
Plug-Replaceable Consistency Maintenance for Multiplayer
Games

Robert D.S. Fletcher, T.C. Nicholas Graham and Christopher Wolfe
School of Computing
Queen’s University

Kingston, ON, Canada, K7L 3N6
{fletcher,graham,wolfe}@cs.queensu.ca

ABSTRACT
Consistency maintenance of replicated data in multiplayer
games is a challenging issue due to the performance con-
straints of real-time interactive applications. We present an
approach which separates game logic from consistency main-
tenance code through the use of reusable, plug-replaceable
concurrency control and consistency maintenance (CCCM)
modules. Using plug-replaceable consistency maintenance
strategies also permits rapid comparisons of multiple ap-
proaches, which facilitates experimentation. We conduct a
case study to illustrate how multiple consistency mainte-
nance strategies can be applied without changing the origi-
nal game code.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—modules and interfaces, object-oriented design meth-
ods.

General Terms
Measurement, Performance, Design, Experimentation

Keywords
Consistency maintenance, multiplayer game, workspace model

1. INTRODUCTION
One of the biggest challenges in developing online games

is maintaining consistency of different players’ views of the
shared world. In server-based games we use the term fidelity
to represent the degree to which a player’s view of the world
corresponds to the canonical view of the server.

Games’ requirements for fidelity depend on the kind of
activity that the player is carrying out. High fidelity op-
erations (such as trading) require correct results no matter
what the cost to the game’s responsiveness. Alternatively,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetGames 2006 Singapore
Copyright 2006 ACM 0-12345-67-8/90/01 ...$5.00.

compromises to fidelity may be acceptable in order to im-
prove the game’s responsiveness, such as in the case of non-
player character movement. The effects of fidelity errors
can range from annoyance and inconvenience all the way to
game-breaking bugs.

Server-based games rely on replicating some or all of the
game’s state on both the client and server. Consistency
maintenance algorithms ensure that changes to one copy
of the data are reflected in the other replicas. Consistency
maintenance algorithms make different tradeoffs between fi-
delity and responsiveness. Games therefore may employ
multiple consistency maintenance algorithms addressing the
different fidelity requirements of the games’ subsystems.

Consistency maintenance algorithms are often complex,
and therefore hard to program correctly. In fact, errors in
consistency maintenance code have been cited as the pri-
mary cause of item duplication (or “dupe”) errors in mas-
sively multiplayer online games [1]. In this paper, we present
a novel technique for consistency maintenance based on the
Workspace Architectural Model.

This model provides three advantages over hand-coding of
replica consistency maintenance. First, the programming of
consistency maintenance is separated from the game appli-
cation itself, simplifying the main application code. Second,
multiple plug-replaceable consistency maintenance schemes
can be used in the same application, facilitating experimen-
tation. Finally, consistency maintenance algorithms can be
collected and reused in future applications.

In order to demonstrate our approach, we have constructed
a consistency maintenance testbed and used it to evaluate
the tradeoffs between three consistency maintenance algo-
rithms.

2. CONSISTENCY MAINTENANCE IN
GAMES

Multiplayer games are distributed systems consisting of
both replicated and centralized data. In multiplayer games
using the client-server model, the server maintains the canon-
ical state of the game world. When clients connect to the
server, parts of the game state are copied to the client from
the server, allowing updates to be presented to the player
more quickly. Where possible, the client works with its local
copy of the game state, and changes made to its version are
applied to the canonical state on the server. The server’s
copy of game data is always considered definitive. There
are many approaches to consistency maintenance, each pro-
viding varying degrees of fidelity. It is important to consider
the interactions that game data supports when choosing an

algorithm to maintain its consistency.

2.1 Aspects of the Player Experience
Consistency maintenance algorithms embody tradeoffs be-

tween different performance attributes. Important among
these are fidelity, feedback time, degree of warping, and an-
imation rate. Different types of game data require different
tradeoffs, so a single game might best use a variety of con-
sistency maintenance schemes.

• Fidelity. The fidelity property captures the degree to
which the client’s representation of the game world
matches the canonical world state. Game actions such
as trading or purchasing goods as well as decisions with
respect to character death must correctly reflect server
state. Yet, maintaining a faithful representation re-
quires high interactivity with the server which is often
prohibitively expensive. Fidelity can be sacrificed in
favour of reducing network traffic and improving the
more time-dependent properties of feedback time and
animation rate.

• Feedback Rate. Feedback time is the delay between
a player performing an action and seeing the results
of that action. For any real-time interactive applica-
tion (such as a game), minimizing feedback time is
a primary concern. Feedback time can be aided by
optimistic consistency maintenance strategies such as
operational transform [9] and rollback schemes [5].

• Degree of Warping. Clients commonly use dead reck-
oning [6] to update the positions of mobile entities
based on their last known position and velocity. The
snapping of an entity to a new position following server
update is often referred to as warping. The degree of
warping can be measured by counting the frequency
and magnitude of required corrections.

• Animation Rate. The animation rate refers to the fre-
quency with which the positions of mobile entities are
updated on the player’s display. The animation rate
of necessity cannot exceed the game’s frame rate, but
may be considerably slower. A high animation rate
makes movement appear smooth to the player.

2.2 Related Work
There are many different approaches to consistency main-

tenance for distributed game objects. From the players’ per-
spective, it is important that the gameplay does not suffer
because of the implementation of these routines. This im-
poses time constraints on the algorithms, particularly on
feedback. Schneiderman characterizes acceptable feedback
time for highly interactive tasks as being between 50-150 ms
[8].

An examination of the design decisions required during
the development of a consistency maintenance scheme was
documented during the development of the game Age of
Empires [2].

Consistency maintenance algorithms suitable for use in
games [4] fall into three basic categories: pessimistic, opti-
mistic, and predictive algorithms. Pessimistic algorithms [2,
10] ensure that any reference to a replica is always consistent
with the canonical server version. Pessimistic algorithms are

Figure 1: Conceptual architecture.

ideal when complete fidelity is required but are not appro-
priate for highly interactive tasks as server interactions are
expensive operations.

Optimistic algorithms allow for local replicas to be up-
dated immediately. The replica then reports changes ap-
plied to to the canonical state. Should state update con-
flict, the algorithm is responsible for resolving the problem
and returning all replicas to the canonical state [3, 4, 9, 5].
Predictive algorithms are optimistic algorithms capable of
extrapolating future state changes.

3. THE WORKSPACE APPROACH TO CON-
SISTENCY MAINTENANCE

Our approach to supporting plug-replaceable consistency
maintenance is based on the Workspace Architectural Model
[7]. The workspace model provides high-level facilities sup-
porting the development of distributed, multi-user applica-
tions. While a comprehensive discussion of the features of
this model is out of the scope of this paper, there are two
features that are particularly useful for implementing con-
currency control in games: support for conceptual modeling
of software architectures, and the ability to express synchro-
nization of data at the architectural level.

A conceptual architecture expresses the structure of an
application in terms of components and connectors between
the components. The conceptual architecture does not spec-
ify how the components are allocated to computational nodes,
or any of the details of networking, consistency maintenance
or concurrency control.

Components, represented by boxes, are the smallest ar-
chitectural unit of the workspace model. The boxes which
contain circular arrows are actor components. Actors are
capable of initiating activity, and therefore maintain an ex-
ecuting thread. Stores, indicated by a cylinder, are passive
data components which cannot initiate activity or call other
components. Stores may be synchronized with other stores
of the same type. The application programmer can assume
that all synchronized stores will be observationally equiva-
lent throughout execution.

Architectural components are grouped into workspaces,
shown with a dashed line. Workspaces are used simply to
show that components belong together, not that they are
implemented on the same node; a single workspace may in-
volve multiple nodes.

3.1 Refinement to an Implementation
Programmers create applications at the level of the con-

ceptual architectures such as that shown in Figure 1. At
runtime, the fiia.net toolkit [7] manages the implementation

of this architecture as a distributed system through the use
of a refinery. Since there can be multiple different legal re-
finements for each conceptual architecture, the application
programmer can add hints to influence the refinement pro-
cess.

Valid implementations that the toolkit might choose in-
clude replicating the data and maintaining two copies (one
local to the client and the other to the server) or maintaining
a single copy, forcing either the client or the server to access
the component remotely. In the replication case, the toolkit
is obliged to maintain the consistency of the two copies of
the data.

When synchronization between two stores is implemented
via replication, the refinery inserts special Concurrency Con-
trol, Consistency Maintenance (CCCM) components into
the implementation architecture. These components behave
as intermediaries between the replicated object and all in-
coming and outgoing connectors, ensuring that messages are
ordered or transformed to guarantee observational equiv-
alence between the components. CCCM components can
embody any consistency maintenance scheme. The imple-
mentation level architecture of Figure 2 shows how CCCM
components are inserted into the case study architecture.
Creating CCCM components involves writing code to exam-
ine incoming messages and decide if any need to be modified,
created, deleted, or simply relayed.

4. CASE STUDY
We now demonstrate the effectiveness and ease of use of

plug-replaceable consistency maintenance schemes via a case
study. The hypotheses of the case study are that games de-
veloped using the workspace architectural model do not have
to contain code to deal with replica consistency, and that
the workspace model makes it easy to deploy, modify and
experiment with multiple consistency maintenance schemes
within the same program.

In the case study, a non-player character (called a villager)
traverses a set of waypoints on the server. Every 500 ms,
a message is sent to the client informing it of the villager’s
location. The client’s job is to produce a view of the current
position of the villager providing high fidelity, low warping,
and smooth animation.

4.1 Conceptual Architecture
Figure 1 shows the conceptual architecture of our case

study. In it we have two workspaces indicating the compo-
nents for a client and server respectively. The game client
and game server actors contain the main game-loop objects.
The outgoing arrows represent call connectors, specifying
that the components may make synchronous call. The two
synchronized Villager Data stores contain all of the infor-
mation about the villager, the mobile entity (mob) in our
game.

We use architectural attributes to request a replicate im-
plementation of the Villager Data, and have experimented
with three different CCCM components. The game has been
instrumented to allow us to measure different aspects of the
player experience.

To simplify instrumentation, the application is run on a
single computer. We emulate latency by delaying the trans-
mission of data across synchronization connectors. Delay
is based on a normal distribution. Varying the mean and
standard deviation of this distribution has allowed us to ex-

Figure 2: Implementation architecture.

periment with different network delays.

4.2 Experimental CCCM Modules
We experimented with three different consistency main-

tenance schemes, each implemented via a different CCCM
component. The Non-Predictive CCCM simply applies po-
sitional updates from the server as they become available
with no prediction. The Simple Predictive CCCM uses dead
reckoning to smooth the motion of the villager between
server updates. The client continuously updates its copy of
the villager’s position based on the its last known position
and velocity. Finally, the Optimized Predictive CCCM takes
a more sophisticated approach to dead reckoning by consid-
ering the timestamps of server updates. The client CCCM
uses an estimated latency value (based on latency observed
to-date) to determine if its current predicted position could
be reached from the last received server update.

4.3 Controlled Variables
The simulation was run nine times total, three times for

every CCCM module, once for each latency condition. A
normal distribution of latency was used each time, with dif-
ferent characteristics. A no latency condition (µ = 0 σ = 0),
a low latency condition (µ = 100 σ = 10), and a medium
latency condition (µ = 500 σ = 100) are used.

We monitored the client-side villager position in order to
determine the degree of warping, the animation rate, and
the client’s fidelity. The rate of animation is computed by
measuring the average movement of the client mob (lower
numbers are more smooth.) The degree of warping measures
the average number of warps/second. A warp occurs when a
server update is received whose villager position differs from
the client position by a value above some threshold (5 world
units.) Fidelity is the average distance between the client
and canonical villager positions (lower numbers represent
higher fidelity).

4.4 Results
The results of our experiment are summarized in Table 1.

The values shown represent a 95% confidence interval around
the observed mean.

The non-predictive algorithm performed poorly with re-
spect to all aspects of the player experience. The fidelity
degraded proportionally to the increase in latency. The rate
of warping was consistent with the rate of server updates.

The predictive algorithms provided significantly better fi-
delity, the optimized predictive producing slightly better fi-
delity scores. The degree of warping was similar between
both predictive algorithms, however the simpler algorithm
showed a smaller degree of warping. The smoothness of an-

Table 1: Results from case study.
Non-Predictive CCCM
Lat. Warps

(Hz)
Warp

Magnitude
Fidelity Animation

Rate
None 2.0 49.79± 0.66 29.43± 0.88 46.06± 1.65
Low 2.0 50.03± 0.80 39.17± 0.89 46.31± 1.70
Med 2.0 50.62± 0.77 75.25± 1.22 46.90± 1.69
Predictive CCCM
Lat. Warps

(Hz)
Warp

Magnitude
Fidelity Animation

Rate
None 1.4 8.95± 0.54 1.62± 0.19 9.35± 0.15
Low 1.2 10.96± 0.91 7.79± 0.30 9.57± 0.17
Med 1.7 15.13± 1.17 48.16± 0.70 10.27± 0.24
Optimized Predictive CCCM
Lat. Warps

(Hz)
Warp

Magnitude
Fidelity Animation

Rate
None 1.4 8.63± 0.52 1.26± 0.14 9.28± 0.14
Low 1.3 12.90± 1.24 5.70± 0.37 9.79± 0.21
Med 1.6 18.77± 2.02 27.48± 0.94 10.84± 0.37

imation was consistent across the predictive algorithms.

4.5 Discussion
We hypothesized that replacing consistency maintenance

schemes would be simple. This turned out to be the case.
Between each test, changes to the code were limited to the
architectural attribute guiding the refinement of the syn-
chronization connector. No changes at all were required in
the mob movement method.

Implementing the rest of the game was also straightfor-
ward, as it did not require any consistency maintenance
code. The villager class consisted only of vectors represent-
ing velocity and position as well as a method to update
position based on a time delta.

The CCCM’s themselves needed to be programmed to give
implementations for the consistency maintenance schemes.
CCCM’s encapsulate a single consistency maintenance al-
gorithm, and are programmed without knowledge of their
context of application. This means that once implemented,
CCCM’s can be re-used in different applications without
modification. We envision that a library of interesting CCCM
algorithms can be created, appropriate to different consis-
tency requirements in games.

5. CONCLUSION
In this paper, we have shown how consistency mainte-

nance schemes for multiplayer games can be implemented
in a plug-replaceable manner. Based on the workspace ar-
chitectural model, the approach allows developers to write
game code independently of consistency maintenance con-
cerns, simplifying game programming. We have shown that
plug-replaceability allows easy experimentation with differ-
ent consistency maintenance schemes. We have illustrated
the approach with a simple case study, experimentally show-
ing how different consistency maintenance schemes provide
differing player experiences. The case study demonstrates
the simplicity of coding applications when consistency main-
tenance is factored into plug-replaceable CCCM components.
This work is ongoing.

6. ACKNOWLEDGEMENTS
We gratefully acknowledge the funding of the Natural Sci-

ence and Engineering Research Council of Canada and the
NECTAR CSCW research network. This work would not
have been possible without the availability of Greg Phillips’
fiia implementation of the workspace architectural model.
We wish to thank David Smith and the rest of our colleagues
in the EQUIS lab for their help with formulating this paper.
We would also like to thank Emily Adkins-Taylor for her
valuable revisions and support.

7. REFERENCES
[1] J. Beardsley. Seamless servers: The case for and

against. In T. Alexander, editor, Massively
Multiplayer Game Development, pages 213–227.
Charles River Media, Inc., Hingham, MA, 2003.

[2] P. Bettner and M. Terrano. 1500 archers on a 28.8:
Network programming in age of empires and beyond,
March 2001. Available at http://www.gamasutra.

com/features/20010322/terrano_02.htm.

[3] W. K. Edwards and E. D. Mynatt. Timewarp:
techniques for autonomous collaboration. In CHI ’97:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 218–225, New
York, NY, USA, 1997. ACM Press.

[4] S. Greenberg and D. Marwood. Real time groupware
as a distributed system: concurrency control and its
effect on the interface. In In Proc. of CSCW ’94, pages
207–217, New York, NY, USA, 1994. ACM Press.

[5] C.-L. Ignat and M. C. Norrie. Grouping in
collaborative graphical editors. In In Proc. of CSCW
’04, pages 447–456, New York, NY, USA, 2004. ACM
Press.

[6] L. Pantel and L. C. Wolf. On the suitability of dead
reckoning schemes for games. In NetGames ’02:
Proceedings of the 1st workshop on Network and
system support for games, pages 79–84, New York,
NY, USA, 2002. ACM Press.

[7] G. Phillips, T. C. N. Graham, and C. Wolfe. A
calculus for the refinement and evolution of multi-user
mobile applications. In Design, Specification and
Verification of Interactive Systems (DSV-IS 2005),
pages 137–148. Springer LNCS, 2005.

[8] B. Schneiderman. Designing the User Interface :
Strategies for Effective Human-Computer Interaction.
Addison-Wesley Computer and Engineering
Publishing Group, Reading, UK, 1997.

[9] G. Shelley and M. Katchabaw. Patterns of optimism
for reducing the effects of latency in networked
multiplayer games. In Proc. of FuturePlay 2005, 2005.

[10] T. N. Wright, T. C. N. Graham, and T. Urnes.
Specifying temporal behaviour in software
architectures for groupware systems. In Proceedings of
Design, Specification and Verification of Interactive
Systems (DSV-IS’2000), pages 1–18. Springer LNCS,
2000.

