
R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 363-382, 2005.
 IFIP International Federation for Information Processing 2005

The Software Design Board: A Tool Supporting
Workstyle Transitions in Collaborative Software Design

James Wu and T.C.N Graham

School of Computing, Queen’s University
Kingston, Ontario, CANADA

{wuj,graham}@cs.queensu.ca

Abstract. Software design is a team activity, and designing effective tools to
support collaborative software design is a challenging task. Designers work
together in a variety of different styles, and move frequently between these
styles throughout the course of their work. As a result, software design tools
need to support a variety of collaborative styles, and support fluid movement
between these styles. This paper presents the Software Design Board, a
prototype collaborative design tool supporting a variety of styles of
collaboration, and facilitating transitions between them. The design of Software
Design Board was motivated by empirical research demonstrating the
importance of such support in collaborative software design, as well as activity
analysis identifying the lack of support in existing tools for different styles of
collaboration and transitions between them.

1 Introduction

The design of large, complex software systems is a team activity. A study by
DeMarco and Lister found that developers working on large projects spend up to 70%
of their time collaborating with others [6], while Jones found that team activities
account for 85% of costs in large scale development projects [18]. This degree of
interactivity between team members has necessitated the development of tools that
can support collaboration within the software design process.

Designing effective collaborative design tools is a challenging task. In addition to
technical and implementation issues associated with concurrent and/or distributed
work, designers are hampered by a lack of data on how groups work together in
software design. Collaborative applications are too often developed based on the
individual experience of the designer, rather than on detailed study of the target user
group and target tasks. This can result in tools that are neither useful nor usable.
Even when user-centred design techniques are applied, the results are often tailored
to the needs of single users, without sufficient support for collaborative work [10].

To better support collaborative work, software design tools need to support a
variety of workstyles for collaborative interaction, as well as support fluid transitions
between these workstyles. A workstyle is a characterization of the style of interaction
employed by a group of collaborators, or supported by an interactive tool [36]. For
example, co-located collaborators working at a whiteboard are engaged in an entirely

364 J. Wu and T.C.N Graham

different workstyle than distributed collaborators asynchronously sharing a document
stored in a repository. In earlier work, we have shown that members of collaborative
groups interact with each other through a variety of workstyles, and move frequently
between different workstyles throughout the course of their interactions [37].

In this paper, we present a prototype collaborative software design tool, the
Software Design Board. Software Design Board supports a variety of workstyles
appropriate to the early stages of software development, and facilitates transitions
between them. The functional requirements of the tool are informed by studies of
existing design tools and by results of empirical research into collaborative software
design activities. In presenting Software Design Board, we begin with a brief
examination of related tools in the domain. As Software Design Board is primarily
intended for use with an electronic whiteboard, these related tools are those that
support software design through the use of informal media. Next, we present the
empirical research that motivated the importance of supporting transitions in
workstyle in collaborative design. We then introduce a model for characterizing styles
of collaborative work, and show how this model is used to identify mismatches
between collaborative activities and existing tool support. Finally, we introduce the
Software Design Board and show how it supports a variety of important workstyles
and workstyle transitions.

2 Tools Supporting Collaborative Software Design Through
Informal Media

People often carry out design work using informal media such as paper or
whiteboards [20]. Particularly in the early stages of design, informal media are
appropriate as they allow design diagrams to be quickly and fluidly sketched [34].
Computational analogues of such informal media include electronic whiteboards, data
tablets and stylus input for computers. Tools supporting interaction with informal
media attempt to extend the free form, fluid interaction afforded by physical informal
media to these computational counterparts.

The main advantage of informal media tools is that they support a natural working
style without imposing significant cognitive overhead on the user through
heavyweight interaction mechanisms. They allow users to use the tool transparently,
without having to think about the tool itself. The drawback of many of these tools is
the limited, or non-existent, support for movement towards more formal, structured
work. This lack of support may limit development as a design evolves and begins to
require more formal treatment. Also, many of these tools are intended to be general-
purpose, and lack features that may be useful in the early stages of software design.

We identify three subcategories of these tools. In each, we consider an archetype
tool that is typical of the subcategory, and identify other similar tools.

• Informal CASE Tools: These are software design tools that support interaction
through informal media. Ideogramic UML [15] is a commercial tool that
evolved from the Knight research project [5]. IdeogramicUML is intended to
support the “agile” use of UML [1], meaning effective and lightweight use of
UML. It supports a wide variety of interaction devices, including PCs, tablets,
Tablet PCs and electronic whiteboards. This tool supports gesture based

The Software Design Board 365

modeling in UML, as well as free hand diagramming with no gestural
interpretation. Furthermore, IdeogramicUML only supports co-located
collaboration using electronic whiteboards, and requires additional tool
support to be used by distributed teams. Other similar tools include UML
Recognizer [21] and Tahuti [13].

• Enhanced Electronic Whiteboards: These are electronic whiteboard
applications that attempt to replicate and extend the functionality of physical
whiteboards using electronic whiteboards such as a Smartboard [28]. Flatland
[24] is an augmented whiteboard application designed to support informal
office work. Flatland provides various stylus-appropriate techniques for
interaction and space management on an electronic whiteboard. Furthermore,
it provides the ability to apply different behaviors to define application
semantics. Flatland allows different segments on the board to respond
differently to stylus input based on the applied semantics. However, it does not
specifically support design tasks, but is intended to support for informal work
in an office environment and as such can be appropriate in early software
design tasks. Furthermore, Flatland does not support distributed collaboration,
but only facilitates teamwork in a co-located setting. Other similar tools
include Tivoli [25], Dolphin [30], and MagicBoard [4].

• Shared Drawing Tools: These tools support collaborative sketching or drawing
tasks such as often found in early design work [31, 16] without providing
support for any specific notation. ClearBoard [16] is a shared drawing
program that allows two remote users to simultaneously draw in a shared
space while providing awareness information such as hand gestures and gaze.
It is based on the metaphor of ‘talking through, and drawing on, a big
transparent glass board’ [16]. Clearboard also provides additional functionality
such as simple stroke manipulations, recording of working results, as well as
the ability to integrate generic files into the drawing space. Other similar tools
include Commune [3], GroupSketch [11], and VideoWhiteboard [32].

Tools supporting interaction through informal media support collaboration in

software design by facilitating unstructured interaction in a way appropriate to the
early, creative design stages. They support an informal style of work that allows users
to interact naturally and to use the tool transparently without imposing unnecessary
overhead. Informal media tools support a small group of designers, and rely on social
protocol to mediate group interaction. They typically produce informal artifacts of
unbound semantics and free-form syntax. Most importantly for our purposes, informal
media tools are typically independent of synchronicity or location, i.e. they support
synchronous and asynchronous, as well as distributed and co-located interactions.
This means they can support transitions in workstyle between synchronous/asynchro-
nous and co-located and distributed styles of interaction.

3 Importance of Workstyles in Collaborative Software Design

We now present the empirical research that motivated the importance of supporting
transitions in workstyle in collaborative design. We have performed extensive

366 J. Wu and T.C.N Graham

empirical studies into the nature of collaboration in software design [37]. We
followed 5 development groups at a large software company over a 6-week period.
Our research illustrated that not only is significant time spent collaborating within the
design process, but also significant time and effort is spent in transitions between
different collaborative styles of work. For example, team members may move
frequently between asynchronous and synchronous workstyles, or between co-located
and distributed workstyles, throughout the course of a single workday. These
observations highlight the need for collaborative design tools that provide support for
performing transitions between the various activities and working styles in which
designers engage. Although some existing tools facilitate transitions in software
designers’ workstyles [7, 21, 12], most provide only basic communication facilities.
More importantly, existing support for workstyle transitions is not commensurate with
the frequency with which designers change between collaborative work styles [37,
38].

During our study, team members were observed to be highly interactive, spending
on average more than two hours per day on communication tasks. Communication
was predominantly face to face or via telephone or email. Also, team members often
changed various aspects of their interaction such as location, synchronicity or
modality of communication. These results provide evidence regarding the importance
of collaboration and communication in software design, and motivate the need to
support these activities in software design tools.

We also found that developers change locations frequently in order to collaborate,
showing that on average, developers collaborated in more than 6 locations per day.
According to interviews, this was due to a strong preference to work face-to-face.
Many designers felt it was simpler, quicker and generally more efficient to use
standard communication, including meeting face-to-face, than to establish remote
interaction though tools. This often meant that people would walk up and down
multiple flights of stairs numerous times each day to meet in person rather than use a
telephone or another collaboration tool. These changes in location further indicate the
frequency of workstyle transitions in collaborative software design.

Designers were also observed to frequently change the way in which they
communicate, and to carry on multiple, simultaneous threads of collaboration. We
found that it is typical for designers to attend a face-to-face meeting on a topic, then
follow up with email, ask a supplementary question by telephone, follow up with
more email, and so forth. Within individual threads of collaboration, we observed that
designers change the mechanism by which they communicate more than once per day
on average. These changes often involve a change in synchronicity (e.g. a change
from telephone to email involves a change from synchronous to asynchronous
interaction). Moreover, developers on average carried out more than three
simultaneous threaded interactions in the course of a single day. All of these changes,
between communication modalities, synchronicity and collaboration groups, reflect
transitions in workstyle.

The results of this study have clear implications for the design of tools supporting
team-based software design in large companies. These results show the importance of
flexibility with respect to how a tool supports collaboration. Changes in physical
location, synchronicity and communication modality are frequent, and tools should be
designed to support such changes. Current tools do not sufficiently support such
changes, if at all. In most existing tools, changes in synchronicity and location require

The Software Design Board 367

a change in modality (e.g. from face-to-face to telephone) as well, imposing
additional overhead on designers that choose to use them. More information on these
empirical results can be found in the full study [37].

4 Understanding Workstyles

The Workstyle Model [36] allows us to characterize styles of collaborative work,
either those employed by a group or supported by a tool. We can use these
characterizations to identify mismatches between common activities and available
tool support. These mismatches highlight areas where additional tool support is
needed within a domain. Workstyle modeling complements task modeling [8] with
supplemental information about how people communicate and coordinate their
activities, and about the nature of the artifact to be produced. We have applied this
model to the evaluation of how software designers collaborate, the forms of
collaboration a wide variety of software design tools support, and to the design of the
Software Design Board application itself. The development of the model itself was
informed by the empirical study, presented in the previous section, as well as by
informal laboratory studies of tools and designers.

In order to understand the relevance of workstyle analysis, consider the task of
creating a design in some formal diagrammatic notation. A task model can identify
the activities involved in creating such a design: drawing and labeling nodes,
connecting them with relations, editing and reformatting diagram elements, and so
forth. This model of design activities might lead to the development of a tool similar
to Rational Rose [26] permitting mouse-based structural editing of design diagrams.
However, in addition to the tasks that need to be performed, it is important to
understand the users’ preferred workstyle before committing to a design. Designers
may be working in a brainstorming style, or may be recording precise documentation
from which a system is to be built. A brainstorming workstyle is well supported by a
whiteboard, which provides sufficient space for small groups to work, and supports a
fluid style of interaction where multiple designers may interact with the design
artifact in parallel. Alternatively, recording of precise documentation is well
supported by a traditional Computer-Aided Software Engineering (CASE) tool. It is
important to note that, though both tools support the activities identified in the task
model, they do so in different ways that are appropriate to entirely different styles of
work. The workstyle model helps in the analysis of peoples’ goals and tasks by
helping to understand their preferred style of work.

The Workstyle model characterizes a working style as an eight dimensional space
that addresses the style of collaboration and communication between designers and
the properties of the artifacts that are created during the collaboration. The
functionality of collaborative design tools can be plotted in this space to specify the
set of workstyles that they can support. It then becomes possible to compare
designers’ preferred workstyles to those supported by available tools and to identify
potential task/tool mismatches. These mismatches can be used to guide the design of
new tools that are more appropriate to particular design activities. Figure 1 depicts a
graphical representation of the axes of Workstyle Model on which workstyle analyses
are plotted

368 J. Wu and T.C.N Graham

4.1 Dimensions Describing Collaboration Style

The first four dimensions of the model describe the nature of the collaboration in
which a group is engaged, or that can be supported by a tool. They are defined as
follows:

• Location: The location axis refers to the distribution of the people involved in
the collaboration. As people become more geographically distributed,
supporting some collaborative workstyles becomes increasingly difficult [27].

• Synchronicity: The synchronicity axis describes the temporal nature of the
collaboration. People may work together at the same time (synchronously) or at
different times (asynchronously).

• Group Size: The group size axis captures the number of people involved in the
collaboration. Support for larger groups typically comes at the expense of
intimacy in the interaction between collaborators.

• Coordination: This axis describes how users’ activities are coordinated,
whether by the choice of tools they are using or through the adoption of some
coordination model [22].

4.2 Dimensions Describing Artifact Style

The remaining four dimensions describe the nature of the artifacts produced by the
group, or able to be produced by a tool. They are defined as follows:

• Syntactic Correctness: The artifact being produced may be required to follow a
precise syntax. This requirement may inhibit progress in early stages of design
by forcing initially abstract designs to conform to a predetermined syntax [20,
35].

• Semantic Correctness: An artifact is considered to be semantically sound if its
meaning is unambiguous and free of contradiction. The production of
semantically sound artifacts facilitates automated analysis and evolution.

• Archivability: Archivability represents the difficulty of saving an artifact so
that it can be used at a later time. For example, word processing documents
have high archivability, as they can be saved to disk and retrieved later.

• Modifiability: This axis represents the ease with which an artifact can be
modified. For example, small modifications to a whiteboard drawing are
simply performed by erasing and redrawing.

4.3 Applying the Workstyle Model

The Workstyle Model can be applied to assess tools and/or the interaction style of
users. The model can be used to evaluate the support provided by individual tools for
various working styles, or applied to users to evaluate their working styles while
accomplishing various tasks with preferred tools. To do so, values for each property
are plotted on a two-dimensional representation of the model, as seen in Figure 1. A
single workstyle is represented as a point in an eight dimensional space, while a range
of workstyles is represented as a region in this space. Support for a single value in a

The Software Design Board 369

particular property is indicated by a line intersecting the related axis, while a region
over the axis represents support for a range of values in that property. So a plot that
consists of a single line with no expanded areas can represent a tool or set of tools that
supports a single, rigid workstyle. Similarly, if applied to users, the plot may represent
a particular style of work used to accomplish some particular task. Conversely, a plot
that covers an area of the graph may represent a tool or set of tools that supports a
range of workstyles and transitions between them. Similarly, if applied to users, it
may represent a change in the style of interaction that has occurred over a period of
time. Once plotted, differences in the workstyles supported by various tools become
visually apparent. These plots can be compared to workstyle plots of users
accomplishing the tasks supported by those tools in their preferred manner.
Mismatches between these plots identify tools that are not providing sufficient
usability for their supported tasks. More detail and examples of applying the
Workstyle Model can be found in [36, 38].

4.3.1 Workstyle Example – UML Design Tools

Fig. 1. A Workstyle comparison between UML tools and standard whiteboards in support for
typical brainstorming activities.

It is useful to consider the workstyle supported by popular UML design tools such as
Rational Rose [26]. Design tools such as these are a good fit with workstyles where
little real-time communication with other designers is required, and where the goal is
to create precise, archival designs. However, these design tools provide poor support
for the early stages of design, such as brainstorming. During these phases, designers
spend significant time on communications tasks.

The inappropriateness of UML design tools for early stages of design can be

clearly shown by examining the brainstorming workstyle. As shown in Figure 1,

370 J. Wu and T.C.N Graham

brainstorming is typically carried out by small groups working face to face, using
free-form coordination and social protocols to determine who gets to speak or write
next. In brainstorming, designers do not wish to be distracted by requirements to be
syntactically correct, or even semantically sound [2, 31]. Modifiability is important
as early designs evolve rapidly, and archivability is important to allow early designs
to be migrated to more formal designs.

Figure 1 clearly shows that while UML design tools may support the core tasks of
the early stages of design, they do not support the workstyle of early design
(brainstorming). The emphasis on asynchronous, moderated work with strong
emphasis on syntactic correctness and semantic soundness is incompatible with the
free-form brainstorming workstyle. A better match to the workstyle of early design is
the workstyle supported by standard whiteboards. These tools support small groups of
co-located users working synchronously, and rely upon social protocol to mediate
user interaction. They impose no requirements on syntax, nor do they interpret any
semantic meaning from the input.. The main incompatibility of these tools to the
brainstorming workstyle is the limited ability to easily archive artifacts created on the
board.

In this example, we have seen how workstyle analysis can be applied to a tool and
compared to the workstyle of the collaborative activities in which it may be used.
Such comparisons can highlight incompatibilities between a tool and the way in
which it will be used within a particular context. Through this mechanism, tools can
be selected for use in particular contexts to provide better usability to users carrying
out their tasks.

5 Software Design Board: Supporting Workstyle Transitions in
Software Design

Based on the findings from our empirical study into collaboration in software design,
as well as workstyle analyses revealing inadequacies of existing design tools, we
developed the Software Design Board to facilitate transitions between some common
working styles as described by the Workstyle Model. This is achieved through the
integration of informal media and flexible collaboration mechanisms, as well as
support for migration between different software tools, devices and collaborative
contexts. These facilities are intended to support fluid transitions between the some of
the different styles of work in which designers are frequently engaged, specifically
synchronous/asynchronous and/or co-located/distributed collaboration, and more
generally, formal/informal interactions.

5.1 Functional Requirements

The functional requirements for the Software Design Board evolved from workstyle
analyses of existing tools and of developers in the early stages of software design. For
example, workstyle analyses of existing tools for collaborative software design
revealed that each support only a single or limited set of collaborative workstyles.
Furthermore, the empirical studies described in Section 3 revealed a variety of

The Software Design Board 371

behavioral patterns in which developers frequently engage. Most importantly, the
study found that team members regularly changed the nature of their interactions with
each other in terms of synchronicity, location and modality. The results have specific
implications on tool design; tools should be designed to support these frequent
changes in workstyle.

All of these findings reveal some open problems in the area of tool support for
collaborative software design, and motivated the functional requirements driving the
design of Software Design Board. Specifically, the following are aspects of
collaborative design that are poorly supported in existing tools:
• Unsupported Workstyles: Workstyle analyses of existing tools revealed that some

workstyles are not supported by any individual class of tools. For example, large
groups of synchronous collaborators, whether distributed or co-located, are not
well supported by any available tool. This may be a result of hardware restrictions,
or the limited applicability of such workstyles in practice. Additionally, no existing
tools allow free-form interaction while supporting the creation of syntactically and
semantically refined artifacts. Even informal CASE tools such as IdeogramicUML
[15] employ a gesture-based syntax that places restrictions on free-form
interaction.

• Functional Requirement 1: Support the freehand creation of
syntactically correct UML diagrams.

• Lack of Support for Workstyle Evolution: Workstyle analysis of existing tools
revealed that individual tools only support a single or limited set of workstyles, and
provide little or no support for movement between workstyles. However, our
empirical investigations found that designers frequently move between
synchronous/asynchronous and collocated/distributed styles of interaction.
Additionally, transitions between workstyles often involve changes between
interaction devices. For example, moving from an informal to a more formal
workstyle may involve switching from an electronic whiteboard to a PC. Available
tools do not sufficiently support migration between devices.

• Functional Requirement 2: Support transitions between synchronous
and asynchronous styles of collaboration.

• Functional Requirement 3: Support transitions between collocated and
distributed styles of collaboration.

• Functional Requirement 4: Support transitions between physical
devices.

• Lack of Support for Multiple Collaborative Contexts: In addition to frequently
changing their collaborative workstyle, the results of the study presented in Section
3 show that individual designers also switch amongst a number of concurrent
collaborative contexts. This means that they frequently move between multiple
interactions with different groups. For example, a given designer may be
participating in a number of concurrent projects or tasks, and may frequently
switch their focus from one project to another. Furthermore, designers may
participate concurrently in multiple collaborative contexts.

• Functional Requirement 5: Support transitions between collaborative
contexts.

• Limited of Support for Integration of Existing Applications: Current meta-tools that
support sharing of existing applications, such as Netmeeting [23], impose

372 J. Wu and T.C.N Graham

significant restrictions on collaboration that can be inappropriate to many of the
important workstyles found identified during the empirical study. Mechanisms for
integrating existing tools into a variety of collaborative workstyles would allow
designers to collaborate on wide variety of tasks without giving up their preferred
tools for accomplishing those tasks.

• Functional Requirement 6: Support integration of existing applications
into all supported workstyles.

5.2 Overview of the Software Design Board

The Software Design Board (SDB) is a shared whiteboard application with additional
functionality that supports collaborative software design. As seen in Figure 2, user
interaction with this tool is similar to a typical interaction with a standard whiteboard.

Fig. 2. Using Software Design Board.

Typical sessions using the tool via different devices are depicted in Figure 3. When
used on a PC, the interface supports drawing using a typical structured drawing tool.
Functionality is accessed through typical drop-down menus. When used on an
electronic whiteboard or tablet PC, the user interface supports unstructured pen input
of stroke information for freehand data such as diagrams, annotations, notes and lists.

This feature is in partial support of Functional Requirement 1 (Support the
freehand creation of syntactically correct UML diagrams). Unstructured stylus-based
input also provides the basis for lightweight user interaction with the tool.
Furthermore, an integrated structure recognizer [9] supports automated translation of
freehand diagrams into a more structured format appropriate for interpretation as
UML or any other box-and-arrow notation. This functionality is similar to other tools
[5, 21]. An example of this recognition functionality applied to a simple diagram is
depicted in Figure 4.

The Software Design Board 373

In addition, objects can be placed on the board in and amongst the free hand data.
These objects can include design documents or diagrams that may be browsed and
annotated, or external programs that can execute other functionality. For example, a
design document may be embedded into some area of the board allowing it to be
communally browsed and annotated within the context of the other data on the board.
This document is opened and displayed within the tool with which it was created, and
all of that tool’s functionality is accessible through the SDB’s interface. This
functionality supports Functional Requirement 6 (Support integration of existing
applications into all supported workstyles). A typical session with an embedded
design artifact is depicted in Figure 5.

Fig. 3. Typical single-user sessions in Software Design Board. A PC user manipulates
structured drawing elements and text, and interacts through drop-down menus. A whiteboard
user draws free hand, and interacts through pie menus and gesture-based commands.

In order to support collaboration, the tool integrates communication and sharing

mechanisms. For example, gesture transmission is supported within the context of
synchronously shared whiteboard space. Voice communication mechanisms are
planned, but not yet implemented. Additionally, any OLE-based communication tool
can be integrated into the whiteboard space.

These communication objects are embedded and manipulated directly within the
context of the board, and are maintained with the rest of the data on the board. For
example, external applications such as web browsers or media streams may be
embedded in the board space and used for communication. These communication
mechanisms support Functional Requirement 2 (Support transitions between
synchronous and asynchronous styles of collaboration) and Functional Requirement 3
(Support transitions between co-located and distributed styles of collaboration) by

374 J. Wu and T.C.N Graham

allowing the simultaneous use of functionality supporting all of these styles of
interaction within a single application.

Fig. 4: Applying the syntax recognizer to a freehand diagram. Hand drawn elements such as
circles, squares and arrows are recognized and converted into structured drawing elements.

The whiteboard space can be divided into any number of segments. These segments
allow data to be shared in different ways. Generally, a segment is an area in the board
containing contextually related data. As with a regular whiteboard, a user explicitly
specifies the segmentation of data in the board through delineating strokes, e.g. a
surrounding box or circle. Segments can be shared with others to allow users of other
SDB clients to connect and synchronously interact with each other and share data. To
share segments asynchronously, another client connects and copies the content of the
segment to his/her local client. This data can then be manipulated without affecting
the data in the original segment. Diverging copies of segments may be manually or
automatically reconciled, if possible. When shared synchronously, data in a shared
segment is viewed in decoupled WYSIWIS [29] fashion. Furthermore, at any time a
user can change the way in which segments are shared. Synchronously shared
segments can be easily detached and shared asynchronously, and vice versa. Gesture
information is automatically transmitted between synchronously shared segments via
telepointers. This functionality also supports Functional Requirement 2 (Support
transitions between synchronous and asynchronous styles of collaboration) and
Functional Requirement 3 (Support transitions between co-located and distributed
styles of collaboration), by providing the mechanism by which users can freely and
fluidly move between (synchronously or asynchronously) shared and private data.

Furthermore, on any SDB client, different segments may be shared concurrently and
in different ways, between different groups. This functionality supports Functional
Requirement 5 (Support transitions between collaborative contexts), by allowing
users to move freely between different collaborative interactions contained within
each segment. A typical session involving segment sharing is depicted in Figure 6.

The Software Design Board 375

Fig. 5. A design document embedded in a Software Design Board session.

Fig. 6.The segment with ID binkley||-10 is shared between Baha and Nick. Baha’s mouse
pointer appears as a telepointer on Nick’s client. Nick is concurrently sharing a different
segment, with ID Desktop-64, with James.

Software Design Board implements a plastic interface [33] that can be used on
different hardware devices. While the main platform for this application is an
electronic whiteboard, it can also be accessed from a PC with or without an associated
tablet. Widget-level plasticity supports appropriate interaction through each type of

376 J. Wu and T.C.N Graham

device [17]. For example, whiteboard users can use pie-menus and gesture based
commands that are more appropriate to their stylus-based interfaces, while PC clients
can use traditionally structured pull-down menus systems. There is also the potential
to develop clients that facilitate access from a PDA or any other appropriate device.
The interaction allowed by each interface is appropriate to the specific device. For
example, interaction through a PDA would be greatly limited as compared to an
interaction at a SmartBoard, and drawing facilities on a mouse-based PC client may
be more structured than those on the SmartBoard, in order to accommodate the
associated input mechanism. This functionality is in support of Functional
Requirement 4 (Support transitions between physical devices).

Device appropriate interfaces allow users to interact with the application through
any available or preferred hardware, and freely migrate between device types, as long
as the limitations of the hardware are accepted. Migration between tools and devices
is further supported by the segmentation of data. Segmentation facilitates data
plasticity, wherein types of data within a segment can be manipulated appropriately in
the context of a given device or application. If a segment is known to contain data of a
particular type, then it can be interpreted or formatted appropriately for any specific
device or tool. For example, if a segment is known to contain a UML diagram, then it
can be interpreted and migrated via XML into an appropriate UML-based CASE tool.

In addition to the functionality described above, a variety of additional features are
integrated into the user interface to facilitate interaction with the Software Design
Board. Unlike a regular whiteboard, a session in the SDB can be essentially
unbounded in size. To facilitate navigation, the interface to the workspace is
scrollable and zoomable. If a more structured input mechanism is desired at the
whiteboard, a floating keyboard and/or structured drawing palette can be made
available through menu options. These options can be accessed from context sensitive
and device appropriate menu systems. Finally, all functionality is available through
both context sensitive pull-down menus and pie-menus that facilitate gesture-based
commands. This allows advanced users to use the tool more effectively by bypassing
the menu structure.

5.3 Workstyle Transitions in Software Design Board

We now consider some simple scenarios that illustrate how Software Design Board
can be used to perform some common transitions between workstyles. This is not
intended as a set of instructions for performing the indicated transition, but rather as
examples of how such transitions are supported within the tool. Additionally, it is
intended to demonstrate the ease with these transitions can be performed within the
tool.
• Distribution Transitions: A group of co-located collaborators works together

around an electronic whiteboard (a co-located workstyle). They want to share their
work with a remotely located group. They draw a box around their current work in
order to define a segment, and use a simple gesture command to share that segment
with the remote group. The availability of the remote group is indicated via the
context-sensitive pie menus [14, 19] that structure the gesture. At the remote site, a
change in the entry structure of the menu system indicates the availability of a
newly shared segment. The remote group creates a local segment in their

The Software Design Board 377

workspace, and uses a similar gesture to attach their segment to that which was
newly shared with them. Synchronized copies of the original data now appear in
both group’s segments, and telepointers appear to provide a sense of awareness of
the actions of each group to the other. The two groups now collaborate in this
distributed workstyle.

• Synchronicity Transitions: A group of users interacts synchronously with data
contained in a shared segment (a synchronous workstyle). Each user performs
updates that are immediately reflected in every other user’s view of the data. They
decide to work separately so that each user may concentrate on a particular aspect
of the data. Each user detaches his/her segment from the shared session, and is left
with a local copy of the data to which asynchronous updates can be performed.
Now each user interacts with the data in their local copy (an asynchronous
workstyle).

• Device Transitions: A user is drawing a design on an electronic whiteboard. Using
the piemenu structure and gesture commands, he invokes the recognizer and
converts the freehand design to a structured drawing. He then creates a shared
segment containing the diagram on the whiteboard. He moves to his PC and starts
the Software Design Board client. Using the traditional pull-down menu structure,
he creates a segment, attaches it to the shared segment he previously created at the
whiteboard. He continues to work on that diagram from the PC, manipulating the
structured elements in a manner appropriate for mouse-based interaction.

• Context Transitions: A user maintains two different shared segments in his
Software Design Board workspace. Each segment is shared between a different
group of colleagues with whom he collaborates, and therefore each segment
maintains completely different data (each maintains a different work context).
Through the course of the day he scrolls the workspace back and forth between
those segments in order to interact with the different groups as required.

• Syntax Transitions: A group of co-located users are brainstorming and free hand
drawing a design on a whiteboard. Eventually, the drawing becomes too large and
convoluted to easily manipulate in this manner. Some elements consume a
disproportionate amount of board space; others overlap due to the freeform
development of the diagram. The designers want to move the work into a
structured drawing editor to clean up the drawing and continue work. They use a
gesture command to select all relevant drawing elements, then another gesture to
invoke the syntax recognizer. The drawing is automatically converted to discrete,
structured drawing elements such as boxes, circles and arrows. A third gesture is
used to invoke a ‘Send To…’ command, which causes the newly structured
elements to be opened within a structured drawing editor. The group now
restructures their drawing, and continues to work.

• Semantic Transitions: A group of users has completed a freehand design diagram
on a whiteboard. The users invoke the syntax recognizer to structure their drawing,
as described above. Next, they use a gesture command to reselect all drawing
elements, and another gesture to invoke the UML semantic interpreter. The
structured drawing is automatically interpreted as a simplified UML class
diagram– boxes are converted to classes, open arrows as generalizations, closed
arrows as aggregations. A third gesture is used to invoke a ‘Send To…’ command,

378 J. Wu and T.C.N Graham

which causes the newly structured elements to be opened within a UML editor for
further manipulation.

5.4 Current Status of the Implementation

The Software Design Board application is currently a functional research prototype.
Most of the functionality described in the previous sections exists, either wholly or
partially, though some core functionality remains to be implemented. Functionality
for moving, resizing and copying freehand elements still remains to be implemented,
and structured drawing functionality and other PC-based interaction techniques are
less developed. Distributed, synchronous sharing is currently limited to drawing data;
synchronous application sharing functionality is only partially implemented and not
yet functional. The functionality for implementing syntax transitions is not fully
implemented. An XML DTD has been developed to describe these recognized free-
hand diagrams, and standalone code for writing and reading these XML documents
exists. However, this code has not yet been integrated with the Software Design
Board application. Finally, only limited work has been done toward supporting
semantic transitions, i.e. applying a semantic interpretation to the syntactic structure
of the drawing described by the XML document. This work has been limited by the
limited implementation supporting syntax transitions. As the functionality evolves to
more completely support the syntax transition, so too will the functionality supporting
the semantic transition.

6 Conclusions

In this paper, we have introduced a prototype collaborative software design tool, the
Software Design Board. Software Design Board supports a variety of workstyles
important in the early stages of software development, and facilitates transitions
between them. The functional requirements for the tool evolved from workstyle
analysis of existing design tools and from results of empirical research into
collaborative software design activities.

The need to support workstyle transitions in tools for collaborative software design
stems from the fact that designers switch amongst numerous collaborative styles
throughout the course of the their work. Many factors influence the style in which
they may choose to work (their workstyle), including the task at hand, availability of
tools, distribution of collaborators, and personal preferences. These influences change
frequently, thus designers often migrate between workstyles in response to such
changes. Unfortunately, there are obstacles to such transitions. These may include
having to recreate work artifacts in the format of a new tool, interruption of the flow
of work, or physical relocation. Such obstacles may prove sufficiently burdensome
that designers choose to continue to work in a style that is inappropriate for their
current context. These obstacles exist because the variety of workstyles and workstyle
transitions in which designers engage are not well supported by most existing design
tools. Most of these tools are designed to support a single or limited set of workstyles,

The Software Design Board 379

and their architectures are generally not capable of handling the dynamic changes in
workstyle that are typical of collaborative design.

Software Design Board was developed to address some of these shortcomings and
to support designers in some of the common workstyles and transitions in workstyle
in which they frequently engage. Specifically, Software Design Board supports
designers working synchronously/asynchronously, distributed/collocated and more
generally, formally/informally. It supports the creation of syntactically bound or free-
from artifacts, can be used through a variety of physical devices, and facilitates
collaboration in multiple, concurrent contexts.

References

1. AgileAlliance, http://www.agilealliance.org
2. Bly, S., A. (1988). “A Use of Drawing Surfaces in Different Collaborative Settings”.

Conference on Computer-Supported Cooperative Work, Portland, OR.
3. Bly, S.,A. and S. Minneman (1990). "Commune: A Shared Drawing Surface." SIGOIS

Bulletin: 184-192.
4. Crowley, J., Coutaz, J., Berard, F. (2000). "Things that See." Communications of the

ACM 43(3): 54-64.
5. Damm, C. H., Hansen, K. M., Thomsen, M. (2000). “Tool Support for Object-Oriented

Cooperative Design: Gesture-Based Modelling on an Electronic Whiteboard”. Proceedings
of Conference on Human Factors and Computing Systems. The Hague, Netherlands.

6. DeMarco, T. and T. Lister (1987). Peopleware. New York, Dorset House.
7. Dewan, P. Choudary, R. (1991). “Flexible user interface coupling in collaborative

systems”. CHI ' 91, New Orleans, LA, ACM.
8. Diaper, D. (1989) Task analysis for human computer interaction, Ellis Horwood,.
9. Fonseca, M.,J., Pimentel, C., and Jorge, J., A. (2002). “CALI: An Online Scribble

Recognizer for Calligraphic Interfaces”, Proceedings of the 2002 AAAI Spring
Symposium - Sketch Understanding. Palo Alto, USA. pp51-58

10. Francik, E., Rudman, S. E., Cooper, D., and Levine, S. (1991). Putting innovation to work:
adoption strategies for multimedia communication systems. Communications of the ACM,
34(12), pp. 52-64.

11. Greenberg, S. and R. Bohnet (1991). “GroupSketch: A Multi-user Sketchpad for
Geographically Distributed Small Groups”. Proceedings of Graphics Interface, pp 207-
215.

12. Grundy, J. C., Mugridge, W.B, Hosking, J.G., Apperley, M. (1998). “Tool Integration,
Collaboration and User Interaction Issues in Component-based Software Architectures”.
TOOLS '98, Melbourne, Australia, IEEE.

13. Hammond, T. and R. C. Davis (2002). “Tahuiti: A Geometrical Sketch Recognition
System for UML Class Diagrams”. Sketch Symposium, Stanford University, Palo Alto,
CA.

14. Hopkins, D. (1991) “The Design and Implementation of Pie Menus”, Dr. Dobb’s Journal,
CMP Media. December 1991.

15. Ideogramic – IdeogramicUML, http://www.ideogramic.com
16. Ishii, H. and M. Kobayashi (1992). “ClearBoard: A seamless medium for shared drawing

and conversation with eye contact”. Conference on Human Factors in Computing Systems,
Monterey, CA, ACM.

17. Jabarin, B., and Graham, T.C.N. (2003) “Architectures for Widget-Level Plasticity”,
Proceedings of DSV-IS 2003 Portugal, June 11-13. pp. 124-238

18. Jones, T. C. (1986). Programming Productivity. New York, McGraw-Hill.

380 J. Wu and T.C.N Graham

19. Kurtenbach, G. and Buxton, W. (1991) “Issues in Combining Marking and Direct
Manipulation Techniques” In Proceedings of ACM UIST'91. pp. 137--144.

20. Landay, J. A. and B. A. Myers (1995). “Interactive Sketching for Early Stages of Design”.
CHI '95, Denver, CO, ACM Press.

21. Lank, E., Thorley, J.S., Chen, S.J. (2000). “An Interactive System for Recognizing Hand
Drawn UML Diagrams”. CASCON2000, Toronto, ON.

22. Malone, T. W. and K. Crowston (1990). “What is coordination theory and how can it help
design cooperative work systems?”. Proceedings of Conference on Computer-Supported
Cooperative Work. ACM Press. pp. 357-370

23. Microsoft Corp. – Netmeeting, http://www.microsoft.com
24. Mynatt, E. D., Igarashi, T., Edwards, W.K. LaMarca, A. (1999). “Flatland : New

Dimensions in Office Whiteboards”. CHI '99, Pittsburgh, PA, ACM.
25. Pederson, E. R., McCall, K., Moran, T.P., Halasz, F. G. (1993). “Tivoli: An Electronic

Whiteboard for Informal Workgroup Meetings”. INTERCHI '93. Amsterdam,
Netherlands. April.

26. Rational Corp. – Rose, http://www.rational.com
27. Seaman, C.B. and Basili, V.R. (1997) “Communication and Organization in Software

Development: An Empirical Study”. IBM Systems Journal 36(4).
28. SMART Technologies, Inc. – SMARTBoard, http://www.smarttech.com
29. Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., and Tatar, D. (1987) “WYSIWIS

revised: early experiences with multiuser interfaces”, ACM Transactions on Office
Information Systems, 5(2), pp.147-167

30. Streitz, N. A., J. Geißler, Haake, J. M., Hol, J. (1994). “DOLPHIN: integrated meeting
support across local and remote desktop environments and LiveBoards”. Conference on
Computer Supported Cooperative Work, Chapel Hill. NC.

31. Tang, J., C. (1991). "Findings from Observational Studies of Collaborative Work."
International Journal of Man-Machine Studies. 34(2), pp. 143-160

32. Tang, J. C. and S. Minneman (1991). “VideoWhiteboard: Video Shadows to Support
Remote Collaboration”. Conference on Human Factors and Computing Systems, New
Orleans, LA.

33. Thevenin, D., and Coutaz, J., (1999). “Plasticity of User Interfaces: Framework and
Research Agenda” Proceedings of Interact ’99 Edinburgh, Scotland. pp 110-117.

34. Wang, W., Dorohonceanu, B., Marsic, I. (1999). “Design of the DISCIPLE Synchronous
Collaboration Framework”. Internet, Multimedia Systems and Applications, Nassau,
Bahamas, IASTED Press.

35. Wong, Y.Y. (1992) “Rough and ready prototypes: Lessons from graphic design”. Short
Talks Proceedings of CHI '92: Human Factors in Computing Systems, pp. 83-84,
Monterey, CA,

36. Wu, J., Graham, T.C.N, Everitt, K., Blostein, D. and Lank, E. (2002) “Modeling Style of
Work as an Aid to the Design and Evaluation of Interactive Systems”. Proceedings of
CADUI’02. Valenciennes, France.

37. Wu, J., Graham, T.C.N., Smith, P. (2003) “A Study of Collaboration in Software Design”
ISESE 2003, Rome, IT. Sept 29-Oct 1.

38. Wu, J. (2003) “Tools for Collaborative Software Design” Queen’s University, School of
Computing. Technical Report 2003-462, Queen's University, Kingston, Ontario, Canada,
January 2003.

The Software Design Board 381

Discussion

[Philippe Palanque] As you use the work style axes as a mean for evaluating the
adequacy between tool and a work style do you not need more detailed information
for each axes?

[Nick Graham] All the axes are continuous and we use them more as an
informational tool - we worked on making the axes more precise but we did
not find it to be more useful.

[Jürgen Ziegler?] Are the dimensions independent or are there interrelationships
between eg. modifiability and degree of semantic correctness?

[Nick Graham] I think we can come up with examples for each pair of axes
where you could be at either extreme and if you think of each pair of axes
that the extremes are presented as cross products of all four possible
positions, then we can come up with examples of all four positions for all the
axis pairs, so we are quite confident that axes are orthogonal.

[Grigori Evreinov] Did you think of using parallel coordinate systems?

[Nick Graham] No, that would be interesting; do you think that would be
better?

[Grigori Evreinov] Yes, we have Information Visualization Research Group in our
Department (http://www.cs.uta.fi/~hs/iv/) and the parallel coordinates system is
presented on their site, so you can try it! or ask about the author Harry Siirtola

[Nick Graham] That would be interesting!

[Jörg Roth] Your work style model reminds me of the Denver model from 1996 (they
have 2 diagrams with 5 axes each instead of your 8)?

[Nick Graham] There are similar in the sense that they are both related to
groupware and presented as "quiviant diagrams". Beyond that the axes are
actually very different to my recollection! I have compared to the Denver
model, but to give you a proper answer I would have to look at the Denver
model again, because I cannot remember the axes exactly!

[Michael Harrison] One of the interesting things about collaborative work is that, just
like we have had this conference I will go away to a room and do some work and
maybe have some ideas and produce some notes. Next time we have a collaborative
meeting I may want to fold that back in to the collaboration and I was not sure how
that kind of continuity could be achieved. This characterises different collaborative
models whereas that is not essentially a collaboration model, but it is essential to the
process of collaboration.

[Nick Graham] That would be considered a tool transition, so one tool is pen
and paper and the other your designed word software. We are very interested
in that, so one approach is to say it would be wonderful if you had electronic
paper that you had been scrip ling on and that could be imported right in to
the tool, a poor mans approach to that would be to scan it, a really poor mans
approach would be to sit and type it in. So those are examples of how

382 J. Wu and T.C.N Graham

transitions can be easy or hard. The whole goal is certainly to find ways of
making the transition easier so that people are more likely to do them.

[Hong-Mei Chen, University of Hawaii] The Work style model you presented here
seems to be domain-specific to software design in your empirical case studies and not
applicable to other kind of collaborative work. For instance, some brain storming
tasks (as studied in Group Decision Support Systems - GDSS) consider important
factors such as social cues and anonymity to be important.

[Nick Graham] I agree with you that there are many other axes that we could
put in and we have actually studied it in IFIP WG 2.7/13.4 and discussed the
kind of transitions that would come up, e.g. with respect to privacy. An
example could be a situation where you start out in a context where privacy
is not important to you and the all of a sudden you are asked to enter your
credit card information and privacy becomes very important to you. This just
to say, that these are also important issues and we do not claim to have
solved every issue in the world. We have used this model in other domain,
but will not make any claims that this is applicable to any domain and maybe
we will come back next year with the 40 dimensions version!

[Rick Kazman] How do you deal with multiple updates to a single document when
people work asynchronously but they want to merge their work?

[Nick Graham] We do not support merging in general since it is a difficult
problem, but we do support merging of the whiteboard freehand drawings.
Merging MS Word documents alone is big problem in it self!

[Rick Kazman] Are you aware of any general solution to the multiple merge
problems?

[Nick Graham] No, all the solutions I have seen are point solutions often
commercial, such as for MS Word, but no good general solutions.

	Introduction
	Tools Supporting Collaborative Software Design Through Informal Media
	Importance of Workstyles in Collaborative Software Design
	Understanding Workstyles
	Software Design Board: Supporting Workstyle Transitions in Software Design
	Conclusions
	References
	Discussion

