
A World-Wide-Web Architecture for
Collaborative Software Design

T.C. Nicholas Graham
Hugh D. Stewart
A. Reza Kopaee

Department of Computing and
Information Science
Queen’s University

Kingston, Ontario, Canada
graham@cs.queensu.ca

Arthur G. Ryman
IBM Toronto Laboratory

1150 Eglinton Avenue East
Toronto, Ontario, Canada

ryman@ca.ibm.com

Rittu Rasouli
Department of Computer Science

York University
4700 Keele Street

Toronto, Ontario, Canada
rasouli@cs.yorku.ca

Abstract

Rosetta is a tool that supports the creation of object-
oriented design documents, and automatically checks the
conformance of Java implementations to those designs.
Rosetta is based on a novel WWW architecture, supporting
collaborative use with heterogeneous development tools
under a coevolutionary development process. Rosetta has
been used extensively in our research group and in
teaching at the first year university level, and is currently
undergoing industrial field trials. Rosetta has proved
successful, but its deployment over the WWW has not
proved as transparent to users as we had hoped.

1. Introduction

In order to collaborate as teams, software engineers
need to be able to communicate the design of their software
to other team members who may be physically separated
from them, and to future maintenance programmers who
may be working after the original development team has
disbanded. Automated tools for design have the potential to
support communication by allowing the electronic sharing
of designs. However, poor support for communication
among developers is cited as one the primary reasons why
Computer-Aided Software Engineering (CASE) tools are
not widely used [8,9].

In order to support collaborative use, a design tool must
provide:
• Easy creation and sharing of design documents,

where members of a design team can immediately
access documents created by their colleagues;

• Flexible communication, where the development
processes enforced by the tool do not interfere with
developers’ formal and informal communication [10];

• Flexible deployment, where developers within a team
are allowed to use different code development tools,
perhaps running on different operating systems.

This paper presents Rosetta, a light-weight tool for
object-oriented design using the Unified Modeling
Language (UML) [15] notation. Rosetta meets the three
requirements outlined above by using a novel World Wide
Web architecture. Design documents are written in HTML,
and may contain embedded UML diagrams. These
diagrams are stored on a server, allowing them to be
viewed and edited from anywhere on the Internet. A
checker tool tests the conformance of code
implementations to these design documents. Rosetta is
therefore appropriate for a coevolutionary development
process [4], since design and code can be created in any
order. The checker tool can be used at any time to
establish how closely the design and code match. As well,
the checker tool permits maintenance programmers to
assess the trustworthiness of legacy designs. Rosetta is
compatible with a wide range of code development tools:
since code is produced independently of designs, the design
tool does not interfere with the coding process. A novel
Java servlet-based [7] architecture permits the conformance
checking of code that is stored in files or in a distributed
repository.

Rosetta has been implemented. It has been used in the
development of two significant projects in our research lab,
in teaching object-oriented design to first year university
students, and is currently undergoing industrial field trials.

Rosetta’s World Wide Web architecture has proved to
be a successful mechanism for deploying a software design
tool. We have, however, experienced difficulties creating a
fully transparent web-based installation process.

This paper is organized as follows. Section 2 gives an
example of the style of design document that can be created

with Rosetta. It then introduces the Rosetta architecture,
and explains how the architecture supports collaborative
software development. Section 3 shows how Rosetta’s
WWW architecture provides flexibility with respect to
process, allowing developers to adapt the tool to their
existing collaborative work practices. Section 4 shows how
Rosetta’s WWW architecture provides flexibility with
respect to toolset. Finally, section 5 evaluates the tool’s use
in practice and discusses our experiences with developing
applications for the World Wide Web.

2. Collaborative Creation and Viewing of
Design Documents

In a survey of professional software developers, Kraut
and Streeter identified that of eighteen ways development
teams coordinate their activities, developers cite discussion
with their peers as the most important [10]. Following a
study of 55,000 hours of development activity, Norcio and
Chmura determined that discussion among software
engineers is correlated with progress in design [12]. Such
communication becomes much more difficult, however,
when development teams are distributed [16].

Software design tools seem to promise support for
communication between team members. Once they are
created in electronic format, designs can easily be shared
with other developers, and can form a basis for
communication. According to Jarzabek and Huang,
however, a lack of flexible support for informal
communication is an important reason why current CASE
tools are not widely used [9].

In order to support the work of distributed development
groups, a software design tool must support the remote
creation, editing, and viewing of design documents. The
tool must have minimal barriers to use: developers should
not have to install new software in order to view
colleagues’ designs, and should not have to learn complex
new tools to modify or update those designs. As well, the
design tool must provide access and concurrency control.

In order to support the most flexible distributed viewing
of design documents, Rosetta design documents are written

Figure 1: Example Rosetta design document.
Designs consist of text and diagrams in the UML [15]
notation. Nodes in diagrams may be hyperlinked to
arbitrary documents, such as other designs or
javadoc [11] documentation. Design documents are
created in HTML, and can be viewed in standard
browsers.

Figure 2: Architecture for viewing and creating
design documents. Documents are standard HTML,
served by any HTTP server. Diagrams are
embedded within the documents, and served from
the Rosetta server. An editor applet allows
designers to create and modify diagrams from
anywhere on the Internet.

in HTML, using any HTML editor. Design documents are
comprised of text and class diagrams in the UML notation.
Since they are developed using standard HTML, design
documents can be viewed by anyone with access to a web
browser, from any location on the Internet. Figure 1 shows
a design document created using Rosetta.

A document may contain any number of class diagrams.
Class diagrams consist of classes, interfaces, and primitive
types that may be related via general association,
aggregation and inheritance. These diagram elements may
be hyperlinked to related information. By default, class and
interface nodes are hyperlinked to the javadoc [11]
documentation describing their interfaces.

2.1. Document Server Architecture

To support collaborative work, it must be possible to
create, edit and view design documents from distributed
sites. It must also be possible for groups of people to
concurrently create and modify designs.

The World Wide Web architecture shown in Figure 2
meets these requirements. Designs are HTML documents,
served by an HTTP server. Design diagrams are embedded
within these HTML documents using a JavaScript [5] tag.
Each JavaScript tag loads a diagram from the Rosetta
Design Server. The design server serves each diagram as a
GIF image with an associated image map, which allows
each element in the diagram to be hyperlinked.

The design server also permits diagrams to be loaded
and saved in a structural form suitable for editing, and
provides access control enforcing diagram ownership and

concurrency control. This allows diagrams to be safely
viewed and edited from any location on the Internet.

Since diagrams are stored on a central server, they are
available for editing by anyone who has write permission
for the diagram, from any location. Group work is fully
supported, since any number of people can edit the design
diagrams (although only one person at a time can hold the
write lock to a given diagram). As well, by clicking the
reload button of their HTML browser, updated diagrams
are immediately available to anyone viewing the design
documents.

The central design server is a Java application, and can
therefore run on any machine and operating system for
which there is a Java Virtual Machine.

2.2. Creating Design Documents

A major goal of Rosetta was to reduce barriers to
adoption by making the creation of design diagrams
simple, and by requiring no special tools or installation.
The WWW architecture described in the previous section
was designed to meet these goals. Section 5 evaluates the
success of the architecture.

While HTML design documents can be created using
any HTML editor (the example documents in this paper
were prepared using Netscape Composer), designers create
the UML diagrams embedded in those documents using the
Rosetta editor, shown in figure 3. This editor is a full-
featured editor for UML class and object diagrams. It
includes support for multiple windows, copy & paste and
undo operations, the attachment of URL links to diagram
elements, and font selection. The Rosetta editor is
implemented as a Java applet. The editor therefore requires
no installation; it is simply invoked from a web page. As an
applet, the editor runs on a wide range of machines and
operating systems.

Diagram open and save operations are performed by
connecting with the design server. The open operation
locks the diagram to avoid concurrent editing of the
diagram by multiple designers. The save operation saves
the diagram structure. When a diagram is saved, the editor
also creates a GIF image of the diagram and an associated
image map. The image map describes links from the
diagram elements to other documents. On saving a
diagram, the editor also writes a JavaScript tag referring to
the diagram to the web browser’s Java console. To insert
the diagram into a design document, the designer simply
pastes this tag into his/her HTML design document.

In summary, Rosetta provides for the easy creation,
editing and viewing of design documents using standard
web browsers. This allows development teams to share
design documents across the Internet. A central design
server stores the design diagrams. Since the diagram editor
is an applet, designers do not need to install special
software in order to edit designs.

Figure 3: The Rosetta Editor supports the creation
of UML [15] class and object diagrams. Diagrams
are stored in a central repository, allowing them to
be edited from any location on the Internet.

3. Flexible Communication through Flexible
Process

Empirical studies show that interaction between
members of a software engineering team takes many forms,
ranging from informal to highly structured [10,16]. Design
tools should promote this interaction by allowing
developers to communicate in flexible ways [9]. The
design tool should not enforce a process that interferes with
this communication.

For example, imagine that a developer wishes to
propose an alternative design for part of a system whose
implementation is already underway. A design diagram for
this new proposal may be inconsistent with the rest of the
design, and may be inconsistent with already implemented
code. The design tool should not interfere by insisting that
these consistency issues be resolved before the design can
be updated.

Existing software design tools [6,14] tightly couple
design and code so that they stay synchronized. This
approach has the benefit of ensuring that the design
accurately reflects code, but has the cost of enforcing work
practices that may be inappropriate in a distributed setting.

Tools supporting the ViewPoints approach [2] and
coevolutionary design [1,4] recognize that for distributed
design, it is necessary to tolerate inconsistency.

As a project proceeds, it is often the case that design
documents cease to reflect the system as implemented [3].
In order to make informed use of the information contained
in design documents, software engineers need to able to
easily assess the accuracy of that information. That is, they
need to be able to easily determine whether the
implementation conforms to the design.

3.1. Conformance Checking

While Rosetta allows design and implementation to
coevolve with arbitrary inconsistency, it also allows
developers to easily discover where those inconsistencies
exist. In Rosetta, there is no direct link between design and
code. Instead, designs are created (as described above in
section 2.2) independently of code development. At any
time, developers can invoke a design-vs.-code conformance
checker to test how closely the design matches the code.
The use of a confromance checker allows code and design
to evolve independently, while making it easy to test where
the two differ.

Figure 4: An example checker report. The checker identifies inconsistencies among design diagrams and
inconsistencies between design and code. Checker reports are HTML documents.

Conformance checking is based on a simple set of rules
that specify how designs should be implemented in code.
Wherever these rules are not satisfied, a warning message
is generated specifying how the code and design differ.
Figure 4 shows the form of these warnings messages in a
report from the checker. Specifically, the rules are:
• UML classes/interfaces map to Java classes/interfaces.
• UML aggregation relations map to Java fields or

accessor methods.
• UML inheritance relations map to Java extends or

implements clauses.
The problem of checking UML multiplicities is in

general uncomputable. Multiplicities are partially checked
by requiring the target multiplicity “many” be mapped to
container objects, such as array or vector types.

The conformance checker allows developers to decide
what inconsistencies between design and code are
tolerable, and what needs to be fixed immediately. This
approach supports coevolutionary development, where
design and implementation proceed in parallel, potentially
become inconsistent, and synchronize at times the
developers consider appropriate.

Conformance checking also helps maintenance
programmers who must assess the accuracy of designs,
often when the designers are no longer available. The
conformance checker automatically reveals where the code
has evolved since the last update of the design documents.

In summary, Rosetta does not enforce a design process
that might inhibit some forms of communication among
developers. Designers are free to develop designs and code
in any order, and are free to manage inconsistency as they
choose.

4. Flexible Deployment

Design tools for team-based development must also be
flexible with respect to development tools. The developers
within a team will not necessarily use the same code
development tools, particularly when development teams
span companies or company sites. It is unrealistic to expect
that developers will change development tools to suit the
requirements of a design tool, or that the eventual
maintainers of the code will use the same environment as
the developers. Therefore, it is important that a design tool
not be bound to a particular code development tool, but that

Figure 5: Complete architecture of Rosetta. Each developer uses their browser to view and edit designs.
Developers invoke check requests through a checker applet. A checker server performs conformance checks,
and returns the result as an HTML error report.

the design tool instead be usable within a heterogeneous
development environment.

As well, to be successfully used by a group, all members
of the design team must be willing to use the design tool.
The tool should therefore be easy to install and easy to use.

The Rosetta approach of loosely coupling design and
code through conformance checking provides the basis for
supporting heterogeneous code development tools. As
described in section 2, editing and viewing designs does
not impact the coding process, and is thus independent of
code development environments. The code and design are
linked only by the conformance checker, which must have
access to both. As described in section 4.1, below, the
implementation of the checker as a Java servlet allows the
same checker to be used with a wide range of code
development tools on a variety of operating systems.

The use of a WWW architecture simplifies Rosetta’s
installation process. Since the tools are implemented as
applets, they can be run in a web browser simply by going
to the appropriate web page. However, as described in
section 5, this applet deployment did not prove as simple as
we had hoped.

4.1. Architecture for Conformance Checking

Figure 5 shows the architecture of the complete Rosetta
tool. Developers use the conformance checker via the
checker client applet shown in Figure 6. This applet allows
users to specify what parts of the design are to be checked

(in Figure 6, the user has specified that all diagrams in the
as1 design of the cisc324 project are to be checked). Users
may specify an internal consistency check amongst all the
diagrams in a design, or a design-vs.-code conformance
check.

The checker client asks the checker servlet to perform
the check. The checker servlet replies with an HTML check
report like that of Figure 4. The check report is displayed
in the user’s browser.

The checker servlet reads design information from the
design server. To obtain the corresponding code, the
checker servlet must be run on a machine where it has
access to that code. When it generates check reports, new
diagrams illustrating inconsistencies may be written back
to the design server. The checker servlet runs inside a
minimal HTTP server. This means that check requests are
HTTP requests, and that the response is an HTML check
report suitable for display in a browser. The use of HTTP
for communication between the checker client applet and
the checker servlet allows the checker servlet to be located
on any machine, without compromising Java’s applet
security model.

The checker servlet is compatible with a wide range of
code development tools. Most Java development tools store
code on the file system. Giving the checker access to that
program code is as simple as running the checker on a
machine where it has access to the file system. Some tools
(such as IBM’s VisualAge for Java product) store code in a
proprietary repository to support distributed code
development. For such environments, the checker can be
run within the development environment itself to gain
access to the repository.

To demonstrate the flexibility of this architecture, we
have run the checker on code developed in VisualAge for
Java, Sun’s Java Workshop, and Sun’s Java Development
Kit, on the Solaris, Linux, Windows 95, and Windows NT
operating systems.

While the architecture of Figure 5 is very flexible,
Rosetta can in practice be deployed in simpler
configurations. The design server is actually a minimal
HTTP server, used to serve the editor and checker client
applets and the Rosetta on-line help pages. Therefore, if the
design documents are stored on the same machine as the
design server, there is no need for a separate HTTP server.
As delivered, the design server includes a checker servlet.
Therefore, if the code can be located on the same machine
as the design server and its checker servlet, there is no need
to run a separate checker servlet.

In summary, Rosetta loosely couples code and design
through a conformance checker. This means that the tools
used for creating and viewing designs do not interfere with
those used for coding: developers are free to choose any
code development environment. The conformance checker
requires access to the code, and is thus implemented as a
checker servlet located where that code lives. We have
shown that the checker can be used without modification

Figure 6: The checker client applet. Users
specify what diagrams to check, and whether to
check the internal consistency of the design, or
the conformance of code to the design. The URL
of the checker server can be specified.

on code produced by a number of development
environments.

5. Evaluation

In order to evaluate the success of the Rosetta
architecture, we implemented Rosetta in the Java
programming language. The tool has undergone the
following trials:
• Three developers used Rosetta within two significant

projects within the Software Technology Laboratory at
Queen’s University. While the developers were within
our research group, they were not members of the
Rosetta project itself, and were using the tool at their
own discretion.

• Approximately 90 students at Queen’s University are
currently using Rosetta as part of a first year
introduction to computer science. The tool is being
used to document and check modest programming
assignments. The use of the tool is voluntary.

• At the time of writing, industrial field trials are
commencing with volunteers at the IBM Toronto Lab.

Once successfully installed, the Rosetta tool received a
very positive reception. The process of creating designs
and of checking designs against code is simple, and in
practice quickly learned. We will not be able to definitively
conclude that the tool is successful until our field trials
have progressed further. However, the enthusiastic use of
the tool within our own research group indicates that
developers find the tool easy to use and easy to adapt to
their own work practices.

5.2. Installing Rosetta

On the other hand, the process of installing Rosetta can
be frustrating. While web-based architectures such as the
one described in this paper are effective, they do not yet
permit a simple, transparent installation process.

We found the Java virtual machines in standard web
browsers to be too slow and unreliable to use as execution
platforms for Rosetta. As well, the latest browsers typically
contain virtual machines several releases behind the current
version of Java, and the browsers installed on peoples’
machines typically lag several releases behind the latest
version of the browser. Additionally, the two most popular
browsers do not implement compatible versions of Java. In
order to use the Rosetta editor and checker applets, users
are therefore often obliged to update their browser.
(Fortunately, documents can be viewed with older
browsers, as viewing does not involve running Java
applets.) Users find the potential requirement of upgrading
their browser a significant barrier to using Rosetta.

We have recently switched to using Sun’s Java Plug-in
[17], which replaces the virtual machines built into
browsers. The Java Plug-in works very effectively,
delivering the speed of Sun’s fastest virtual machine.

Furthermore, the Java Plug-in behaves identically across
browsers, solving the problems of cross-platform
incompatibilities and the general unreliability of browser
virtual machines. However, the Java Plug-in brings its own
problems. Users are obliged to download the specific
version of the Plug-in that is compatible with Rosetta.
While most people have a browser installed, the Plug-in is
relatively rare. Since the Plug-in works only with more
recent browser versions, users often need to both upgrade
their browser and download the Plug-in—a combined
download exceeding 10 MB. Finally, installing the Plug-in
requires administrator privileges on Windows NT and Unix
systems, which users may not have.

In summary, the flexible architecture of the Rosetta tool
works very well once the tool has been installed. However,
users must often perform significant software installation in
order to use the tool. In this respect, web-based delivery
falls short of its promise of removing the need for software
installations.

6. Conclusions

In this paper, we have presented a World Wide Web
architecture supporting collaborative software design. We
have argued that such an architecture should support the
viewing and editing of designs from distributed locations,
the flexible work processes that are required in
collaborative work, and the ability to operate within an
environment of heterogeneous development tools. We
have shown that the Rosetta architecture meets these
requirements by supporting HTML design documents
incorporating diagrams created with an editor applet that
talks to a central design server. To support flexible process
and heterogeneous tools, the Rosetta architecture decouples
design and code, and provides a conformance checker to
report on inconsistencies between the design and the code.

We conclude that the technology for deploying software
tools over the web is still immature; such deployments
often require users to shoulder the burden of downloading
and installing new web browsers and web browser plug-
ins.

Acknowledgements

The work described in this paper was supported by the
IBM Centre for Advanced Studies and by Communications
and Information Technology Ontario (CITO). The graphic
design of the Rosetta Editor was performed by the IBM
Media Design Studio. The design of the editor benefited
from the advice of the IBM User Centered Design Lab.

REFERENCES

1. Brown, J., Graham, T.C.N. and Wright, T., The Vista
Environment for the Coevolutionary Design of User
Interfaces, In Proceedings of CHI’98, ACM Press, 376-383,
April 1998.

2. Easterbrook, S., Finkelstein, A., Kramer, J. and Nuseibeh, B.
Coordinating Distributed ViewPoints: the Anatomy of a
Consistency Check. International Journal on Concurrent
Engineering: Research and Applications, 2,3, 209-222,
1994.

3. Finnigan, P., Holt, R.C., Kalas, I., Kerr, S., Kontogiannis, K.,
Muller, H., Mylopoulos, J., Perelgut, S., Stanley, M. and
Wong, K. The Software Bookshelf. IBM Systems Journal,
36, 4, 564-593, November 1997.

4. Fisher, G., Redmiles, D., Williams, L., Puhr, G.I., Aoki, A.
and Nakakoji, K. Beyond Object-Oriented Technology:
Where Current Approaches Fall Short. Human-Computer
Interaction, 10,1, 79-119, 1995.

5. Flanagan, D. JavaScript: The Definitive Guide, O’Reilly &
Associates, 1998.

6. Hui, Alan, IBM VisualAge UML Designer: An Integrated
Object-oriented Analysis and Design Too.,
http://www.software.ibm.com/ad/smalltalk/about/umlwhite.p
df

7. Hunter, J. and Crawford, W. Java Servlet Programming,
O’Reilly & Associates, 1998.

8. Iivari, J. Why Are CASE Tools Not Used? Communications
of the ACM, 39,10, 94-103, Oct.1996.

9. Jarzabek, S. and Huang, R. The Case for User-Centered
CASE Tools. Communications of the ACM, 41, 8, 93-99,
August 1998.

10. Kraut, R.E. and Streeter, L.A. Coordination in Software
Development. Communications of the ACM, 38, 3, 69-81,
March 1995.

11. Niemeyer, P. and Peck, J. Exploring Java, O’Reilly &
Associates, 1996.

12. Norcio, A.F. and Chmura, L.J. Design Activity in
Developing Modules for Complex Software. In Soloway, E.
and Iyengar, S., editors, Empirical Studies of Programmers,
99-116, Ablex Publishing, 1986.

13. Parnas, D.L. and Clements, P.C., A Rational Design Process:
How and Why to Fake it. IEEE Transactions on Software
Engineering SE-12,2, 251-257, Feb. 1986.

14. Quatrani, Terry, Visual Modeling with Rational Rose and
UML, Addison-Wesley, 1998.

15. Rumbaugh, J., Jacobson, I. and Booch, G. The Unified
Modeling Language Reference Manual. Addison Wesley,
1999.

16. Seaman, C.B. and Basili, V.R. Communication and
Organization in Software Development: An Empirical Study.
IBM Systems Journal 36, 4, 1997.

17. Sun Microsystems, Java™ Plug-in Overview,
http://www.javasoft.com/products/plugin/1.1.1/.

