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Abstract. User centered design involves the creation of design artifacts
such as task and architecture models. It is increasingly accepted that
such artifacts cannot effectively be created separately, but instead coe-
volve incrementally, so that information obtained from the development
of one artifact contributes to the development of the others. In user inter-
face development, different people with different backgrounds typically
participate in the development of these artifacts. Consequently, commu-
nication is important for coevolution. This research demonstrates how
different design artifacts can be linked semi-automatically. We illustrate
this technique using Adligo, a computer-based tool for generating links
between the User Action Notation (UAN) task model and the Clock ar-
chitectural model. Our results show that in two case studies, we were
able to generate 90% of possible links with error rate of 0% to 12% with
limited human assistance.

1 Introduction

Numerous design activities contribute to the usability of an interactive sys-
tem [1]: the production of task models helps to record the human activities that
a computer system is meant to support, scenarios and task-oriented specifica-
tions record how users perform these tasks via a particular user interface, while
software architectures provide a high-level view of the system’s implementation.

An ongoing trend in processes for interactive system design has been to
use information from each of these design activities to support the others. For
example, task-oriented specifications can be used to automatically generate user
interface architectures [14] and user interface dialogue specifications [13], or even
to completely generate user interfaces [11, 15].

Even when the relation between design activities is not this explicit, it is
helpful for designers carrying out one activity to have access to information
from others. For example, Cockton and Clarke have shown the importance of
explicitly linking documents capturing context of use of interactive systems to
design documents [3]. In our earlier work with the Vista environment [1], we
showed how linking behavioural design artifacts (such as task models and task-
oriented specifications) to constructional artifacts (such as code) can help relate
the differing points of view of HCI designers and software engineers. In Vista,



users simultaneously see up to four styles of design docuemtent in a visual brows-
ing environment. Clicking on part of one document highlights highlights related
parts of other documents. This allows developers to answer questions such as,
what tasks may be impacted by the modification of a particular architecture
component, or whether two similar action sequences in a UAN [10] specification
are implemented by the same mechanism. Brown and Marshall have since ex-
tended this work to link user interface scenario documents to implementation
design documents [2]. Linking approaches therefore help in relating information
that may be presented from different points of view, allowing information from
different design documents to be more easily used by other designers and devel-
opers.

The difficulty with linking approaches is that they typically require large
numbers of links to be specified manually. For example, Vista is capable of au-
tomatically linking artifacts grouped exclusively within the behavioural or con-
structional domains, but requires a user to provide links that bridge the gap
between these two points of view. Cockton and Clark’s approach requires links
to be explicitly made using an LD Relationship Editor [3]. Hand-specifying links
is tedious, time-consuming and error-prone. For example, in the two case studies
presented in section 5, approximately 100 links in each needed to be coded by
hand using the Vista system. Furthermore, as design artifacts evolve through-
out the life cycle of the interactive system, links continually need to be changed,
again by hand. In order for link-based approaches to be practical, therefore, some
kind of automation of the process of finding and maintaining links is required.
Automating the generation of links is challenging, however, as different design
artifacts are typically developed by different people, perhaps using incompat-
ible terminology, and perhaps involving informal components such as English
language text.

This paper presents a mechanism for the semi-automated generation of links
between task-oriented specifications in the User Action Notation (UAN) [10] and
architecture models expressed in the Clock architecture style [8]. A user must
provide a small set of rules to guide the link generation process. As shown in
section 4, these rules are presented in a simple tabular format called a dictionary.
This approach has been implemented in Adligo, a tool which inputs a UAN
specification, a Clock architecture and a dictionary, and outputs a set of links
suitable for browsing with the Vista environment. As shown in the case studies
of section 5, when provided with fewer than ten user-specified rules, Adligo was
capable of generating 90% of links found by a human, with an error rate of 0%
to 12%. With 16 rules, 100% of links were found, with no errors.

This paper is organized as follows. Section 2 presents an example applica-
tion, and motivates the utility of developing links. Section 3 introduces Adligo’s
rule-based solution to link generation, while section 4 discusses Adligo’s imple-
mentation. Finally, section 5 reports on the results of two case studies used to
evaluate the effectiveness of Adligo.



Fig. 1. User interface of a groupware critical path planning application [6].

2 Example: Critical Path Planning

In order to motivate the problem of link generation, we will use the example of a
groupware critical path planning application [6]. Using this application, we will
informally discuss some of the difficulties of automatically generating links. We
will then use the critical path planner to illustrate Adligo’s dictionary, allowing
semi-automatic generation of these (and other) links.

Several design artifacts (collected in [7]) contributed to the development of
the critical path planner. The system is based on a task model adapted from
Dilworth [4]. Planners carry out two basic tasks – breaking up the project into a
network of job steps ordered by their dependencies, and allocating resources to
these job steps. Figure 1 shows the user interface of a system supporting these
tasks.

A UAN task-oriented specification was developed to show how each of the
planning tasks can be carried out using the interface of figure 1. Figure 2 shows
one of the tables from this UAN specification, describing the task of repositioning
one of the job step nodes in the critical path network. In order to reposition a
node, the user first moves the mouse pointer over the node, clicks on it, drags
the mouse, and releases. As the mouse is moved, the node follows the mouse
pointer. As the node is moved, it is locked, so that none of the other users can
move the node at the same time. Locked nodes are shown with red text on other
users’ displays, so that the other users can see that they are not permitted to
move that node. The full UAN description contains 18 such tables [7].

Figure 2 also shows a view of the software architecture of the critical path
planner. The architecture is based on the Clock architecture style [8], a layered
extension of the Model-View-Controller (MVC) architecture [12]. In this archi-
tecture, the system is decomposed into components, responsible for I/O at some
point of the display, and ADT’s responsible for maintaining system state. The
links shown in the figure reveal the relation between the architecture and the
system it implements.

For example, the mouse click actions (Mv/M^) that start and end the move-
ment of a node are handled by the mouseButton method of the browseNode
component. Similarly, the movement of the node itself (~[x,y]) is handled by
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Fig. 2. Example links derived by Adligo.

the relMotion method. Locking of the node is handled by the methods of the
Lock ADT. Modifying the position of the node (nodePosition:=(x,y)) is han-
dled via the setNodePosition method of the NodePosition ADT. The current
position of the mouse pointer ((x,y)) is obtained via the MousePosition ADT.

These links can be visually browsed using Vista [1], helping developers to
associate task-oriented specifications with user interface implementations. How-
ever, it is clear that such links are highly tedious to generate by hand. It is not
feasible to derive such links completely automatically – the developers of the
UAN specification and of the software architecture have used different terms to
describe the same parts of their artifacts, and the UAN specification contains
informal English prose that is not amenable to automatic processing.
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Fig. 3. Selected rules extracted from the standard and custom dictionaries used to link
design artifacts in the critical path planning application.

The next section shows how Adligo provides a simple rule-based mechanism
that allows links to be semi-automatically derived. As will be shown in section 5,
90% of the 108 links that a human found in the CPM example were derived using
only 8 rules in the Adligo dictionary.

3 Semi-Automated Generation of Links

The key to being able to find links between the behavioural task-oriented spec-
ification and the constructional user interface architecture is to bridge the dif-
ference in point of view of the two forms of specification. A single component
might contribute to the implementation of several tasks; similarly, a single task
may be carried out through the use of multiple components.

The basic approach to generating links is to provide a set of linking rules
in a dictionary. Figure 3 shows a subset of the rules used with the critical path
planning application. The rules are divided into a standard dictionary which is
included for every application, and a custom dictionary, which provides rules
specific to a particular application.

Rules establish a correspondence between parts of a UAN specification and
parts of a Clock architecture. For example, rule S2 in figure 3 establishes that
the pattern Mv in a UAN specification corresponds to the method mouseButton



in a Clock architecture. This rule states that whenever the Mv user action is
encountered in a UAN specification, there should be some mouseButton method
in the architecture that implements this user action. This is a rule since the
correspondence applies whenever the Mv symbol is encountered. As shown in
figure 2, rules S2 and S3 generate links showing that in the Reposition a Node
task, the Mv and M^ user actions are handled by the mouseButton method of the
browseNode architecture component.

3.1 Multiple Targets

Sometimes, a pattern in a UAN specification may correspond to different lo-
cations in a Clock architecture, depending on implementation choices made by
the developer. For example, motion events in Clock may be treated as absolute
or relative to the current position, handled either by a motion or relMotion
method. Therefore, rules must permit a UAN pattern to match a set of possible
architecture patterns.

As shown in rule S6, multiple architecture patterns may be combined using
a disjunction (“|”) symbol. The UAN pattern specifies that the general form in
UAN for moving to a new screen location is ~[x,y], where x and y are some
identifiers. In this rule, the symbols $(x) and $(y) represent variables that may
be matched to arbitrary identifiers in the UAN specification. The architecture
pattern establishes that mouse motion user actions may be handled by motion
or relMotion methods.

In figure 2, rule S6 generated the link between ~[x,y] to the relMotion
method implemented by the browseNode architecture component.

3.2 Rules with variables

Very powerful rules can be written using variables. For example, a common
pattern of correspondence between UAN specifications and Clock architectures
is that assignment to some value in UAN is implemented via a set method in
the architecture. For example, in figure 2, the UAN nodePosition := (x,y) is
implemented via the method setNodePosition in the NodePositions ADT.

Rule S28 searches for correspondences of this general form: the UAN pat-
tern $(anyVar):= is matched to a method in the architecture of the form
set$(anyVar). Variables in the UAN and architecture patterns must be uni-
fied in finding a match.

Similarly, rule S21 identifies a common correspondence case, showing how
incrementing a value may be matched to any of a set of increment methods.

This ability to use variables, unification, and multiple architecture patterns
allows simple rules in the standard library to identify common usage patterns,
generating many links without requiring any custom rules at all.

3.3 Custom Rules

The standard rules described above help provide links for built in user actions
of UAN (such as user actions corresponding to mouse and keyboard input), and



for commonly observed usage patterns in specifications. However, real specifi-
cations normally require additional rules, primarily to resolve inconsistencies in
terminology between the UAN designer and the user interface implementer.

For example, rule C11 in figure 3 shows how the English text connect x to
y corresponds to the method setConnectionTarget. Such correlations are not
difficult for a human to provide, but would be difficult to find automatically.

Sometimes, such correspondences must be scoped to a particular task. For
example, in the UAN task Reposition a Node (figure 2), the symbol n refers to
some node in the critical path network. It would be dangerous to establish a
global rule stating that n always refers to a node, since this may not be true
for every task specification, and might lead to the generation of incorrect links.
Rule C6 of figure 3 shows how a rule establishing this correspondence can be
scoped to apply only to a specific task.

Similarly, rules may be scoped to apply to a particular method or component
in the architecture. For example, rule C14 explicitly specifies that solid line
from n1 to n3 corresponds to the lineFrom method of the edge component.
Similarly, rule C6 explicitly specifies the location of the target component in
the architecture (i.e., the component nodeView is specified to be a child of the
component browseNode.)

Restriction of the scope of rules can have the effect of creating rules that are
so specific that they generate only one link. Such rules can be useful in specifying
explicit links when the generality of the rule-based approach is not appropriate.

4 Implementation

We now briefly describe how the Adligo tool uses the dictionary described in the
last section to generate links. For an in-depth description of Adligo’s algorithms,
see [5]. The generation of links includes the following steps:

1. Find a match for one of the rules in the UAN specification;
2. Find the context for the match;
3. Starting from the context component, find the best match for the architec-

ture pattern.

The notion of a context component is key to the generation of links. A context is
a part of the user interface to which user actions are applied. The standard UAN
mechanism for changing a context is the user action ~[c], which specifies that
the user moves his/her pointer into the context of screen region c. Following a
context change, Adligo assumes that subsequent user actions are applied to the
new context.

Consider for example the sequence ~[n] Mv of figure 2, as interpreted using
the rules shown in figure 3. The following sequence of rule applications leads to
the generation of a link to the mouseButtonmethod of the nodeView component:

1. The user action ~[n] changes the context. n matches the rule C6, setting
the context to the component nodeView->browseNode.
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Fig. 4. Results of CPM and Video Annotator case studies. The dashed horizontal line
shows the number of links found by hand.

2. The user action Mv matches rule S2. Adligo attempts to match a method
mouseButton within the context of the nodeView->browseNode component.

3. The parent of the nodeView component implements the mouseButtonmethod;
the link is therefore generated to the method browseNode.mouseButton.

5 Evaluation

In order to evaluate the effectiveness of our semi-automated technique for linking
user interface artifacts, we performed two case studies on existing applications.
These applications are the critical path planner [6] described in section 2, and
a groupware video annotator tool [9], both designed and developed prior to this
work with Adligo. Both case studies involved over 100 lines of UAN, divided
into approximately 20 tables. The implementation architectures of the exam-
ples consist of 13 and 30 components, containing over 100 methods. Therefore,
the examples are small enough for us to derive links by hand for purposes of
comparison, but large enough to expose how well Adligo functions.

In order to create a correct set of links against which to compare Adligo’s
performance, we derived by hand a set of links between the UAN task-oriented
specification and the Clock architecture. We then ran Adligo to mechanically
derive a set of links. Through this process, Adligo’s dictionary was tuned to
successively improve the links generated. Finally, we compared the hand-derived
links to Adligo’s links. For each case where the links differed, we either decided
that the hand-derived links were incorrect and updated them, or decided that
the generated links were incorrect, and recorded an error.

Figure 4 shows the number of correct and incorrect links generated by Adligo
as rules were successively added to the dictionary. In both examples, adding eight
rules was sufficient to generate approximately 90% of available links, while 16
rules was sufficient to generate 100% of the links found by hand.



The percentage of generated links that were incorrect ranged between 0%
and 12% in the two applications, finally dropping to 0%. As the number of
rules increases, the error rate initially increases (as the number of generated
links increases.) As rules are added, the error rate then decreases as the rule set
becomes more precise.

5.1 Analysis

These results show that, at least for these two examples, Adligo is highly suc-
cessful at generating links. With a small number of rules, in excess of 90% of
available links can be automatically generated, with an error rate within approxi-
mately 10%. Creating rules to this level of accuracy appears to be relatively little
work. Rules are easy to write, as they are syntactically presented as a dictionary,
in which correspondences are written directly using the UAN notation. Further
studies with external users will be required to determine how willing developers
will be to create linking rules.

The simplicity of the dictionary format carries a cost of expressiveness – only
simple control over scoping of rules is provided, and only simple patterns based
on variables are allowed. The examples we have performed to date allow us to
tentatively conclude that these restrictions are not problematic in practice. In
cases where the dictionary language is not sufficiently expressive, rules can be
added to the dictionary that either explicitly add links or explicitly rule out error
cases. In our examples, when such rules are added, coverage rates climb to 100%
while error rates drop to 0%. This shows that if Adligo users wish to invest the
time to refine their rule sets, very accurate performance can be obtained.

The Adligo approach is most successful if the UAN specifier is methodical in
the use of UAN. For example, if the “:=” symbol is used consistently to indicate
change of interface state, standard rules related to assignment will be invoked.
If the same names for tasks and contexts are used consistently, then custom
rules will be more likely to generate correct results. For example, many of the
custom rules in the critical path planner dictionary specifically deal with the use
of poor names in the UAN specification such as n, n1, n2, etc. to refer to nodes
in the network. While the requirement of consistency and use of clear naming
conventions adds an extra burden on UAN designers, such conventions also lead
to specifications that are easier for humans to read.

The rule-based approach has the potential advantage of being robust to
changes in the underlying design documents. As new tasks are added or re-
worded, or as architecture components are modified and repositioned, it is likely
that existing rules will continue to apply. Further experimentation will be re-
quired to demonstrate the extent to which rules are robust to evolution in design
documents.

6 Conclusions

This paper has shown that it is practical to partially automate the generation
of links between user interface design artifacts, even when these artifacts are



developed by different people and when the artifacts involve informal English
prose. Users must provide a small set of rules in a simple dictionary format. From
the rules, the Adligo tool derives links between task-oriented specifications and
user interface architectures.

We plan to continue investigating the effectiveness of the rule-based approach,
and plan to carry out experiments tracking the robustness of rules as design
artifacts evolve.
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