
Flexibly Mapping Synchronous Groupware
Architectures to Distributed Implementations

Tore Urnes
Telenor Research and Development

P.O. Box 83
N-2007 Kjeller

Norway
Tore.Urnes@telenor.com

T.C. Nicholas Graham
Department of Computing and

Information Science
Queen's University

Kingston, Ontario, Canada
graham@cs.queensu.ca

Abstract
Design-level architectures allow developers to concentrate on the
functionality of their groupware application without exposing its detailed
implementation as a distributed system. Because they abstract issues of
distribution, networking and concurrency control, design-level architectures
can be implemented using a range of distributed implementation
architectures. This paper shows how the implementation of groupware
applications can be guided by the use of semantics-preserving architectural
annotations. This approach leads to a development cycle that involves first
developing the functionality of the application in a local-area context, then
tuning its performance by setting architecture annotations. The paper
concludes with timing results showing that architectural annotations can
dramatically improve the performance of groupware applications.

1 Introduction
In recent years, a number of software architecture styles have been proposed to
support the development of synchronous groupware systems. These include PAC*
[3], ALV [15], C2 [25] and the Clock architecture style [12]. Such design-level
architecture styles allow developers to specify the high-level structure of their
applications while abstracting the low-level details of distributed implementation.

Tools supporting the development of groupware applications differ in the
architectural abstractions that they present to developers. Low-level toolkits expose
the underlying distributed system to the developer. For example, the highly
successful GroupKit toolkit [21] is based on a fully replicated architecture with no
concurrency control. Developers must therefore be aware that different participants’
views may become inconsistent [14]. GroupKit’s low-level implementation
approach is part of the reason for its great success – programmers need to know that
they are programming a distributed system, but have great control over the
implementation of their application.

High-level toolkits take the approach of automatically implementing a design-level
architecture provided by the programmer. This approach simplifies the development
of groupware applications by abstracting the details of networking, distribution and
concurrency control, but at the cost of implementation flexibility. The Rendezvous
toolkit [15] demonstrated that it was possible to automatically implement the high-
level ALV architecture. Rendezvous provides only a purely centralized
implementation, however, leading to problems with performance. Our own Weasel
system [11] showed how high-level architectures could be mapped to a semi-
replicated distributed implementation. In Weasel, the user interface is represented
on the client machines and the functional core of the application is implemented on
a server. As with Rendezvous, however, Weasel provided programmers with only
one implementation strategy.

An alternative approach is to combine the advantages of high and low-level toolkits
by providing both high level abstractions and the opportunity for low-level tuning.
The Suite system [4] first demonstrated this approach by showing how a semi-
replicated implementation of the model-view-controller (MVC) architecture [18]
can be manually tuned by using peer to peer communication to bypass the model.
The GEN system [19] provides shared objects as a high-level abstraction, and

Fig.1. A critical path planning application and its design-level architecture.

facilities for specifying how these shared objects should be implemented. The
Prospero system [5] provides a meta-object protocol, allowing the developer to
specialize the toolkit’s mechanisms for managing shared data. AMF-C [24] provides
groupware frameworks that can be customized following implementation.

In this paper, we demonstrate that it is possible to completely separate the functional
design of a groupware application from the design of its distributed implementation.
A design level architecture in the style of PAC [3] or Rendezvous [15] provides a
conceptual framework for developing the application’s functionality. This
architecture is then annotated to guide its implementation as a distributed system. A
toolkit provides a default implementation of the architecture, suitable for testing. To
achieve production quality performance, architectures are tuned via semantics-
preserving annotations. These annotations select between a variety of distribution
styles, concurrency control methods, caching algorithms and replication strategies.

We have demonstrated this approach of separating the development of an
application’s functionality from the specification of its distributed implementation,
using the Clock groupware development toolkit. Clock provides an architecture style
based on layered MVC [18]. A distributed implementation of a Clock architecture is
considered correct if it adheres to Clock’s formal semantics [8]. As with other high-
level architecture styles, Clock permits a wide range of implementations. The effect
of a semantics-preserving annotation is therefore to specify to the Clock runtime
system that a particular implementation is desired. Therefore, annotations do not
change the functionality of the application, just its runtime performance.

Annotations can lead to dramatic improvements in the performance of groupware
applications. As shown in section 4.1, the Clock implementation of a highly
interactive project planning application runs with instantaneous response time, even
when the participants are located in Canada and New Zealand. Over a wide area
network, the annotated version of this application ran ten times faster than the
automatically derived implementation.

This paper is organized as follows. We briefly introduce the Clock architecture style
and show how this style can be used to implement a simple synchronous groupware
application. We then introduce the architecture annotations that are used to control
the distributed implementation of the architecture, and show the effects of applying
the annotations on the runtime performance of the application.

2 The Clock Architecture Style
Clock architectures are used to design the structure of synchronous groupware
applications. Like other groupware architecture styles, Clock architectures consist of
a hierarchy of components representing the application’s compositional structure.
Clock architectures hide low-level implementation issues such as distribution
policies, networking protocols and concurrency control.

Clock has been used to build a number of substantial applications, in our research
group and elsewhere. These applications include a user interface design tool [2], a
tool for recording design rationale [22], a multiuser web browser [9] and a multiuser
video annotation tool [12].

2.1 An Example Groupw are Application
To motivate how Clock architectures are designed, we use the example of a simple
project scheduling application written in Clock. As shown in figure 1, the
application allows multiple users to simultaneously create nodes in a critical path
network, connect them, and rearrange them. The critical path through the network is
shown in white. Telepointers allow people to see who else is present in the session,
and what they are doing. Each participant sees the effects of other participants’
actions in real time. Participants have private copies of the project toolbar, so that,
for example, one person can be moving a node while another is connecting two
nodes. The application is therefore relaxed WYSIWIS (what you see is what I see).

When a participant clicks on a node in the critical path, he/she implicitly locks the
node so that others cannot move it. Thus, two participants can concurrently move
different nodes, but cannot concurrently move the same node.

2.2 Clock Architecture for the Critical Path Application
Clock architectures are structured as trees of components. The root of the tree (the
CPM node) implements the functional core of the application, in this case
representing the structure of the project network and the critical path. A set of
abstract data types (ADT’s) is attached to the functional core, representing
application data. In figure 1, ADT’s implement the positions of the nodes in the
project plan (NodePositions), the dependencies among the nodes (CPMStructure),
and what users are currently participating in the project planning session (Session).

The architecture tree represents the hierarchical composition of the user interface.
The root CPM node creates one instance of the user interface (CPMView) per
participant. The CPMView is in turn composed of the project plan (CPMNetwork)
and the project toolbar (ModeButtons). Components communicate via messages. For
example, a BrowseNode responds to mouseButton and relMotion user inputs. A
BrowseNode may make requests (e.g., using nodePosition to request the position of
the node), and updates to change state (e.g., moving a node with the
setNodePosition message.)

Clock architectures can be viewed as implementing a layered model-view-controller
[18] structure, where the ADT’s implement the model, and the components further
down the tree implement the view/controllers.

To aid with concurrency control, Clock guarantees atomicity of input transactions.
An input transaction describes the sequence of computation that is required to

process a user input, i.e., to read in the input, modify the user interface and
application state, and update the views of all users. Therefore, Clock
implementations may process input transactions concurrently, but only if they can
guarantee that the transactions will not conflict. Atomicity of input transactions
provides a powerful, low-level concurrency control mechanism from which higher-
level concurrency control policies can be implemented.

Clock architectures are developed using the ClockWorks visual editor [10]. In this
editor, components can be easily added, moved, deleted and grouped into aggregate
components. When Clock programs run, participants may enter or leave
dynamically from any location on the Internet. Participants use a version of the
GroupKit session manager [21] to enter a session. The current session information
(i.e., the names and IP addresses of all participants) is automatically maintained in
the Session ADT.

By default, Clock architectures are implemented using a fully centralized
architecture. The complete application runs on a single machine, posting the view of
each participant to his/her client machine. Clock architectures, however, can be
implemented in a wide variety of styles, ranging from fully centralized to fully
replicated, with a range of hybrid styles in-between. The next section shows how
semantics-preserving architecture annotations can be used to map design-level
architectures to a wide range of distributed implementations.

3 Annotations
Developing groupware applications is a challenging task. As with all interactive
software, development is iterative, requiring rapid change in response to usability
testing. At the same time, developers must contend with the complexities of
implementing an efficient distributed system. In Clock, we have taken the approach
that developers should be able to work first on getting the functionality of their
application correct, and then on tuning the application to obtain acceptable
performance. As outlined earlier, the Clock architecture style permits developers to
implement their application without worrying about issues of concurrency control,
distribution or networking. The Clock toolkit automatically provides a purely
centralized implementation of the architecture that correctly implements the
application’s functionality.

This default implementation, however, typically fails to provide acceptable
performance for more than a few users or over a wide-area network. In order to
improve performance, the developer can place annotations on the architecture.
These annotations give hints to the runtime system as to how the architecture should
be implemented as a distributed system. Annotations are semantics-preserving,
meaning that they are allowed to affect the performance, but not the functionality of
the application. Annotations are therefore not considered to be part of the program,
but rather are information to be used for runtime tuning.

In order to validate this two step approach to developing groupware applications, we
have provided a set of annotations in Clock. Figure 2 shows the architecture of the
critical path planner with annotations. Annotations are used to control the
distribution of the application across multiple machines, the caching algorithms
employed, replication of ADT’s, and the concurrency control strategy.

The remainder of this section explains the effects of these annotations, motivating
that a large space of possible implementations can be derived from a single Clock
architecture. The timing results presented in the section 4 demonstrate that different
choices of annotations can have a dramatic effect on the runtime performance of an
application, particularly when running in a wide area context.

3.1 Annotations for Distribution
At runtime, an architecture leads to a set of code and data that must be distributed
among the machines used to support the groupware session. One possible
implementation is purely centralized (as used in Rendezvous [15]), in which all code
and data is represented on a central server, while displays are posted to participants
machines. Another common implementation is semi-replication, as used in Weasel

Eager
concurrency
control

Replicated
ADT

Client/Server
split with
Presend
Caching

Fig. 2. The architecture of figure 1 annotated to improve performance.

[11] and Suite [4]. In semi-replicated implementations, the shared context (or
functional core) of the application is represented on a server machine, while each
participant’s user interface is represented on his/her own machine. Semi-replication
has the advantage of supporting improved scalability [11], as the load of an
increasing number of numbers of participants is distributed to the participants’ own
machines. However, semi-replication brings increased communication costs in that
the user interfaces must communicate over the network in order to access data in the
shared context. Which approach is best depends on the cost of network
communication, the number of participants in the groupware session, the speed of
the server, and the communication patterns of the application itself.

In Clock, annotations are provided which allow the architecture to be split between
a server and client machines. As shown in figure 2, this annotation is attached to
links in the architecture tree. Everything above the annotation is represented on the
server machine; everything below is represented on the client machine. All update
and request messages are automatically routed over the network boundary,
transparently to the programmer. Developers can therefore easily experiment with
different client-server split points without any reprogramming. Normally, the client-
server split is made such that the shared context is placed on the server and the user
interface on the client machines.

In summary, by using the client-server split annotation, developers can specify how
their code is to be split among the machines being used in the groupware session.
The annotations are changed simply by pointing and clicking in the ClockWorks
environment [10]. Changing the client-server split requires no programming
whatsoever.

3.2 Annotations for Caching
The primary disadvantage of semi-replicated implementation is that client machines
must communicate over a network to request data from the shared context. These
requests may be synchronous, requiring the client to block. Even in a local area
context, clients may spend most of their time blocking [13]. Caching algorithms can
be employed to reduce the number of remote requests that clients make. Simple
caching records what requests have been made in the past, and what responses were
received; if the client makes a request, the cache is consulted before making a
remote request to the server. As is shown in section 4, simple caching can
dramatically improve response times. More sophisticated schemes such as prefetch
and presend caching [13] attempt to predict future requests and asynchronously

Fig. 3. Annotations specifying caching strategies: presend, prefetch, simple
caching and no caching [13].

service the requests so that the responses will be available in the cache when the
requests are actually made.

These schemes carry costs, however: simple caching costs memory at the client to
maintain the cache entries, and introduces extra computation in order to test whether
requests are already in the cache and to maintain cache coherence. Prefetch and
presend caching introduce computation to predict future requests, and can tie up the
server and network in computing and communicating requests that may never be
made. The correct choice of caching algorithm therefore depends on network and
machine speeds and the characteristics of the application itself.

Clock provides four annotations to control the caching strategy (figure 3). These
annotations correspond to providing no, simple, prefetch and presend caching. To
change the caching strategy, programmers simply click on the annotation, and select
the desired strategy from a dialogue box.

3.3 Annotations for Concu rrency Control
Participants in a groupware session can perform actions concurrently. The system
must react in some reasonable way when participants perform conflicting actions.

Numerous concurrency control schemes for groupware have been proposed. These
schemes trade off three properties: speed of resolving local reads/writes,
intuitiveness of handling conflicts, and burden placed on the groupware application
developer. Some of these tradeoffs are summarized by Greenberg and Marwood
[14]. Pessimistic schemes (such as the use of locks) determine whether it is safe to
access shared data before the access is made. The overhead of these checks means
that users suffer a penalty of accessing shared data even if all the shared data is
available locally on their own machine. Pessimistic schemes guarantee, however,
that concurrent inputs will never lead to inconsistent state or unintuitive undoing of
user actions.

Optimistic schemes are based on the assumption that conflicts are rare, and that it is
therefore preferable to detect and repair conflicts after they have occurred. Our own
eager concurrency control strategy uses a transparent rollback scheme [26]. Other
approaches require the programmer to provide correct rollback functionality to undo
erroneous actions (such as in Bayou [6]) or operation transforms that allow updates
to be applied in different orders at different sites [7]. Optimistic approaches allow
local operations to proceed without consulting with other sites, but may lead to
unintuitive user interface behavior when user actions are undone or transformed.
Optimistic approaches may require the programmer to provide special purpose code
to detect and/or repair conflicts, increasing the development effort.

It is usually preferable to use a pessimistic scheme if acceptable performance can be
obtained and move to an optimistic scheme as network latencies degrade. The
choice of concurrency control schemes ultimately depends on the characteristics of
the groupware application, the speed of the available network, and the availability
of programmer time to devote to customizing concurrency control support.

In order to demonstrate that multiple concurrency control schemes can be supported
within the same toolkit, we have included two algorithms in Clock: a locking
scheme and the optimistic eager [26] concurrency control scheme. As shown in
figure 3, programmers may select which scheme to use by clicking on the
locking/concurrent annotation in the architecture.

3.4 Annotations for Replication
Groupware applications may be implemented with shared data represented on a
central server [4,11,15], or replicated to the machines of the participants
[1,14,17,21]. The primary benefit of replicating data is that response time can be
improved, as local inputs can be processed without communicating with other
machines. As discussed in the last section, however, replication requires
sophisticated concurrency control schemes to ensure that replicas remain consistent.
Additionally, replication may not be possible for some sorts of data (e.g., files or
proprietary data) [20].

In Clock, we provide a flexible approach to replication, where developers can
choose to replicate individual ADT’s (figure 4). This way, the developer can choose
to replicate those ADT’s for which there will be a performance improvement, and
centralize those for which no improvement will result. Replicated ADT’s in Clock
have no concurrency control associated with them. It is therefore incumbent on the
developer to ensure that replicated ADT’s have the property that applying updates in
different orders will not cause consistency problems.

For example, in figure 3, the NodePositions ADT is replicated. This ADT keeps
track of the positions of the nodes in the critical path network. The developer of this
application knows that in practice, only one participant can be moving a given node
at any given time. (Recall that clicking on a node locks the node.) It is therefore safe
to turn off concurrency control on this ADT. In our experience, many applications
contain important ADT’s where concurrency control can be safely turned off,
allowing replicated implementation with no overhead. As will be seen in the next
section, replicating such crucial ADT’s can result in dramatic speedups.

Fig. 4. Annotation specifying replication.

Copies of replicated ADT’s are maintained on the server. The server is responsible
for multicasting updates to all replicas, and maintaining a central copy of the current
ADT state that can be used to allow late joiners to enter a session.

The use of annotations for replication differs from the use of annotations we have
seen up to now. Annotations for distribution, caching and concurrency control are
optimizations that can be applied to any architecture. By specifying those ADT’s
where concurrency control can be safely turned off, replication annotations allow
the developer to specify application-dependent knowledge that the runtime system
could not deduce. That is, the developer is specifying that in this case, the
replication annotation is semantics-preserving. As argued by Edwards et al. [6],
application-specific knowledge can dramatically improve the performance of
concurrency control.

Replicated ADT’s can be combined with centralized locks, allowing programmers
to develop concurrency control strategies that are customized for their application.
For example, in the critical path planner, the Lock ADT assigns locks for nodes.
This ADT is centralized, so that requests for locks will be serialized. Manual
locking of parts of the shared artifact can allow safe replication of parts of the
shared context without the overhead of concurrency control.

4 Implementation
Annotations are automatically implemented by the Clock runtime system. Clock
applications are divided into a server and a client part. The server is responsible for
maintaining shared data, implementing concurrency control and notifying clients of
changes in the shared context. Clients are responsible for implementing the user
interface of a single user.

Clients include a cache and a replica store, while the server contains a concurrency
control unit and a server side cache. Annotations are implemented by making a
runtime decision as to how these cache, replica and concurrency control units are
used.

Figure 5 shows the implementation of the critical path planner following application
of the annotations of figure 3. This implementation is derived automatically by the
Clock runtime system from the annotated design-level architecture. The server
contains the ADT’s implementing the structure of the critical path plan. The client
replica store contains a copy of the NodePositions ADT.

The clients and server communicate via the Clock protocol [26], a networking
protocol running over TCP/IP. The Clock protocol has been formally specified using
the PROMELA protocol specification language, and validated through simulation
and model checking [16], as well as through implementation in the Clock toolkit.
Full details of the Clock protocol are provided elsewhere [26]. To give a flavour of
the protocol, we consider how the protocol implements requests made by the view:

Requests to the shared context are first routed through the cache and the replica
store, and only sent to the server if necessary. In practice, almost all requests are
handled locally. Consider, for example, that during view computation, a client
makes a request r with parameters p. The view computation unit issues a message
request(rqId,r,p), where rqId is some unique id. The Clock runtime system routes
this message first to the cache; if this request has been cached (with value v), a
response message response(rqId,v) is returned to the view computation unit. If the
value has not been cached, the request message is forwarded to the replica store. If
one of the replicated ADT’s is capable of handling the request, the response is
computed, and the response(rqId,v) message is returned. Finally, if the replica store
does not contain an ADT capable of handling the request, the request(rqId,r,p)
message is forwarded to the server, which computes and returns the response(rqId,v)
message. The view computation code is not aware of where the response is
generated; view code simply issues the request message, and handles the response
when it is returned. Therefore, distribution, caching and replication decisions do not
impact view computation code. Similarly, the implementation of input-handling
code is not impacted by changes in the distribution architecture.

Communication from server to client is also handled through the Clock protocol.
Whenever actions by one user change the shared context, the caches and replica

Cache

Updates

Requests
Updates / Requests

Updates

Notifications
Updates /
Requests

Server

Client

Fig. 5. Implementation architecture resulting from annotations of figure 2.

stores on other clients may become out of date. The server asynchronously sends
updates to the other clients. The level of detail provided by these updates depends
on what form of server-side caching has been selected [13].

4.1 Effect of Applying the Annotations
We now consider how the use of annotations can greatly improve the performance
of groupware applications. Figure 6 shows the results of successively applying
annotations to the architecture of figure 1. These numbers were obtained through a
set of experiments on both local and wide-area networks. All experiments used
TCP/IP over the standard Internet. The experiments measured the response time of
moving a node in the critical path planner in a two user session where both users are
simultaneously moving nodes. The response time is defined as the time from which
the user performs an input action (i.e., moving the mouse) to the time at which the
display is updated. The local area experiments used three PC’s, PII 300MHz,
running Linux, with a round-trip latency of 1 ms between the machines. The first
wide area experiments involved PC clients at Queen’s University, and a
SparcStation 10 server located at York University, with a 10 ms latency between the
server and client machines. (Queen’s and York Universities are separated by 250
km.) The second set of wide area experiments used two PC clients located at
Queen’s University, Kingston, Canada, and a Sun Ultra 1 server located at the
University of Wellington, New Zealand; the round-trip latency between client and
server was 350 ms.

As shown in figure 6, the default centralized implementation gives acceptable
performance in the local area context, but slows in the wide area context to an
unusable 1-second response time. Simply performing a client/server split gives
unacceptably poor performance, even in the local area context (1.25 seconds
response time.) Adding presend caching gives a substantial speedup, bringing
response times to usable levels, except in the widest area context. Moving to eager

1ms Latency 10ms Latency 350ms Latency

Centralized 71±2 ms 126±2 ms 992±119 ms

Semi-Replicated 1,245 ±60 ms 24,523 ±2277 ms ∞

Presend Cache 131±4 ms 256±12 ms ∞

Eager Conc. Ctl 123±5 ms 193±15 ms 543±21 ms

Replication 89±3 ms 86±2 ms 86±2 ms

Fig. 6. Results of successively applying annotations to the architecture of
figure 1. The timing results show the response time of moving a node in the
critical path planner, when two users are simultaneously moving nodes.
Times labeled as “∞” were too long to be measured. The given ranges
specify a 90% confidence interval based on 275 samples.

concurrency control brings statistically insignificant improvement in the local area
context. Over wide area, the overhead of obtaining locks is higher, and therefore
eager concurrency control has a more significant effect. Finally, replicating the
NodePositions ADT brings a significant speedup in both local and wide areas.

5 Analysis
The timing results presented in the last section show that annotating an architecture
can result in dramatic speedup of applications. In the wide area case, the annotations
made the difference between unusable and instantaneous response time, even in the
case when two users are simultaneously interacting with the application. The best
implementation is hybrid, combining centralized and replicated data and selective
application of concurrency control. Such a hybrid implementation would be hard to
derive automatically, but was easy to derive through architectural annotations.

According to Shneiderman [23], humans perceive response times of approximately
50 – 150 ms as instantaneous. The annotated implementation achieved response
times in this range, even with participants as far separated as Canada and New
Zealand. We have obtained similar results from other applications we have
developed in Clock [26], such as a collaborative video annotator [12] and the
GroupScape web browser [9].

We have shown that annotations allow programmers to develop applications without
being concerned with their distributed implementation, then later tune the
application to its distributed context. One possible criticism of design-level
architectures is that they may be biased towards a client/server implementation,
where the shared context is represented on the server machine. Even when
components are replicated, a centralized component is involved in multicasting the
client updates. In fact, annotations allow us to move very close to a pure replicated
model if we choose. Replicated implementations typically must retain some central
component to help in concurrency control, maintain session information, and deal
with late joiners. If all ADT’s from the shared context are replicated and caching is
turned off, the server devolves to simply maintaining session information, dealing
with late joiners, and multicasting updates between client machines. Most pure
replicated implementations handle these functions through some centralized service.

The approach of using annotations has allowed us to experiment with a range of
implementation algorithms to gauge their effectiveness. We have found presend
caching [13] to be generally highly successful despite the burden it places on the
server machine. Optimistic concurrency control [26] is generally preferable to
locking, although in the local area context, its overheads may be as large as its
benefits. It is important to be able to turn off these optimizations, however, as they
are based on heuristics which may not be appropriate to every application.

The two-stage approach of first implementing a design-level architecture and then

tuning it works well. We have had little difficulty tuning architectures after their
completion, and in gaining significant speedups through this tuning.

6 Conclusions
In this paper, we have argued that it is possible to separate the design-level
architecture for synchronous groupware systems from its ultimate implementation.
We have shown how a single design-level architecture can be mapped to a wide
range of implementation architectures, ranging from centralized to replicated. We
have argued that in practice, hybrid architectures combining some centralized and
some replicated data may be the most effective.

To validate these ideas, we presented our experiences with the Clock groupware
development toolkit, in which design-level architectures can be optimized through
semantics-preserving annotations. We showed how the application of annotations
can lead to a hybrid implementation architecture, tuned to the specific properties of
the groupware application and the hardware environment in which it is running.

The major shortcoming of our approach is that the annotations do not permit
applications to be tuned on a per-client basis. We are continuing research into
generalizing the annotation concept, developing hybrid concurrency control and
caching algorithms, and dynamic reconfiguration of implementation architectures.

Acknowledgements
The work described in this paper was supported by the Natural Science and
Engineering Research Council. Thanks also to Saul Greenberg and Mark Roseman
for permitting us to use the GroupKit session manager [21].

References
1. J. Begole, C.A. Struble, C.A. Shaffer, and R.B. Smith. Transparent Sharing of

Java Applets: A Replicated Approach. UIST '97, pages 55-64, 1997.
2. J. Brown and S. Marshall, Sharing Human-Computer Interaction and Software

Engineering Design Artifacts. In Proc. OZCHI’98, Dec. 1998.
3. G. Calvary, J. Coutaz, and L. Nigay. From Single-User Architectural Design to

PAC*: a Generic Software Architecture Model for CSCW. In Proc. CHI '97,
pages 242-249. ACM Press, 1997.

4. P. Dewan and R. Choudhary. A High-Level and Flexible Framework for
Implementing Multiuser User Interfaces. ACM TOIS, 10(4):345-380, Oct. 1992.

5. P. Dourish. Consistency Guarantees: Exploiting Application Semantics in a
Collaboration Toolkit. In Proc. ACM CSCW, 1996.

6. W.K. Edwards, E.D. Mynatt, K. Petersen, M.J. Spreitzer, D.B. Terry, and M.M.
Theimer. Designing and Implementing Asynchronous Collaborative
Applications with Bayou. In Proc. ACM UIST '97. ACM Press, 1997.

7. C.A. Ellis and S.J. Gibbs. Concurrency Control in Groupware Systems. In Proc.

SIGMOD '89, pages 399-407. ACM Press, 1989.
8. T.C.N. Graham. Declarative Development of Interactive Systems. Volume

243 of Berichte der GMD. Munich: R. Oldenbourg Verlag, July 1995.
9. T.C.N. Graham. GroupScape: Integrating Synchronous Groupware and the

World Wide Web. In Proc. INTERACT'97, pp. 547-554, July 1997.
10. T.C.N. Graham, C.A. Morton, and T. Urnes. ClockWorks: Visual Programming

of Component-Based Software Architectures. J. Visual Lang. & Comp.,
7(2):175-196, June 1996.

11. T.C.N. Graham and T. Urnes. Relational Views as a Model for Automatic
Distributed Implementation of Multi-User Applications, CSCW'92, 59-66, 1992.

12. T.C.N. Graham and T. Urnes. Integrating Support for Temporal Media into an
Architecture for Graphical User Interfaces. In Proc. ICSE '97, 1997.

13. T.C.N. Graham, T. Urnes, and R. Nejabi. Efficient Distributed Implementation
of Semi-Replicated Synchronous Groupware. In Proc. UIST '96, pp. 1-10, 1996.

14. S. Greenberg and D. Marwood. Real Time Groupware as a Distributed System:
Concurrency Control and its Effect on the Interface. CSCW '94, 207-217, 1994.

15. R.D. Hill, T. Brinck, S.L. Rohall, J.F. Patterson and W. Wilner. The
Rendezvous Language and Architecture for Constructing Multi-User
Applications. ACM TOCHI, 1(2):81-125, June 1994.

16. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1990.

17. T. Kindberg, G. Coulouris, J. Dollimore, and J. Heikkinen. Sharing Objects
over the Internet: the Mushroom Approach. In Proc. IEEE Global Internet '96,
1996.

18. G.E. Krasner and S.T. Pope. A Cookbook for Using the Model-View-Controller
User Interface Paradigm in Smalltalk-80. JOOP, 1(3):26-49, Aug./Sept. 1988.

19. T. O’Grady. Flexible Data Sharing in a Groupware Toolkit. M.Sc. Thesis,
Department of Computer Science, University of Calgary, 1996.

20. J.F. Patterson, M. Day, and J. Kucan. Notification Servers for Synchronous
Groupware. In Proc. ACM CSCW '96, pages 122-129. ACM Press, 1996.

21. M. Roseman and S. Greenberg. Building Real Time Groupware with GroupKit,
A Groupware Toolkit. ACM TOCHI, 3(1):66-106, March 1996.

22. M. Sage and C. Johnson, Pragmatic Formal Design: A Case Study in Integrating
Formal Methods into the HCI Development Cycle. In Proc. DSVIS’98, 1998.

23. B. Shneiderman. Designing the User Interface: Strategies for Effective Human-
Computer Interaction, Third Edition. Addison Wesley, 1998.

24. F. Tarpin-Bernard, B. David and P. Primet, Frameworks and patterns for
synchronous groupware: AMF-C approach, EHCI’98, 1998.

25. R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. Whitehead Jr., J.E. Robbins,
K.A. Nies, P. Oreizy, and D.L. Dubrow. A Component- and Message-Based
Architectural Style for GUI Software. IEEE Trans. SW Eng., 22(6), June 1996.

26. T. Urnes. Efficiently Implementing Synchronous Groupware. Ph.D. Thesis,
Department of Computer Science, York University, October 1998.

