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Abstract. We present a new architectural style for synchronous groupware that 
eases the transition from scenario based modeling to component design, and 
from component design to distributed implementation. The style allows 
developers to work at a distribution-independent conceptual level and provides 
for automatic or semi-automatic refinement of conceptual designs into 
appropriate distributed implementations at run-time. Both the conceptual and 
implementation levels of the system can be evolved dynamically at run-time in 
response to user needs and changes in the distributed system environment. 
System evolution at both levels is specified via an evolution calculus. 

1   Introduction 

The enhancement of interpersonal communication and collaboration was one of the 
goals driving development of the network that eventually became the Internet [9].  
J.C.R. Licklider’s vision for a large-scale network included specialized software 
supporting both asynchronous and synchronous (“near real time”) collaboration — 
software that we now call groupware [6]. There are many examples of successful 
asynchronous collaborative tools, ranging from email to weblogs to distributed source 
code management systems.  However it is only recently, with the increasing 
availability of relatively high bandwidth, low latency, always-on network 
connections, that we have begun to achieve some of the tantalizing potential of 
synchronous groupware.  

For synchronous groupware systems (hereafter simply “groupware”) to be usable 
and effective, the development of groupware must be informed by the ways in which 
people actually work and play together. Studies of real-world collaboration confirm 
what we understand intuitively: that people move fluidly between individual and 
collaborative activities, that collaborations frequently incorporate a variety of tool 
sets, and that people are often involved in a mix of several concurrent individual and 
collaborative activities [4]. By contrast, most current groupware tools embed 
collaboration within distinct applications. People who wish to collaborate at a 
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distance must start a groupware application, interact using the application, and then 
end the collaboration by closing the application [11, 16].  

We believe that the clear mismatch between natural collaboration styles and 
application-centric collaborative systems may explain why there are so few successful 
synchronous groupware systems, outside of specialized areas such as online gaming 
and distributed meeting support. Further, the application-centric approach ignores the 
fact that the users’ expectations of the collaborative system, as well as the network 
infrastructure supporting communication and collaboration, are constantly in flux.  
Users may initiate, terminate, join and leave collaborative activities at any time, with 
or without warning. By the same token, network nodes and links will have different 
and time-varying performance characteristics and may become saturated or fail 
outright. Since the requirements of the users and the properties of the networks are 
ever-changing and prone to induce faults, groupware systems’ run-time and 
distribution architectures must be both dynamic and fault tolerant. We are not aware 
of any existing groupware systems that allow an approximation of a natural 
collaboration model [11]. 

In our view an appropriate architectural approach would invert application-
centricity and embed groupware tools within the context of users and their 
collaborations, just as in the physical world.  Shifts between individual and 
collaborative work would not require users to change either user interfaces or work 
styles, except where dictated by the nature of the collaboration itself.  The architecture 
would support the development of systems in which users create and dissolve 
collaborations fluidly, using whatever tools are most appropriate to a given situation. 
Scenario-based modeling of user requirements would lead naturally to component-
level design, and component-level design would not unnecessarily constrain 
distributed implementation. Finally, changes in the network infrastructure supporting 
distributed collaborations would be handled gracefully, whether the changes were 
intentional or accidental, qualitative or catastrophic. 

The balance of this paper presents the Workspace Model: a user-centred 
architectural style for groupware that supports achievement of the goals described 
above. In section 2 we provide a high-level overview of our approach. This is 
followed in section 3 by the description of a realistic groupware usage scenario, 
which is modeled using the conceptual level of the Workspace Model.  This scenario 
is used to make concrete and motivate subsequent discussion. Section 4 briefly 
describes how information at the conceptual level can be used to ease the transition to 
component and connector level design and implementation.  In section 5 we extract a 
portion of the scenario from section 3 and illustrate how the workspace run-time 
system can automatically and dynamically map the required components and 
connectors onto distributed system implementations at the Workspace implementation 
level.  We have developed two implementations of the Workspace Model and its run-
time system, one in Python and one in C++; in section 6 we present the current status 
of our implementations.  
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2   Workspaces: A User-centred Approach to Implementation 

The Workspace Model has been developed to provide explicit support for four key 
activities in the design and implementation of groupware systems. These are:  

 
1. scenario-based modeling of intended system use; 
2. definition of the system-level properties of components and connectors required to 

realize the scenario; 
3. simple development of the components themselves; and 
4. automatic or semi-automatic deployment of connectors and components using a 

distributed system architecture appropriate to run-time conditions. 
  

While the use of the Workspace Model is intended to be process-neutral, it is most 
easily understood as a sequence of development phases carried out in the order listed 
above. This section provides a brief summary of the Workspace approach in terms of 
these phases.  Each phase is elaborated in more detail in the balance of the paper, with 
a particular focus on the modeling and run-time implementation phases. 

Scenario modeling. Collaborative scenarios of interest are modeled using a high-
level graphical language called the workspace conceptual-level notation, in 
conjunction with an architectural composition language called the evolution calculus. 
The conceptual notation, which is similar to ASUR [5], depicts run-time snapshots of 
the scenario at times of interest. Each snapshot corresponds to a scenario state. The 
evolution calculus provides for precise specification of dynamic behavior during the 
course of the scenario. 

System-level design. Scenario modeling supports the identification of the 
conceptual-level components and connectors required to realize the scenario. The 
topologies arising in scenario diagrams provide clues as to the ports that must be 
supported by the components, the vocabularies shared by connectors and ports, and 
the requirements for shared data to support collaboration. 

Component development. Once components and their required ports have been 
specified they may be implemented in a relatively straightforward fashion — in 
particular, component implementations may be written without regard to thread-
safety. This is possible since the workspace run-time system guarantees their 
protection from concurrent access, even though the workspace model is inherently 
multi-threaded.1  Component developers are also freed from responsibility for 
asynchronous event delivery and the mechanisms used to support shared state, since 
these are also provided in a flexible fashion by the run-time system. In effect, 
developers implement components directly at the conceptual level of the Workspace 
Model, which allows the code to more closely resemble scenario-based design 
concepts. 

While it is also possible to develop specialized connectors within the system, for 
most purposes we expect that the connector implementations provided by the 
workspace run-time system will be adequate. 

                                                           
1 Explicitly multi-threaded components may also be written; however, this is often not 

necessary.  
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Run-time implementation.  During execution, the workspace run-time system 
interprets the same evolution calculus operations used for scenario modeling in order 
to generate and evolve any desired conceptual-level configuration of components and 
connectors. The calculus allows components to be dynamically created, destroyed, 
migrated from one workspace to another and attached to and detached from one 
another. It also allows shareable state to be rendered private, or else shared in a 
controlled fashion. 

As the conceptual-level evolution calculus operations are executed, the run-time 
system automatically generates a corresponding implementation-level architecture. 
Implementations combine the scenario-specific components discussed above with a 
plug-replaceable suite of special purpose support components provided by the run-
time system. These components deal with issues such as network communication, 
concurrency control, replica consistency maintenance, and asynchronous event 
broadcasting. This approach is similar to the techniques employed in Clock [15] and 
Dragonfly [2]; however, where Clock and Dragonfly deal only with static 
architectures, the workspace runtime is fully dynamic. 

3   Scenario-based Modeling  

One premise underlying the Workspace Model is that we can build better 
collaborative systems by starting our design from scenario-based models representing 
the activities the system is to support. In general this presumes an understanding of 
system context and requirements — which could be intuitive or derived from the 
application of a complementary technique such as Groupware Task Analysis [17] or 
ConcurTaskTrees [10]. In this section we first present an overview of our scenario 
modeling approach, then illustrate it with a relatively simple collaborative scenario. 

3.1   Modeling Concepts 

Scenario-based modeling is performed using a simple graphical formalism that 
represents snapshots of the collaboration at moments of interest. These snapshots are 
called workspace diagrams and are expressed using the conceptual-level notation 
shown in figure 1. The elements of the workspace notation are described later in this 
paper, as they are introduced. 
A workspace diagram represents users, the physical and virtual entities in their 
environments, and their collaborations with others. The top-level organizational 
concept in a workspace diagram is the workspace, which is a collection of entities 
used as resources by one or more people in carrying out some task. These entities may 
be purely physical, like a book or a pen; purely virtual, like a graphical user interface 
or a database; or they may be adapters that translate between the physical and virtual 
environments, like mice, cameras, displays, and so on. In this regard a workspace 
diagram is similar to ASUR [5]; however, where ASUR groups the virtual entities 
into a single “system” component, a workspace diagram decomposes the system into 
some number of lower-level components and connectors. Workspace diagrams also 
differ from ASUR in providing a notation for synchronization, which is an 
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implementation-independent representation of state shared between workspaces, and 
in having explicit notions of evolution over time and of refinement from the 
conceptual level to the implementation level. 
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Fig. 1.  Workspace notation. White components and open arrowheads are at the conceptual 

level.  Shaded components and filled arrowheads are at the implementation level. 

A conceptual model of a scenario consists of a time-sequence of workspace 
diagrams plus supporting narrative. The dynamic properties of the system may be 
inferred from the time sequence, or may be explicitly specified using an architectural 
composition language called the evolution calculus.   

The calculus consists of a small number of operations allowing for the creation, 
destruction, connection, disconnection, synchronization and de-synchronization 
(“versioning”) of workspace components and connectors, as well as their migration 
from workspace to workspace.  The evolution calculus is a mathematically specified 
language that allows rigorous reasoning about architectures, such as whether a 
conceptual or implementation architecture is semantically sound, and whether an 
implementation architecture is a valid refinement of a given conceptual architecture. 

3.2   Janet and Len Shop for a Car 

We now present a simple collaborative scenario, which we model using the 
workspace conceptual-level notation.  In subsequent sections we discuss how the 
conceptual model leads to component design and thence to a distributed system 
implementation. 

Janet and Len are in the market for a new car and have narrowed their selection to 
three vehicle types from a single vendor.  One Saturday morning, while Len is 
occupied with other business, Janet heads for her living room to begin shopping in 



6      W. Greg Phillips1 and T.C. Nicholas Graham2 

earnest. She places a call to the local car dealership and is connected with a salesman, 
David. 

The conceptual-level model of the collaboration at this point is presented in figure 
2. The dashed lines indicate workspace boundaries; the stick figures represent users; 
and the other items in the diagram represent components and connectors inhabiting 
the workspaces. 
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Connection
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Fig. 2.  Janet calls David. 

At the conceptual level, users are modeled as a particular type of actor — a 
workspace element that is capable of initiating activity within the workspace. Non-
human actors may be either hardware or software, and are represented by octagons.  

All actors, including human users, may be the source and target of subscription 
connectors, which are indicated by double-headed arrows.  Subscription connectors 
represent asynchronous (non-blocking send) channels by which events are delivered. 
Events may be information-rich objects like video frames, or simple indications like 
the update event in the classic Model-View-Controller pattern [8]. Subscription 
connectors may have multiple sources and multiple targets; in effect they are event 
buses, similar to those of C2 [14].  

A subscription connector pointing towards a human user indicates that the user is 
paying attention to the connector’s source. So, for example, the subscription arrow 
pointing towards Janet in figure 2 indicates that Janet is listening to the sounds 
produced by her speakers.  Conversely, a subscription connector pointing from a user 
to a device indicates that the user is providing input to the device; in figure 1 the 
microphone is picking up Janet’s speech. 

Rectangles are used to represent hardware and software components that are 
passive and act only in response to external stimuli. Such components are called 
reactors. In figure 2, these are the hardware devices used in the telephone connection. 
A reactor may be the source and target of subscription connectors as well as call 
connectors. Call connectors, which appear in figures 3 and 4, represent blocking 
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method invocations, possibly with return values. Calls that modify their targets are 
referred to as updates; calls that return values are requests; and calls that do both are 
request-updates. 

Rectangles with rounded corners represent stores, which are components 
containing shareable data. Stores are similar to reactors, except that they may not be 
the source of call connectors and are able to participate synchronization groups. A 
synchronization group is a group of stores that behave in a mutually consistent 
fashion, in effect as though they were a single store. In the Workspace Model, 
synchronizations are the only workspace constructs that are allowed to bridge 
between workspaces. 

In figure 2, the synchronization notation between the telephone connections in 
Janet and David’s workspaces indicates that these are conceptually “the same” 
telephone connection. More precisely, stores within a synchronization group are 
required to be consistent in two senses. Identical requests made of two stores in the 
group at the same time are required to return consistent values, and stores in the group 
are required to produce consistent event streams. The definition of “consistent” may 
be application-specific and may include a time component. For example the state of 
one store, and the event streams it produces, may lag those of another store by some 
period. The strongest form of consistency is strict observational equivalence. A fully 
specified scenario at the conceptual level will provide a definition of “consistent” for 
any included synchronization group. 

Let us return to our scenario. In figure 3, Janet has described to David the vehicles 
that she is interested in, and David has offered to walk her through a video 
presentation of the features of each. Janet accepts, and the video appears on her 
television screen. David’s image is superimposed on the video, allowing him to point 
directly to features of interest.  
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Fig. 3.  David shows Janet a video presentation. 
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Fig. 4.  Janet and David discuss price and financing. 

While Janet and David are both looking at “the same” video presentation, they are 
using significantly different hardware and software. Consequently, their views of the 
presentation may be significantly different. Also, since Janet is a passive observer of 
the presentation, the subscription arrows in her workspace flow in one direction, 
while on David’s side there is considerably more complexity.  Janet’s video playback 
component can be a simple reactor, passively displaying the frames provided to it by 
the video presentation; however, David’s video player must be an actor, since it is 
responsible for actively retrieving raw footage of the vehicles and “pushing” it to his 
video fuser. 

After some discussion, Janet settles on a particular vehicle and begins negotiations 
regarding options, price, and financing. During the negotiations, David terminates the 
video presentation and provides a spreadsheet to help make the discussion concrete. 
In figure 4 we see Janet and David interacting with the spreadsheet using their 
preferred editing programs. Janet and David each have a call connector to the 
spreadsheet, which allows both requests, indicated by the question mark “?”, and 
updates, indicated by the exclamation point “!”. The subscription connector from 
spreadsheet to editor allows the editor to be notified of any changes that might have 
been made to the spreadsheet, and to update the display accordingly. 

Eventually Janet and David come to a tentative agreement, subject to Len’s 
concurrence. Janet thanks David and makes the spreadsheet and video presentation 
persistent in her mobile workspace, which is hosted on her data tablet. 

Later that day, Janet meets Len for lunch at a downtown restaurant. She brings her 
mobile workspace with her, and uses it to show him David’s video presentation and 
the spreadsheet they had worked out, as illustrated in figure 5. She accesses the 
spreadsheet exactly as before; however, she uses an active video playback component 
to retrieve and play portions of the stored presentation. 
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Fig. 5. Janet discusses the car purchase with Len. 

Len suggests a few changes to the financing; Janet contacts David again and they 
agree on a delivery date. 

4   From Scenario to Design and Code 

Once one or more representative scenarios have been documented with workspace 
diagrams, we can proceed to system-level design and code. In this section we give a 
brief overview of these activities, highlighting design issues specific to the 
Workspace Model.  

If the components and connectors in the workspace diagrams have been chosen 
carefully during scenario modeling, it will be possible to implement them directly in 
the Workspace Model. Ideally, each component will represent a well-defined 
functional entity and will be classified as a store, reactor or actor. Each element of 
separately shareable state will be in its own store. Each logically distinct, externally 
available capability of a component will have its own connector. Finally, all 
significant evolution operations affecting connectors and components will be 
identified. At this point we can proceed to design and code the components required 
to implement the scenario. 

The attachment point of a connector to a component is represented as a port, either 
source or target depending on the required connector direction. A port will have a 
particular vocabulary, which is the set of calls or events that it originates or accepts. 
Source and target ports attached to the same connector must have compatible 
vocabularies. In effect, a target port’s vocabulary is its interface and a source port’s 
vocabulary is its type. The set of ports provided by a component determine how it can 
be connected to other components at run-time. 

During execution, connectors may be either local or distributed, depending on the 
topology of the connected components. In support of the distributed case, call sources 
must be prepared for network failures. (Subscription connectors, which provide 
asynchronous event broadcast, never report delivery failure to the originating 
component.) In call source port definitions, update methods may be marked with a 
flag indicating that failure notifications are to be discarded. Similarly, request and 
request-update methods may have default return values, which are returned by the 
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run-time system if partial failure interrupts a request. Neither of these methods is 
sufficient to guarantee correctness in the event of failure; however, for user interface 
components they are often adequate. Methods that do not have default return values 
or an “ignore failure” indication will throw exceptions, which the component 
developer must be prepared to deal with.  

5   From Design to Distributed System Deployment 

Now that we have illustrated the conceptual level of the workspace model, and briefly 
discussed how the conceptual level guides component design, we turn our attention to 
the implementation of the collaboration as a distributed system.  

At run-time, a series of conceptual-level evolution calculus operations will be 
submitted to the workspace run-time system for execution. Each of these represents 
an evolution of the workspace’s configuration, and must be refined into a valid 
implementation. The general approach is to first anchor the components to particular 
host platforms or nodes, then to provide implementations for the components, and 
lastly to provide implementations for connectors and synchronization groups. Each 
time an evolution calculus operation alters the conceptual-level configuration of a 
workspace, the current implementation-level configuration is revisited to identify the 
ways in which it is no longer valid. The implementation level is then modified, also 
via the evolution calculus, to bring the conceptual and implementation levels back 
into alignment. 

The implementation level of the workspace includes the developer-provided 
component implementations discussed in section 4, as well as the implementation-
level connectors and run-time support components shown in figure 1. These last are 
provided as part of the workspace run-time system. 

At the workspace conceptual level there is no explicit representation of the host 
computers that support workspace connectors or components. At the implementation 
level, host computers (or, more specifically, processes executing on behalf of 
workspace owners on those computers) are referred to as nodes, and are represented 
using the same notation as in Unified Modeling Language deployment diagrams [12].  

The task of the workspace run-time system is to provide an implementation of the 
desired conceptual-level configuration of components and connectors on the available 
nodes, taking into account the available adapters and network connections, as well as 
any other factors of interest. Figure 6 illustrates the problem for the spreadsheet 
portion of our scenario: the run-time system must map the conceptual architecture of 
figure 6a onto the available workspace nodes shown in figure 6b. In figure 6 and the 
figures that follow we have elided the hardware components for simplicity, and we 
assume that some suitable network connects all nodes. 

Consider first David’s portion of the architecture. David has a spreadsheet store 
and an editor reactor in his workspace, and has desktop and server nodes available on 
which to implement them. The first task of the run-time system is to map conceptual 
components onto nodes. This mapping may be user-directed and manual, or it may be 
automatic and take into account any number of relevant factors, such as node and link 
capacity and performance, security requirements, persistence, availability, and so on 



Workspaces: A Multi-level Architectural Style for Synchronous Groupware      11 

a. Conceptual architecture. 

DavidJanet

Vivicalc

Spread
sheet

Spread
sheet

DavidJanet

Data tablet Desktop

Server

b. Physical workspace nodes 

Accel

 

Fig. 6. Conceptual architectures must be mapped onto physical nodes. 
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Fig. 7. Steps in implementing a simple architecture. 

Initially, the conceptual components are considered to be “floating” in the 
workspace. The first task of the workspace run-time is to anchor the components to 
particular nodes, as illustrated in figure 7a. In this case the editor component has been 
mapped to David’s desktop workstation, perhaps to simplify the connection from his 
input and display devices to the editor’s user interface. The store representing the 
spreadsheet has been implemented on a server. 

The next step is to provide implementations for the components themselves. 
Normally, these consist of two parts, as shown in figure 7b. One part is the 
component implementation itself, developed as discussed in section 4. The other part 
is a concurrency control and consistency maintenance component (CC/CM). As 
indicated earlier, component implementations may be written without regard to thread 
safety, since the workspace run-time guarantees that there will only be a single thread 
of execution within a component at any one time. This guarantee is provided by a 
CC/CM associated with each component implementation. All call and subscription 
connectors that target a component are routed through that component’s CC/CM. 

The final step in realizing David’s portion of the workspace is the implementation 
of the connectors between his components. Since subscription connectors are 
asynchronous, active event broadcaster components are normally required for their 
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implementation. Event sources deliver their events to event broadcasters where they 
are immediately enqueued. The event broadcaster’s internal thread then takes 
responsibility for delivery of the event to all subscription targets, allowing the event 
source to proceed with other computation. An event broadcaster is visible on the 
server node in figure 7c. 

Where connectors cross process boundaries, interprocess communication (IPC) is 
required. This is provided by network transmitter and receiver components, which 
support message-based IPC. The message transmitter is a passive component, taking 
its thread of control from the component that calls it. Conversely, the receiver is 
effectively a server component, and therefore provides its own thread.2

Transmitter and receiver pairs support two messaging protocols. All conceptual-
level calls are synchronous; therefore, a request-reply protocol is required for the 
implementation of distributed call connectors. However, since subscription 
connectors are inherently asynchronous, a request only protocol with robust delivery, 
as afforded by TCP, is sufficient. Transmitter and receiver pairs may be seen in the 
implementation of both the subscription and call connectors in figure 7c. 

Temporarily ignoring the synchronization group, figure 7c represents a complete 
implementation-level architecture for David’s spreadsheet and editor components and 
their connections. There are typically several valid refinements corresponding to any 
conceptual-level configuration, the knowledge of which is embedded in the 
workspace run-time system. In this example, the event broadcaster has been 
implemented on David’s server node. It would be equally valid to implement it on the 
workstation node and to have the transmit/receive pair “upstream” from it; or to have 
an event broadcaster on each node; or to eliminate them entirely, since there is only 
one target and the request-only message protocol implemented by the transmit/receive 
pair provides the desired asynchronous semantics. Similarly, distributed call 
connectors may be implemented as shown here, or with the addition of cache and 
mirror cache components to eliminate latency for repeated invocations of the same 
request. 

We now turn our attention to synchronization groups. The valid refinements for 
synchronization include both centralized and replicated implementations. In a 
centralized implementation, as illustrated in figure 8a, there is one copy of the shared 
component. In this implementation consistency maintenance is trivial; however, 
performance may suffer as a result of network latency. Figure 8a includes call and 
subscription connectors that cross workspace boundaries, apparently contravening the 
rule that only synchronizations may do so. However, since these connectors are part 
of an implementation-level diagram, rather than a conceptual diagram, the rule does 
not apply. Naturally these connectors would themselves require implementations. 

Figure 8b illustrates a replicated implementation. To ensure that the replicas 
maintain the required degree of consistency, the CC/CM components attached to each 
of the replicas communicate with one another and enact a replica consistency 
maintenance protocol. For the two-replica case a bi-directional call would suffice as a 

                                                           
2 Complex workspaces can rapidly accumulate a large number of network transmitter and 

receiver components. This is generally wasteful of operating system resources including 
sockets and threads. In practice, a single multiplexed transmit-receive pair in each direction 
can be used to implement a group of connectors between two nodes; thread pools can be used 
to provide responsiveness while reducing total thread overhead. 
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communications mechanism. However, for three or more replicas a group 
communication channel such as that provided by Spread [1] offers a more convenient 
abstraction. This approach is illustrated in figure 8b, where the CC/CM at each of the 
two replicas is connected to a multicast channel endpoint with channel identifier 1. 
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Fig. 8.  Two possible implementations of a two-store synchronization group. 

Any one of several replica consistency maintenance protocols may be used. These 
include the null protocol where updates are reliably broadcast but order is not 
enforced; optimistic protocols with rollback; locking; centralized or distributed strict 
ordering; and concurrent update protocols such as dOpt [13] or ORESTE [7]. The 
protocol implementations are provided in the runtime system as plug-replaceable sub-
components of the CC/CM components. All but the concurrent update protocols can 
be implemented entirely by the runtime system. The concurrent update protocols 
require that the component implementer provide a protocol implementation including 
the necessary operational transforms or undo/redo operations. Currently, all replica 
maintenance sub-components in a synchronization group are required to be of the 
same type. 

This concludes our overview of the normal operation of the workspace run-time 
system. We close the section with a few words about how the workspace handles 
distributed system failure. 

Distributed system failures are detected by the local workspace run-time system 
using mechanisms provided by the underlying communications libraries (e.g., socket 
exceptions) and treated as evolution calculus operations. For example, the failure of a 
link supporting a call connector is treated as a destroy operation on that connector. If 
the connector’s local end was its source, and an update or request was interrupted by 
the failure, the run-time system takes appropriate action as specified in the source port 
definition. The run-time system then implements the destroy operation by detaching 
the local end of the connector from its local source or target component, and by 
destroying any supporting components that exist only to implement the connector. In 
this way partial failure is handled as a normal occurrence in the system, rather than as 
an exceptional condition. 
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6   Status of Implementation 

We are in the process of developing two toolkits and run-time systems supporting the 
Workspace Model. One, developed by Phillips and Graham, is being written in and 
for the Python programming language. The other, developed by Wolfe and Graham, is 
in C++.  At the moment, both are capable of automatically providing run-time 
implementations of complex architectures on a single node. Distributed 
implementations are nearing completion. 

The two implementations are not intended to be interoperable, although multi-
language support within and between workspaces is a long-term goal. Rather, the aim 
is to see how best to integrate workspace constructs within these very different 
programming languages. In both cases, the toolkits allow simple “workspace-
oblivious” components to be written idiomatically in the toolkit language and to be 
executed either in a stand-alone mode or within the workspace run-time. “Workspace-
aware” components that take advantage of the workspace run-time services can also 
be written; obviously these require the workspace run-time to function. 

The system in Python has made significant use of the language’s dynamic and 
dynamically typed nature, as well as its metaprogramming interfaces. These have 
made the initial implementation of the workspace run-time system relatively painless. 
For example, the implementation requires just a single, generic event broadcaster 
class to implement any type of subscription connector. However, since Python does 
not have an inherent mechanism for interface specification, it has been necessary to 
develop a mini-language and conventions for the specification of ports and connector 
protocols. 

In C++ the situation is reversed. Type-safety considerations in C++ complicate the 
development of workspace support components such as event broadcasters. In effect, 
a specialized event broadcaster is required for each type of subscription connector; the 
same is true for all other support component types. Wolfe’s approach has been to 
allow the programmer to develop components in idiomatic and valid C++, and to use 
a pre-processor to extract port definitions and generate specialized type-safe variants 
of all required run-time support components. With the application of a few simple 
conventions, there is enough information in C++ method signatures to support the 
necessary Workspace constructs. 
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