
Workspaces: A Multi-level Architectural Style for
Synchronous Groupware

W. Greg Phillips1 and T.C. Nicholas Graham2

1 Royal Military College of Canada, Kingston, Ontario, Canada K7K 7B4
Department of Electrical and Computer Engineering

greg.phillips@rmc.ca
2 Queen’s University, Kingston, Ontario, Canada K7L 3N6

School of Computing
graham@cs.queensu.ca

Abstract. We present a new architectural style for synchronous groupware that
eases the transition from scenario based modeling to component design, and
from component design to distributed implementation. The style allows
developers to work at a distribution-independent conceptual level and provides
for automatic or semi-automatic refinement of conceptual designs into
appropriate distributed implementations at run-time. Both the conceptual and
implementation levels of the system can be evolved dynamically at run-time in
response to user needs and changes in the distributed system environment.
System evolution at both levels is specified via an evolution calculus.

1 Introduction

The enhancement of interpersonal communication and collaboration was one of the
goals driving development of the network that eventually became the Internet [9].
J.C.R. Licklider’s vision for a large-scale network included specialized software
supporting both asynchronous and synchronous (“near real time”) collaboration —
software that we now call groupware [6]. There are many examples of successful
asynchronous collaborative tools, ranging from email to weblogs to distributed source
code management systems. However it is only recently, with the increasing
availability of relatively high bandwidth, low latency, always-on network
connections, that we have begun to achieve some of the tantalizing potential of
synchronous groupware.

For synchronous groupware systems (hereafter simply “groupware”) to be usable
and effective, the development of groupware must be informed by the ways in which
people actually work and play together. Studies of real-world collaboration confirm
what we understand intuitively: that people move fluidly between individual and
collaborative activities, that collaborations frequently incorporate a variety of tool
sets, and that people are often involved in a mix of several concurrent individual and
collaborative activities [4]. By contrast, most current groupware tools embed
collaboration within distinct applications. People who wish to collaborate at a

2 W. Greg Phillips1 and T.C. Nicholas Graham2

distance must start a groupware application, interact using the application, and then
end the collaboration by closing the application [11, 16].

We believe that the clear mismatch between natural collaboration styles and
application-centric collaborative systems may explain why there are so few successful
synchronous groupware systems, outside of specialized areas such as online gaming
and distributed meeting support. Further, the application-centric approach ignores the
fact that the users’ expectations of the collaborative system, as well as the network
infrastructure supporting communication and collaboration, are constantly in flux.
Users may initiate, terminate, join and leave collaborative activities at any time, with
or without warning. By the same token, network nodes and links will have different
and time-varying performance characteristics and may become saturated or fail
outright. Since the requirements of the users and the properties of the networks are
ever-changing and prone to induce faults, groupware systems’ run-time and
distribution architectures must be both dynamic and fault tolerant. We are not aware
of any existing groupware systems that allow an approximation of a natural
collaboration model [11].

In our view an appropriate architectural approach would invert application-
centricity and embed groupware tools within the context of users and their
collaborations, just as in the physical world. Shifts between individual and
collaborative work would not require users to change either user interfaces or work
styles, except where dictated by the nature of the collaboration itself. The architecture
would support the development of systems in which users create and dissolve
collaborations fluidly, using whatever tools are most appropriate to a given situation.
Scenario-based modeling of user requirements would lead naturally to component-
level design, and component-level design would not unnecessarily constrain
distributed implementation. Finally, changes in the network infrastructure supporting
distributed collaborations would be handled gracefully, whether the changes were
intentional or accidental, qualitative or catastrophic.

The balance of this paper presents the Workspace Model: a user-centred
architectural style for groupware that supports achievement of the goals described
above. In section 2 we provide a high-level overview of our approach. This is
followed in section 3 by the description of a realistic groupware usage scenario,
which is modeled using the conceptual level of the Workspace Model. This scenario
is used to make concrete and motivate subsequent discussion. Section 4 briefly
describes how information at the conceptual level can be used to ease the transition to
component and connector level design and implementation. In section 5 we extract a
portion of the scenario from section 3 and illustrate how the workspace run-time
system can automatically and dynamically map the required components and
connectors onto distributed system implementations at the Workspace implementation
level. We have developed two implementations of the Workspace Model and its run-
time system, one in Python and one in C++; in section 6 we present the current status
of our implementations.

Workspaces: A Multi-level Architectural Style for Synchronous Groupware 3

2 Workspaces: A User-centred Approach to Implementation

The Workspace Model has been developed to provide explicit support for four key
activities in the design and implementation of groupware systems. These are:

1. scenario-based modeling of intended system use;
2. definition of the system-level properties of components and connectors required to

realize the scenario;
3. simple development of the components themselves; and
4. automatic or semi-automatic deployment of connectors and components using a

distributed system architecture appropriate to run-time conditions.

While the use of the Workspace Model is intended to be process-neutral, it is most
easily understood as a sequence of development phases carried out in the order listed
above. This section provides a brief summary of the Workspace approach in terms of
these phases. Each phase is elaborated in more detail in the balance of the paper, with
a particular focus on the modeling and run-time implementation phases.

Scenario modeling. Collaborative scenarios of interest are modeled using a high-
level graphical language called the workspace conceptual-level notation, in
conjunction with an architectural composition language called the evolution calculus.
The conceptual notation, which is similar to ASUR [5], depicts run-time snapshots of
the scenario at times of interest. Each snapshot corresponds to a scenario state. The
evolution calculus provides for precise specification of dynamic behavior during the
course of the scenario.

System-level design. Scenario modeling supports the identification of the
conceptual-level components and connectors required to realize the scenario. The
topologies arising in scenario diagrams provide clues as to the ports that must be
supported by the components, the vocabularies shared by connectors and ports, and
the requirements for shared data to support collaboration.

Component development. Once components and their required ports have been
specified they may be implemented in a relatively straightforward fashion — in
particular, component implementations may be written without regard to thread-
safety. This is possible since the workspace run-time system guarantees their
protection from concurrent access, even though the workspace model is inherently
multi-threaded.1 Component developers are also freed from responsibility for
asynchronous event delivery and the mechanisms used to support shared state, since
these are also provided in a flexible fashion by the run-time system. In effect,
developers implement components directly at the conceptual level of the Workspace
Model, which allows the code to more closely resemble scenario-based design
concepts.

While it is also possible to develop specialized connectors within the system, for
most purposes we expect that the connector implementations provided by the
workspace run-time system will be adequate.

1 Explicitly multi-threaded components may also be written; however, this is often not

necessary.

4 W. Greg Phillips1 and T.C. Nicholas Graham2

Run-time implementation. During execution, the workspace run-time system
interprets the same evolution calculus operations used for scenario modeling in order
to generate and evolve any desired conceptual-level configuration of components and
connectors. The calculus allows components to be dynamically created, destroyed,
migrated from one workspace to another and attached to and detached from one
another. It also allows shareable state to be rendered private, or else shared in a
controlled fashion.

As the conceptual-level evolution calculus operations are executed, the run-time
system automatically generates a corresponding implementation-level architecture.
Implementations combine the scenario-specific components discussed above with a
plug-replaceable suite of special purpose support components provided by the run-
time system. These components deal with issues such as network communication,
concurrency control, replica consistency maintenance, and asynchronous event
broadcasting. This approach is similar to the techniques employed in Clock [15] and
Dragonfly [2]; however, where Clock and Dragonfly deal only with static
architectures, the workspace runtime is fully dynamic.

3 Scenario-based Modeling

One premise underlying the Workspace Model is that we can build better
collaborative systems by starting our design from scenario-based models representing
the activities the system is to support. In general this presumes an understanding of
system context and requirements — which could be intuitive or derived from the
application of a complementary technique such as Groupware Task Analysis [17] or
ConcurTaskTrees [10]. In this section we first present an overview of our scenario
modeling approach, then illustrate it with a relatively simple collaborative scenario.

3.1 Modeling Concepts

Scenario-based modeling is performed using a simple graphical formalism that
represents snapshots of the collaboration at moments of interest. These snapshots are
called workspace diagrams and are expressed using the conceptual-level notation
shown in figure 1. The elements of the workspace notation are described later in this
paper, as they are introduced.
A workspace diagram represents users, the physical and virtual entities in their
environments, and their collaborations with others. The top-level organizational
concept in a workspace diagram is the workspace, which is a collection of entities
used as resources by one or more people in carrying out some task. These entities may
be purely physical, like a book or a pen; purely virtual, like a graphical user interface
or a database; or they may be adapters that translate between the physical and virtual
environments, like mice, cameras, displays, and so on. In this regard a workspace
diagram is similar to ASUR [5]; however, where ASUR groups the virtual entities
into a single “system” component, a workspace diagram decomposes the system into
some number of lower-level components and connectors. Workspace diagrams also
differ from ASUR in providing a notation for synchronization, which is an

Workspaces: A Multi-level Architectural Style for Synchronous Groupware 5

implementation-independent representation of state shared between workspaces, and
in having explicit notions of evolution over time and of refinement from the
conceptual level to the implementation level.

user

workspace
boundary

call

subscription

synchronization

store
(conceptual)

reactor
(conceptual)

actor
(conceptual)

node

store
(implemented)

reactor
(implemented)

actor
(implemented)

procedure/method call

message send

blocking message send

concurrency control and
consistency maintenance

event broadcast

network receive

network transmit

multicast channel
endpoint, channel id

Conceptual level
notation

C

M

n

mirror cache

cache

Run-time support
components

Implementation level
notation

Fig. 1. Workspace notation. White components and open arrowheads are at the conceptual

level. Shaded components and filled arrowheads are at the implementation level.

A conceptual model of a scenario consists of a time-sequence of workspace
diagrams plus supporting narrative. The dynamic properties of the system may be
inferred from the time sequence, or may be explicitly specified using an architectural
composition language called the evolution calculus.

The calculus consists of a small number of operations allowing for the creation,
destruction, connection, disconnection, synchronization and de-synchronization
(“versioning”) of workspace components and connectors, as well as their migration
from workspace to workspace. The evolution calculus is a mathematically specified
language that allows rigorous reasoning about architectures, such as whether a
conceptual or implementation architecture is semantically sound, and whether an
implementation architecture is a valid refinement of a given conceptual architecture.

3.2 Janet and Len Shop for a Car

We now present a simple collaborative scenario, which we model using the
workspace conceptual-level notation. In subsequent sections we discuss how the
conceptual model leads to component design and thence to a distributed system
implementation.

Janet and Len are in the market for a new car and have narrowed their selection to
three vehicle types from a single vendor. One Saturday morning, while Len is
occupied with other business, Janet heads for her living room to begin shopping in

6 W. Greg Phillips1 and T.C. Nicholas Graham2

earnest. She places a call to the local car dealership and is connected with a salesman,
David.

The conceptual-level model of the collaboration at this point is presented in figure
2. The dashed lines indicate workspace boundaries; the stick figures represent users;
and the other items in the diagram represent components and connectors inhabiting
the workspaces.

Janet
at home

David at the
car dealership

Speakers

Microphone

Telephone
Connection

Headphones

Telephone
Connection

Microphone

Fig. 2. Janet calls David.

At the conceptual level, users are modeled as a particular type of actor — a
workspace element that is capable of initiating activity within the workspace. Non-
human actors may be either hardware or software, and are represented by octagons.

All actors, including human users, may be the source and target of subscription
connectors, which are indicated by double-headed arrows. Subscription connectors
represent asynchronous (non-blocking send) channels by which events are delivered.
Events may be information-rich objects like video frames, or simple indications like
the update event in the classic Model-View-Controller pattern [8]. Subscription
connectors may have multiple sources and multiple targets; in effect they are event
buses, similar to those of C2 [14].

A subscription connector pointing towards a human user indicates that the user is
paying attention to the connector’s source. So, for example, the subscription arrow
pointing towards Janet in figure 2 indicates that Janet is listening to the sounds
produced by her speakers. Conversely, a subscription connector pointing from a user
to a device indicates that the user is providing input to the device; in figure 1 the
microphone is picking up Janet’s speech.

Rectangles are used to represent hardware and software components that are
passive and act only in response to external stimuli. Such components are called
reactors. In figure 2, these are the hardware devices used in the telephone connection.
A reactor may be the source and target of subscription connectors as well as call
connectors. Call connectors, which appear in figures 3 and 4, represent blocking

Workspaces: A Multi-level Architectural Style for Synchronous Groupware 7

method invocations, possibly with return values. Calls that modify their targets are
referred to as updates; calls that return values are requests; and calls that do both are
request-updates.

Rectangles with rounded corners represent stores, which are components
containing shareable data. Stores are similar to reactors, except that they may not be
the source of call connectors and are able to participate synchronization groups. A
synchronization group is a group of stores that behave in a mutually consistent
fashion, in effect as though they were a single store. In the Workspace Model,
synchronizations are the only workspace constructs that are allowed to bridge
between workspaces.

In figure 2, the synchronization notation between the telephone connections in
Janet and David’s workspaces indicates that these are conceptually “the same”
telephone connection. More precisely, stores within a synchronization group are
required to be consistent in two senses. Identical requests made of two stores in the
group at the same time are required to return consistent values, and stores in the group
are required to produce consistent event streams. The definition of “consistent” may
be application-specific and may include a time component. For example the state of
one store, and the event streams it produces, may lag those of another store by some
period. The strongest form of consistency is strict observational equivalence. A fully
specified scenario at the conceptual level will provide a definition of “consistent” for
any included synchronization group.

Let us return to our scenario. In figure 3, Janet has described to David the vehicles
that she is interested in, and David has offered to walk her through a video
presentation of the features of each. Janet accepts, and the video appears on her
television screen. David’s image is superimposed on the video, allowing him to point
directly to features of interest.

Janet
at home

David at the
car dealership

Speakers

TV Screen

Video
PlaybackMicrophone

Video
Presentation

Video
PresentationTelephone

Connection

Kbd/Mouse

CRT Display

Camera

Video
Fuser

Headphones

Telephone
Connection

Microphone

Raw
footage

?
Video
Player

Fig. 3. David shows Janet a video presentation.

8 W. Greg Phillips1 and T.C. Nicholas Graham2

Janet
at home

David at the
car dealership

!?

!?

Speakers

TV Screen

Data Tablet
Display

Stylus

Vivicalc

Microphone

Spreadsheet

Video
Presentation

Video
PresentationTelephone

Connection

Accel

Spreadsheet

Kbd/Mouse

CRT Display

Camera

Headphones

Telephone
Connection

Microphone

Raw
footage

Video
Player

Fig. 4. Janet and David discuss price and financing.

While Janet and David are both looking at “the same” video presentation, they are
using significantly different hardware and software. Consequently, their views of the
presentation may be significantly different. Also, since Janet is a passive observer of
the presentation, the subscription arrows in her workspace flow in one direction,
while on David’s side there is considerably more complexity. Janet’s video playback
component can be a simple reactor, passively displaying the frames provided to it by
the video presentation; however, David’s video player must be an actor, since it is
responsible for actively retrieving raw footage of the vehicles and “pushing” it to his
video fuser.

After some discussion, Janet settles on a particular vehicle and begins negotiations
regarding options, price, and financing. During the negotiations, David terminates the
video presentation and provides a spreadsheet to help make the discussion concrete.
In figure 4 we see Janet and David interacting with the spreadsheet using their
preferred editing programs. Janet and David each have a call connector to the
spreadsheet, which allows both requests, indicated by the question mark “?”, and
updates, indicated by the exclamation point “!”. The subscription connector from
spreadsheet to editor allows the editor to be notified of any changes that might have
been made to the spreadsheet, and to update the display accordingly.

Eventually Janet and David come to a tentative agreement, subject to Len’s
concurrence. Janet thanks David and makes the spreadsheet and video presentation
persistent in her mobile workspace, which is hosted on her data tablet.

Later that day, Janet meets Len for lunch at a downtown restaurant. She brings her
mobile workspace with her, and uses it to show him David’s video presentation and
the spreadsheet they had worked out, as illustrated in figure 5. She accesses the
spreadsheet exactly as before; however, she uses an active video playback component
to retrieve and play portions of the stored presentation.

Workspaces: A Multi-level Architectural Style for Synchronous Groupware 9

Janet and Len Downtown

!?

Stylus

Vivicalc

Spread
sheet

Video
Presentation

Janet

Len
?

Video
Playback

Data Tablet
Display

Fig. 5. Janet discusses the car purchase with Len.

Len suggests a few changes to the financing; Janet contacts David again and they
agree on a delivery date.

4 From Scenario to Design and Code

Once one or more representative scenarios have been documented with workspace
diagrams, we can proceed to system-level design and code. In this section we give a
brief overview of these activities, highlighting design issues specific to the
Workspace Model.

If the components and connectors in the workspace diagrams have been chosen
carefully during scenario modeling, it will be possible to implement them directly in
the Workspace Model. Ideally, each component will represent a well-defined
functional entity and will be classified as a store, reactor or actor. Each element of
separately shareable state will be in its own store. Each logically distinct, externally
available capability of a component will have its own connector. Finally, all
significant evolution operations affecting connectors and components will be
identified. At this point we can proceed to design and code the components required
to implement the scenario.

The attachment point of a connector to a component is represented as a port, either
source or target depending on the required connector direction. A port will have a
particular vocabulary, which is the set of calls or events that it originates or accepts.
Source and target ports attached to the same connector must have compatible
vocabularies. In effect, a target port’s vocabulary is its interface and a source port’s
vocabulary is its type. The set of ports provided by a component determine how it can
be connected to other components at run-time.

During execution, connectors may be either local or distributed, depending on the
topology of the connected components. In support of the distributed case, call sources
must be prepared for network failures. (Subscription connectors, which provide
asynchronous event broadcast, never report delivery failure to the originating
component.) In call source port definitions, update methods may be marked with a
flag indicating that failure notifications are to be discarded. Similarly, request and
request-update methods may have default return values, which are returned by the

10 W. Greg Phillips1 and T.C. Nicholas Graham2

run-time system if partial failure interrupts a request. Neither of these methods is
sufficient to guarantee correctness in the event of failure; however, for user interface
components they are often adequate. Methods that do not have default return values
or an “ignore failure” indication will throw exceptions, which the component
developer must be prepared to deal with.

5 From Design to Distributed System Deployment

Now that we have illustrated the conceptual level of the workspace model, and briefly
discussed how the conceptual level guides component design, we turn our attention to
the implementation of the collaboration as a distributed system.

At run-time, a series of conceptual-level evolution calculus operations will be
submitted to the workspace run-time system for execution. Each of these represents
an evolution of the workspace’s configuration, and must be refined into a valid
implementation. The general approach is to first anchor the components to particular
host platforms or nodes, then to provide implementations for the components, and
lastly to provide implementations for connectors and synchronization groups. Each
time an evolution calculus operation alters the conceptual-level configuration of a
workspace, the current implementation-level configuration is revisited to identify the
ways in which it is no longer valid. The implementation level is then modified, also
via the evolution calculus, to bring the conceptual and implementation levels back
into alignment.

The implementation level of the workspace includes the developer-provided
component implementations discussed in section 4, as well as the implementation-
level connectors and run-time support components shown in figure 1. These last are
provided as part of the workspace run-time system.

At the workspace conceptual level there is no explicit representation of the host
computers that support workspace connectors or components. At the implementation
level, host computers (or, more specifically, processes executing on behalf of
workspace owners on those computers) are referred to as nodes, and are represented
using the same notation as in Unified Modeling Language deployment diagrams [12].

The task of the workspace run-time system is to provide an implementation of the
desired conceptual-level configuration of components and connectors on the available
nodes, taking into account the available adapters and network connections, as well as
any other factors of interest. Figure 6 illustrates the problem for the spreadsheet
portion of our scenario: the run-time system must map the conceptual architecture of
figure 6a onto the available workspace nodes shown in figure 6b. In figure 6 and the
figures that follow we have elided the hardware components for simplicity, and we
assume that some suitable network connects all nodes.

Consider first David’s portion of the architecture. David has a spreadsheet store
and an editor reactor in his workspace, and has desktop and server nodes available on
which to implement them. The first task of the run-time system is to map conceptual
components onto nodes. This mapping may be user-directed and manual, or it may be
automatic and take into account any number of relevant factors, such as node and link
capacity and performance, security requirements, persistence, availability, and so on

Workspaces: A Multi-level Architectural Style for Synchronous Groupware 11

a. Conceptual architecture.

DavidJanet

Vivicalc

Spread
sheet

Spread
sheet

DavidJanet

Data tablet Desktop

Server

b. Physical workspace nodes

Accel

Fig. 6. Conceptual architectures must be mapped onto physical nodes.

David

a. Components mapped
onto nodes.

Accel

Spread
sheet

David

Accel

Spread
sheet

c. Connectors implemented.

David

b. Components implemented.

Accel

Spread
sheet

Fig. 7. Steps in implementing a simple architecture.

Initially, the conceptual components are considered to be “floating” in the
workspace. The first task of the workspace run-time is to anchor the components to
particular nodes, as illustrated in figure 7a. In this case the editor component has been
mapped to David’s desktop workstation, perhaps to simplify the connection from his
input and display devices to the editor’s user interface. The store representing the
spreadsheet has been implemented on a server.

The next step is to provide implementations for the components themselves.
Normally, these consist of two parts, as shown in figure 7b. One part is the
component implementation itself, developed as discussed in section 4. The other part
is a concurrency control and consistency maintenance component (CC/CM). As
indicated earlier, component implementations may be written without regard to thread
safety, since the workspace run-time guarantees that there will only be a single thread
of execution within a component at any one time. This guarantee is provided by a
CC/CM associated with each component implementation. All call and subscription
connectors that target a component are routed through that component’s CC/CM.

The final step in realizing David’s portion of the workspace is the implementation
of the connectors between his components. Since subscription connectors are
asynchronous, active event broadcaster components are normally required for their

12 W. Greg Phillips1 and T.C. Nicholas Graham2

implementation. Event sources deliver their events to event broadcasters where they
are immediately enqueued. The event broadcaster’s internal thread then takes
responsibility for delivery of the event to all subscription targets, allowing the event
source to proceed with other computation. An event broadcaster is visible on the
server node in figure 7c.

Where connectors cross process boundaries, interprocess communication (IPC) is
required. This is provided by network transmitter and receiver components, which
support message-based IPC. The message transmitter is a passive component, taking
its thread of control from the component that calls it. Conversely, the receiver is
effectively a server component, and therefore provides its own thread.2

Transmitter and receiver pairs support two messaging protocols. All conceptual-
level calls are synchronous; therefore, a request-reply protocol is required for the
implementation of distributed call connectors. However, since subscription
connectors are inherently asynchronous, a request only protocol with robust delivery,
as afforded by TCP, is sufficient. Transmitter and receiver pairs may be seen in the
implementation of both the subscription and call connectors in figure 7c.

Temporarily ignoring the synchronization group, figure 7c represents a complete
implementation-level architecture for David’s spreadsheet and editor components and
their connections. There are typically several valid refinements corresponding to any
conceptual-level configuration, the knowledge of which is embedded in the
workspace run-time system. In this example, the event broadcaster has been
implemented on David’s server node. It would be equally valid to implement it on the
workstation node and to have the transmit/receive pair “upstream” from it; or to have
an event broadcaster on each node; or to eliminate them entirely, since there is only
one target and the request-only message protocol implemented by the transmit/receive
pair provides the desired asynchronous semantics. Similarly, distributed call
connectors may be implemented as shown here, or with the addition of cache and
mirror cache components to eliminate latency for repeated invocations of the same
request.

We now turn our attention to synchronization groups. The valid refinements for
synchronization include both centralized and replicated implementations. In a
centralized implementation, as illustrated in figure 8a, there is one copy of the shared
component. In this implementation consistency maintenance is trivial; however,
performance may suffer as a result of network latency. Figure 8a includes call and
subscription connectors that cross workspace boundaries, apparently contravening the
rule that only synchronizations may do so. However, since these connectors are part
of an implementation-level diagram, rather than a conceptual diagram, the rule does
not apply. Naturally these connectors would themselves require implementations.

Figure 8b illustrates a replicated implementation. To ensure that the replicas
maintain the required degree of consistency, the CC/CM components attached to each
of the replicas communicate with one another and enact a replica consistency
maintenance protocol. For the two-replica case a bi-directional call would suffice as a

2 Complex workspaces can rapidly accumulate a large number of network transmitter and

receiver components. This is generally wasteful of operating system resources including
sockets and threads. In practice, a single multiplexed transmit-receive pair in each direction
can be used to implement a group of connectors between two nodes; thread pools can be used
to provide responsiveness while reducing total thread overhead.

Workspaces: A Multi-level Architectural Style for Synchronous Groupware 13

communications mechanism. However, for three or more replicas a group
communication channel such as that provided by Spread [1] offers a more convenient
abstraction. This approach is illustrated in figure 8b, where the CC/CM at each of the
two replicas is connected to a multicast channel endpoint with channel identifier 1.

a. Centralized implementation.

Janet David

Vivicalc

Accel

Spread
sheet

b. Replicated implementation.

Janet David

Vivicalc

Spread
sheet

Accel

Spread
sheet

1

1

Fig. 8. Two possible implementations of a two-store synchronization group.

Any one of several replica consistency maintenance protocols may be used. These
include the null protocol where updates are reliably broadcast but order is not
enforced; optimistic protocols with rollback; locking; centralized or distributed strict
ordering; and concurrent update protocols such as dOpt [13] or ORESTE [7]. The
protocol implementations are provided in the runtime system as plug-replaceable sub-
components of the CC/CM components. All but the concurrent update protocols can
be implemented entirely by the runtime system. The concurrent update protocols
require that the component implementer provide a protocol implementation including
the necessary operational transforms or undo/redo operations. Currently, all replica
maintenance sub-components in a synchronization group are required to be of the
same type.

This concludes our overview of the normal operation of the workspace run-time
system. We close the section with a few words about how the workspace handles
distributed system failure.

Distributed system failures are detected by the local workspace run-time system
using mechanisms provided by the underlying communications libraries (e.g., socket
exceptions) and treated as evolution calculus operations. For example, the failure of a
link supporting a call connector is treated as a destroy operation on that connector. If
the connector’s local end was its source, and an update or request was interrupted by
the failure, the run-time system takes appropriate action as specified in the source port
definition. The run-time system then implements the destroy operation by detaching
the local end of the connector from its local source or target component, and by
destroying any supporting components that exist only to implement the connector. In
this way partial failure is handled as a normal occurrence in the system, rather than as
an exceptional condition.

14 W. Greg Phillips1 and T.C. Nicholas Graham2

6 Status of Implementation

We are in the process of developing two toolkits and run-time systems supporting the
Workspace Model. One, developed by Phillips and Graham, is being written in and
for the Python programming language. The other, developed by Wolfe and Graham, is
in C++. At the moment, both are capable of automatically providing run-time
implementations of complex architectures on a single node. Distributed
implementations are nearing completion.

The two implementations are not intended to be interoperable, although multi-
language support within and between workspaces is a long-term goal. Rather, the aim
is to see how best to integrate workspace constructs within these very different
programming languages. In both cases, the toolkits allow simple “workspace-
oblivious” components to be written idiomatically in the toolkit language and to be
executed either in a stand-alone mode or within the workspace run-time. “Workspace-
aware” components that take advantage of the workspace run-time services can also
be written; obviously these require the workspace run-time to function.

The system in Python has made significant use of the language’s dynamic and
dynamically typed nature, as well as its metaprogramming interfaces. These have
made the initial implementation of the workspace run-time system relatively painless.
For example, the implementation requires just a single, generic event broadcaster
class to implement any type of subscription connector. However, since Python does
not have an inherent mechanism for interface specification, it has been necessary to
develop a mini-language and conventions for the specification of ports and connector
protocols.

In C++ the situation is reversed. Type-safety considerations in C++ complicate the
development of workspace support components such as event broadcasters. In effect,
a specialized event broadcaster is required for each type of subscription connector; the
same is true for all other support component types. Wolfe’s approach has been to
allow the programmer to develop components in idiomatic and valid C++, and to use
a pre-processor to extract port definitions and generate specialized type-safe variants
of all required run-time support components. With the application of a few simple
conventions, there is enough information in C++ method signatures to support the
necessary Workspace constructs.

Acknowledgements

This work was partially supported by Communications and Information Technology
Ontario (CITO), the Natural Science and Engineering Research Council (NSERC),
and the European TACIT TMR Network. Nick Graham would like to thank Joelle
Coutaz and the members of the IIHM lab for the opportunity to carry out the early
stages of this work at the University of Grenoble, and Leon Watts for many
stimulating discussions of these ideas.

Workspaces: A Multi-level Architectural Style for Synchronous Groupware 15

References

1. Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tolerant architectureand protocol
for wide area group communication. In Proceedings of the International Conference on
Dependable Systems and Networks (FTCS-30, DCCA-8, New York, NY), June 2000. Also
available from www.spread.org.

2. G.E. Anderson, T.C.N. Graham, and T.N. Wright. Dragonfly: Linking conceptual and
implementation architectures of multiuser interactive systems. In Proceedings of the 22nd
International Conference on Software Engineering (ICSE ’00, Limerick, Ireland, June 4–9),
2000.

3. R.M. Baecker. Readings in Groupware and Computer-Supported Cooperative Work:
Assisting Human-Human Collaboration. Morgan Kaufmann Publishers, 1993. ISBN 1-
55860-241-0.

4. A. Dix, D. Ramduny, and J. Wilkinson. Interaction in the large. Interacting with Computers,
11(1):9–32, December 1998.

5. E. Dubois, L. Nigay, and J. Troccaz. Consistency in augmented reality systems. In
Proceedings of the IFIP 2.7 Working Conference on Engineering for Human-Computer
Interaction (EHCI ’01, Toronto, Canada, May), Published as Lecture Notes in Computer
Science vol. 2254, pages 117–130. Springer-Verlag, 2001.

6. C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware: Some issues and experiences.
Communications of the ACM (also in [3]), 34(1):38–58, January 1991.

7. A. Karsenty and M. Beaudouin-Lafon. An algorithm for distributed groupware applications.
In Proceedings of the 13th International Conference on Distributed Computing Systems
(ICDCS), pages 195–202, 1993.

8. G.E. Krasner and S.T. Pope. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of Object- Oriented Programming, 1(3):26–49,
August/September 1988.

9. J.C.R. Licklider. The computer as a communication device. Science and Technology, April
1968. Reprinted in Digital Systems Research Center Tech Note 61, August 7, 1990.

10. F. Paternò. Model-based Design and Evaluation of Interactive Applications. Springer-
Verlag, November 1999. ISBN: 1-85233-155-0.

11. W.G. Phillips. Architectures for synchronous groupware. Technical Report 1999-425,
Queen’s University, Kingston, Ontario, Canada, May 1999. Available from
www.cs.queensu.ca.

12. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Object Technology Series. Addison-Wesley, 1998. ISBN 0-201-30998-X.

13. C. Sun and C. Ellis. Operational transformation in real-time group editors: Issues,
algorithms, and achievments. In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work (CSCW ’98, Seattle, WA, USA), pages 59–68. ACM Press,
1998.

14. R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J.Whitehead Jr., J.E. Robbins, K.A. Nies, P.
Oreizy, and D.L. Dubrow. A component- and message-based architectural style for GUI
software. IEEE Transactions on Software Engineering, 22(6):390–406, June 1996.

15. T. Urnes and T.C.N. Graham. Flexibly mapping synchronous groupware architectures to
distributed implementations. In Proceedings of the Sixth Eurographics Workshop on Design,
Specification and Verification of Interactive Systems (DSV-IS ’99), pages 133–148, 1999.

16. T. Urnes and R. Nejabi. Tools for implementing groupware: Survey and evaluation.
Technical Report CS-94-03, York University, Canada, May 1994.

17. G.C. van der Veer and M. vanWelie. Task based groupware design: putting theory into
practice. In D. Boyarski and W.A. Kellog, editors, Proceedings of the ACM Conference on
Designing Interactive Systems (DIS ’00, New York, USA, Aug. 17–91), pages 326–337.
ACM Press, 2000.

