view. The
view encoding never makes decisions about when dis-
plays need to be updated. Instead, display updates are

Model

type State = Coord.

setPosition ¢ = save c.
position = this.
initially = save (x 100, y 100).

setPosition
position
View
Controller

view =
Crop origin (x 200, y 200) (
At position stretching (
Image “fishl.jpg”

motion (xc,yc) =
setPosition

(X X, y yc).

)
motion
[®] Clock :: View

Figure 3: Clock code specifying that the image of a fish
should follow the mouse pointer inside a canvas. The
code is organized according to MVC.

simply performed whenever changes in the model’s data
state make them necessary. As will be seen below, the
key property satisfied by our extension to MVC to tem-
poral media is that the view must never have to make
any temporal decisions.

The Clock Programming Environment
Throughout this paper we will be presenting example
multimedia applications developed under the Clock pro-
gramming environment. As an aid to better understand
the examples, the following briefly introduces Clock.
Clock is one possible realization of a programming en-
vironment based on MVC.

The Clock Language

Clock allows interactive applications to be written us-
ing a functional language with syntax similar to that of
Haskel [13]. Figure 3 shows the complete Clock code
of a very simple interactive application. It presents the
user with a canvas containing the image of a fish. If
the user moves the mouse pointer inside the canvas, the
fish image will follow it. The Clock code is partitioned



between the model, view, and controller.

In Clock, controllers are specified as a set of declara-
tive rules that transform user actions into updates to
the model. In figure 3, a single rule states that mouse
motion is to result in setPosition updates. The model
in our simple example consists of an ADT that encap-
sulates a single value: the current position of the mouse
pointer. The ADT implements two methods: an up-
date and a request. The update (setPosition) replaces
the old position by the given new one. The request
(position) returns the current position.

A view is specified by a view function. The result of
evaluating a view function is always a picture. In the
example, the view function returns a picture of some ob-
ject (Image ...) at some position (At ...) confined
to be inside a 200-by-200 rectangular area (Crop ...).
The position of the object is obtained from the model by
issuing the position request. Note that when the view
requests the current position of the object, it also im-
plicitly creates a constraint between the data state of the
model and the display of the view. This constraint en-
sures that whenever the position in the model changes,
the view will be automatically triggered to bring the
display up to date.

This constraint mechanism removes the notion of time
from MVC views. The programmer does not need to
aware of when the view will be computed, and sim-
ply programs with the guarantee that the view will be
invoked whenever necessary (i.e., whenever position
changes). As we shall see in the next section, this re-
moval of time from views is the cornerstone of providing
high-level support for temporal media within MVC.

The Clock Architecture

According to MVC as presented above, applications
must be divided into exactly three monolithic parts. In-
teractive applications typically have a structure that is
too complex to represent using such a simple architec-
ture. It is therefore standard to extend the architecture
to permit hierarchical composition of MVC components.
Composition offers the benefits of flexibility and better
support for reuse [16].

In Clock, applications are structured as a tree of model-
view-controller clusters. The tree is specified using a
visual notation. We call this tree the architecture of the
interactive application. The MVC clusters from which
the architecture is composed are called components.

An example architecture consisting of two components
is shown in figure 4. This example is a somewhat ex-
tended version of the example in figure 3. It presents
the user with a canvas containing three fish images. The
user can interact with each fish image independently by
clicking on it with the mouse pointer and moving it
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‘isSelection’ E g @

select, Selection
root

LHE =
Aquarivum =

LDosition, E g B

setPosition, Position

fishView osition
E & ‘isSelectlon,
mnouseButton, :mlet:g'a

motion, Movable setPositi@,

Figure 4: The architecture of a simple interactive appli-
cation where the user can interact (click and move) with
fish images. It illustrates simple composition of MVC
clusters. The Aquarium view-controller has a model
consisting of a Selection ADT capable of handling an
update (select) and a request (isSelection). The
Movable view-controller takes motion and mouseButton
inputs and issues several updates and requests.

around inside the canvas.

In the visual notation, a component is depicted as a set
of boxes. The bottom box represents a view-controller
pair. It has two labels: the component’s class name
and subview name. In figure 4, the root component
has class name Aquarium and subview name root. Any
boxes stacked on top of a view-controller pair represent
ADTs making up the component’s model. In figure 4,
the model of the root component consists of one ADT:
Selection. The requests and updates issued by a com-
ponent are depicted on the right hand side of the com-
ponent in question. Requests, updates, and user actions
that a component is capable of handling are shown on
the left.

In Clock, composition is overloaded: we structure the
architecture tree both to reflect the composition of the
user interface and to reflect the inheritance (by dele-
gation) relations between the component classes. The
user interface shown in figure 4 is composed of a canvas
(Aquarium) containing three objects (Movable).

Each component in the architecture tree represents a
class that may be instantiated at run time. A parent
component determines how many instances should be
created of each of its child components. Therefore, the
Aquarium component will instantiate the Movable com-
ponent three times. It does this by invoking the child
component’s subview name (fishView) in its view func-
tion. Here is the view function of the Aquarium compo-
nent:



view =
Crop origin (x 200, y 200) (
Views [
fishView "fish1l",
fishView "fish2",
fishView "fish3"
]
).

The invocation fishView "fishl" will create an in-
stance of Movable with the id “fish1” (if one did not
already exist) and return the picture resulting from the
child’s view function. Pictures from children compo-
nents can therefore be used to create the parent compo-
nent’s view (the Views command creates a new picture
by drawing a list of pictures on top of each other).

The Clock programming environment provides a graph-
ical editor, ClockWorks [9], allowing architectures to be
built, browsed, and edited using the graphical notation.

Clock’s compositional architecture structure and use of
constraints to implement MVC communication is simi-
lar to the approaches of the PAC architecture [1] and the
Rendezvous ALV architecture [12]. There are also many
similarities between Clock’s architectural style and the
Chiron-2 architecture [20]. Our extension of MVC to
handle temporal media should therefore be directly ap-
plicable to numerous systems other than Clock.

ADDING TEMPORAL MEDIA TO MVC

The previous section has shown how MVC provides a
simple, high-level architecture for organizing interactive
applications. In particular, MVC frees the programmer
from having to consider when and how views are to be
updated, leaving this decision to the run-time system.
This absence or temporal issues in specifying views also
aids in the programming of multimedia applications in-
volving temporal media. This section shows how adopt-
ing a pools of frames model of multimedia allows us to
exploit the MV C architecture for handling temporal me-
dia, allowing easy integration of temporal and static me-
dia, and easy synchronization of the views of multiple
users. The following section describes how this model
can be efficiently mapped to an implementation archi-
tecture.

The most common model for processing multimedia
data is the stream model [3, 4], based on a time-ordered
flow of information from a source to a target. The main
benefit of the stream model is modularity. Not only are
producer and consumer of multimedia data decoupled,
but stream processing elements may be arbitrarily in-
terconnected. The main drawback of the stream model
is that it is highly asynchronous. Typically, a stream
is implemented as a queue of data buffers, causing sub-
stantial, variable delays from source to target. This

makes it difficult to provide random access to the me-
dia data and to tightly integrate multimedia into inter-
active applications. Also, the notion of a time-ordered
flow makes it difficult to incorporate streams into MVC
without violating the temporal independence of views.

Media as Pools of Frames

Numerous media types can be incorporated into interac-
tive applications, including text, graphics, images, au-
dio, video, music, and animation [6, chapter 2]. The
latter four media types are often known as temporal
media. By treating temporal media as pools of frames,
we can model them within the MVC framework.

A video clip can be viewed as a pool of video frames
where each video frame is simply an image. Similarly,
an audio clip is a pool of audio frames where each frame
is a small audio segment which in turn consists of a
sequence of samples. A frame is something that can be
mapped to an output device and perceived by the user.
The frame abstraction is a simple concept and can be
applied to all media types.

A pool of frames has no embedded notion of implicit
temporal constraints (the notion of continuous flow).
Instead, each frame is assigned a unique frame num-
ber, imposing total ordering over all the frames in the
pool. Frame numbers normally reflect the order in
which frames where recorded. Frame numbers make
it easy to randomly access frames in the frame pool
through primitives that, given a frame number and a
frame pool, extract the correct frame and map it to an
output device. Therefore, playout of temporal media is
reduced to producing a sequence of frame numbers in a
timely fashion. Temporal issues are no longer inherent
in the media data themselves.

Figure 5 shows an example of how simple playout of a
pre-recorded video clip is realized using MVC and our
frame-pool temporal media extension. The complete
Clock code is given.

The current frame number is stored in the model. In
the example, the model defines an update (increment)
which changes the data state by adding one to the cur-
rent frame number. It also defines a request (count)
which returns the current frame number.

The controller is able to handle a new input event, the
tick input, in addition to user inputs. The tick inputs
are generated be the Clock run-time system at some
regular frequency (the frequency is under programmer
control, with a default of 30 ticks per second). The con-
troller in figure 5 specifies that every tick input should
be transformed into an increment update.

In the view, a VideoFrame primitive is used to extract
a given frame from a frame pool and return the corre-
sponding image. The frame pool is stored in the file
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Figure 5: Complete Clock code for a simple program that plays out a pre-recorded video clip. The code is organized
according to the MVC model with extensions for temporal media.

"ski.mpg" and is encoded using the MPEG compres-
sion standard. Every time the view is notified about a
state change in the model, it uses the count request to
query what the current frame number is before updating
the display.

In other words, tick inputs and the increment update
cause the model to go through a sequence of frame num-
bers in a timely fashion. The view specification auto-
matically translates this frame number sequence into a
playout of the media clip in question.

This example shows how splitting temporal media clips
into frame pools allows them to be used within an MVC
architecture. The projection of temporal clips onto
frames allows them to be treated as static media (e.g.,
images or sound bites). Next, we show how the frame
pool approach leads to easy media integration.

Media Integration

The primary focus of media integration is how digital
video can be integrated with interactive user interfaces.
Existing applications that feature video typically treat
it as something outside of the actual user interface. We
believe that one reason for this is that most existing
support for multimedia programming, i.e. stream-based
approaches, makes it very hard to mix video with other
media. Here, we seek to demonstrate how our MVC-
based approach to multimedia programming solves this
problem.

The collaborative video annotator in figure 1 is an exam-
ple of an application that tightly integrates video with
other media. Users can draw and type in text directly on
video frames and on the surrounding whiteboard. These
drawings effectively become part of the video, and can
be retrieved when the video is rewound to the annotated
frame. We now show how the pool of frames approach
under MVC supports this media integration.

Figure 6 depicts the Clock architecture of the collabora-
tive video annotator application. Asusual, the Clock ar-
chitecture reflects the composition of the user interface.
Each user in a collaborative video annotator session is
provided with a window containing a user view. The
user view is made up of a menu canvas and some tele-
pointers. Inside the menu canvas there is a workspace
consisting of a control panel (elided) and a whiteboard.
Finally, the whiteboard incorporates video and annota-
tions.

In figure 6, all the key ADTs are kept in the model
of the root component. They include a frame counter
(Counter) identifying the current frame of the video,
the annotation database (AnnotationDB) maintaining
the annotations for each frame, the coordinates of all
the telepointers (TeleCoord), and the session database
(SessionDB) with information about the users currently
in the session. The controller of the root component
translates clock ticks into updates to the frame counter
in a similar fashion to figure 5.
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Figure 6: The architecture of the collaborative video annotator of figure 1. The extended MVC model allows
temporal and non-temporal media to be easily mixed. Note that parts of the architecture has been elided and that
only essential updates and requests are shown.



The key to simplifying the integration of video with
other media is the decoupling of time from temporal
media as facilitated by the extended MVC paradigm.
It allows us to reduce media integration to simple view
composition. Clock offers a 2.5 dimensional declarative
graphics system that makes view composition partic-
ularly simple. Figure 6 shows how the tight integra-
tion of video and annotations inside the whiteboard (the
WhiteBoard component) is accomplished through a few
simple view specifications.

The view functions of the Video and Annotations com-
ponents are, respectively, responsible for displaying the
current video frame (as an image) and the annotations
associated with that frame (as a set of lines and texts).
Both of these views depend on the current frame num-
ber (count), so that whenever count is changed, the
views of the video frame and annotations are automat-
ically updated. The WhiteBoard component composes
these two views (via the Views primitive), producing a
mixed-media annotated video image.

The removal of temporal issues from the views im-
plementing the video annotator is therefore the key
to easy media integration. The views of the Video
and Annotations components are both simply pictures,
which can be combined in the WhiteBoard component.
The underlying MVC architecture guarantees that as
the frame counter changes, both the video frame and
the annotations will be updated, transparently to the
whiteboard.

Interacting with Temporal Media

In addition to producing mixed-media output, it is also
important to be able to interact with user interfaces
involving multimedia. For example, in the video anno-
tator, users may stop and restart playout, reverse, and
jump directly to any point in the video stream. Addi-
tionally, users may dynamically change the frame rate
during playout by manipulating the frame rate scale.

More media-specific ways of interacting are also pos-
sible. The images constituting the playout of a video
might, for example, be dynamically moved and resized
by the user. For audio playouts, the gain (or volume) is
an obvious candidate for user manipulation.

The MVC approach allows all of these interaction styles
to be programmed in a natural way. For example, in
the video annotator, the display depends on the current
frame counter. Playing forward (as we saw in figure 5)
consists of regularly incrementing the frame counter in
response to tick inputs. In a similar way, playing in
reverse simply means that tick inputs should decrement
the frame counter; stopping the video means that tick
inputs should be discarded (i.e., not modify the frame
counter at all).

The rate at which tick inputs are generated by the
run-time system is under programmer control (via a
TickingEvery primitive); a Gain primitive allows con-
trol over volume.

Shared Playout

Any treatment of multimedia as a tool for communica-
tion must consider how multimedia can be used to help
people communicate with each other. For example, the
video annotator permits groups of people to analyze and
discuss videos in real time, even if they are located at
different sites.

The MVC architecture is useful for structuring mul-
tiuser applications, including those involving temporal
media. According to the MVC paradigm, the model
has no knowledge of the view and controller other than
the fact that they are depending on its data state and
need to be notified about changes. The MVC architec-
ture may therefore easily be extended to support mul-
tiple users by associating multiple view-controller pairs
with a single (shared) model [12]. Composition further
provides facilities to easily maintain both shared and
private data in applications like the collaborative video
annotator. In Clock, the root of the architecture tree
serves as a shared model while each user receives a pri-
vate instance of subtrees below the root.

By simply representing frame numbers in a shared
model, it is possible to synchronize clip playout across
the displays of a group of users. The shared video play-
out of the collaborative video annotator is implemented
in this way: as seen in figure 6, the frame counter is rep-
resented in the root VideoAnnotator component. It is
therefore shared by all users. The frame counter can be
updated by users manipulating it directly through vari-
ous widgets, or indirectly through the tick inputs. Any
update to the frame counter will automatically trigger
the views of all users.

This section has shown how an extended MVC archi-
tecture supports the development of multimedia user
interfaces, providing easy integration of static and tem-
poral media, high control over the interactive behav-
ior of the application, and easy synchronization of the
views of multiple users. An obvious question is whether
such a high-level architecture can be implemented effi-
ciently enough to satisfy the performance demands of
interactive software. The next section details our im-
plementation of the Clock groupware development tool,
and shows how good performance can be obtained.

IMPLEMENTATION

The previous sections presented the high-level architec-
ture and programming model of the Clock groupware
development tool. This section describes the low-level
implementation architecture of the Clock run-time sys-
tem, focusing on how temporal media are supported.
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cessing parts of the Clock system. Thick arrows depict
the flow of video data.

Though programmers do not need to be aware of the
workings of the implementation architecture, this pre-
sentation shows how Clock programs are implemented
behind the scenes, and provides a basis for discussing
the performance of this approach.

The Clock implementation architecture supports both
video and audio. Note, however, that this section will
only describe the parts devoted to handling video, leav-
ing out everything related to audio. The organization
of the Clock implementation architecture is depicted in
figure 7.

The implementation architecture consists of the Clock
run-time system, Clock video servers, and X servers [18].
The Clock run-time system realizes the high-level archi-
tecture. It implements the MVC communication rules,
maintains clocks for tick inputs, orchestrates view com-
putations, and takes care of input processing. A Clock
video server realizes the frame pool model for video clips
while X servers provide a device-independent interface
to graphics hardware on a range of workstations.

During view computation, the Clock run-time system
issues X and video commands to the respective servers.
The video server reads MPEG-encoded video data from
files stored in the local file system and transforms them

into X images that are passed on to the X server. The
following describes the Clock video server in more detail.

Video Server

The Clock video server is partly based on the software
MPEG decoder of the X-Movie system [15]. It was ex-
tended to support parallel decoding of multiple MPEG-
encoded video clips, random frame access, limited col-
ormap resources, and multiple X servers. As indicated
in figure 7, the video server uses shared memory for
transmitting decoded images to the X server if the two
are running on the same workstation.

The main principle behind the design of the video server
and its protocol is that a request for posting a particu-
lar video frame should always be handled immediately,
whether the frame in question is decoded and available
or not. The server always tries to predict what the next
frame posting request will be, based on past requests.
It also keeps at least two of the most recently posted
frames in a cache for each clip. In those cases when the
video server failed to guess which frame to post next
and the requested frame is not in the cache, the last
posted frame is reposted. Once the requested frame has
been decoded, the run-time system is notified that the
desired frame is ready for posting. The run-time system
may then decide to update the view.

Typically, when updating views that contain a mixture
of video and other media, the run-time system will al-
ternate between making X and video calls. This could
be problematic because X calls are normally buffered
at the client side (i.e., by the run-time system) and the
video server will typically respond to video calls by is-
suing X calls on its own. Since the ordering of X calls is
significant, undesirable effects are likely to occur. This
problem is solved by explicitly flushing all X-command
buffers and restricting the video command protocol to
be synchronous.

Performance

Clock’s multimedia architecture differs from that of
most multimedia implementations in that Clock’s audio
and video servers provide access to frames on request,
rather than actively providing frames in sequence. This
architecture is necessary to provide the flexibility of
stopping, playing in reverse, or jumping directly to a
specific frame.

When playing frames in sequence, there is next to no
performance penalty in Clock’s approach. The video
server eagerly decodes frames so that they are avail-
able when requested. When accessing frames out of
sequence, there can be a significant delay (e.g. 500—
1,000ms) before the frame is displayed. This delay can
result when the server has to decode several frames in
order to obtain the desired frame. This is largely a
problem of using a software decoder, and will likely



be solved as hardware MPEG encoder/decoders become
more widely available.

Distribution

The network in Figure 7 indicates that Clock applica-
tions can be mapped onto a distributed implementation
architecture. This allows us to provide faster responses
in collaborative applications where multiple, remote
users are interacting simultaneously [11]. Note that the
current implementation does not provide support for
transmitting multimedia across networks. Therefore,
collaborative multimedia applications such as the video
annotator presented above are best implemented using a
distributed run-time system communicating with video
servers running locally at the users’ workstations. We
are, however, currently working on incorporating sup-
port for ATM networking and media sources like cam-
eras and microphones into Clock. Our hope is to sup-
port real-time multimedia distribution in the near fu-
ture.

RELATED WORK

The focus of the work presented in this paper is on me-
dia integration and how to provide high-level develop-
ment support for media-integrated user interfaces. The
need for tighter integration of temporal media with user
interfaces has been addressed by others before us. Gibbs
et al. [5] provide a class library for realizing video wid-
gets and actors. Their approach relies heavily on ana-
logue hardware and the actual media integration is han-
dled outside of the programming model. Schnorf [19] de-
scribes a project integrating support for video into the
ET++ class library and application framework. Video
is drawn into the frame buffer by external autonomous
sources. A clever scheme involving multiple types of
clip masks and normal drawing operations having side
effects that update video clip masks allows smooth inte-
gration of video into the lower graphics layers of ET++.

A key characteristic of our approach to supporting the
programming of multimedia is the decoupling of tem-
poral issues from the actual media data. The temporal
decoupling of time from media in multimedia program-
ming models has previously been used in the Tactus
toolkit [2]. The focus of the Tactus toolkit, however,
is not media integration but rather to provide abstrac-
tions on top of a time advance implementation model
that ensures timely playout of temporal media in a high-
latency, distributed setting.

As already pointed out, streams constitute the most
common model for multimedia programming [3, 4]. It
is inherent in the stream model that temporal media
are continuously flowing through the application, typ-
ically through pipelines of processing elements imple-
mented as active objects. The flow is initiated by send-
ing “start” methods to all the active objects; “stop”

methods terminate the flow. In other words, streams
encapsulate many temporal issues.

Unfortunately, it is difficult to support tight media in-
tegration with streams. Streams typically make it cum-
bersome to randomly access frames and to respond to in-
teraction. Also, as demonstrated in [19], it can be quite
challenging to integrate support for video streams into
the lower graphics layers of toolkits. That is, streams
are best suited for stand-alone basic playout that is
largely pre-computed, e.g. where non-deterministic in-
teractions are limited to users perhaps pressing a pause
button.

Our high-level treatment of time in multimedia pro-
gramming builds on the formal basis of the Clock lan-
guage. Further information on the formal treatment of
time in Clock can be found in [8], and its application to
user interface development in [7].

CONCLUSION

This paper has demonstrated how support for temporal
media is integrated into the Clock system for the de-
velopment of synchronous groupware. The key to this
integration is an extension of the MVC paradigm for
user interface development. The extension retains the
central MVC concept that views should be free of tem-
poral information. This allows video and sound clips
to be treated uniformly with text and graphics, per-
mitting truly integrated multimedia groupware appli-
cations. Since MVC forms the basis of many modern
user interface development tools, we believe that this
approach should be widely applicable.
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