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Abstract. The calculus outlined in this paper provides a formal architectural 
framework for describing and reasoning about the properties of multi-user and 
mobile distributed interactive systems. It is based on the Workspace Model, 
which incorporates both distribution-independent and implementation-specific 
representations of multi-user and mobile applications. The calculus includes an 
evolution component, allowing the representation of system change at either 
level over time over time. It also includes a refinement component supporting 
the translation of changes at either level into corresponding changes at the 
other. The combined calculus has several important properties, including 
locality and termination of the refinement process and commutativity of 
evolution and refinement. The calculus may be used to reason about fault 
tolerance and to define the semantics of programming language constructs.  
Keywords: software architecture, model-based design, groupware, mobile 
applications, Workspace Model 

1  Introduction 

Recent years have seen the introduction of numerous architectural models and 
associated tools for the high level design of interactive systems. Interest in 
architectural models has continued with the advent of new styles of user interface 
such as groupware systems that allow users to collaborate asynchronously or in real 
time, mobile systems allowing users access to a wide variety of devices such as tablet 
PCs, PIMs and smart phones, and ubiquitous systems which are sensitive to the user’s 
context. 

While many architectural models have been proposed (e.g., [2, 3, 4, 7, 8]; see [9] 
for detailed discussion), there is as yet little underlying theory to explain their 
semantics, to allow comparison of different models or to serve as a guide for 
implementing tools or applications based on these models. In this paper we provide 
such a theory, called the Workspace Model, formalized via an evolution calculus and 
a refinement relation.  
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The full formal specification of the model is available as [10]. In this paper we 
outline the formal underpinnings of the Workspace Model and illustrate its utility via 
two applications. The novel aspects of the model include: 
• Its recognition that the structure of interactive systems change over their run 

times as the users of the system change, as their intentions change and as the 
physical run time platform changes. 

• Its linkage of a conceptual architectural view to an implementation architecture, 
allowing high-level design to be mapped in a principled manner to a run time 
implementation, while avoiding premature commitment to a distributed 
implementation. 

• Its treatment of partial failure as a first-class consideration in architectural 
models. 

• Its ability to represent the use of multiple devices and device types in a single 
interactive session. 

The paper is structured as follows. In section 2 we provide an overview of the 
Workspace Model, including the key elements of the conceptual level, the 
implementation level, the refinement rules and the evolution calculus. Section 3 
presents key properties of the model. Finally, in section 4 we present two applications 
of the model, the first characterizing mechanisms for dealing with partial failure, and 
the second showing how the model can be used to give the semantics of a language 
supporting the development of groupware applications. 

2  Elements of the Model 

In this section, we provide an overview of the Workspace Model including its two 
architectural levels, the evolution operations, and the refinement relation. 

Figure 1 shows the key elements of the workspace model and how they relate to 
one another. Architectures may be expressed at a conceptual level and at an 
implementation level. A conceptual architecture expresses the structure of the 
elements making up an interactive system, but does not specify how they are to be 
implemented as a distributed application. Conceptual architectures are illustrated in 
section 2.1 using a small example. 

A refinement relation R composed of individual refinement rules r maps 
conceptual architectures to implementation architectures. In general, a given 
conceptual architecture can be mapped to many implementation architectures. R  
therefore captures a space of possible implementations. R(c, i) indicates that i is a 
valid refinement of c. Refinement is discussed in section 2.2 and implementation 
architectures are presented in section 2.3. 

Finally, an evolution operator e expresses runtime evolution of conceptual and 
implementation level architectures. In figure 1, ec(c) produces c', a modified 
conceptual architecture, and ei(i) produces i', a modified implementation level 
architecture. Evolution is discussed in section 2.4. 
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Fig. 1. Key elements of the Workspace Model. 

The two architectural levels have previously been described at greater length in 
[11]1 and the full definitions of evolution and refinement may be found in [10]. Here 
we present the architectural levels in the form of a small example and provide sample 
evolution operations and refinement rules, in order to give a flavour of the complete 
system. 

2.1  Conceptual Architecture 

We present the conceptual level using an example in which a presentation is 
attended by multiple audience members, some local and some remote. The presenter 
has a private view of the presentation including the current slide and associated notes, 
as well as controls affecting the presentation flow. Local audience members sit in an 
auditorium, view the presentation on a large screen, and hear the presenter’s voice 
directly. Remote audience members view the presentation on their personal computers 
and listen to the presenter by means of a networked voice system. The remote 
audience members’ slide view shows the same slide as the local audience members’.  

A conceptual architecture supporting this example is depicted in figure 2, using the 
Workspace notation. There are two workspaces, indicated by the dotted lines, which 
represent distinct contexts of use. Within the workspaces we may find people, 
software and hardware components (rectangles; only software components are 
illustrated), and connectors between them. Components are attached to connectors at 
ports (circles, which we occasionally omit from the diagrams where this has no effect 
on semantics). Workspaces may also contain nodes, which are identifiable 
computational elements such as the presenter’s computer. A node’s presence in a 
workspace indicates that components in the workspace may be implemented on the 
node; nodes thus provide a bridge between the conceptual and implementation levels. 

The conceptual level includes three kinds of components. Actors (not shown) have 
independent threads of control and may therefore initiate activity in a workspace. 
Reactors, such as the presenter view and audience view components, react to input 
calls or messages arriving on connectors but are otherwise inert. Finally, stores such 
as the presentation and voice components are purely passive and are analogous to the 

                                                           
1 The visual notation used in the workspace model has been modified from that used in [11] 

based on the results of an informal usability study. 
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model of the model-view-controller architecture [6], with the added feature that they 
may be used to represent shared state. 
 

 
Fig. 2.  Conceptual level view of the presentation example. 

The conceptual level also includes three kinds of connectors. Calls (single arrow 
head) are point to point, blocking, and analogous to procedure calls. Calls which 
modify the state of the called component are updates and are indicated by an ! 
annotation; calls which return values are requests and  are indicated by a ?. 
Complementing calls are subscriptions (double arrow head), which are asynchronous 
and provide multi-source to multi-target message delivery. The third connector type is 
the synchronization (double line), which provides an abstract representation of data 
sharing. Stores that are synchronized (such as the presentation components in figure 
2) respond the same way to requests and emit consistent message streams; that is, they 
may be thought of as representing “the same thing.” 

The architecture depicted in figure 2 supports our example as follows. The 
presenter acts as the source of three subscriptions, two delivering voice to the local 
and remote audience members and one providing mouse and keyboard inputs to the 
presenter view component. Inputs to the presenter view may result in modifications to 
the state the current slide number via the call connector. Since the two current slide 
number components are synchronized, a change to the current slide number in the 
lecture theatre workspace will result in a message being delivered to the presenter 
view and to both audience views via the outgoing subscription connectors. The 
presenter view and audience view components will react to this message by querying 
their respective presentation components for the current slide and displaying it on 
their associated output devices. 

In summary the conceptual level architecture deals with many of the issues that 
arise in modeling modern interactive systems. Users may have differing contexts, may 
use different devices, may be collocated, distributed, or even mobile, and the structure 
of the collaboration may change in real time as participants enter and leave and as the 
users’ goals change. 
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2.2  Refinement 

A traditional problem with the use of software architectures in interactive system 
development is that many proposed architectural styles are of such a conceptual 
nature that they bear little obvious correspondence to the technologies used to 
implement the system (e.g., [3, 7]). Architectural descriptions rarely address how to 
refine a conceptual architecture to an implementation, leaving it to users of the 
architectural style to determine how best to do so. 

The Workspace Model provides a refinement relation R that precisely defines the 
legal implementations of any conceptual architecture. This helps developers by 
providing rules that they can follow in the implementation of their conceptual 
architectures, helping in the transition from conceptual to implementation view. The 
refinement relation also helps toolkit builders by providing precise semantics for 
implementation decisions embodied in the toolkit. 

The refinement relation defines the space of possible implementations for any 
given conceptual architecture. The relation is specified via a graph grammar showing 
how conceptual elements may be rewritten to implementation elements. The graph-
grammatical rules each specify one step of a refinement. The refinement relation R is 
therefore the reflexive transitive closure of this set of refinement rules. 

Figure 3 shows example refinement rules for the implementation of components on 
nodes. Analogous rules specify the possible refinements for ports and connectors. All 
29 refinement rules are specified in [10].  

 

 
Fig. 3. Example refinement rules for implementation of components. 

A refinement rule consists of a left-hand side pattern that may be matched in the 
current architecture. When a pattern is matched, it is replaced by the result found in 
the right-hand side of the rule. The wavy arrow between the two sides is pronounced 
“may be refined to”.  

Rules (a) and (b) specify the implementation of an anchored component of type t 
onto a node. Rule (a) says that an anchored component with no synchronization port 
and at most one incoming connector (call or subscription) may be refined to an 
implementation-level component (shaded) with corresponding type t'. The rule 
specifies that the matched component may have zero or more outbound ports of the 
call and subscription types, which are preserved in the implementation component. 

 Rule (b), whose pattern will also match any architecture satisfying rule (a)’s 
pattern, specifies that any anchored conceptual component may be implemented by a 
combination of an implementation level component matching type t' and a 
concurrency control and consistency maintenance component (CCCM) which 
mediates conflicting calls and messages. The conceptual component’s incoming and 
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synchronization ports are allocated to the CCCM while its outgoing ports are 
allocated to the t' component. In the case of infrastructure components inserted into an 
architecture by a refinement, the rule does not specify precisely how these 
components are implemented. For example, a CCCM may be based on locking or on 
one of may optimistic concurrency control protocols [5].  

These examples give a flavour of the rules making up the refinement relation. 
Other rules match a partially refined architecture and refine it to more completely 
refined architecture, ultimately resulting in an implementation architecture.  

2.3  Implementation Architecture 

As shown in section 2.2, a conceptual architecture is refined to an implementation 
architecture by the application of a series of rules. These specify the allocation of 
components to computational nodes, the refinement of conceptual connectors into the 
types of physical connectors available in real distributed systems, and the introduction 
of special components to deal with concurrency control, consistency maintenance, 
message broadcasting, the marshalling of network calls and return values, and 
caching. 

Figure 4 shows one valid implementation of the conceptual-level architecture of 
figure 2. In figure 4 we have instantiated components on the two computational nodes 
that were shown as available in figure 2.  
 

 
Fig. 4. One possible implementation of figure 2. 

In this example we have made the decision to implement the presentation store 
solely on the presenter’s node. The remote node’s audience view component accesses 
it over the network, using transceiver components to marshal and unmarshal calls and 
return values. The network link is indicated by the dashed arrow. 

Conversely, we have fully replicated the current slide number store, maintaining 
one copy on each node. The two copies’ CCCMs maintain consistency by the 
execution of some replica consistency maintenance algorithm, e.g. locking or a 
distributed operation transform [12]. The two CCCMs communicate by means of a 
shared channel, implemented using channel endpoints (the components with the 
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wavy lines). Channel endpoints are provided by many group communication 
frameworks, including for example Spread [1] and Horus [13], and provide a useful 
multipoint message distribution service with ordering and performance guarantees. 

Finally, to implement subscription connectors, which have an asynchronous 
semantics and many-to-many topology, we introduce message broadcaster 
components in the connectors’ implementation. 

It is important to note that figure 4 represents just one valid refinement of the 
conceptual architecture of figure 2. For example, different decisions could have been 
made on the allocation of components to nodes or on the replication strategy for 
shared data; similarly a cache might be introduced on the remote node to retain local 
copies of the slides as they are taken from the presentation, improving responsiveness 
when previously viewed slides are revisited.   

2.4 Evolution Calculus 

An important characteristic of modern interactive systems is their support for 
runtime evolution. Evolution can come as a result of participants entering or leaving a 
collaborative session, as a result of participants moving from one location to another, 
perhaps using different devices, as a result of participants’ goals changing, affecting 
their tools and how they are used, and as a result of changes to the underlying 
distributed system such as network failure or the introduction of a new node. 

The Workspace Model’s evolution calculus allows us to model change resulting 
from any of these stimuli. Changing users, locations, tasks or goals typically result in 
change at the conceptual level while distributed system changes typically result in 
change at the implementation level. When a change occurs at one level, the 
refinement rules are used to find a sequence of evolutions at either or both levels such 
that the refinement relation R between the levels is restored.  

The evolution calculus consists of a set of operations at each of the two levels. 
Operations are defined using a graph grammar notation similar to that used for 
refinement rules. Each definition consists of an operation signature, a pattern and a 
result. When the operation is invoked on an architecture that matches the pattern the 
architecture is transformed such that the elements of the pattern now match the result. 
Where an operation fails to match a pattern the architecture is not modified.  

Two sample operations are shown in figure 5, one at the conceptual level and one 
at the implementation level. There are a total of 49 operations in the calculus [10].  

  Figure 5(i) partially defines the attach operation for synchronization groups. The 
operation’s signature is attach(A, k, p) where A is the architecture to which the 
operation is applied and p and k are the identifiers of a synchronization port and a 
synchronization connector respectively. The pattern for this operation will match if A 
contains a synchronization port p (identifiers are shown in diamonds) that is not 
attached to any synchronization connectors (the zero in the box) and a 
synchronization connector k that is attached to no ports. The result of the operation is 
identical to A except that k is attached to p. There is another rule with the same 
signature allowing a store to attach to a synchronization connector that is already 
attached to other stores.  
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Fig. 5. Sample evolution specifications. 

Figure 5 (ii) shows a disconnect operation at the implementation level. This 
evolution might be invoked in response to a conceptual level change or as a result of a 
network failure. Note that whereas conceptual level connectors exist independent of 
any connections, implementation level connectors are destroyed by a disconnect. 

In response to evolutions at the conceptual and evolution level, further evolutions 
may be carried out at one or both levels that return the system to a state where the 
current conceptual architecture refines to the current implementation architecture. In 
this way, traceability between the two levels is retained. Additionally, it is possible to 
apply evolutions at either the conceptual or implementation level, depending on 
which is more appropriate for the evolution being specified. For example, adding a 
new participant to a collaboration would initially be reflected as a change at the 
conceptual level (with corresponding changes to the implementation), whereas the 
addition of a cache to a link in order to improve performance would be an evolution at 
the implementation level only. 

3  Properties 

As stated in the introduction, the Workspace Model has been designed to possess 
three properties that are critical to its practical application. These properties are 
straightforward to prove for our formalism via structural induction over the 
refinement rules and evolution calculus operations. 

Refinements are local. This property states that the composition of refinement 
steps is commutative. That is, if A is an architecture and r1 and r2 are refinement rules 
such that r1 and r2 match non-overlapping portions of A, then r1(r2 (A)) = r2(r1(A)). 

The primary consequence of this property is that refinement rules can be applied 
locally (without reference to the context of their matches), whether the refinement is 
being carried out statically by a developer or automatically by some runtime agent. 

Refinements Terminate. This property states that any non-trivial refinement 
sequence will eventually lead to a ground architecture. An architecture is ground if it 
consists only of implementation level elements and no further refinement rules match. 
A refinement r over a is non-trivial if r’s pattern matches in a.  

More precisely, the termination property states that for all architectures a, there 
exists some number n such that for every set of non-trivial refinements r1 through rn, 
rn(rn-1(…(r1(a)…) is ground.  

This property is critical to automated implementations of refinement as it implies 
that any refinement sequence will eventually lead to an implementation architecture. 
Of course, the termination of refinements does not guarantee that all refinements will 
be appropriate choices! 
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Evolution and Refinement is Commutative. This property states that following 
an evolution in the conceptual or implementation architectures, there exists some 
sequence of evolutions at the conceptual or implementation level or both, such that 
the new conceptual architecture refines to the new implementation architecture. 

More precisely, for any ei0 or ec0 resulting in a new combination of c0 and i0, there 
exists some finite set of ei and ec such that R(ecm(ecm-1(…(c0)…), ein(ein-1(…(ei(i0)…)) 
where R is the reflexive transitive closure of r. 

This property is trivially true as the sequence of evolutions could simply be to 
delete all workspace elements at both levels. However, as shown in section 4, 
achieving this traceability property with minimal changes to the architecture is the 
root of a good fault tolerance strategy. 

4  Applications 

In previous work, we reported on the use of the Workspace Model to support scenario 
modeling and automatic runtime distribution of real-time groupware systems [11]. In 
this section we present two further applications of the Workspace Model: reasoning 
about fault tolerance and the use of the model to define an extension to the C++ 
programming language. 

4.1 Fault Tolerance 

In the Workspace Model, a partial failure manifests itself as one or more un-requested 
evolutions at the implementation level. For example, the loss of contact with a node 
will initially be recognized as the disconnection of any remote connectors targeting 
components on that node. 

The response of a running system to partial failure may be either restoral or 
recovery. The best case is a restoral, in which all user-visible system functions are 
restored, for example by re-establishing the failed network connection. Where this is 
impossible, the aim of a recovery is to put the system into a semantically coherent 
state with the minimum impact on the users. The Workspace Model representations of 
these two possible responses are illustrated in figure 6. 

Both parts of figure 6 begin with an implementation level architecture i that is a  
the current conceptual architecture c; that is, R(c, i). The initial failure is represented 
as a series of evolutions eif at the implementation level that result in a new 
implementation architecture if where if is not a valid refinement of c. 

Part (a) represents a restoral. Here, a further series of evolutions ei1 through ein are 
applied to if such that R(c, ein(…(ei1(if)…)) — that is, such that the resulting 
implementation level architecture ir is a valid refinement of c. 

Where restoral is not possible, it is generally necessary to modify the conceptual 
architecture in some way in order to effect a recovery. 
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Fig. 6. Workspace model representations of (a) restoral and (b) recovery. 

 This is represented in figure 6(b). Here, a series of evolutions ec1 through ecm are 
applied to c while a series of evolutions ei1 through ein are applied to if, such that 
R(ecm(…(ec1 (c)…),  ein(…(ei1 (if)…)).  

As noted in section 4 it is always possible to find such a series of evolutions, with 
the trivial solution being one in which all elements of c and if are deleted to arrive at 
empty architectures at both levels. However, figure 6(b) is far from vacuous. Rather, 
it suggests initial criteria on which the appropriateness of a restoral may be judged: 
the number (and nature) of conceptual level evolutions required to reestablish 
coherence between the conceptual and implementation levels. 

4.2 Extension to C++

A second application of the Workspace Model is its use to provide a rigorously 
defined alternate semantics for an existing programming language. Currently we are 
working with C++. The aim is to enable conventionally written programs to be used in 
a mobile multi-user distributed setting with little or no modification, while 
maintaining a predictable, precise, “natural” semantics. 

As an example, consider the C++ code C *x  = new C(); executed in the context of 
some object q. The normal C++ semantics of this statement creates a new instance of 
class C and declares a pointer x within the scope of q such that x refers that instance.   

However, this is inadequate of we wish to be able to migrate the new instance 
across process boundaries or to refer to it from multiple processes. In effect, what we 
want is a pointer equivalent that allows the target to be remote and mobile, but with a 
well-defined semantics and fault tolerance strategy. This is precisely what the 
Workspace Model’s call connector provides, so we can define the semantics of this 
code as shown in figure 7. 

     The text in the box shows the series of Workspace-level evolution operations 
defining the semantics of the given code. In the definition the architecture is an 
implicit parameter to each evolution and the semi-colons represent composition. 

The diagram on the right side of the figure illustrates the complete effect of this 
series of evolutions on an initial architecture.  A new conceptual level component of 
the appropriate type is created, source and target ports for a call connector are created 
on the appropriate components, and a call connector is created and attached to those 
ports. 
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Fig. 7. Definition of the C++ new operator in terms of workspace conceptual evolutions. 

As discussed in section 2.4, this change at the conceptual level will cause the 
current implementation architecture to no longer be a valid refinement of the 
conceptual level. The run-time system will respond by computing and executing a 
series of evolutions at the implementation level to reestablish the refinement relation. 
In the end result the syntactic variable x will be a pointer either directly to the 
implementation of the new component (if it was in fact instantiated on the same node 
as q) or to a run-time provided component that acts as a remote proxy. 

The implementation of these semantics for C++ is provided by means of a pre-
processor and a runtime support system. 

Conclusion 

In this paper, we have presented the Workspace Model and its associated refinement 
relation and evolution operations. The Workspace Model provides precise semantics 
for reification of conceptual architectures as distributed systems, and for the sorts of 
runtime evolution that occur over the lifetime of groupware or mobile applications. 
We have shown two applications of the model, one characterizing fault tolerance in 
distributed interactive systems, and the other providing semantics of a C++-like 
programming language. 

Two implementations of toolkits based on the workspace model are underway, one 
in Python and one in C++. With these toolkits, we hope to gain further experience with 
the expressiveness of the workspace model, and to determine whether the refinement 
relation and evolution calculus provide an effective basis for formally-specified 
implementation of distributed interactive systems. 
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