
1

Specifying Temporal Behaviour in Software
Architectures for Groupware Systems

Timothy N. Wright1, T.C. Nicholas Graham2, and Tore Urnes3

1 University of Canterbury, Private Bag 4800, Christchurch, New Zealand
tnw13@cosc.canterbury.ac.nz

2 Queen’s University, Kingston, Ontario, Canada K7L 3N6
graham@cs.queensu.ca

3 Telenor Research and Development, P.O. Box 83, N-2007 Kjeller, Norway
tore.urnes@telenor.com

Abstract. This paper presents an example of how software architectures can
encode temporal properties as well as the traditional structural ones. In the
context of expressing concurrency control in groupware systems, the paper
shows how a specification of temporal properties of the semi-replicated
groupware architecture can be refined to three different implementations, each
with different performance tradeoffs. This refinement approach helps in
understanding the temporal properties of groupware applications, and increases
confidence in the correctness of their implementation.

1 Introduction

Software architectures traditionally decompose systems into components responsible
for implementing part of the system, and connectors enabling communication
between these components. Components implement some part of the system’s
functionality, while connectors specify the form of intercomponent communication,
for example, through method calls or events [28]. We refer to these as structural
properties of the architecture.

In synchronous groupware applications, it is not only important to capture how
components may communicate, but when. For example, in a multiuser video
annotation system, it is important that all participants see and annotate the same frame
[14]. In a shared drawing application, it is important that the drawing operations of
participants do not conflict, for example with one person deleting a drawing object
that another is moving. As the paper will show, such requirements on sequencing of
updates and synchronization of shared state can be expressed as restrictions on when
messages can be passed between components involved in an interaction.

This paper investigates how software architectures can specify temporal properties
of an application as well as structural ones. From these temporal specifications, a
variety of implementations can be derived, embodying different execution properties.
This allows an approach where software architectures specify high level temporal
properties of implementations, allowing architecture implementers to plug-replace
any implementation meeting these properties.

P. Palanque and F. Paternò (Eds.): DSV-IS 2000, LNCS 1946, pp. 1−17, 2001.
 Springer-Verlag Berlin Heidelberg 2001

2 T.N. Wright, T.C.N. Graham, and T. Urnes

Fig. 1. A Groupware Drawing Program. This program was implemented in Java using the
TeleComputing Developer Toolkit (TCD) [1].

As will be shown in the paper, the benefits of this approach are:

– Difficult temporal properties of groupware applications can be treated orthogonally
to the application’s functionality by embedding these properties in the software
architecture;

– Premature commitment to algorithms implementing temporal properties can be
avoided, as early design of the system focuses on desired behaviour rather than on
algorithms implementing that behaviour;

– The process of specifying properties and refining implementations increases
confidence in the correctness of the implementations and provides a clearer
understanding of the temporal properties of the application.

In order to demonstrate this approach, we take the example of the implementation of
concurrency control in a semi-replicated groupware architecture. We show how
concurrency control properties can be encoded in the definition of the semi-replicated
architecture itself. Specifically, we treat the problem of ensuring that transactions
performed on shared data state are serializable, guaranteeing that operations
performed by users do not conflict.

As we shall see in the paper, concurrency control algorithms are complex, and
embody trade-offs of degree of consistency versus response time. It is therefore
beneficial to separate the specification of the desired concurrency properties of an
application from the concurrency control algorithm actually implementing it. To
demonstrate this assertion, the paper is organized as follows. Section 2 describes the
concurrency control problem in groupware, and introduces a simple groupware
drawing tool as an example application. Section 3 introduces the widely used semi-
replicated implementation architecture for groupware, and shows how it can be
described to possess temporal properties ensuring correct concurrent behaviour. In
order to show the flexibility of such a specification, sections 4 through 6 introduce the
locking, Eager and adaptive concurrency control algorithms as implementations

Specifying Temporal Behaviour in Software Architectures for Groupware Systems 3

refined from the semi-replicated architecture. These algorithms have all been
implemented as part of the TeleComputing Developer (TCD) groupware development
toolkit [1].

2 Motivation

To introduce the concurrency control problem and to motivate our approach of
encoding temporal properties of applications in the software architecture, we present a
simple groupware drawing program. As shown in figure 1, users may draw simple
objects such as squares and circles on a shared canvas. Each user’s actions are
reflected in the canvases of other users in real time. In addition to standard editing
operations, users may scale the entire diagram up or down, in increments of 10%.
In the implementation of the drawing program, a shared data structure (or shared
context) contains the set of drawing objects. Figure 2 shows how operations for
resizing and scaling objects are implemented. For example, a resize operation reads
the object to be resized from the shared context, changes its size, and saves the object
back to the shared context. Similarly, the scale operation scales each of the drawing
objects in the shared context.

Figure 2 shows how concurrency problems can arise if two users simultaneously
perform a resize and a scale operation. Here, the resize operation is performed while
the scale is taking place, partially undoing the effect of the scale. This leaves the
diagram in an inconsistent state, where the scale has been applied to all elements
except the first. When two user actions lead to an inconsistent result, those actions
are said to conflict. Concurrency control algorithms are designed to prevent the
negative effects of conflicting actions.

2.1 Concurrency Control Styles

Concurrency control algorithms can be roughly divided into two classes – pessimistic
and optimistic. Pessimistic schemes guarantee that when a participant in a groupware
session attempts to modify the shared artifact, his/her actions will not conflict with the
actions of other participants. This guarantee leads to intuitive user interface
behaviour, but at the cost of responsiveness. Optimistic approaches, on the other
hand, assume that actions will not conflict, and must detect and repair conflicts when
they occur.

4 T.N. Wright, T.C.N. Graham, and T. Urnes

Resize object “1” to
newSize

Scale entire diagram
by k%

n=getNumberObjects()

o1=getObjectAt(“1”)

s=getObjectAt(“1”)

s.setSize(newSize) o1.scale(k)

setObjectAt(“1”,o1)

setObjectAt(“1”,s) o2=getObjectAt(“2”)

…

Fig. 2. A resize operation conflicting with a scale operation.

Under pessimistic algorithms, update transactions resulting from user actions never
fail. One way of achieving this property is to require clients to obtain a lock on the
shared context before attempting to process a new user action [22]. This locking may
reduce the potential for concurrent execution of clients and introduces networking
overhead to obtain locks.

Under optimistic algorithms, update transactions may fail, potentially requiring
work to be undone [16]. Optimistic algorithms improve performance by allowing
client machines to process user actions in parallel.

Neither pessimistic nor optimistic approaches are suitable for every application.
While optimistic approaches may provide better response times for short transactions
that are inexpensive to undo [3,29], pessimistic algorithms are preferable in the
following three cases:

– Undo unacceptable: In some applications, it is impossible to roll back user actions
that are retroactively found to conflict with other actions. Examples of such actions
include deleting a file or sending an email message.

– Pessimistic faster: To be effective, optimistic schemes rely on conflicts being rare,
and the cost of undoing operations being inexpensive. Consider the scale operation
of figure 2. This operation performs one read and write to the shared context for
every drawing object. In a complex drawing with potentially tens or hundreds of
objects, the scale operation is likely to conflict with an operation performed by
some other user.

– Optimistic unfair: In a wide area network, some users may suffer longer latencies
than others when accessing parts of the shared context. The actions of these users
may be more likely to conflict than the actions of users with lower latency.
Fairness may require that users with poor network connections use pessimistic
concurrency control.

Concurrency control algorithms therefore embody tradeoffs in the desired behaviour
of systems, but all provide the basic property of guaranteeing serializability of
transactions carried out by participants in the groupware session. That is, the
algorithm should never permit operations to conflict as in the example of figure 2.
Our approach is therefore to encode this temporal property of transaction

Specifying Temporal Behaviour in Software Architectures for Groupware Systems 5

serializability as part of the definition of the software architecture. We then show how
these temporal properties can be implemented by both pessimistic and optimistic
algorithms, and by a novel algorithm combining the two. This approach allows us to
specify the desired temporal behaviour of the architecture (i.e., transaction
serializability) separately from the algorithm used, avoiding premature commitment
to a particular concurrency control algorithm.

requestLock
request
update

grantLock
response
notify
fail

s : Model
(Shared Context)

Server

ck : Model
(Cache)

Client k
View /

Controller

Fig. 3. The semi-replicated implementation architecture for groupware: A shared context is re-
presented on a server machine. Clients contain a cache, a read-only replica of the shared
context. Local context does not require concurrency control, and therefore is not represented.
Writable replicas of the shared context are assumed to have no concurrency control, and
therefore are also not represented.

All of these algorithms have been realized using the Dragonfly [1] implementation
of the semi-replicated groupware architecture, in the TCD toolkit. In TCD, we
exploit the separation of specification of temporal behaviour from its implementation,
allowing concurrency control algorithms to be plug-replaced after the application has
been developed.

3 The Semi-Replicated Architecture for Groupware

We model groupware systems using a semi-replicated architecture [15]. Semi-
replicated systems are hybrid centralized/replicated systems, where all shared state is
represented on a centralized component, some shared state is replicated to the clients,
and private state is represented on the clients. Some shared state is replicated in the
form of a read-only client cache.

Semi-replication is based on the Model-View-Controller (MVC) architecture for
groupware development [20,15]. In MVC, the shared state underlying each
participant’s view is located in a model, a controller is responsible for mapping user
actions onto updates to the model, and a view is responsible for updating the display

6 T.N. Wright, T.C.N. Graham, and T. Urnes

in response to changes in the model. MVC (and related architecture styles such as
PAC* [5]) underlies a wide range of groupware development tools. Despite earlier
suspicion that semi-replication is inherently inefficient [21], performance evaluation
has shown this architecture to provide excellent response times, even over very wide
area networks [29].

Figure 3 shows the elements of this model that are necessary to illustrate how
concurrency control properties can be encoded within a software architecture
connector. The figure further shows the set of messages allowing the client and
server components to communicate. These messages are described in detail in section
3.2.

We assume that no concurrency control is applied to private state represented on
clients (since there is no concurrent access to this state), and therefore omit local
context from the model. We assume that the client cache is not writable by the client,
and therefore can only be updated by the server. We further assume that any
replicated state that is writable by the client has no concurrency control associated
with it, and therefore need not be included in the model. Despite what may appear to
be restrictive assumptions, this model describes the implementation architecture of a
wide range of existing groupware development tools. (The following discussion is
based on Phillips’ survey of groupware development tools and their implementation
architectures [24]).

Semi-replicated tools directly implementing this model (or subsets of the model)
include Clock [29], TCD [1], Weasel [13], Suite [9], and Promondia [12]. GroupKit
[25] is described by the model, as GroupKit environments implement shared state,
and GroupKit provides no concurrency control for replicated shared data. Figure 3
also describes systems with replicated state under centralized coordination such as
Habanero [6], Prospero [10], Ensemble [23] and COAST [27]. In these systems, a
central component is responsible for concurrency control decisions, allowing the
shared context to be modeled via a virtual server. Finally, the model describes fully
centralized systems such as RendezVous [17], as the trivial case in which there is no
replicated data at all.

Systems not described by the model include fully replicated systems using
concurrency control algorithms based on roll-backs [8] or operation transforms [11].
Such fully replicated systems include DECAF [23], DreamTeam [26], Mushroom
[19] and Villa [4].

Therefore, while this simplified treatment of the semi-replicated architecture does
not cover every possible implementation of groupware, it describes a sufficiently
large subset of current development tools to be interesting.

3.1 Encoding Concurrency Control in the Semi-replicated Architecture

In order to show how software architectures can encode temporal properties, we first
formalize our simplified version of the semi-replicated architecture, and then define
its concurrency control properties as restrictions over the treatment of messages.

As shown in figure 3, a groupware system consists of a set of client machines, each
containing a cache, and a server machine containing shared state. Clients
communicate with the server by issuing requests for information and updates that
modify information. Parameters to requests and updates and responses to requests are
all considered to be values.

Specifying Temporal Behaviour in Software Architectures for Groupware Systems 7

Client and Server Components

We let Client ⊂ represent a set of client machines. We define Update, Request and
Value to be disjoint sets representing updates and requests made by the
view/controller, and values returned by the model as the results of requests. We let

Time == represent time.

Model
A Model stores data. Models are queried via requests. The values of these requests
may change over time.

Model == Time � Request → Value

If m:Model we write m(t) to represent λr • m(t,r),the snapshot of the model at time t.
As shown in figure 3, we let s:Model represent the shared context, and the family

of functions ck :Model represent a cache for each client k Client. When making
requests, clients first consult their cache. If the response has not been cached (i.e., the
request is not in the domain of the cache), the shared context is consulted. If used
efficiently, a cache can considerably reduce the overhead of network communication

[15]. We define a request function rqk for each client k Client:

rqk : Time → Request → Value
rqk (t,r) ==

if r dom (ck (t)) then
ck (t,r)

else
s (t,r)

View/Controller
The purpose of an MVC controller is to map user inputs onto updates to the model.
In computing an update, the controller makes a set of requests to the model. We
formalize the activity of the controller through an update function, which computes an
update using values obtained from the model:

UpdateFn == seq Value → Update

An update transaction represents the application of an update function to values
obtained through a sequence of requests executed at given times. Transactions
originate from some client.

Transaction ==
Client � UpdateFn � seq (Time � Request)

The view/controller of each client can be thought of as executing a sequence of
transactions. When a user performs an action, an update to the shared state is
computed, based on values in the cache and shared context. When a client receives
notification that the shared context has changed, it computes an update to the display.

8 T.N. Wright, T.C.N. Graham, and T. Urnes

Conflicts
The temporal property of interest in this architecture is that transactions do not
conflict with each other. Intuitively, two transactions conflict if the modifications to
the shared context performed by one transaction cause inconsistencies in the state
being used by another transaction. For example, in figure 2, the resize and scale
transactions conflict because the resize transaction changes values being used by the
scale transaction, with the result that only some of the diagram elements are scaled.
More precisely, a transaction conflicts if the update value that would be obtained from
executing the transaction at the time the transaction is to be applied differs from the
value of the transaction as computed. That is:

conflict : Transaction � Time → Bool

is defined as:

conflict ((k, u, <(t1, r1), …, (tn , rn) >), t)
== u (<rqk (t1 , r1),… , rqk (tn , rn)>)

≠ u (<s (t, r1),…, s (t, rn)>)

Within the semi-replicated architecture, we define that no conflicting transaction is
committed; that is, that no conflicting transaction is permitted to modify the shared
context. We encode this simply as the property that if tr:Transaction is committed at
time t:Time, then:

¬conflict (tr, t)

Implementations of the semi-replicated architecture must therefore ensure that no
conflicting transaction is committed. To achieve this, a pessimistic concurrency
controller ensures that transactions are computed only at times they will not conflict,
while an optimistic concurrency controller detects when a transaction conflicts, and
rolls it back instead of committing it.

It should be noted that this definition of conflict ensures that all committed
transactions are serializable [22]. For some applications where unintuitive behaviour
resulting from conflicts may be tolerable, this definition may in fact be too restrictive
[16,22].

3.2 Implementation of Semi-replication

As shown in figure 3, client and server machines communicate via a set of messages.
In sections 4 and 5, we describe how these messages are used to implement the
concurrency control requirement of this architecture. These implementations all
require the architecture's specification, while providing different performance
tradeoffs. First, we informally specify the meaning of the messages themselves:

– The network separating the server and clients is assumed to be lossless and fifo.
That is, messages are assumed to arrive at their destination, and if two messages
are sent to the same destination, they arrive in the order in which they are sent.
Clients are assumed to process messages atomically and in sequence.

Specifying Temporal Behaviour in Software Architectures for Groupware Systems 9

– If the server receives the message requestLock, it eventually replies with the
message grantLock.

– If the server receives the message request (r) at time t Time, where r Request,
then the server responds with response (r, s (t,r)).

– If the server receives and commits an update update (u, tr), where u Update and

tr Transaction, then the shared context is modified. Committing an update is the
only action that modifies the shared context; therefore if the server commits no
updates between times t1 and t2, then ∀ ta, tb : t1.. t2 • s(ta)=s(tb).

– If the server receives the update update (u, tr), it may issue the message fail to
indicate that the update has not been committed, and must be recomputed.

– If the server sends the message notify at time t1 and the client receives the
message at time t2 , then the client cache may be updated to values provided by the

notification message: ∀ r dom(ck (t2)) • ck (t2 , r) = s(t1 , r)

– If client k receives the message response (r, s(t1 , r)) at time t2 , where t2 Time

and r Request, then the cache is updated so that ck (t2 ,r) = s(t1 ,r)
– No other messages modify the client cache. That is, if k receives no messages

between times t1 and t2 , then ∀ ta, tb : t1.. t2 • ck (ta) = ck (tb).

The last section showed how the temporal property that transactions not conflict can
be encoded as part of the definition of the semi-replicated architecture. In the
following sections, we show how this property can be refined to a wide range of
implementations. This allows developers using the semi-replicated architecture to
reason about the temporal properties of their application without having to make early
commitment to a particular concurrency control algorithm.

4 Locking

One standard approach to implementing pessimistic concurrency control is to require
clients to obtain a lock before computing a transaction [16]. We first formally define
locking, and then specify how locking is implemented. We then show that the
locking algorithm satisfies the temporal properties required by the semi-replicated
architecture.

l0

l1

l3l2

l4

requestLock↑k

request↑k

response↓k

grantLock↓k

update↑knotify↓*

Fig. 4. Implementation of Locking Concurrency Control.

10 T.N. Wright, T.C.N. Graham, and T. Urnes

For each client k Client, we define a lock function that specifies whether the client
holds a lock between times t1 and t2 .

lockk : Time � Time → Bool

If client k holds a lock over a time interval, the cache is synchronized with the shared
context, and the model does not change during the interval:

lockk (t1 , t2)
⇒ (∀ t : t1 .. t2 • rqk (t) = s (t))

∧ (∀ ta, tb : t1.. t2 • s(ta) = s(tb))

If a lock is held while a transaction is carried out and applied, the transaction will not
conflict. Theorem 1 therefore guarantees that locking implements the temporal
requirements of the semi-replicated architecture.

Theorem 1. If k Client, tr=(k, u, <(t1 ,r1), …, (tn , rn)>) Transaction, ta=min (<t1 ,…,
tn>) and tb=max (<t1,…, tn>), then

 lockk (ta , tb) ⇒ ¬conflict (tr, tb)

Proof. Follows directly from the definitions of lock and conflict.

4.1 Implementation of Locking

Figure 4 shows the implementation of locking from the point of view of a server. The
implementation is expressed as a finite state machine, starting in state l0. The notation
m↑k specifies that client k sends message m to the server; m↓k indicates that the server
sends m to client k, and m↓* specifies that the server multicasts m to all clients.

To carry out a transaction using locking concurrency control, the client sends a
requestLock message to the server requesting a lock. If no other client holds a
lock, the server responds with a grantLock message; otherwise, the lock request is
queued. The client may issue any number of request messages, receiving
corresponding response messages. Request/response pairs may be entered in the
client cache. The client ends the transaction by sending an update message. The
update is performed on the server.

A notify message is sent to all clients, instructing them to resynchronize their
caches. Notification may take many forms. Simple notification simply invalidates all
cache entries. More targeted notification (such as the presend caching scheme [15])
specifies exactly which cache entries have been invalidated by the update.

The update message implicitly releases the lock.
This implementation of locking guarantees that a client holds a lock from the time

the grantLock message is received by the client until the time the update message
is committed by the server.

Theorem 2. If client k receives the message grantLock↓k at time t1 , and the server
receives the message update↑k at time t2 , and the server has in the meantime passed
only through states l2 and l3 , then lockk (t1 , t2).

Specifying Temporal Behaviour in Software Architectures for Groupware Systems 11

Proof. We must show that between t1 and t2, (i) the shared context does not change,
and (ii) the cache remains synchronized with the shared context. (i) Between t1 and t2 ,
the server remains in states l2 and l3. In these states, the value of the shared context
does not change. Therefore ∀ ta, tb : t1.. t2 • s(ta) = s(tb). (ii) At t1 , either the client has
just received a notify message from the server, or is in its initial state. Therefore rqk

(t1) = s (t1). In states l2 and l3 , the server issues only response messages. Assume

the server issues response (r, s(ta ,r)) at time ta t1.. t2 , and the message is received

by k at time tb t1.. t2 . Then k may update the cache so that ck (tb ,r)=s(ta ,r), with the
result that rqk (tb ,r) = s (ta ,r). However, from (i) we know that s(tb)=s(ta) ⇒ s(tb ,r)=s(ta

,r), so the cache has remained synchronized. Therefore, ∀ t : t1 .. t2 • rqk (t) = s (t).

5 Eager

The locking approach of the last section provided a direct implementation of the
temporal properties specified in the semi-replicated architecture. Locking is
interesting in cases where transactions are long (and therefore likely to generate
conflicts), or cases where unrolling conflicting transactions is expensive (or
impossible).

Our second approach is to compute the update transaction and apply it only if it is
determined not to conflict. This form of concurrency control is optimistic in the sense
that updates are computed in the hope that they will not conflict. However, updates
are not committed until they are known not to conflict. This differs from purely
optimistic algorithms (such as rollback approaches [3,19]), in which updates may also
be optimistically committed.

e0

e1

e2

request↑ j

response↓ j

update↑k

notify↓*

fail↓k

Fig. 5. Implementation of Eager Concurrency Control.

We call this approach Eager, an algorithm implementing optimistic update
computation with pessimistic update application. Section 5.2 explains how Eager can
be implemented efficiently, while providing automatic, fine-grained conflict

12 T.N. Wright, T.C.N. Graham, and T. Urnes

detection. Eager concurrency control can provide significantly better performance
than locking for transactions typically found in groupware applications, and is
particularly appropriate to use over wide area networks [29].

The Eager algorithm (and its optimization) are sufficiently complex that its
temporal properties are not obvious from reading the algorithm itself. The
architectural specification, however, shows clearly what properties the algorithm has.
Additionally, our approach of refining the algorithm from this specification lends
confidence to the correctness of Eager’s implementation.

A sufficient condition to determine whether a transaction conflicts is to examine
the current values of the requests which were used to compute the update. If the
requests have not changed value, the update does not conflict. The fail function
determines whether a transaction may conflict at time t:

fail : Transaction � Time → Bool

Letting tr=(k, u, <(t1, r1), …, (tn , rn) >) Transaction, we define

fail (tr, t) == ∃ i:1..n • rqk (ti, ri) ≠ s(t, ri)

This condition is conservative, in that some non-conflicting transactions may fail.
Theorem 3 demonstrates that Eager concurrency control satisfies the temporal
properties of the semi-replicated architecture:
Theorem 3. Let t:Time and tr:Transaction. Then

¬ fail (tr,t) ⇒ ¬conflict (tr,t)

Proof: Let tr=(k, u, <(t1, r1), …, (tn , rn) >) Transaction. Then

¬ fail (tr,t)

⇒ ∀ i:1..n • rqk (ti, ri) = s(t, ri)

⇒ u (rqk (t1, r1),…, rqk (tn, rn)
= u (s(t1, r1),…,s(tn, rn))

⇒¬ conflict (tr,t)

5.1 Implementation of Eager Concurrency Control

Figure 5 shows how Eager concurrency control is implemented at the server. From a
start state of e0 , the server can handle requests from any client j, and responds with the
appropriate response message.

If the server receives the message update (u, tr) at time t, for tr∈ Transaction and
u∈ Update, then from state e2 , the server must determine whether to commit the
update. If fail (tr, t), the server issues the fail message. Otherwise, the server
commits the update and issues a notify to all clients.

Theorem 4. If the server receives the message update(u,tr) at time t, where tr∈
Transaction and u∈ Update, then if conflict(tr,t), the server does not commit the
update.
Proof. State e2 only commits u if ¬ fail (tr,t). By theorem 3, ¬ fail (tr,t) ⇒ ¬conflict
(tr,t).

Specifying Temporal Behaviour in Software Architectures for Groupware Systems 13

5.2 Optimization

Directly computing the fail function is expensive, as complete information on the
transaction is required. Passing the transaction information over a network can be
expensive in bandwidth, and in marshalling and unmarshalling. Computing whether
the values of requests have changed places load on the server machine. Eager
concurrency control can be optimized, making it substantially faster than locking
concurrency control in a wide area context.

Our approach of refining implementations from architectural specifications allows
us to demonstrate that this optimized algorithm still satisfies the temporal properties
of the semi-replicated architecture.

First, we assign integer id’s to cache entries. Let CacheId == . Then assume the
existence of a function

h : Request � Value → CacheId

with the property that ∀ r1 ,r2∈ Request, v1,v2∈ Value • h(r1, v1) = h(r2, v2) ⇒ r1= r2 ∧ v1=
v2. We then define a new version of the fail function that operates over cache id’s. If

tr=(k, u, <(t1, r1), …, (tn , rn) >) Transaction, t∈ Time, then

fail’(tr,t) == ∃ i:1..n • h(ri, rqk (ti, ri)) ≠ h(ri, s(t, ri))

h can be implemented efficiently on the clients by having the cache assign an integer
id to each of its entries. A server cache [15] can perform the same function on the
server. The update message can then simply pass integer cache id's rather than the
values of the requests themselves. Computing fail’ involves integer comparisons over
the cache id's, rather than recomputing and comparing request values.

a0

a3

a5a4

a6

requestLock↑k request↑ j

response↓ j

grantLock↓k

update↑knotify↓*

a2

update↑k

notify↓*

fail↓k

a1
request↑ j

response↓ j

Fig. 6. Implementation of Adaptive Concurrency Control.

14 T.N. Wright, T.C.N. Graham, and T. Urnes

Theorem 5. Let t:Time and tr:Transaction. Then

fail’(tr,t) ⇒ fail (tr,t)

Proof. Follows directly from the definitions of fail, fail’ and h.

The implementation of Eager concurrency control can therefore be optimized by
substituting the computation of fail in e2 with fail’. This implementation is used in the
Clock [29] and TCD [1] groupware development toolkits.

6 Adaptive Concurrency Control

As discussed in section 2.1, neither pessimistic nor optimistic concurrency control is
appropriate for all applications, and in fact a single application should be able to
combine both forms of concurrency control. This section describes how locking and
Eager concurrency control can be combined to a single adaptive algorithm. This
algorithm has the following properties:

– Clients can decide on a per-transaction basis whether to use locking or Eager
concurrency control.

– The concurrency controller is associated with the model, and automatically adapts
to the concurrency control scheme being used by the clients.

– Multiple transactions can be processed in parallel, where some are locking and
some Eager.

– Adaptive concurrency control places no overheads on either the locking or Eager
algorithms. Eager transactions may be computed even if another client holds a lock
on the model (but may not commit while the lock is in place.)

This example shows that the approach of specifying temporal properties in
architectures not only permits the specification of existing, well-understood
algorithms, but also supports the development of new algorithms.

The remainder of this section describes the implementation of adaptive
concurrency control.

6.1 Implementation of Adaptive Concurrency Control

The server implementation of adaptive concurrency control is shown in figure 6. This
implementation simply combines the finite state machines of figures 4 and 5. From
start state a0, if a client requests a lock, locking concurrency control is used for that
client’s transaction. Otherwise, requests and updates are processed using the Eager
method. The one change in the locking algorithm is that from state a4, any client can
make a request, not just the client holding the lock. This does not affect the client
holding the lock, as requests do not change the value of the shared context. This
change allows Eager transactions to be computed concurrently with locking
transactions; however, updates resulting from Eager transactions may not be
committed until after the lock is released.

Specifying Temporal Behaviour in Software Architectures for Groupware Systems 15

Adaptive concurrency control ensures that no conflicting transaction is committed:

Theorem 6. Assume that clients compute update transactions either using a locking
pattern (where the client makes no requests until a grantLock message is received)
or an Eager pattern (where the client does not request a lock). Then adaptive
concurrency control ensures that if the server receives the message update (u,tr) at
time t, where u∈ Update and tr∈ Transaction, then if conflict(tr,t), the server does not
commit the update.

Proof. Apply the same argument as used in theorems 2 and 4.

From this example, we therefore see it is possible to refine the implementation of a
novel concurrency control algorithm permitting both pessimistic and optimistic
transactions to be executed in parallel.

7 Conclusion

This paper has introduced the concept that software architectures can encode temporal
properties of software systems as well as the traditional structural properties. We
have shown an example of such properties in the context of specifying concurrent
behaviour of clients and server in the semi-replicated groupware architecture. We
have shown that both pessimistic and optimistic concurrency control algorithms can
be refined from the required temporal behaviour, as well as a novel adaptive scheme
permitting both optimistic and pessimistic transactions to execute in parallel.

This approach allows us to treat architectures as specifications both of the
structural and temporal properties of interactive systems. The architecture specifies
high level properties of the system’s behaviour, while a developer is free to implement
such behaviour in any way he/she chooses. This represents a departure from the
common approach in groupware, where rather than the specifying the behavioural
properties of an application, developers commit early to a particular concurrency
control algorithm.

The main weakness of our approach in its current form is that our model of the
semi-replicated architecture is simplified, permitting no concurrency control over the
replicated data. This does not allow us to treat the operation transform class of
concurrency control algorithms such as dOpt [11], CCU [7] and ORESTE [18].
Interesting future work will be to extend our description of semi-replication to address
this shortcoming. Additionally, we are currently extending this architectural approach
to areas other than concurrency control. This involves the development of a full range
of architectural primitives embodying temporal properties accounting for the non-zero
latency of real networks, and accounting for architectural evolution over time
resulting from session management.

Acknowledgments. This research was carried out by the authors at the Software
Technology Laboratory of Queen’s University, and was partially supported by the
Natural Science and Engineering Research Council (NSERC). The work greatly
benefited from the work of Gary Anderson in the TeleComputing Developer toolkit,
and from numerous discussions with Greg Phillips.

16 T.N. Wright, T.C.N. Graham, and T. Urnes

8 References

1. G.E. Anderson, T.C.N. Graham, and T.N. Wright. Dragonfly: Linking conceptual and
implementation architectures of multiuser interactive systems. In Proc. ICSE 2000, 2000.

2. R.M. Baecker, editor. Readings in Groupware and Computer-Supported Cooperative
Work: Assisting Human-Human Collaboration. Morgan Kaufmann Publishers, 1993.

3. G. Banavar, K. Miller, and M. Ward. Adaptive views: Adapting to changing network
conditions in optimistic groupware. In Proc. Euro-PDS '98, 1998.

4. S. Bhola, B. Mukherjee, S. Doddapaneni, and M. Ahamad. Flexible batching and
consistency mechanisms for building interactive groupware applications. In 18th
International Conference on Distributed Computing Systems (ICDCS), 1998.

5. G. Calvary, J. Coutaz, and L. Nigay. From single-user architectural design to PAC*: A
generic software architecture model for CSCW. In Proc. CHI ’97, pages 242-249. ACM
Press, 1997.

6. Chabert, E. Grossman, L. Jackson, S. Pietrowicz, and C. Seguin. Java object sharing in
Habanero. CACM, 41(6):69-76, June 1998.

7. G.V. Cormack. A calculus for concurrent update. Research report CS-95-06, University of
Waterloo, 1995. Available from ftp://cs-archive.uwaterloo.ca.

8. G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and Design.
Addison-Wesley, second edition, 1994.

9. P. Dewan and R. Choudhary. A high-level and flexible framework for implementing
multiuser user interfaces. ACM TOIS, 10(4):345-380, October 1992.

10. P. Dourish. Consistency guarantees: Exploiting application semantics for consistency
management in a collaboration toolkit. In Proc. ACM CSCW ’96. ACM Press, 1996.

11. C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. In Proc. SIGMOD
’89, pages 399-407. ACM Press, 1989.

12. U. Gall and F.J. Hauck. Promondia: A Java-based framework for real-time group
communication on the Web. In Proceedings of the 6th World Wide Web Conference, Santa
Clara, CA. April 7--11. Published as Computers, Networks and ISDN 29(8/13). Elsevier
Science Publishers B. V. (North-Holland), 1997.

13. T.C.N. Graham and T. Urnes. Relational views as a model for automatic distributed
implementation of multi-user applications. In Proc. ACM CSCW ’92, pages 59-66. ACM
Press, 1992.

14. T.C.N. Graham and T. Urnes. Integrating Support for Temporal Media into an
Architecture for Graphical User Interfaces. In Proc. ICSE 19, pages 172-182. ACM Press,
1997.

15. T.C.N. Graham, T. Urnes, and R. Nejabi. Efficient distributed implementation of
semi-replicated synchronous groupware. In Proc. ACM UIST ’96, pages 1-10. ACM Press,
1996.

16. S. Greenberg and D. Marwood. Real time groupware as a distributed system: Concurrency
control and its effect on the interface. In Proc. ACM CSCW ’94, pages 207-217. ACM
Press, 1994.

17. R.D. Hill, T. Brinck, S.L. Rohall, J.F. Patterson, and W. Wilner. The Rendezvous
language and architecture for constructing multi-user applications. ACM TOCHI, 1(2):81-
125, June 1994.

18. Karsenty and M. Beaudouin-Lafon. An algorithm for distributed groupware applications.
In Proc. 13th International Conference on Distributed Computing Systems (ICDCS), pages
195--202, 1993.

19. T. Kindberg, G. Coulouris, J. Dollimore, and J. Heikkinen. Sharing objects over the
Internet: The Mushroom approach. In Proceedings of IEEE Global Internet ’96
(Mini-conference at GLOBECOM '96, London, England, Nov. 20-21). IEEE ComSoc,
1996.

Specifying Temporal Behaviour in Software Architectures for Groupware Systems 17

20. G.E. Krasner and S.T. Pope. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. JOOP, 1(3):26-49, August/September 1988.

21. J.C. Lauwers and K.A. Lantz. Collaboration awareness in support of collaboration
transparency: Requirements for the next generation of shared window systems. In Proc.
CHI ’90, (also in [2]), pages 303-311. ACM Press, 1990.

22. J.P. Munson and P. Dewan. A concurrency control framework for collaborative systems.
In Proc. ACM CSCW ’96, pages 278-287. ACM Press, 1996.

23. R.E. Newman-Wolfe, M.L. Webb, and M. Montes. Implicit locking in the Ensemble
concurrent object-oriented graphics editor. In J. Turner and R. Kraut, editors, Proc. ACM
CSCW ’92, pages 265-272. ACM Press, 1992.

24. W.G. Phillips. Architectures for synchronous groupware. Technical Report 1999-425,
Department of Computing and Information Science, Queen's University, May 1999.

25. M. Roseman and S. Greenberg. Building real time groupware with GroupKit, a groupware
toolkit. ACM TOCHI, 3(1):66-106, March 1996.

26. J. Roth and C. Unger. Dreamteam - a platform for synchronous collaborative applications.
In Th. Herrmann and K. Just-Hahn, editors, Groupware und organisatorische Innovation
(D-CSCW'98), pages 153-165. B.G. Teubner Stuttgart, Leipzig, 1998.

27. Schuckmann, L. Kirchner, J. Schummer, and J.M. Haake. Designing object-oriented
synchronous groupware with COAST. In Proc. ACM CSCW ’96. ACM Press, 1996.

28. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

29. T. Urnes and T.C.N. Graham. Flexibly mapping synchronous groupware architectures to
distributed implementations. In Proc. DSVIS’99, pages 133-148, 1999.

	Specifying Temporal Behaviour in Software Architectures for Groupware Systems
	1 Introduction
	2 Motivation
	2.1 Concurrency Control Styles

	3 The Semi-Replicated Architecture for Groupware
	3.1 Encoding Concurrency Control in the Semi-replicated Architecture
	Client and Server Components
	Model
	View/Controller
	Conflicts

	3.2 Implementation of Semi-replication

	4 Locking
	4.1 Implementation of Locking

	5 Eager
	5.1 Implementation of Eager Concurrency Control
	5.2 Optimization

	6 Adaptive Concurrency Control
	6.1 Implementation of Adaptive Concurrency Control

	7 Conclusion
	Acknowledgments
	8 References

