
Architectures for Widget-Level Plasticity

Baha Jabarin and T.C. Nicholas Graham

School of Computing
Queen's University, Kingston, Ontario, Canada K7L 3N6

{jabarin,graham}@cs.queensu.ca

Using model- and language-based tools to develop plastic applications requires
developers to become familiar with abstract modeling concepts or difficult
language syntax. This is a departure from traditional visual interface
development tools, in which developers select the widgets that will appear in
the application and write the code that defines the widgets’ functionality. We
present WAHID, a widget-level approach to plasticity in both new and legacy
applications that conforms to traditional interface development techniques.
WAHID provides internal and external architectures for integrating plastic
widgets in an application. The internal architecture provides plasticity in new
applications and requires that the application code be available for the
architecture to be deployed. The external approach uses gesture handling for
widget activation in legacy applications. We demonstrate the viability of these
architectures through example scroll bar and menu widgets.

1 Introduction

Recent years have seen a proliferation of new device types such as mobile
telephones, personal digital assistants, tablet personal computers and electronic
whiteboards. Such devices differ greatly in the interaction modalities they afford. For
example, mobile telephones provide input via a microphone and a small numeric
keypad, and output on a tiny display. Input to electronic whiteboards and tablet PC’s
is via a stylus, supporting freehand drawing and gesture-based input. On an electronic
whiteboard, traditional interaction techniques may be cumbersome due to the
whiteboard’s physical size.

It is often desirable to develop software that runs on a range of devices. For
example, a bank may wish to allow customers to access their accounts via a mobile
phone, a PC-based web browser or a tablet PC. The ability for an application to mould
itself to new platforms while retaining usability is called user interface plasticity [5].

Building plastic applications is difficult. Target platforms differ so greatly that it is
hard to avoid creating separate designs and implementations for each. This leads to
problems of creating consistency of function, style and branding from one platform to
another, particularly as the product is modified after release.

An alternative to handcrafting platform-specific versions of user interfaces is to
generate different versions from some kind of common development artifacts. Two
broad strategies exist for such generation. The model-based approach [16,20,11,13] is

Architectures for Widget-Level Plasticity 2

to generate user interfaces from task, domain and interactor models. From these,
platform-specific user interfaces are semi-automatically generated. The model-based
approach is still experimental, and not yet supported by production-quality tools.
Model-based development faces the barrier to adoption of differing greatly from the
traditional UI programming techniques to which developers are accustomed.

A second approach is the abstract language approach, where programming
notations are used to develop abstract user interfaces. Abstract languages such as
WML [8] and XSL/XSLT [23,22] have been widely used to develop real products,
but are based on cumbersome syntax.

In this paper, we explore the approach of widget-level plasticity. Pioneered by
Crease et al. [6], this approach builds plasticity into the widget set. Application
developers need only combine plastic widgets drawn from a toolkit, and may use
traditional tools such as Visual Basic or Visual C++. Widget-level plasticity is easier
than the previous approaches, since the problem of plasticity is devolved to the
creator of the widget set. Widget-level plasticity has limited expressiveness. For
example, the widget-level approach could not reasonably allow the development of an
application that runs on both a whiteboard and mobile phone, as these platforms differ
too fundamentally.

In this paper, we present WAHID (Widget Architectures for Heterogeneous I/o
Devices). WAHID consists of two software architectures for widget-level plasticity,
with the benefits of:

− Allowing the development of plastic applications using traditional development
techniques such as supported by Visual Basic or Visual C++;

− Allowing the plastic adaptation of existing (or legacy) applications whose source
code is not available.

To achieve these goals, WAHID limits the scope of plasticity to standard PC widgets
(scroll bars, menus, etc.) and widgets appropriate to electronic whiteboards and tablet
PC’s. To illustrate the architectures, WAHID has been applied to the development of
plastic scroll bar and menu widgets.

This paper is organized as follows. We first review the notion of Widget-Level
Plasticity, and provide an example of an application built using this approach. We
then present the WAHID architectures. Finally, we discuss related work in the context
of a novel taxonomy of approaches to plasticity.

2 Widget-Level Plasticity

Widget-level plasticity allows applications to mould themselves to different
platforms through change in appearance and behaviour of the application’s widgets.
Widget-level plasticity is less expressive than handcrafted plasticity, but considerably
less burdensome to the programmer. Plastic widgets can be used in new applications
by writing code in the same way as traditional PC applications are written, or even
can be added to existing “legacy” applications which were not written with plasticity
in mind. To motivate the concept of widget-level plasticity, we present two examples

Architectures for Widget-Level Plasticity 3

of plastic widgets: a plastic scroll bar and a plastic menu. These examples are
intended to adapt to the PC, tablet PC and electronic whiteboard platforms.

2.1 Plastic Scroll Bar Widget

We demonstrate the behavior of the plastic scroll bar widget in Sketcher, a simple
sketching application (figure 1.) The scroll bar can take on two forms: (a) a traditional
scroll bar, as defined via the Microsoft Foundation Class (MFC) library, and (b) the
Horseshoe scroll bar, based on a design by Nakagawa et al. [12] The Sketcher
program is based on an application developed by Horton [9] and is implemented using
the MFC document/view architecture.

(a) (b)

Fig. 1. Two versions of a plastic scroll bar widget, as used in the Sketcher application. Part (a)
shows a traditional MFC scroll bar rendered for the PC platform. Part (b) shows the Horseshoe
scroll bar [12] rendered for the electronic whiteboard platform.

The scroll bar adapts its form automatically to the platform being used. In figure

1(a), the scroll bar is rendered as the standard MFC scroll bar used on the PC
platform. In figure 1(b), the scroll bar is rendered for an electronic whiteboard as a
Horseshoe scroll bar. This version appears as a gray area along the three edges of the
application window. To use the Horseshoe scroll bar, the user drags a stylus in the
gray area in the desired scrolling direction.

The benefit of a plastic scrollbar widget is that the standard PC scroll bar is
inconvenient for electronic whiteboard users. This is because the user’s physical
location around the whiteboard may not allow her to comfortably reach the scroll bar
arrows and thumb and tap them with the stylus. The Horseshoe scroll bar is designed
to allow the user to scroll from any position around the whiteboard [12].

2.2 Plastic Menu Widget

Pull-down menus [19] used in PC applications are also inefficient for use on an
electronic whiteboard. As with the scroll bar, the user’s physical location may not

Architectures for Widget-Level Plasticity 4

(a) (b)

Fig. 2. A plastic menu widget. Part (a) shows a standard PC pull-down menu and its items. Part
(b) shows the equivalent Pie menu [4].

allow her to comfortably reach for the menus to tap them with the stylus and access
their items. Additionally, navigating pull-down menus involves too much arm
movement as the user reaches for the menu and navigates through its items on the
large whiteboard display.

Pie menus [4] provide an alternative to pull-down menus on electronic whiteboards
and tablet PC’s. Pie menus can be invoked anywhere in the application window,
typically through a gesture such as a tap-and-hold. This eliminates the need for users
to change their physical location around the whiteboard to access the pull-down
menu. Pie menus are also faster and more reliable than pull-down menus because the
large area and wedge shape of pie menu slices makes them easily targeted with little
hand motion [4]. This reduces the amount of arm movement needed to find the
required menu items versus pull-down menus.

Similarly to the scroll bar above, the plastic menu widget renders automatically
either as a PC widget (figure 2(a)) or as a pie menu (figure 2(b)), depending on what
platform is being used.

2.3 Deploying Plastic Widgets

There are two fundamental approaches to deploying plastic widgets. The first
approach is to use plastic widgets within the application so that each widget appears
exactly once, in a form appropriate to the platform. We call this the internal approach,
since the plastic widgets are an integral part of the application. The second approach
is to represent the widgets externally to the application. Plastic widgets intercept
inputs before they are sent to the application, and then send results of the widget’s
activation to the application. This approach is appropriate when access to the
application’s code is not available. Two highly successful examples of the external
approach include Microsoft’s Input Method Editor, used to enter text in Asian
languages, and WIVIK [18], an assistive technology allowing text entry for people
with poor motor skills.

The internal approach has the benefit of smooth integration with the application,
but requires access to the application’s source code. The external approach can be
applied to existing (or legacy) applications, but requires the widgets to run separately
from the application. External widgets cannot modify the appearance of the

Architectures for Widget-Level Plasticity 5

application. For example, using the external approach, it is not possible to replace an
MFC scroll bar with a Horseshoe scroll bar.

3 WAHID: Architectures for Widget-Level Plasticity

WAHID proposes two software architectures for widget-level plasticity. The
internal architecture is used to integrate plastic widgets into new applications. The
external architecture shows how to couple plastic widgets with legacy applications
whose source is not available.

The WAHID architectures support plasticity at the widget level only. Therefore,
they are not suitable for developing plastic applications for highly restrictive
platforms such as personal digital assistants (PDA) or mobile phones.

 3.1 The Internal Architecture

The principal goal of the internal architecture (WAHID/I) is to allow the
development of applications whose widgets are plastic. When run on a given
platform, these applications should mould themselves to the platform by the widgets
taking on appearance and behaviour appropriate to that platform.

WAHID/I has in addition the following goals:

− Developing a plastic program should be as easy as developing a platform-specific
program.

− Plastic programs should be developed using tools and methods with which
developers are already familiar.

The first goal is met by the mechanism of widget-level plasticity itself. Plastic
widgets are simply inserted into programs without specific programming for
plasticity. The widgets then automatically adapt to the platform on which the program
is run.

The second goal is met by designing the architecture of the plastic widgets to be
compatible with existing development tools. In WAHID/I, we aimed for compatibility
with the Microsoft Foundation Classes (MFC) [15]. MFC is the dominant user
interface development framework on the Windows platform, and is primarily
supported by the Microsoft Visual C++ programming environment. MFC is an event-
based implementation of the Model-View-Controller architecture [10], where a
Document implements the model, and a View implements the View-Controller. MFC
provides an extensive class library, including a container class for the view (CView),
and a variety of widget classes (CScrollBar, CButton, CComboBox, etc.) Visual C++
provides “wizards” to develop graphical user interfaces. Wizards allow high-level
specification of parts of the user interface, and automatically generate the C++ code to
implement them.

To meet the second goal, it was therefore necessary to:

Architectures for Widget-Level Plasticity 6

− Maintain compatibility with the MFC Document-View architecture so that
developers don’t have to use an unfamiliar architecture in order to gain plasticity;

− Maintain compatibility with Visual C++ wizards so that generated code runs in a
plastic manner.

The following sections show how WAHID/I solved these problems in the context of
MFC/Visual C++. This serves as a demonstration that widget plasticity can solve the
mismatches between architectures required for plasticity and those of the underlying
development toolkit.

Using the Internal Architecture. The use of internal architecture widgets requires
minimal changes to standard MFC code. If we consider the scroll bar of figure 1, the
only change required is that the main container component for the view be called
CViewP instead of the usual CView. A scroll bar is created in the view by calling its
ShowScrollBar() method. In CViewP, ShowScrollBar() creates an MFC scroll bar
when running on a PC, or a Horseshoe scroll bar when running on a tablet or
electronic whiteboard.

The Horseshoe scroll bar is designed to conform exactly to the event interface of
the MFC scroll bar. This allows the code that controls scrolling (much of which is
automatically generated) to use the scroll bar without knowing whether it is the MFC
or Horseshoe version.

Therefore, from the programmer’s perspective, use of the plastic scroll bar widget
has virtually no extra cost over using the standard MFC widget.

Implementing the Internal Architecture: The MFC framework has deep knowledge
of the widgets being used and how they behave. For example, the CView component
has embedded knowledge that scroll bars appear to the right and bottom of an
application window. The implementation of plastic widgets must therefore solve this
architectural mismatch between the plastic widgets and the MFC framework, allowing
plastic widgets to be easily inserted into MFC programs.

The key idea behind the internal architecture is that the main window supplied by
the programmer is wrapped inside a new “outer window.” The outer window is
responsible for implementing the correct plastic behaviour of the application. Since
the outer window is provided by the internal architecture, the programmer need not be
aware of its presence. Figure 3 illustrates the appearance of the window structure of
the Sketcher application after deploying the internal architecture plasticity framework.

Architectures for Widget-Level Plasticity 7

Fig. 3. Illustration of the window structure in the Sketcher application after the internal
architecture plasticity framework is deployed.

In the case of our scroll bar example, the outer window is responsible for resizing
the application window depending on whether the MFC or Horseshoe scroll bar is
deployed, and for handling scroll events and routing them to the appropriate scroll bar
control.

Figure 4 illustrates the use of the internal architecture to deploy the plastic scroll
bar in the Sketcher application. Figure 5 illustrates the flow of events among the
internal architecture components. The internal architecture consists of the plastic view
class. To deploy the plasticity framework in the Sketcher application, the developer
allows the SketcherView class to inherit from the plastic view (CViewP). The CViewP
class overrides platform-specific methods in CView in order to provide plastic
functionality.

Fig. 4. A class diagram illustrating the deployment of the Horseshoe scroll bar in the Sketcher
application based on the internal architecture approach.

Architectures for Widget-Level Plasticity 8

Fig. 5. A component diagram illustrating the flow of events in the internal architecture.

The event flow depicted in figure 5 allows the internal architecture to be deployed
without interfering with the functionality of the Sketcher application. Input device
(mouse/stylus) events flow to the standard PC scroll bar or the Horseshoe scroll bar
(depending on which is being used) and the inner window. The PC and Horseshoe
scroll bars (see figure 1) generate vertical and horizontal scrolling events that are
handled by the plastic view (CViewP). Since SketcherView inherits from CViewP,
scrolling messages are handled in SketcherView according to scroll event handlers
specified by the developer.

The CViewP class provides the plasticity framework for the Sketcher application
by serving as the parent to the SketcherView class. The CViewP class provides new
functionality for API functions such as those associated with scroll bar creation in the
SketcherView. The new functionality allows the Sketcher application developer to call
the scroll bar creation API functions in SketcherView in the usual manner. The scroll
bar creation function, overridden in CViewP, will be able to render the PC or
Horseshoe scroll bar.

The SketcherView class provides the handlers for mouse events, window sizing
events and drawing and scrolling events. Most of the user’s interaction with the
Sketcher application (drawing, scrolling, etc.) is handled by the SketcherView class.
The CView class defines the basic view/controller functions, such as handling window
paint events [6]. Mouse handlers in SketcherView handle the drawing gestures the
user makes in the view using the mouse. The SketcherView class is also responsible
for displaying the scroll bars by making calls to API functions that set up the scroll
bars. The scroll bars fire vertical and horizontal scrolling events, which are received
and handled by SketcherView.

Architectures for Widget-Level Plasticity 9

Upon deployment of the CViewP, the inner window (CInnerWnd) acts as a smaller
version of the original SketcherView window before the latter derives from CViewP.
As shown in figure 5, the inner window receives all input device (mouse/stylus)
events related to drawing and handles them using the SketcherView mouse handlers.
To accomplish this, the inner window forwards mouse events to the CViewP class.
The inner window also receives window paint events which are fired to the
SketcherView window when it is invalidated by actions such as user drawing,
resizing, restoring or uncovering after being overlapped by another window. Each
paint event carries a handle to a device context which refers to a particular window on
the video display [15]. Paint events to SketcherView are routed to the inner window
through CViewP. Upon receipt of a paint event, the inner window passes its own
device context in a call to SketcherView’s paint event handler function. This forces all
drawing and painting to be rendered in the inner window.

In summary, the difficulty of deploying plastic widgets in the internal architecture
is a consequence of wishing to remain consistent with the architectural style of the
user interface toolkit, in our case MFC. Our approach of wrapping the application
(inner) window with a plasticity (outer) window solves this problem, allowing the
plastic widgets to be deployed with only minimal changes to an MFC program. This
approach has the added benefit that existing MFC programs can be easily converted to
run in a plastic fashion.

3.2 The External Architecture

In addition to writing new applications that are designed for plasticity, it is also
desirable to be able to use existing applications on novel devices. Commercial
applications do not make their source code available, however, so the internal
architecture cannot be applied.

The external architecture (WAHID/E) is designed to incorporate plasticity in legacy
applications whose code is not available for modification. In the external architecture,
electronic whiteboard widgets can be used in applications designed to run under
MFC. The whiteboard versions of widgets are invoked via a gesture, such as tapping
and holding the stylus. Example widgets that can be provided via the external
approach are pie menus, soft keyboards and gesture-based scrolling.

The basic approach behind the external architecture is to run a process separately
from the application that intercepts input events. If the input events are a widget
invocation gesture, the process pops up an instance of the widget. Otherwise, input
events are passed to the application.

The external approach has the obvious advantage that it can be applied to legacy
applications whereas the internal approach cannot. The external approach has,
however, the following disadvantages:

− External widgets are not part of the application. For example, it would not be
possible to implement a Horseshoe scroll bar externally, as it is tightly integrated
into the presentation of the application.

Architectures for Widget-Level Plasticity 10

− The external whiteboard widgets do not replace the MFC widgets built in to the
application. The original widgets will still appear on the screen, which may be
unaesthetic or confusing.

The following section describes the deployment of widgets using the external
architecture, using the example of an externally deployed pie menu (figure 2.)

3.2.1 Deploying the External Architecture: External widgets are added to an
application by hooking input events and filtering them through a gesture router. The
gesture router captures widget activation gestures, and routes input events to external
widgets or the application as appropriate.

Figure 6 illustrates the flow of events in the external architecture. This example
shows the deployment of a pie menu as a tablet/electronic whiteboard alternative to
the standard pull-down menu used in PC applications. The pie menu is activated
through a double-tap of the stylus inside the application window. A mouse hook
intercepts all stylus events and forwards them to the gesture router. When a double-
tap is detected, the gesture router fires a menu activation event to the widget
container. The widget container processes the menu activation event by creating the
pie menu and activating it in the application window. The pie menu is populated with
the appropriate menu items obtained from the running application.

Using the pie menu in the external architecture shows the feasibility of obtaining
information from a legacy application, such as the application menu hierarchy and
commands associated with menu items, despite lack of access to the application code.

Fig. 6. A component diagram illustrating the flow of events among the external architecture
components.

The application window component represents the main window associated with
the legacy application. A handle to the application window can be used to access the

Architectures for Widget-Level Plasticity 11

(a) (b)

Fig. 7. A demonstration of opening a file in the WordPad application on the EWB. Part (a)
shows the Pie menu populated with the top-level menu items of WordPad. Part (b) shows the
user selecting ‘Open..’ from the ‘File’ menu.

application’s menu hierarchy and the commands associated with menu items. The
application window receives mouse (or stylus pen) events after they have been
filtered through the gesture router. The application window also receives commands
associated with Pie menu items through the widget container. The commands are
processed exactly as if the application’s standard menus were used.

Figure 7 demonstrates the WAHID/E deployment of WordPad, a simple word
processing application provided with the Windows operating system. After double-
tapping the stylus pen in the WordPad application window, the user is presented with
a pie menu (figure 7(a)) populated with the top-level WordPad menu items (File, Edit,
View, Insert, Format, Help). Figure 7(b) shows the user selecting the ‘Open…’ item
from the ‘File’ menu. The pie menu fires the appropriate command associated with
the ‘Open…’ item in the File menu to the WordPad application.

The external architecture provided in figure 6 can be generalized to allow the use
of any electronic whiteboard widget in a legacy application. The widget container and
pie menu components can be grouped together as an external widget component. The
mouse hook and gesture router can be grouped together as a gesture handling
component. The mouse can be replaced by a generic input device component. The
flow of events among the new components remains the same.

4 Classifying Widget-Level Plasticity

Widget-level plasticity trades off usability versus expressiveness. Our approach is
therefore appropriate for application development where it is possible to restrict
plasticity to just the widgets. In applications intended for a wide range of platforms
with fundamentally different properties (e.g., PC versus mobile telephone), the
widget-based approach is insufficient.

To better understand the domain to which widget-based plasticity should be
applied, we compare the WAHID approach to other model- and language-based
approaches for plasticity. This comparison is summarized in table 1.

Architectures for Widget-Level Plasticity 12

 Degree of Automation

 Automatic Automatic
with Developer
Intervention

Write-Once Manual

Model-Based ADEPT [11] MOBI-D [16],
HUMANOID [20],
MASTERMIND
[21], ArtStudio [5],
TRIDENT [3]

OMMI [13] UAN [7]

Abstract User
Interface

WAHID,
WML[8]

PIMA [2] AUI[17],
UIML [1],
XSL/XSLT [23, 22]

CGB [6]

L
ev

el
 o

f U
I S

pe
ci

fic
at

io
n

Concrete User
Interface

 Visual C++,
Visual Basic,
JBuilder

Table 1. A classification of interface development tools. Tools in italics are production quality.

Loosely following the framework of Calvary et al. [5], the classification is based
on three axes: level of user interface specification, degree of automation and
production quality.

Level of user interface specification describes the level of input artifacts to the
development tool or method. This ranges over three levels:

− Concrete User Interface: A concrete user interface (CUI) precisely specifies the
application’s presentation and behaviour. CUI’s are therefore platform-specific.
The most basic form of plasticity is therefore to develop a separate CUI for each
target platform, using traditional tools such as Visual C++ or Visual BASIC.

− Abstract User Interface: An abstract user interface (AUI) specifies the structure of
a user interface’s presentation and behaviour, but does not bind the behaviour to a
specific platform. For example, the Wireless Markup Language (WML [8])
provides an abstract “Select” tag that allows users to select from a list of elements.
The selection list may be rendered as a list of checkboxes or a menu depending on
the platform on which the WML is rendered. An AUI must be transformed into a
concrete user interface for use on a particular platform.

− Models: Domain, task, platform and interactor models are used to describe the
purpose and context of use of the application. From these high-level models, an
AUI is developed, from which a set of CUI’s can be derived.

Degree of automation describes the level of developer input in the process of
reifying one level of specification to the next. Reification involves translation from
high-level models to the AUI, from the AUI to the CUI and to the interface
implementation. Degrees of automation range over

− Automatic, where the developer provides no input to the process;
− Automatic with developer intervention, where the developer is able to influence the

reification, or tune its output;
− Write-once, where the developer provides a specification for how to map from

high-level model/AUI to a platform, and this specification is used each time the
model/AUI is changed. For example, to transform XSL [22] abstract user
interfaces to a specific platform, developers write an XSLT [23] transform once.

Architectures for Widget-Level Plasticity 13

− Manual, where the developer manually performs the translation from one level of
specification to the next with no tool support. For example, the User Action
Notation (UAN [7]) is used to specify task and dialogue structure, from which a
concrete user interface may be created by hand.

In table 1, tools indicated in italics are production quality, meaning that they have
been applied to the development of commercial software.

The WAHID approach to widget-level plasticity is classified as an automatic tool
that begins with an AUI specification of the user interface. Automatic tools are able to
reify an AUI into a platform-concrete interface without developer intervention. MOBI-
D [16], HUMANOID [20], MASTERMIND [21], ArtStudio [5] and TRIDENT [3] are all
tools that provide a mix of automatic translation and developer input. Languages such
as WML [8], UIML [6] and XSL/XSLT [23, 22] begin their interface specification at
the AUI level. UIML and XSL/XSLT are write-once tools which allow developers to
write transformations that can be reused in reifying AUIs to platform-concrete
interfaces.

5 Evaluation of Widget-Level Plasticity

Widget-level plasticity allows developers to create plastic applications for a limited
platform domain. The domain of applications supported by our WAHID approach
consists only of desktop PC, electronic whiteboard and tablet PC applications. The
limited domain supported by widget-level plasticity can be attributed to two factors.
First, a widget-level plastic application can only change the appearance and behavior
of its widgets, not its entire appearance. Supporting plasticity on platforms such as the
PDA and cellular phone requires plasticity at the application- rather than widget-level.
Second, as can be observed from table 1, automation in interface generation is
generally provided at the cost of support for a limited domain. Providing automation
on a large domain of platforms can bring about interfaces with unsatisfactory layout
and appearance. This is because the less involved the developer is in the interface
generation process, the less able a tool is in reasoning about which widgets to use and
how to lay them out in the interface for a particular platform.

In the WAHID approach, the external architecture allows developers to incorporate
plasticity in applications without changing the application code. The developer must
only ensure that the external architecture components are able to communicate
properly. The external architecture requires that the standard PC widgets continue to
appear after the electronic whiteboard widgets are rendered. This wastes screen real
estate and may confuse users. Further, some widgets, such as the Horseshoe scroll
bar, cannot be implemented under the external architecture. The Horseshoe scroll bar
must be rendered in a specific location when the application is first executed. It is not
practical to allow the Horseshoe scroll bar to be activated through gestures.

The internal architecture allows developers to incorporate plasticity in new
applications by requiring a minimal amount of change to the application code. Using
the internal architecture, developers are able to incorporate plasticity in their
applications using familiar interface development techniques. The internal

Architectures for Widget-Level Plasticity 14

architecture is specific to the MFC framework, but might be generalized to apply to
other frameworks. The WAHID internal architecture deploys its plasticity framework
between the application’s view class and the MFC framework view class. Other
framework-specific internal architectures must be able to deploy their plasticity
frameworks at the appropriate level in the framework. A disadvantage of the internal
architecture is that the application code must be available and open for change. The
developer must also ensure that the application software architecture incorporates the
internal plasticity framework. This is to avoid performing significant changes to the
application code when deploying the internal architecture plasticity framework.

6 Conclusion

This paper has introduced WAHID, an approach to widget-level plasticity consisting
of internal and external architectures designed to incorporate plasticity in new and
legacy applications respectively. The internal approach relies on the availability of
application code in order to allow deployment of its plasticity framework in the
application. The external architecture allows widgets to cooperate with legacy
applications to provide alternatives to the existing desktop widgets.

The widget-level plasticity approach is more automatic than model-based tools
used in the development of plastic user interfaces. Further, widget-level plasticity
allows developers to specify interfaces at the AUI level, a specification level less
abstract than that of model-based tools.

Widget-level plasticity allows developers to achieve plasticity in applications over
a limited domain. In this paper, the WAHID approach supports applications designed
for the desktop PC, tablet PC and electronic whiteboard platforms.

Acknowledgements

We gratefully acknowledge the support of Communications and Information
Technology Ontario (CITO) and the Natural Science and Engineering Research
Council (NSERC) in this work. We would also like to thank Chris Wolfe and James
Wu for their many helpful technical discussions, and Don Hopkins for the use of his
pie menu ActiveX control.

References

1. Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S., Shuster, J. E., UIML: An
Appliance-Independent XML User Interface Language, WWW8 / Computer Networks
31(11-16): 1695-1708, 1999.

2. Bergman, L., Banavar, G., Soroker, D., Sussman, J., Combining Handcrafting and
Automatic Generation of User-Interfaces for Pervasive Devices, Proceedings of
CADUI’02, C. Kolski & J. Vanderdonckt (eds), Kluwer Academic Publishers, 2002,
pp.155-166.

Architectures for Widget-Level Plasticity 15

3. Bodart, F., Hennebert, A., Leheureux, J., Vanderdonckt, J., A Model-Based Approach to
Presentation: A Continuum from Task Analysis to Prototype, Proceedings of DSVIS’94, F.
Paterno (ed), Eurographics, 1994, pp. 25-39.

4. Callahan, J., Hopkins, D., Weiser, M., Shneiderman, B., An Empirical Comparison of Pie
Vs. Linear Menus, Proceedings of CHI’88, ACM, 1988, pp., 95-100.

5. Calvary, G., Coutaz, J., Thevenin, D., A Unifying Reference Framework for the
Development of Plastic User Interfaces, Proceedings of EHCI 2001, Toronto, 2001, pp.
218-238.

6. Crease, M., Gray, P., Brewster, S., A Toolkit of Mechanism and Context Independent
Widgets, Proceedings of DSVIS’00, pp. 127-141.

7. Hartson, H. R., Siochi, A. C., Hix, D., The UAN: A User-Oriented Representation for
Direct Manipulation Interface Designs, in ACM Transactions on Information Systems, Vol.
8, No. 3, July 1990, pp. 181-203.

8. Herstad, J., Thanh, D. V., Kristoffersen, S., Wireless Markup Language as a Framework
for Interaction with Mobile Computing Communication Devices, Proceedings of the 1st
Workshop on Human Computer Interaction with mobile Devices, Univ. of Glasgow, UK,
GIST Tech. Report, G98-1, 1998.

9. Horton, I., Beginning Visual C++, Wrox Press Ltd., 1998.
10. Krasner, G.E., Pope, S.T.. A Cookbook for Using the Model-View-Controller User

Interface Paradigm in Smalltalk-80. JOOP, 1(3):26-49, Aug./Sept. 1988.
11. Markopoulos, P., Pycock, J., Wilson, S., Johnson, P., Adept – A Task Based Design

Environment, Proceedings of the 25th Hawaii International Conference on System
Sciences, IEEE Computer Society Press, 1992, pp. 587-596.

12. Nakagawa, M., Oguni, T., Yoshino, T., Horiba, K., Sawada, S., Interactive Dynamic
Whiteboard For Educational Purposes, Proceedings of International Conference On
Virtual Systems and Multimedia ‘96, Gifu, Japan, 1996, pp. 479-484.

13. Paterno, F., Santoro, C., One Model, Many Interfaces, Proceedings of CADUI’02, C.
Kolski & J. Vanderdonckt (eds), Kluwer Academic Publishers, 2002, pp. 143-154.

14. Petzold, C., Programming Windows, Fifth Edition, Microsoft Press, 1999, p.75.
15. Prosise, J., Programming Windows With MFC, Second Edition, Microsoft Press, 1999,

p.503.
16. Puerta, A. R., A Model-Based Interface Development Environment, IEEE Software, (14)

4, July/August 1997, pp. 40-47.
17. Schneider, K. A., Cordy, J. R., Abstract User Interfaces: A Model and Notation to Support

Plasticity in Interactive Systems, Proceedings of DSVIS’01, Glasgow, June 2001, pp. 40-
59.

18. Shein, F., Treviranus, J., Hamann, G., Galvin, R., Parnes, P. and Milner, M., 1992, New
Directions in Visual Keyboards for Graphical User Interfaces, in Proceedings of the 7th
Annual Conference Technology and Persons with Disabilities, CSUN, CA, 465-469.

19. Shneiderman, B., Designing the User Interface: Strategies for Effective Human-Computer
Interaction, 3rd Edition, Addison-Wesley, 1998.

20. Szekely, P., Lou, P., Neches, R., Beyond Interface Builders: Model-Based Interface Tools,
Proceedings of INTERCHI’93, ACM Press, 1993, pp. 383-390.

21. Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J., Salcher, E., Declarative
Interface models for User Interface Contruction Tools: The MASTERMIND Approach,
Proceedings of EHCI’95, L. J. Bass & C. Unger (eds), Chapman & Hall, 1995, pp. 120-
150.

22. World Wide Web Consortium, Extensible Stylesheet Language (XSL)Version 1.0, W3C
Recommendation, S. Adler, A. Berglund, J. Caruso, S. Deach, T. Graham, P. Grosso, E.
Gutentag, A. Milowski, S. Parnell, J. Richman, S. Zilles (eds.), www.w3.org/TR/xsl, 2001.

23. World Wide Web Consortium, XSL Transformation (XSLT) Version 1.0, W3C
Recommendation, J. Clark (ed.), www.w3.org.

