
1

Chapter #

Modeling Style of Work as an Aid to the Design and
Evaluation of Interactive Systems

James Wu, T.C. Nicholas Graham, Katherine Everitt, Dorothea Blostein and
Edward Lank
Department of Computing and Information Science
Queen’s University
Kingston, Ontario, CANADA K7L 3N6
{graham,wuj}@cs.queensu.ca

Abstract: This paper presents the workstyle model, a novel technique for recording the
working style of people using an interactive system. Workstyle complements
task modeling by providing information on how people communicate and
coordinate their activities, and by showing what style of artifact the work is to
produce. We have applied the workstyle model to the evaluation of UML
design tools and the design of a new tool, the Software Design Board. The
design of the model itself was informed by studies of tools and designers both
at Queen’s University and at a large software development organization.

Key words: Model-based design, work style, software design tools, UML

1. INTRODUCTION

Task models [5] help in understanding the goals and activities of users of
a software system. Through this understanding, the designer of a system can
ensure that users’ tasks are supported. Techniques such as cognitive
walkthrough [25], task simulation and model checking [18] allow user
interface designs to be checked versus task models, exposing areas where the
system fails to adequately support user tasks, or where user tasks are
supported in an inconvenient manner. Task models therefore help to ensure
that software systems meet users’ needs, and meet these needs in a usable
manner.



2 Chapter #

Figure 1. The workstyle model helps to identify task/tool mismatches. While a global

task might be the creation of a UML design document, a whiteboard-based tool is more

appropriate to brainstorming design, while a CASE tool is more appropriate to precise

documentation.

Task models are less successful, however, in capturing what it means for
a task to be supported in a usable manner. To address this problem, we
present the Workstyle Model, a novel model capturing some aspects of users’
preferred style of work. This allows analysis of whether an interactive
system design supports users in performing their tasks, and of whether this
support is consistent with the users’ working style. The model concentrates
on users’ preferred collaboration styles and on the desired properties of
artifacts developed through this collaboration.

The workstyle model was developed in the context of the Software
Design Board project, a project aiming to provide better tools for software
design. The model has been validated through evaluation of existing design
tools, and has motivated the design of a new software design tool.

The paper is organized as follows. In sections 2 and 3, we motivate and
introduce the model. In section 4, we present two case studies of the use of
the model. The first is an electronic whiteboard-based tool supporting the
creation of design diagrams in the Unified Modeling Language (UML) [20].
The second is a tool for collaborative design brainstorming.

2. MOTIVATION

In order to motivate the workstyle model, we consider the task of
creating a design diagram in the UML notation. A task model can help us



#. Modeling Style of Work as an Aid to the Design and Evaluation of
Interactive Systems

3

understand the activities involved in creating such a diagram: drawing and
labeling nodes, connecting them with relations, editing and reformatting
diagram elements, and so forth. Such a task model might lead us to develop
a tool similar to Rational Rose, permitting mouse-based structural editing of
design diagrams.

However, before committing to such a design, it is important to
understand the users’ preferred workstyle in addition to the tasks they need
to perform. For example, designers may be working in a brainstorming style,
or may be recording precise documentation from which the system is to be
built. As illustrated by Figure 1, the brainstorming style is well supported by
a whiteboard. A whiteboard provides sufficient space for small groups to
work, and supports a fluid style of interaction where multiple designers may
interact with the design artifact in parallel. The designers are also not
restricted to following a precise design syntax. Alternatively, the precise
design style is well supported by a traditional Computer-Aided Software
Engineering (CASE) tool. Both tools support the tasks identified in the task
model. However, they support the tasks in different ways, appropriate to
either the brainstorming or precise design styles of work. As we shall see in
the following section, the workstyle model supplements task information
with information about users’ preferred style of work.

3. THE WORKSTYLE MODEL

As motivated by the above example, we characterize the workstyle of a
group in terms of how the group chooses to collaborate, as well as the kinds
of artifacts the group chooses to create. As shown in Figure 2, the workstyle
model characterizes working style as a space of eight dimensions. The first
four describe collaboration style; the remaining four describe the properties
of artifacts being created. A particular workstyle can then be represented as a
point in this space. Interactive systems can also be plotted in this space,
showing the workstyle(s) that they support. As will be shown in section 4, it
is then possible to compare peoples’ desired workstyles to those supported
by tools, helping to identify potential tool mismatches.



4 Chapter #

Archivability

Modifiability

Syntactic Correctness

Semantic
Correctness

Location

Coordination

Synchronicity

Group Size

Same
time

Different
time

Same
place

Different
place

Moderated

Free
form

Large

Small

Archival Throw-
awayStatic

Modifiable

Correct

Free-form

Unbound

Sound

Figure 2. The workstyle model presents an eight-dimensional space on which working styles
can be plotted. Workstyles are decomposed into collaboration style, and style of artifact being

produced.

3.1 Dimensions Describing Collaboration Style

The first four dimensions describe how people choose to collaborate
while performing their tasks. These are:
– Location: The location axis refers to the location of the people involved

in the collaboration. People may be in the same place (co-located) or in
different places (distributed.) In general, collaboration becomes more
difficult at a distance [21], and requires more support from tools.

– Synchronicity: The synchronicity axis captures temporal aspects of the
collaboration. People may work together at the same time
(synchronously) or at different times (asynchronously). Face-to-face or
telephone conversations are examples of same-time interaction, while
email conversations or information sharing through a Lotus Notes
database are examples of different-time interaction. Synchronicity is a
continuous axis. E.g., a rapid exchange of emails can approach same-time
interaction.

– Group Size: The group size axis captures the number of people involved
in the collaboration. Group size influences what styles of interaction are
practical. For example, brainstorming may work in small groups, whereas
larger groups require support of tools or communication processes.



#. Modeling Style of Work as an Aid to the Design and Evaluation of
Interactive Systems

5

– Coordination: The style of interaction is influenced by the coordination
model adopted [16]. For example, in a brainstorming session, free-form
coordination is typical. Social protocols can determine the order of
speaking or modifying shared artifacts. In meeting situations, more rigid
coordination is typical, relying on a chair or even formal rules of order.
Asynchronous tools typically rely on moderated coordination, such as
check-in/check-out protocols.

3.2 Dimensions Describing Artifact Style

The remaining four dimensions describe the properties of artifacts that
result from the users’ tasks. The properties are:
– Syntactic Correctness: The artifact being produced may be required to

follow a precise syntax. For example, a programmer must follow the rules
of the programming language being used; a designer may choose to follow
the precise rules of a notation such as UML. However, in the early stages
of design, a requirement to adhere to precise syntax may hinder creativity
by diverting designers from the global concepts of design [22,13].

– Semantic Correctness: An artifact is considered to be semantically sound
if its meaning is clear: that is, unambiguous and free of contradiction. The
production of semantically sound artifacts may be impractical and
unnecessary. For example, design documents often contain contradictions,
inconsistencies and missing information. According to Finkelstein [7],
humans can work effectively in the presence of such contradiction.
Semantic correctness is considered to be a continuum.

– Archivability: Archivability represents the difficulty of saving an artifact
so that it can be used at a later time. For example, word processing
documents have high archivability, as they can be saved to disk and
retrieved later. A whiteboard has poor archivability, as once it is erased, its
contents are lost. Archiving is considered more difficult if an archived
version cannot be used in the same way as the original. For example, a
whiteboard drawing can be archived by photographing it; however, the
archived version (the photograph) can no longer be manipulated on the
whiteboard.

– Modifiability: This axis represents the ease with which an artifact can be
modified. Modifiability is closely tied to the modification task. For
example, small modifications to a whiteboard drawing are simply
performed by erasing and redrawing. A modification such as reformatting
a complex diagram is, however, difficult. Modifications to a diagram
produced using a drawing program are more completely supported, but
may require complex editing operations.



6 Chapter #

Figure 3. Workstyle supported by popular UML design tools, plotted using the workstyle
model.

4. APPLICATION OF THE MODEL

The model presented in section 3 has been applied to the development of
a UML design tool. We first used the model to show how existing UML
design tools fail to match the work style of software developers. We then
used the model to help motivate the design of a new tool.

It is useful to consider the workstyle supported by popular UML design
tools such as Rational Rose, Aonix Software through Pictures (STP) and
Together Control Center. As shown in Figure 3, these tools support small-to-
medium groups. The activities of different designers are coordinated through
a repository, using locking and merging to support concurrent work.
Designers can work in different places. Communication is different-time,
through the contents of the repository. The tools provide structure editing
that guarantees that designs will be syntactically correct and semantically
sound. Since the tools provide structure editing and the ability to save and
restore designs, designs are highly modifiable and easily archived.

Archivability

Modifiability

Syntactic Correctness

Semantic
Correctness

Location

Coordination

Synchronicity

Group Size

Same
time

Different
time

Same
place

Different
place

Moderated

Free
form

Large

Small

Archival Throw-
awayStatic

Modifiable

Correct

Free-form

Unbound

Sound



#. Modeling Style of Work as an Aid to the Design and Evaluation of
Interactive Systems

7

Figure 4. Ideal workstyle for brainstorming a software design overlaid with
workstyle supported by existing UML CASE design tools

4.1 Tools for UML Design

UML design tools such as described above are a good fit with workstyles
where relatively little communication with other designers is required, and
where the goal is to create precise, archival designs. The tools are
particularly helpful in enforcing UML syntactic and semantic rules, and
provide good support for editing and archiving documents.

However, as discussed in section 2, traditional UML design tools provide
poor support for the early stages of design, such as brainstorming. During
these phases, designers spend large percentages of their time on
communications tasks. For example, two studies show communication
activities as requiring between 70% [4] and 85% [11] of software
developers’ time.

This communication is largely informal in nature: Kraut and Streeter [12]
report that software developers report “discussion with peers” as their most
important method of coordinating their activities. Following a large study of
a software development project in the U.S. Navy, Norcio and Chmura report
that informal discussion is correlated with progress in design, and that the

Archivability

Modifiability

Syntactic Correctness

Semantic
Correctness

Location

Coordination

Synchronicity

Group Size

Same
time

Different
time

Same
place

Different
place

Moderated

Free
form

Large

Small

Archival Throw-
awayStatic

Modifiable

Correct

Free-form

Unbound

Sound

Whiteboard

CASE Tool



8 Chapter #

more complex the design problem, the larger the percentage of designers’
time is spent on discussion [2]. Studies of design tasks in general have
shown that in brainstorming sessions, the majority of time is spent talking
and gesturing at the artifact being produced [1,22]. In simple activity
analysis of brainstorming tasks, we have observed that as little as 5% of
brainstorming time is spent actually producing the design artifact, while the
remaining 95% is spent discussing it.

At the same time, it has been observed that traditional design tools
provide poor support for informal communication [24], and this lack of
support has been linked to low adoption rates of these tools [9,10]. In studies
of designers in a large software company, we observed that the use of UML
design tools was low, and that much design was performed with informal
media such as paper or whiteboards.

The inappropriateness of UML design tools for early stages of design can
be clearly shown by examining the brainstorming workstyle. As shown in
Figure 4, brainstorming is typically carried out by small groups working
face to face. These groups typically use free-form coordination, using social
protocols to determine who gets to speak or write next. In brainstorming,
designers do not wish to be distracted by requirements to be syntactically
correct, or even semantically sound [1,22]. Modifiability is important as
early designs evolve rapidly. Archivability is important to allow early
designs to be migrated to more formal designs.

Figure 4 shows that while UML design tools support the core tasks of the
early stages of design, they do not support the workstyle of early design. The
emphasis on asynchronous, moderated work with strong emphasis on
syntactic correctness and semantic soundness is thoroughly incompatible
with the free-form brainstorming workstyle. Ivarii’s study shows that once
designers move beyond this early design stage, they tend not to record the
designs in a CASE tool unless management requires it. We therefore believe
that Figure 4 demonstrates a large part of the problem with current UML
design tools.



#. Modeling Style of Work as an Aid to the Design and Evaluation of
Interactive Systems

9

Figure 5. The Software Design Board: a tool for collaborative UML design

4.2 The Software Design Board

To address these problems, we have developed the software design
board, a prototype UML design tool that supports a variety of workstyles
appropriate to the early stages of design. As shown in Figure 5, the software
design board is physically based on an electronic whiteboard. This
whiteboard is a touch-sensitive membrane allowing drawings with a plastic
stylus to be captured. The drawings are then projected onto the whiteboard
display using a projector.

Using the software design board, designers can create UML designs
simply by drawing them, similarly to the free-style drawing of the Tivoli
system [19]. This gives the full flexibility of media such as paper or standard
whiteboards. This contrasts with other whiteboard-based UML tools such as
Knight [3], which is a structure-editor using a gesture language to specify
editing operations. Once designs have been drawn, an experimental UML
recognizer tool [14] can be used to turn them into structured drawings,
reformat them, and export them in XML format suitable for use in a UML
CASE tool.

The tool supports collaborative work in a variety of ways. Small groups
can work together at the whiteboard, similarly to working with a standard
whiteboard. Different-time work is supported (as with a traditional
whiteboard), by leaving board contents available for others to look at.
Different-place work is also supported, by allowing the whiteboard contents
to be shared in real-time. I.e., shared drawing artifacts can be shared
amongst two or more software design boards, so that changes to one board
are immediately reflected on the others.



10 Chapter #

Figure 6. Workstyles supported by the software design board. These range over same-place
and different-place, same-time and different time, small to medium groups. Consistently with
early stages of design, coordination is free-form, with no restrictions on syntactic correctness

or semantic soundness. Designs are somewhat modifiable through standard whiteboard
erasing and redrawing. Designs can be archived by exporting them in XML to a standard

UML CASE tool.

Since not all users may have electronic whiteboards available, the
software design board can also be hosted on a standard PC, allowing
whiteboard and PC users to share the same design. For same-time, different-
place work, gestural information (pointing, circling, etc.) is also
communicated (as motivated by the VideoWhiteboard [23].) On a PC,
designers gesture using the mouse; on an electronic whiteboard, a camera is
used to capture gestures.

4.2.1 Analysis

As shown in Figure 6, the software design board supports a broad range
of working styles. These styles are a better fit with the early design
workstyle (Figure 4) than the style supported by traditional UML design
tools (Figure 3). Understanding work styles therefore helps us design tools
that will better support the tasks to be performed.

The workstyle model complements a number other techniques for
interactive system evaluation and design. For example, Lumsden has

Archivability

Modifiability

Syntactic Correctness

Semantic
Correctness

Location

Coordination

Synchronicity

Group Size

Same
time

Different
time

Same
place

Different
place

Moderated

Free
form

Large

Small

Archival Throw-
awayStatic

Modifiable

Correct

Free-form

Unbound

Sound



#. Modeling Style of Work as an Aid to the Design and Evaluation of
Interactive Systems

11

developed a sophisticated tool for matching CASE tools to their use [15].
Design notations such as OPAS [6] and our own dimension space [8] help in
understanding the context of use of interactive systems, particularly how
they fit within their physical environments. The Questions-Options-Criteria
(QOC) method [17] helps evaluate design choices. While complementing
these approaches, the workstyle model has the contribution of being simple
to apply, and clearly showing where interactive system designs match or fail
to match their intended work context.

5. CONCLUSIONS

In this paper, we have presented the workstyle model, a model capturing
aspects of the style in which people carry out their tasks. The workstyle
model complements task modeling by helping to develop deeper
understanding of how tasks are to be performed. The model illustrates the
ways in which people communicate during their work, and the properties of
the artifacts that people produce.

We have shown that the workstyle model can be used to evaluate existing
tools, and to help in the design of new tools. By examining the work styles
supported by a tool, we can better understand how the tool can be effectively
deployed, or identify mismatches between a tool and its intended use. By
understanding the workstyles that a tool is to support, we can build tools that
will be more effective in their deployment.

ACKNOWLEDGEMENTS

This work was partially supported by the Communications and
Information Technology Ontario (CITO) Software Design Technology
project and IBM’s Centre for Advanced Studies. We gratefully acknowledge
the donation by SMART Technologies Inc. of the SMART Board shown in
Figure 5.

REFERENCES

[1] Bly, S.A. A Use of Drawing Surfaces in Different Collaborative Settings. In Proceedings
of the Conference on Computer-Supported Cooperative Work (CSCW’98), Sept. 1988.

[2] Chmura, L. and Norcio, A. Design Activity in Developing Modules for Complex
Software. In Proceedings of Empirical Studies of Programmers, pp. 99-116, 1986.



12 Chapter #

[3] Damm, C.H., Hansen, K.M., Thomsen, M., Tool Support for Object-Oriented Cooperative
Design: Gesture-Based Modelling on an Electronic Whiteboard, in Proc. CHI 2000, pp
518-525, 2000.

[4] DeMarco, T., and Lister, T. Peopleware. Dorset House, New York, 1987.
[5] Diaper , D. Task analysis for human computer interaction, Ellis Horwood, 1989.
[6] Dubois, E., Nigay, L., Troccaz, J., Chavanon, O. and Carrat., L., Classification space for

augmented surgery, an augmented reality case study, in Proc. INTERACT '99, 1999.
[7] Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B., Inconsistency

Handling In Multi-Perspective Specifications, IEEE Transactions on Software
Engineering, 20(8), pp. 569-578. 1994.

[8] Graham, T.C.N., Watts, L., Calvary, G., Coutaz, J., Dubois, E., Nigay, L., A Dimension
Space for the Design of Interactive Systems within their Physical Environments, in Proc.
Designing Interactive Systems, pp 406-416, 2000

[9] Iivari, J. Why are CASE Tools Not Used? Communications of the ACM, October 1996.
[10] Jarzabek, S. and Huang, R. The Case for User-Centered CASE Tools. Communications

of the ACM. August 1998.
[11] Jones, T.C. Programming Productivity. McGraw-Hill, New York, 1986
[12] Kraut, R. E. and Streeter, L. Coordination in Software Development, Communications of

the ACM, 38(3), pp. 69-81, 1995
[13] Landay, J.A. and Myers, B.A. Interactive sketching for the early stages of user interface

design. In Proceedings of CHI '95: Human Factors in Computing Systems, Denver, CO,
May 1995, pp. 43-50.

[14] Lank, E., Thorley, J.S., and Chen, S.J., An Interactive System for Recognizing Hand
Drawn UML Diagrams, in Proceedings of CASCON 2000, pp. 1-15, 2000.

[15] Lumsden, J., Gray, P., SUIT - Context Sensitive Evaluation of User Interface
Development Tools, in Proc. DSV-IS'2000, Springer LNCS, pp.79-95, 2000.

[16] Malone, T. W. and Crowston, K. What is coordination theory and how can it help design
cooperative work systems?, in Proceedings of the Conference on Computer-Supported
Cooperative Work, pp. 357-370, 1990

[17] McLean, A., Young, R.M., Bellotti, V.M.E., & Moran, T.P. Questions, options and
criteria: Elements of design space analysis. Human-Computer Interaction, 6, pp. 201-250,
1991.

[18] Paternò, F. and Santoro, C., Integrating Model Checking and HCI Tools to Support
Designers in Verification of User Interfaces Properties, In Proceedings of DSV-IS'2000,
Springer LNCS, pp. 135-150, 2000.

[19] Pederson, E.R, McCall, K., Moran, T.P., Halasz, F.G., Tivoli: An Electronic Whiteboard
for Informal Workgroup Meetings, INTERCHI’93, pp 391-398, 1993.

[20] Rumbaugh, J., Booch, G., Jakobsen, I.: The Unified Modeling Language Reference
Manual. Addison Wesley, 1999.

[21] Seaman, C.B. and Basili, V.R. Communication and Organization in Software
Development: An Empirical Study. IBM Systems Journal 36(4), 1997.

[22] Tang, J.C. Findings from Observational Studies of Collaborative Work. International
Journal of Man-Machine Studies, 1991.

[23] Tang, J.C and Minneman, S., VideoWhiteboard: video shadows to support remote
collaboration, in Proc CHI’91, pp.391-398, 1991.

[24] Vessey, I. and Sravandapudi, A.P., CASE Tools as Collaborative Support Technologies.
Communications of the ACM, 38(1), pp., 83-95, 1995

[25] Wharton, C., Rieman, J., Lewis, C., and Polson, P. The Cognitive Walkthrough Method:
A Practitioner's Guide. In Usability Inspection Methods, J. Nielsen and R.L. Mack (Eds.),
New York: John Wiley & Sons, pp.105-141, 1994.


