
Dragonfly: Linking Conceptual and Implementation

Architectures of Multiuser Interactive Systems

Gary E. Anderson T.C. Nicholas Graham Timothy N. Wright
Department of Computing and Information Science Department of Computer Science

Queen’s University University of Canterbury
Kingston, Ontario, Canada Private Bag 4800

+1 613 533 6526 Christchurch, New Zealand
look2infinity@geocities.com, graham@cs.queensu.ca tnw13@cosc.canterbury.ac.nz

ABSTRACT
Software architecture styles for developing multiuser ap-
plications are usually defined at a conceptual level, ab-
stracting such low-level issues of distributed implemen-
tation as code replication, caching strategies and con-
currency control policies. Ultimately, such conceptual
architectures must be cast into code. The iterative de-
sign inherent in interactive systems implies that signif-
icant evolution will take place at the conceptual level.
Equally, however, evolution occurs at the implementa-
tion level in order to tune performance. This paper in-
troduces Dragonfly, a software architecture style that
maintains a tight, bidirectional link between concep-
tual and implementation software architectures, allow-
ing evolution to be performed at either level. Dragonfly
has been implemented in the Java-based TeleComput-
ing Developer (TCD) toolkit.

Keywords
Software architecture, user interface development toolk-
its, groupware

1 INTRODUCTION
The spread of the Internet has led to the emergence
of computing applications that support communication
and collaboration among people, rather than purely
computational tasks. This class of application, often
called groupware [12], imposes challenging requirements
on the software development process. As it is diffi-
cult to predict usability problems with groupware sys-
tems, their design requires iterations of implementation
and testing with users. Resultingly, a system’s design
may evolve considerably as it is being developed. How-
ever, groupware applications are also distributed sys-
tems, with exigent performance requirements. Low-
level implementation issues such as network communi-
cation, caching, replication and concurrency control in-
crease the difficulty of modifying systems once they have

been implemented. Therefore, the iterative requirement
required to create usable multiuser applications is hard
to achieve in practice.

Several architecture styles have been proposed to ad-
dress the difficulties of iterative refinement of dis-
tributed groupware systems. These include PAC* [3],
C2 [23], ALV [16], and our own Clock architecture
style [13]. These share the property of being concep-
tual styles [20], allowing designers to express a pro-
gram’s high-level structure while abstracting details of
its implementation as a distributed system. Conceptual
architectures are intended to capture the developer’s
abstract view of the system, where components corre-
spond directly to features of the application’s user in-
terface or functional core. Conceptual architectures can
be methodically derived from the user interface design
or from task models [19], thus representing an inter-
mediate step between user interface design and system
implementation. Additionally, conceptual architectures
permit early evaluation of the impact of user interface
design decisions on the implementation. For example,
Dewan [6] has applied the Software Architecture Anal-
ysis Method (SAAM) [2] to show how architectures can
expose implementation trade-offs in groupware applica-
tions.

Design processes for multiuser interactive systems pro-
mote the design of the conceptual architecture following
the design of the user interface [5]. Conceptual architec-
tures must then be mapped to concrete implementation
architectures, where issues of distribution, networking
protocols, caching, replication and consistency control
are addressed. A wide space of implementation architec-
tures (as characterized by Dewan [6] and Phillips [20])
is available for any given conceptual architecture.

Evolution in a groupware system may impact either the
conceptual or the implementation level. Modifications
to the system’s functionality resulting from usability
problems are best addressed in the conceptual archi-
tecture, while modifications resulting from performance
requirements impact the implementation architecture.
Once the application has been mapped to an implemen-
tation architecture, however, the link to the conceptual



architecture may be lost. To address this problem, we
present Dragonfly, a novel software architecture style for
synchronous groupware systems. Dragonfly subsumes
both conceptual and implementation architectures, al-
lowing developers to smoothly move between levels, as
appropriate to the development or evolution task. Drag-
onfly is based on an orthogonal decomposition of appli-
cation functionality and distribution issues, and permits
a wide range of implementation architectures.

Dragonfly differs from the three basic approaches cur-
rently used to map conceptual architectures for group-
ware to implementation architectures. These are:

• Principled mapping: Implementation architec-
tures can be derived from conceptual architectures
through the methodical application of mapping
guidelines. For example, Duval and Nigay demon-
strate a method for mapping PAC-Amodeus archi-
tectures to Java implementations [9].

• Tool mapping: A second approach is to build
the mapping directly into a tool. Tools such
as Suite [7], RendezVous [16], Groupkit [21] and
Clock [13] permit developers to work with con-
ceptual architectures based on the Model-View-
Controller style [17], while the tool automatically
creates a distributed implementation.

• Open implementation: A variant combining the
flexibility of mapping by hand and the convenience
of a toolkit is the open implementation approach,
where the mapping provided by the toolkit can
be customized either through high-level parame-
ters [7, 24], through meta-languages controlling the
operation of the toolkit’s runtime system [8, 18, 22]
or through opportunities for inserting code directly
into the toolkit [10].

Each of these approaches has disadvantages, either in
traceability, flexibility or ease of use. Hand mapping
leaves no explicit link between conceptual and imple-
mentation architectures, making future evolution at
the conceptual level difficult. Tools maintain the link,
but typically provide a restricted choice of implementa-
tion architectures. Open implementation tools provide
greater flexibility, but require developers to understand
the detailed internal operation of the development tool.

Dragonfly differs from these approaches by establishing
a one-to-one mapping between components of the con-
ceptual and implementation architectures. This map-
ping allows the conceptual architecture to be easily re-
trieved from the implemention architecture, allowing fu-
ture evolution to proceed at either level. Dragonfly pro-
vides an orthogonal treatment of the implementation
of application functionality, code and data distribution,
replication, caching, and concurrency control. This or-
thogonality permits a wide range of distributed imple-

Figure 1: Slide Annotator.

mentions from a single conceptual architecture. Drag-
onfly has been implemented in the Java-based TeleCom-
puting Developer toolkit [1].

The paper is organized as follows. Section 2 discusses
the roles of conceptual and implementation architec-
tures in the development of groupware, and motivates
the need for a tight coupling between them. Section 3
introduces the Dragonfly architecture, and explains how
it maintains this tight coupling while presenting a high
degree of flexibility in the implementation architecture.
Section 4 discusses our implementation of Dragonfly in
the TeleComputing Developer toolkit, followed by a dis-
cussions of the advantages and disadvatages of this ap-
proach in section 5.

2 CONCEPTUAL AND IMPLEMENTATION
ARCHITECTURES

In order to motivate the difference between conceptual
and implementation architectures, we introduce an ex-
ample, a multiuser slide annotation program (see fig-
ure 1).1 While simple, this application serves to illus-
trate the relation between conceptual and implementa-
tion architecture, and the need to evolve at both levels.

The slide annotator permits a small group of people
to view and discuss a set of presentation slides, and
annotate the slides for future reference. The set of slides
appears in thumbnail form to the left of the currently
viewed slide. The current annotation appears below the
slide.

To add an annotation, a user clicks on the slide surface,
creating a circle indicating the position and number of
the annotation. The text for the annotation can be

1The user interface of this slide annotator was based on a sim-
ilar system presented by Li and Muntz [18].



Figure 2: Conceptual architecture of slide annotator
from figure 1, expressed using the TCD Toolkit.

filled in using the text box below the slide. Clicking
on an annotation circle displays the annotation for that
circle, allowing it to be viewed or edited.

All users’ views of the slide annotator are synchronized.
That is, if one user clicks a thumbnail to change which
slide is being viewed, all users’ views will change. If one
user adds a new annotation, all users see the annotation
in real time.

Conceptual Architecture
Figure 2 shows the conceptual architecture of the slide
annotator, expressed in the Clock architecture style [13]
using the TeleComputing Developer toolkit. The Clock
architecture style is similar to PAC [3], ALV [16], and
C2 [23] in that it encourages developers to structure
their applications hierarchically, based on the compo-
sitional structure of the user interface. (The Clock
architecture style can be seen as a layered extension
of the Model-View-Controller architecture [17].) Here,
the main view (the mainView component) is com-
posed of the set of thumbNails, the main slide view
(mainViewArea) and the current annotation (annota-
tionsArea). One instance of this mainView is created

Client CC

Cache Slides

UI+

Client CC

Cache Slides

UI+

Annotations Slides

Server CC

User 1 User 2

Server

NetworkNetwork

Figure 3: Client/server implementation architecture.

User 1 User 2

Annotations
Slides

Replica
CC

UI++

Annotations
Slides

Replica
CC

UI++

Network

Figure 4: Replicated implementation architecture.

for each user.

Shared data is represented in the root component. For
example, the SessionADT contains information about
people currently in a slide annotation session. The
Slides ADT contains the information about the slides
themselves (actually, the location where the slides are
stored as GIF images). The Annotations ADT contains
the locations and text of the annotations for each slide.

The complete conceptual architecture shows the appli-
cation is decomposed into components, each responsible
for maintaining data shared between users or for main-
taining some part of the screen. The architecture spec-
ifies how these components communicate, and provides
temporal guarantees ensuring consistency control over
shared data [13].

Implementation Architectures
Conceptual architectures do not describe how a system
is actually implemented as a distributed system. Be-
fore implementation, the developer must decide how the
code and data are to be distributed over the users’ ma-
chines, what protocols are to be used for these machines
to communicate, what concurrency control algorithms



are to be used, and what data is to be replicated or
cached.

A wide space of possible implementation architectures
exist for a given conceptual architecture [6, 20]. We
give two examples of this space here, and in section 3
discuss the actual space of implementation architectures
addressed by Dragonfly.

Figure 3 shows a client/server implementation of the
conceptual architecture. Here, the shared data (the
slides and annotations) are represented on a server. The
user interfaces (UI+) for each session participant are
represented on their own machines. Concurrency con-
trol components are added to the server and client to
avoid race conditions. For efficiency, the Slides ADT is
replicated to each client, while the Annotations are rep-
resented centrally, but cached on the client machines.

Figure 4 shows an alternative implementation, where
both the annotations and slides are replicated, and
where a concurrency control component (Replica CC)
is responsible for multicasting updates, and detecting
and undoing conflicting actions.

The user interface components in these examples (UI+
and UI++) consist of the mainView tree from figure 2,
modified for the particular implementation. For exam-
ple, in figure 3, the UI+ component must synchronize
with the client concurrency control before, for example,
updating its display. On the other hand, in figure 4,
the UI++ component must be constructed to permit
some form of undo or operation transform [11] facility
on shared data in case of conflicting operations.

Both of these architectures have advantages over the
other. For example, as described by Dewan [6], the
client/server variant makes it easier for late-comers to
enter a session, while the fully replicated version may
have better performance in very poor latency environ-
ments.

These examples illustrate the benefit of separating the
conceptual architecture (describing the implemenation
of an application’s functionality) from the implemen-
tation architecture (describing distributed systems is-
sues). This separation allows developers to concentrate
on a clear functional decomposition of a system sep-
arately from complex low-level issues such as caching
and concurrency control strategies.

Evolution
Applications may evolve both at the level of their func-
tional design (as represented by their conceptual archi-
tecture) and their distributed implementation. For ex-
ample, if we wish to add a feature to the slide annotator
allowing free-hand drawing of annotations on the slide,
we would like to return to the conceptual architecture
to make the change. However, if we determine that ap-

Figure 5: The Dragonfly component and its implemen-
tation facets.

plication performance is poor, we may wish to modify
the distributed implementation architecture.

Evolution at each level cannot, however, be performed
in isolation. For example, changing the conceptual ar-
chitecture may impact the implementation architecture
by imposing new performance requirements. Similarly,
improving the performance of the implementation archi-
tecture might make it possible to implement application
features that were not possible earlier.

As outlined in the introduction, current approaches do
not provide good support for this tightly-coupled evolu-
tion at the conceptual and implementation level. If the
implementation architecture has been created by hand
from the conceptual one, the conceptual architecture
may be for all practical purposes lost, requiring all fu-
ture evolution to take place at the implementation level.
Significant evolution at the implementation level may be
very hard – for example, changing from client/server to
full replication may require significant reprogramming.
If a tool is used to hide the implementation architec-
ture, evolution at the conceptual level is simpler, but
evolution at the implementation level may be either re-
stricted or impossible.

In the next section, we present Dragonfly, an architec-
ture style designed to maintain a tight link between
conceptual and implementation architectures for dis-
tributed multiuser applications.

3 DRAGONFLY
Dragonfly is an architecture style for developing dis-
tributed multiuser applications. Dragonfly is designed
to support evolution at the conceptual and the im-
plementation level, by allowing developers to move
smoothly between the levels. In order to achieve these



goals, Dragonfly provides a bidirectional link between
the conceptual architecture and its distributed imple-
mentation, and simplifies the modification of the imple-
mentation architecture. These properties are obtained
by following the principles of:

Orthogonality: The Dragonfly component treats issues
of distributed implementation orthogonally from is-
sues of the implementation of application’s func-
tionality. In particular, replication, caching, con-
currency control, application model, view and con-
troller are all implemented as separate facets of the
Dragonfly component.

Traceability: Dragonfly components map one-to-one
with components in the conceptual architecture.
This allows the conceptual architecture to be re-
trieved from the implementation architecture by
projecting those parts that implement the appli-
cation functionality.

Replaceability: Mechanisms for distributed implementa-
tion can be plug-replaced.

Flexibility: Dragonfly permits a wide range of dis-
tributed implementations.

The following sections shows how these properties are
implemented in Dragonfly, and how they contribute to
our goals of permitting smooth, bidirectional transition
between conceptual and implementation architecture.
Section 4 then shows how Dragonfly is realized as part of
the TeleComputing Developer groupware development
toolkit. Section 5 describes the lessons learned from our
implementation of Dragonfly, and discusses the benefits
and limitations of this approach.

Orthogonality
The primary property supporting Dragonfly’s tight link-
age of conceptual and implementation architectures is
the orthogonal treatment of implementation issues. As
shown in figure 5, the Dragonfly component provides
separate facets responsible for implementing the ap-
plication’s functionality, as well as concurrency con-
trol, data replication and caching. Additionally, com-
ponents can be located together on one machine, or
distributed across a network. As we shall see in the
next sub-section, this orthogonality allows developers
to smoothly move between the conceptual and imple-
mentation architectures, working at whichever level is
appropriate to the task.

Additionally, the orthogonality property allows devel-
opers to easily change one implementation policy with-
out affecting others. For example, the concurrency con-
trol policy for part of the architecture can be changed
without necessarily requiring a change in caching poli-
cies. Under “Replaceability” below, we describe how
this property is obtained in Dragonfly.

In addition to the six implementation facets described

below, Dragonfly uses three router facets to route mes-
sages between dialogue facets, model facets and other
components. Similarly to C2 [23], Dragonfly compo-
nents have a notion of a top, which can be used to ob-
tain model data from higher in the architecture, and a
bottom, which can be used to obtain subviews created
by components lower in the architecture.

The dialogue part of the Dragonfly component consists
of three facets:

View/Controller: The view/controller implements in-
teraction with the user: a view is responsible for
maintaining the display, while a controller is re-
sponsible for processing user inputs. These may be
separate objects, or may be implemented together.
The view/controller implements interaction func-
tionality determined in the conceptual architecture.

Sequencer: The sequencer is responsible for dialogue-
side concurrency control. That is, the sequencer
ensures that race conditions do not occur while the
view is being recomputed, or while user inputs are
being processed.

Mirror Cache: The mirror cache optionally keeps track
of requests made to this component. This function-
ality is useful in implementing server side caching
schemes.

The model is responsible for maintaining the data on
which the user interface is based. In the slide anno-
tator, the names of the slides and the contents of the
annotations are examples of model data.

Model: The model facet itself contains a set of ADT’s
from which the model is constructed. These ADT’s
may be replicas of ADT’s represented in other
Dragonfly components.

Concurrency Controller: The concurrency controller is
responsible for sequencing requests and updates to
the model so that race conditions do not occur.

Cache: The cache facet optionally records requests orig-
inating from this component, and the responses re-
turned by other components. The cache is the dual
of the mirror cache facet described above: the mir-
ror cache records requests made to this component,
while the cache records requests originating from
this component.

Traceability
Dragonfly’s facet decomposition permits a one-to-one
mapping between components of the conceptual and im-
plementation architectures, where the implementation
architecture is realized by appropriate facet implemen-
tation. This one-to-one mapping is the key to allowing
easy transition between conceptual and implementation
architectures.



Model: Slides (rep), Annotations
Concurrency Control: Adaptive

root

View: SlideAreaView
Controller: SlideAreaController

mainViewArea

View: SAWindow
Controller: SAWindowController
Sequencer: Opt View, Eager Update
Cache: Simple
Model: Slides (rep)

mainView

View: ThumbnailView
Controller: ThumbnailController

thumbnails

View: AnnotationsView
Controller: AnnotationsController

annotationsArea

View: ThumbView
Controller: ThumbController

thumb

View: slideView

slideImage

View: OverlayView
Controller: OverlayController

annotationOverlay

Network

Figure 6: The client/server architecture of figure 3 ren-
dered as a Dragonfly architecture. Facets with null value
are ommited.

Figure 6 sketches how the conceptual architecture of fig-
ure 3 is implemented in Dragonfly. Here, the root com-
ponent is represented on a server machine, while each
instance of the user interface is connected to this server
via a network. The model part of this component con-
tains the Slides and Annotations ADT’s, where Slides is
marked as being replicated. A concurrency control facet
is specified to avoid race conditions in the actions of the
different clients. The server has no caches, view or con-
troller, so these facets are filled in with place-holder (or
null) facets.

The mainView component contains a view (SAWindow)
and controller (SAWindowController), as well as a se-
quencer that provides optimistic update and view com-
putation. A simple cache is provided to cache the an-
notations from the server. The model contains a replica
of the Slides ADT.

The remaining user interface components contain the
appropriate views and controllers.

When compared to figure 2, we see that there is indeed
a one-to-one correspondence between the components in

EndChangeSet

Request

ReqChanged

NewValue

+DYH9DOXHV&KDQJHG

Response

EndChangeSet

ReqChanged

NewValue

Response

Request

1R9DOXHV+DYH&KDQJHG

9DOXHV+DYH&KDQJHG

+DYH9DOXHV&KDQJHG

Caching

Cache
Refreshing

Consistency
Checking

Figure 7: The Dragonfly cache facet.

the Dragonfly architecture and those of the conceptual
architecture. This correspondence is the basis of our
ability to move between conceptual and implementation
levels. The implementation architecture maintains the
structure of the conceptual architecture: simply by hid-
ing all facets other than the model, view and controller,
the conceptual architecture can be retrieved from the
implementation architecture.

This correspondence supports the restructuring of
the implementation architecture while maintaining the
structure of the conceptual architecture. For example,
to move towards the implementation architecture of fig-
ure 4, we might modify the model facet of the root com-
ponent to replicate the Annotations ADT, and remove
the cache in the mainView.

The key to being able to easily map conceptual architec-
tures to distributed implementations by simple chang-
ing the contents of Dragonfly component facets is the
design of the facets themselves. Facets must be plug-
replaceable, so that any facet implementation can be in-
terchanged with any other valid implementation of the
same facet type. Replaced facets may not affect the
correct operation of other facets, located in the same or
other components. Furthermore, the definition of facet
interfaces must be sufficiently flexible that a wide range
of implementations can be encoded by the Dragonfly
architecture.

Replaceability
Dragonfly facets must be coded to conform to the Drag-
onfly protocol [1], a messaging protocol allowing inter-
facet and inter-component communication. Facets must
implement a specified message interface, subject to a re-
quired minimal functionality that guarantees the correct
operation of all the facets together.



Resultingly, a facet can be plug-replaced by any other
facet without compromising the correctness of other
facets in the architecture. This allows, for example, the
application’s concurrency control strategy to be modi-
fied independently of its caching strategy.

Developers using the Dragonfly architecture do not nor-
mally need to know of the existence of the Dragonfly
protocol. As shown in section 4, developers can create
implementation architectures by assembling pre-defined
facets that implement a wide range of distribution poli-
cies.

The full details of the Dragonfly protocol and its associ-
ated messages, facet interfaces and facet required min-
imal functionality are documented elsewhere [1]. Here,
we use the example of the cache facet to give a flavour
of the architecture.

Figure 7 shows the interface of the cache facet. In this
figure, arrows on the left show the messages that the
component must handle, and entries on the right show
the messages the component may send. The most im-
portant messages are highlighted with bold arrows. This
facet has three core functions: to cache the values of
request messages, to refresh these values when they be-
come stale, and to permit consistency checking.

Caching: The main purpose of a cache is to take Request
messages, and respond to these requests with Re-
sponse messages. A request is similar to a method
call: it has a name and parameters, and returns
some result. If the cache cannot respond to the re-
quest itself, it must reissue the request, and pass
on the response when it arrives.

Cache Refreshing: When data on which the cache de-
pends changes, the cache may receive two kinds of
messages. The ReqChanged message indicates that
the value of some request has changed; i.e., that any
cache entries involving this request are now stale.
The NewValue message indicates that the value of
some specific request has changed to a given new
value. The cache may deal with these messages
locally, or forward them.

Consistency Checking: Some concurrency control algo-
rithms rely on being able to determine whether
data used in computing a transaction has since be-
come out of date. The HaveValuesChanged message
carries a set of request/response pairs, and requires
a message in response (ValuesHaveChanged or No-
ValuesHaveChanged).

Any cache implementing this interface can be plugged
into this facet. Even though the cache implicitly de-
pends on changes made in model facets, the cache does
not need to be aware of how these changes occur, and
therefore can be orthogonally combined with any imple-
mentation of other facets.

Based on this interface, we have implemented three
caches: a null cache that performs no caching at all,
a simple cache that caches the values of all request mes-
sages flowing through it, and a prefetch cache [14] that
actively updates stale cache entries before they are re-
quired.

Each Dragonfly facet is described through an interface,
which is obliged to provide a minimal functionality in
order to guarantee correct interoperation with other
facets [1].

Flexibility
In addition to being plug-replaceable and orthogonally
combinable with other facets, it is important that facet
interfaces be sufficiently flexible to allow a wide range
of implementations.

As motivated by Dewan’s reference architecture for
groupware [6] and our own work on flexible implemen-
tation architectures [14, 24], we designed Dragonfly to
be flexible in three dimensions:

Concurrency control: A full range of pessimistic and op-
timistic strategies [15] should be supported.

Replication: It should be possible on a per-ADT basis
to choose between centralized and replicated imple-
mentation of shared data.

Caching: A full range of caching strategies, located at
the client and server, either active or passive [14],
should be possible.

Additional dimensions for future consideration include
security and fault tolerance.

We have already seen how the definition of the cache
facet permitted three implementations with different
properties. As described in section 4, the TeleComput-
ing Developer implementation of Dragonfly supports a
large subset of the space. Section 4 describes the facet
implementations we have created in Dragonfly.

4 THE TELECOMPUTING DEVELOPER
In order to demonstrate the practicality of the Dragon-
fly architecture, we have constructed the TeleComput-
ing Developer (TCD), a Java-based toolkit for group-
ware development. TCD provides an implementation
of the Dragonfly component, and a set of implementa-
tions of the Dragonfly facet supporting a wide range of
distributed implementations. TCD implements the full
Dragonfly protocol. TCD provides a high-level interface
to the Dragonfly architecture, hiding from the developer
the details of facet implementation and the Dragonfly
protocol itself.

The Dragonfly component is presented to developers as
a visual bean. This allows developers to create and edit
the conceptual architecture of their system by direct
manipulation, using a standard interface builder. Fig-



Figure 8: Component customization in the TeleComputing Developer.

ure 8 shows the use of IBM’s VisualAge for Java [4] to
construct the slide annotator architecture from figure 2.

The conceptual architecture is mapped to the imple-
mentation architecture by manipulating properties in a
component editor (also shown in figure 8.) For each
component, the developer can select from a list of pre-
defined facet implementations, can add and replicate
ADT’s, and can specify network splits. Therefore, the
developer does not need to be aware of the details of the
Dragonfly protocol or of the structure of the Dragonfly
component. Advanced developers may of course choose
to create their own facet implementations for special
purposes.

TCD shows that Dragonfly achieves the objective of per-
mitting smooth transition between conceptual and im-
plementation architecture. The conceptual architecture
is always visible. To make changes at the implemen-
tation level, the developer simply uses the component
editor to plug-replace facets in one or more components.

In order to demonstrate the flexibility and pluggabil-
ity of Dragonfly facets, TCD provides a wide range of
facet implementations. These are summarized in fig-
ure 9. From this list, it can be seen that a wide range
of implementation architectures can be derived from a
single conceptual architecture.

The facet implementations of figure 9 cover a large sub-
set of the space of distributed implementations iden-
tified in section 3. In particular, the currently imple-
mented facets support:

Concurrency control: Both optimistic and pessimistic
concurrency control are supported. However, op-
timistic schemes are based on rollbacks. The pro-
tocol would have to be extended to support the
operation-transform style [11] of optimistic concur-
rency control.

Replication: ADT’s may be replicated on a per-ADT
basis. However, inter-replica communication is al-
ways performed through a single machine, rather



Facet Implementation Description
View/Controller ViewController Standard implementation allows

developer to specify view and controller
object, either of which may be null.

Null No mirror cache.Mirror Cache
Presend Mirror cache records requests made

from lower components, actively sends
NewValue messages to inform clients of
changes.

Null No sequencing – may result in
concurrency errors.

Pessimistic Sequencer obtains locks before
processing inputs or computing view.

Sequencer

Optimistic Sequencer optimistically processes
inputs or computes views.

Model Model Standard implementation allows
developer to specify ADT’s in model,
and to optionally tag them as replicated.

Null Performs no caching.
Simple Caches requests and response values.

Refreshes stale entries when they are
requested again.

Cache

Prefetch Caches requests and response values,
and refreshes stale entries whether they
are requested or not.

Null Provides no concurrency control – may
result in concurrency errors.

Concurrency
Controller

Adaptive Performs either pessimistic or optimistic
concurrency control, automatically
adapting to actions of sequencer facet.

Figure 9: Facet implementations provided in TCD.

than through direct multicasting.2

Caching: The full range of client and server caches, both
active and passive, has been implemented.

Therefore, Dragonfly has proved sufficiently flexible to
implement a large subset of the space of implementa-
tion architectures. We anticipate that only minor mod-
ifications to the Dragonfly protocol will be required to
support the parts of the implementation space that are
not yet covered.

5 ANALYSIS
Our experience with the TCD toolkit indicates that
Dragonfly meets its goal of supporting smooth, bidi-
rectional transition between conceptual and implemen-
tation architectures, while being sufficiently flexible to
allow a wide range of distributed implementations. We
now consider the advantages and disadvantages of this
approach for software architecture design.

The Costs of Flexibility
We have built considerable flexibility into Dragonfly’s
components, in order to permit the wide range of facet
implementations seen in figure 9, and others that we
may not have anticipated. There is a fine balance in
choosing the correct degree of flexibility. Too little flex-
ibility implies that some facet implementations may not
be possible. Too much flexibility implies that the facets

2The TCD implementation of ADT replication is incomplete.
Currently, the appropriate replication messages are sent, but
ignored.

themselves may become too hard to implement. Fur-
thermore, flexibility in one facet may impact the min-
imal required functionality in other facets, making all
facets harder to implement.

Orthogonality
The goal of orthogonality in the architecture requires
that any combination of facets work together. Some
facet combinations, however, while semantically correct
give poor performance. For example, a presend mirror
cache provides optimizations to refresh client side caches
quickly. A presend mirror cache simply brings overhead
to the system if no client caches are in place (and should
be replaced by a null mirror cache.) It would be inter-
esting to investigate higher level mechanisms for tuning
the distribution architecture that aid the developer in
choosing sensible facet combinations.

Performance
Dragonfly’s flexibility requires the overhead of sending
messages between facets that are sometimes not re-
quired for the particular facet implementations being
used. Based on our earlier work showing that significant
performance gains are possible by tuning the implemen-
tation architecture of groupware applications [24], we
anticipate that these overheads will prove small com-
pared to the benefits of tuning. However, future work
in tuning Dragonfly and performing performance eval-
uation will be required to validate this hypothesis.

6 CONCLUSIONS
This paper has presented Dragonfly, a software architec-
ture supporting the development of synchronous group-
ware applications. The paper has shown how Drag-
onfly addresses the problem of permitting evolution of
groupware applications to occur at both the levels of the
conceptual architecture and the distributed implemen-
tation architecture. This is achieved by the orthogonal
treatment of distribution issues from the functionality
of the application itself. We have shown that this or-
thogonality can be achieved by splitting the Dragonfly
component into a set of facets, each responsible for one
aspect of the distributed implementation architecture.
We have argued that these facets need to be designed
to be orthogonal, traceable, replaceable and flexible.

ACKNOWLEDGEMENTS
This work was performed at the Software Technology
Laboratory at Queen’s University, under the support of
the National Science and Engineering Research Coun-
cil (NSERC). We gratefully acknowledge many helpful
discussions with Greg Phillips and the members of IFIP
WG 2.7 on User Interface Engineering. Thanks are due
to Laurence Nigay for critical reading of a draft of this
paper.



REFERENCES

[1] G.E. Anderson and T.N. Wright.
TeleComputing Developer implementation design.
http://stl.cs.queensu.ca/~tcd/Design.

[2] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley, 1998.

[3] G. Calvary, J. Coutaz, and L. Nigay. From single-
user architectural design to PAC*: A generic soft-
ware architecture model for CSCW. In Proc. CHI
’97, pages 242–249. ACM Press, 1997.

[4] IBM Corporation. VisualAge for Java.
http://www.software.ibm.com/ad/vajava.

[5] J. Coutaz. PAC-ing the architecture of your user in-
terface. In Proc. DSV-IS ’97, pages 15–32. Springer
Verlag, 1997.

[6] P. Dewan. Architectures for collaborative applica-
tions. In M. Beaudouin-Lafon, editor, Computer
Supported Co-operative Work. John Wiley & Sons
Ltd., January 1999.

[7] P. Dewan and R. Choudhary. Coupling the user
interfaces of a multiuser program. ACM TOCHI,
2(1):1–39, March 1995.

[8] P. Dourish. Using metalevel techniques in a flexi-
ble toolkit for CSCW applications. ACM TOCHI,
5(2):109–155, 1998.

[9] T. Duval and L. Nigay. Implémentation d’une
application de simulation selon le modèle PAC-
Amodeus. In Proc. IHM ’99, 1999.

[10] W.K. Edwards, E.D. Mynatt, K. Petersen, M.J.
Spreitzer, D.B. Terry, and M.M. Theimer. Design-
ing and implementing asynchronous collaborative
applications with Bayou. In Proc. ACM UIST ’97,
pages 119–128. ACM Press, 1997.

[11] C.A. Ellis and S.J. Gibbs. Concurrency control in
groupware systems. In Proc. SIGMOD ’89, pages
399–407. ACM Press, 1989.

[12] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware:
Some issues and experiences. CACM, 34(1):38–58,
January 1991.

[13] T.C.N. Graham and T. Urnes. Integrating Sup-
port for Temporal Media into an Architecture for
Graphical User Interfaces. In Proc. ICSE 19, pages
172–182. ACM Press, 1997.

[14] T.C.N. Graham, T. Urnes, and R. Nejabi. Effi-
cient distributed implementation of semi-replicated
synchronous groupware. In Proc. ACM UIST ’96,
pages 1–10. ACM Press, 1996.

[15] S. Greenberg and D. Marwood. Real time group-
ware as a distributed system: Concurrency control
and its effect on the interface. In Proc. ACM CSCW
’94, pages 207–217. ACM Press, 1994.

[16] R.D. Hill, T. Brinck, S.L. Rohall, J.F. Patterson,
and W. Wilner. The Rendezvous language and ar-
chitecture for constructing multi-user applications.
ACM TOCHI, 1(2):81–125, June 1994.

[17] G.E. Krasner and S.T. Pope. A cookbook for
using the Model-View-Controller user interface
paradigm in Smalltalk-80. JOOP, 1(3):26–49, Au-
gust/September 1988.

[18] D. Li and R. Muntz. COCA: Collaborative objects
coordination architecture. In Proc. ACM CSCW
’98, pages 179–188, 1998.

[19] F. Paterno, C. Mancini, and S. Meniconi. Engi-
neering task models. In Proc. IEEE Conference on
Engineering Complex Systems, pages 69–76. IEEE
Press, 1997.

[20] W.G. Phillips. Architectures for synchronous
groupware. Technical Report 1999-425, Depart-
ment of Computing and Information Science,
Queen’s University, May 1999.

[21] M. Roseman and S. Greenberg. Building real time
groupware with GroupKit, a groupware toolkit.
ACM TOCHI, 3(1):66–106, March 1996.

[22] F. Tarpin-Bernard, B. David, and P. Primet.
Frameworks and patterns for synchronous group-
ware: AMF-C approach. In Proc. EHCI ’98, pages
225–242, September 1998.

[23] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J.
Whitehead Jr., J.E. Robbins, K.A. Nies, P. Oreizy,
and D.L. Dubrow. A component- and message-
based architectural style for GUI software. IEEE
Trans. SW Eng., 22(6):390–406, June 1996.

[24] T. Urnes and T.C.N. Graham. Flexibly mapping
synchronous groupware architectures to distributed
implementations. In Proc. DSVIS’99, pages 133–
148, 1999.


