
Quality Analysis of Distribution Architectures for Synchronous Groupware

T.C. Nicholas Graham
School of Computing
Queen’s University

Kingston, Canada, K7L 4L5
graham@cs.queensu.ca

W. Greg Phillips
Elec. and Comp. Engineering

Royal Military College
Kingston, Canada, K7K 7B4

greg.phillips@rmc.ca

Christopher Wolfe
School of Computing
Queen’s University

Kingston, Canada, K7L 4L5
wolfe@cs.queensu.ca

Abstract

This paper identifies a set of distribution architectures
for the development of synchronous groupware and pro-
vides an analysis of their quality attributes. The architec-
tures and their quality attributes provide insight on how to
structure the implementation of synchronous groupware ap-
plications, providing developers with precise guidance on
the trade-offs between various implementation techniques.
In contrast to many proposed architectures for groupware,
these architectures have been synthesized through analysis
of successful groupware systems whose properties are well-
understood.

1. Introduction

Over the last two decades, numerous distribution archi-
tectures for synchronous groupware systems have been pre-
sented in the research literature [8, 20, 11]. However, there
have been few publications addressing the properties of
these architectures as deployed in production-quality sys-
tems. This makes it difficult for developers to assess which
architecture would be most appropriate for what tasks. This
relative lack of evaluation is not completely surprising, as
until recently very few synchronous groupware applications
were widely deployed or used.

In recent years, however, numerous synchronous group-
ware applications have come into wide use in the areas
of communication, online gaming and electronic meetings.
This presents us with the opportunity to analyze what imple-
mentation designs have worked in practice and to determine
their properties.

By its nature, architectural design embodies trade-offs
between quality attributes such as performance, security
and availability. Ideally, developers would be able to con-
sult a guide detailing the qualities of a range of well-
understood architectures, allowing them to choose the ap-
proach that best matches their application’s requirements.

The architectures presented in this paper represent one
small step towards this goal.

In this paper, we identify five distribution architectures
for synchronous groupware. These architectures all ad-
dress the basic problem of how to allocate components of
the groupware system to different computational nodes, and
how those components should communicate.

This paper makes two contributions:

• We have identified an interesting set of distribution
architectures used in commercial groupware systems.
While some of these approaches have been presented
in the past by the research community, this is the first
comprehensive attempt to examine architectures that
have been deployed in commercial systems and used
by thousands of people. Our criterion for the inclusion
of a distribution architecture in this presentation is that
we needed to find instances of its use in at least three
systems that have been deployed and widely used.

• We have analyzed these architectures with respect to a
broad set of quality attributes, identifying the tradeoffs
inherent in choosing a particular distribution architec-
ture. This differs from earlier analyses, which focus
primarily on performance [14]. As we shall see, when
other quality requirements are considered, the archi-
tecture with the best performance may not always be
the correct choice.

We first summarize what synchronous groupware is, then
discuss quality attributes of interest in evaluating groupware
implementations. Finally, we present the set of distribution
architectures that we have identified, and analyze them with
respect to these qualities.

2. Synchronous Groupware

Synchronous groupware allows people to communicate
or collaborate in real-time. After many years of limited



Figure 1. Examples of synchronous groupware applications

commercial success, in recent years synchronous group-
ware has become widely used in at least three application
areas:

• Communication Tools: Tools such as MSN Messenger
and Skype allow people to communicate at a distance,
either by textual chat, or more recently through voice
over IP and video. These tools have subscriberships
in the millions, and for many people, have become as
important as email and the telephone.

• Multiplayer Games: Games that allow people to col-
laborate and compete have become enormously popu-
lar. Services such as GameSpy and Xbox Live allow
millions of people to connect and play together. Mas-
sively multiplayer games such as World of Warcraft
allow thousands of people to meet, socialize and ad-
venture together in the same persistent virtual world.

• Electronic Meeting Tools: Tools allowing remote pre-
sentations and online meetings are becoming increas-
ingly used. Examples of commercially successful
products include WebEx, GoToMeeting, and WebAr-
row.

Representative examples of these tools in action can
be found in figure 1. MSN Messenger is a ubiquitously
deployed instant messaging tool featuring text, video and
voice communications. WebArrow is an electronic meeting
system, allowing participants to work together on shared
documents. World of Warcraft is a massively multiplayer
online game allowing thousands of players to socialize, col-
laborate and compete in a shared virtual world.

3. Qualities of Synchronous Groupware Sys-
tems

The design of software systems involves managing
tradeoffs. One solution may reduce bandwidth costs while
impacting usability. Another may give great security, at the
cost of deployment headaches for the system’s users. To
make informed choices, designers must first specify the re-
quirements of their system, and rank which of its desired
qualities are the most important. Quality attributes provide
a vocabulary for discussing these requirements [3]. There
has been considerable work in analyzing the performance
properties of distribution architectures for groupware, both
informally [8, 11, 20] and formally [14]. However, the
CSCW field has been weak in identifying and clarifying de-
sign tradeoffs over the wider spectrum of quality attributes
such as performance, usability, security, availability and
scalability.

Our first step is to identify quality attributes that are
particularly useful for discussing design tradeoffs in syn-
chronous groupware systems. We will then (in section 5)
be able to show the tradeoffs between distribution architec-
tures in terms of these quality attributes.

3.1. Performance

Synchronous groupware applications are normally de-
ployed over the Internet, and so suffer from the problems
of network latency, limited network bandwidth, and lossy
message delivery. These problems all result in performance
penalties.

There are numerous measures that capture aspects of the

2



performance of groupware systems. Some of the more crit-
ical are:

• Feedback time, feedthrough time: Feedback time mea-
sures the time from a user performing an action to see-
ing the result of that action. Feedthrough time mea-
sures the time from a user performing an action to
other users seeing the result.

• Frame rate: Applications such as video conferencing
and 3D games are often judged by the frequency with
which they update the display.

• Bandwidth consumption: Some distribution models re-
quire large available bandwidth to operate. This may
have consequences on the expense of operating the
groupware application, or on the ability to run it at all
in some environments. High bandwidth requirements
can negatively impact feedthrough time and frame rate.

3.2. Usability

The usability of a groupware system has an enormous
effect on its success [1]. While not all usability issues are
architectural in nature, some are heavily influenced by ar-
chitectural choices. Among these are:

• Ease of deployment: This measures how difficult it is
for users to configure their environments so that they
can take part in a groupware session. Issues include
whether users need to install software or involve the
local IT department.

• Fidelity: Groupware applications provide participants
with a view of some shared context. The degree to
which that view is a correct and up-to-date representa-
tion of the shared context is the application’s fidelity.

• Collaboration awareness: Groupware applications
vary significantly in their support for collaboration,
particularly in the restrictiveness of their coordination
models, whether they support pure or relaxed WYSI-
WIS1 views, and how well they provide group aware-
ness. The degree to which groupware applications are
designed for collaboration has been termed collabora-
tion awareness [8].

3.3. Security

Security refers to the preservation of confidentiality and
integrity of the information manipulated in a groupware ap-
plication, including the apparent identities of the users. Se-
curity is of great importance to corporate users of group-
ware, who are concerned about theft of sensitive data or

1WYSIWIS: What You See Is What I See

eavesdropping on conferences. Perhaps surprisingly, it is
also important in multiplayer games: players have shown
astonishing tenacity in their pursuit of ways of cheat-
ing [28], particularly in the case of massively multiplayer
games, where in-game assets often possess significant real-
world value.

3.4. Availability

Availability measures the percentage of time that the
groupware system is up and available for use. In the com-
mercial world, people expect groupware applications to
have a level of availability similar to that of their telephone.
Online games are offered as services, and therefore have
high uptime requirements from their player base. Availabil-
ity is normally measured via this equation:

mean time to failure
mean time to failure + mean time to repair

This implies that availability may be improved either by
increasing mean time to failure, or by decreasing mean time
to repair.

3.5. Scalability

Some groupware applications have stringent scalability
requirements. For example, a remote presentation system
may need to accommodate hundreds of attendees. A mas-
sively multiplayer online game may need to support thou-
sands of concurrent players in the same virtual world. The
infrastructure of an instant messaging system may need to
support millions of users.

4. The Workspace Notation

In section 5 we introduce distribution architectures sup-
porting the development and distributed implementation of
synchronous groupware systems. To present the architec-
tures, we use the Workspace Architecture Notation [21], a
precise notation explicitly designed to express the architec-
tures of groupware systems. The subset of the notation used
in this paper is shown in figure 2 and described below.

Workspace architectures are deployed on behalf of users
and consist of components, connectors between these com-
ponents, and the nodes on which the components reside.

There are three kinds of component in the notation. An
actor has its own thread, and is capable of initiating activ-
ity. Reactors react to their environment; they do not initiate
activity, but respond to stimuli from other actors or reactors.
Stores are passive components used to store data.

Components may be anchored on nodes, which represent
computational platforms such as computers.

3



actor

reactor

store

concurrency control and
consistency maintenance

node

user

synchronous call

asynchronous message

synchronization

Figure 2. The workspace notation

Components may be connected by connectors. A call
connector supports synchronous calls. A subscription con-
nector permits asynchronous messages to be sent from one
or more components to zero or more other components. A
synchronization connector ensures that two components are
observationally equivalent (i.e., synchronized.) All three
connector types may span node boundaries.

Finally, a concurrency control and consistency mainte-
nance unit (or CCCM) is responsible for ordering opera-
tions to provide an application-dependent level of consis-
tency. CCCMs may be connected to one another to allow
concurrency control over actions on a set of components.
Where architectures include replicated data, the CCCM
components enact the required replica consistency mainte-
nance algorithms.

5. Distribution Architectures

In this section, we present five distribution architectures
for synchronous groupware. The architectures address the
core problems of sharing data between session participants,
allowing participants to communicate, and connecting par-
ticipants together. To the best of our knowledge, these ar-
chitectures capture the best practice of development of syn-
chronous groupware; each has been observed in the devel-
opment of several real groupware systems that are in daily
use by thousands of people.

We identified these architectures by examining the im-
plementation design of existing systems. Our knowledge of
the designs was gained from a variety of available sources,
including published papers, direct observation of the sys-

�✓

✕

✕ ✕�✓Replicated state synchronization �✓✕

Replicated input broadcasting �✓✕ ✕✕ �✓

Centralized mixer with broadcaster �✓

✕✕Generic thin client �✓

�✓�✓✕Centralized core, thick client

De
plo

ya
bil

ity
Fid

eli
ty

Co
lla

b'n
 A

wa
re

ne
ss

Se
cu

rity
Av

ail
ab

ilit
y

Sc
ala

bil
ity

Pe
rfo

rm
an

ce

Figure 3. Distribution architectures for the
development of synchronous groupware

tems’ behaviours, and technical presentations by the sys-
tems’ developers.

Figure 3 lists these architectures and shows the quality
attributes of greatest relevance to each. We now discuss
each distribution architecture in detail.

5.1. Centralized Core, Thick Client

Figure 4 shows the centralized core, thick client distri-
bution architecture. This architecture is particularly useful
for the development of high-security, collaboration-aware
applications, and can be tuned for high scalability.

This architecture places the application’s functional core
on a server and allows multiple “thick clients” to connect to
it. The functional core takes care of all issues related to the
application’s semantics, while the thick client is responsible
for all aspects of presentation.

The client and functional core operate asynchronously.
The client sends non-blocking messages to the functional
core, either to notify it of the user’s actions or to request
information. The functional core provides updates to the
client in response to other users’ actions or to computations
taking place in the functional core itself.

Each client contains a local context whose purpose is to
cache information from the functional core and to support
client-side prediction. The local context is used to reduce
the frequency with which the client is required to wait for
information from the functional core.

All messages to the functional core flow through a
CCCM unit whose purpose is to serialize incoming mes-
sages, ensuring that messages are processed in the order in
which they arrive.

4



Server

Client PC Client PC

Local State Local State

Functional
Core

Thick Client Thick Client

Figure 4. Centralized core, thick client

5.1.1 Examples

This architecture is used widely in multiplayer video games,
ranging from games that support on order of ten players
(e.g., Half-life [5] and Halo 2 [7]) to massively-multiplayer
games supporting thousands of concurrent players (e.g., Ev-
erQuest2, Lineage [17] and Star Wars: Galaxies [22]).

The operation of this architecture is well illustrated by
EverQuest. There, the server is responsible for all gameplay
decisions, including positioning of players’ units, resolu-
tion of combat events, activities of AI-controlled characters
and inter-player trades. The client is responsible for manag-
ing user interactions, the 3D rendering and lighting of game
objects, animation, and physical effects of such as falling or
skidding. Thus, the client performs significant computation,
while the server retains control over the actual gameplay.

Interaction between the client and server is via high-level
messages. For example, if the client wishes to inform the
server that the player has moved, it sends a message of the
form

move( id, pos )

2EverQuest’s protocol has not been published, but has been re-
engineered by the game’s fans, and is documented in the source of the
ShowEQ utility [23].

Similarly, if the server wishes to inform the client of the
movement of a non-player character, it sends a message of
the form

move( id, pos, velocity, heading, animation )

which specifies that the object is to be moved to the given
new position and the given animation is to be played.

In the latter example, the velocity and heading are use-
ful for client-side prediction of the current location. Us-
ing the dead reckoning technique [16], the client extrapo-
lates positions of the game’s mobile entities from their last
reported position, heading and velocity. This allows posi-
tional updates to be transmitted less frequently, improving
bandwidth consumption at the cost of some degree of fi-
delity. (Lee states that 70% of bandwidth use in a massively
multiplayer game is related to movement [17].)

EverQuest is supported by 1,500 servers located in a
managed network operations centre, and allows up to 2,500
players to simultaneously interact in a single instance of the
EverQuest world [15]. In contrast, the Halo 2 game [7]
locates the functional core on one of the client computers,
allowing small groups to play without requiring any cen-
tral infrastructure. Both games have excellent availability;
EverQuest through server redundancy, and Halo 2 through
a mechanism for migrating the functional core in case of
failure of the hosting client.

5.1.2 Qualities and Tradeoffs

The centralized core, thick client architecture is appropriate
when security is of concern, since key application data and
application logic are controlled by the server. The client
may be responsible for significant computation, but does not
have direct access to sensitive data. This is the fundamental
reason why this architecture is used for multiplayer games.

This architecture has the scalability advantage that
clients communicate only with one other node (the server),
reducing bandwidth requirements as compared to replicated
approaches (see sections 5.4 and 5.5.) However, the cen-
tralized functional core can itself become a scalability bot-
tleneck; this is mitigated in massively multiplayer games
by distributing the load of the functional core over several
physical servers [4].

The server forms a single point of failure, possibly com-
promising availability. This problem can be addressed by
failover mechanisms such as redundancy in EverQuest’s
server farm and migration of the functional core in Halo 2.

Feedback time is generally poor with this architecture,
since all user inputs have to flow to the server before the
client can be updated. In practice, the use of the Local State
to perform client-side prediction ameliorates this problem,
possibly at the cost of fidelity.

5



Casting 
Computer

Functional
Core

Caster

Graphics
Subsystem

Viewing 
Computer

Thin Client

Input 
Capture

Figure 5. Generic thin client

5.2. Generic Thin Client

Figure 5 shows the generic thin client distribution archi-
tecture. This approach is widely used in electronic meeting
systems such as WebEx [27], GoToMeeting [10] and We-
bArrow [26], due to its ease of deployment.

In this architecture, one meeting participant runs an ap-
plication (or set of applications) to be used collaboratively.
The other participants run a generic thin client that provides
a mirror of the application. A “caster” (view broadcaster)
hooks into the graphics subsystem on the casting computer
and passes along changes in the application view to the thin
client, which then displays the changes. The thin client is
generic in the sense that it requires no knowledge of the un-
derlying application that is being displayed; it simply pro-
cesses display updates.

User inputs on the viewing computers are trapped by an
input capture component and forwarded to the casting com-
puter.3 On the casting computer, a CCCM unit serializes
the inputs of all users, typically filtering them according to
a floor-control scheme, and delivers the inputs to the appli-
cation.

5.2.1 Examples

WebEx [27] uses the generic thin client architecture to sup-
port application sharing within electronic meetings. With
application sharing, any number of participants can view an

3The input capture component may need to retrieve information from
the thin client in order to, e.g., compute relative mouse scaling.

application hosted on one participant’s computer. A special
mirror driver is installed on the casting computer that in-
tercepts changes to the display device, allowing the caster
unit to send display updates to each of the thin clients for
display. Since the literal contents of the application’s win-
dow are being broadcast, WebEx is restricted to being pure
WYSIWIS.

Only one participant can control the application at a time.
WebEx uses a floor control interface allowing the meeting’s
moderator to determine which participant’s inputs will be
injected into the application. A CCCM unit is responsible
for sending the controlling participant’s inputs to the appli-
cation on the casting computer.

Other popular applications of this form include WebAr-
row [26] and GoToMeeting [10].

5.2.2 Qualities and Tradeoffs

The primary advantage of this architecture is deployability,
since the application that is being shared is required only
on the casting computer, not on the viewing computer. This
allows a group to collaborate using standard, collaboration-
transparent applications, with only the additional installa-
tion of the thin client on participants’ computers plus the
caster on the casting computer. Commercial tools based on
this architecture typically bundle the caster and thin client
into a small web-deployable download.

This approach provides excellent feedback time and feed-
through time for the user of the casting computer, since all
computations take place locally and the floor-control con-
currency control imposes no overheads. For viewers, the
situation is worse, as inputs must travel to the casting com-
puter and outputs must return to the viewing computers in
the form of screen images, normally as compressed bitmap
data. For applications involving rich graphics and anima-
tion, this overhead may be significant.

When bandwidth is at a premium, the viewers’ frame
rate is typically reduced, so updates are propagated more
slowly. This may be ameliorated somewhat by use of the
centralized mixer and broadcaster architecture (see sec-
tion 5.3).

Availability is a concern with this architecture since the
casting computer is a single point of failure: if it becomes
unavailable, the collaborative session cannot continue. For
high availability, it may be better to consider replicated ar-
chitectures (sections 5.4 and 5.5) or a centralized architec-
ture with managed hosting (section 5.1).

5.3. Centralized Mixer with Broadcaster

Figure 6 shows the centralized mixer with broadcaster
distribution architecture. This architecture addresses situa-
tions where inputs from a set of session participants need

6



Server

Client PC Client PC

Mixer

Client Client

Figure 6. Centralized mixer with broadcaster

to be mixed in some way and then rebroadcast to other
participants. The mixed data may be identical for all or
may be customized for individual participants or groups of
participants. This architecture is commonly found in com-
munication tools such as Skype [2], MSN Messenger [18]
and TeamSpeak [25], and in tools based on the generic thin
client architecture (section 5.2.)

As the figure indicates, one or more clients send data
to the server computer, where a CCCM unit serializes the
data (if necessary) and the data is passed to the mixer. The
mixer then broadcasts one or more streams of mixed data to
the clients.

A common variant of this architecture locates the mixer
on one of the client PCs.

5.3.1 Examples

The Skype internet telephony tool [2] uses the centralized
mixer with broadcaster distribution architecture. Each par-
ticipant in a call runs a Skype client which encodes the par-
ticipant’s voice and plays back the conversation of the other
participants. The clients send their participants’ voice data
to a mixer, located on a “super-node”, which is simply the
computer of some Skype user.4 The mixer creates and sends
a custom sound stream to each participant. This stream in-
cludes the voices of all other participants; the participant’s
own voice is omitted to prevent the sensation of echo.

4The “super-node” owner is not necessarily involved in the session.

Participant's PC

Application

Participant's PC

Application

Application
Data

Application
Data

Figure 7. Replicated input broadcasting

The WebArrow electronic meeting system [26] uses this
architecture for all its supported communication modalities,
including voice, text chat and screen data. Screen data is
sent by the casting computer of the generic thin client ar-
chitecture (see section 5.2) to the mixer, which is located on
a managed server. The mixer provides a stream of screen
data to each of the viewers, possibly providing streams with
different frame rates in order to account for varying band-
width and processing power available to each client.

5.3.2 Qualities and Tradeoffs

The main benefits of the centralized mixer with broadcaster
architecture are reduction of bandwidth consumption and
increased control in the tradeoff between fidelity and feed-
through time.

The architecture reduces bandwidth consumption when
compared to replicated approaches (sections 5.4 and 5.5),
since each client communicates with only one other node,
rather than requiring each peer to communicate with each
other peer. As with other centralized architectures (sec-
tion 5.1), this aids scalability, as bandwidth use grows lin-
early with the number of clients, not quadratically. (This is
only true as long as the server’s bandwidth and processing
power does not become a bottleneck.) However, the archi-
tecture may have a negative effect on availability, since the
centralized mixer represents a single point of failure.

Relatedly, the architecture allows the selective reduction
of fidelity in order to improve feedthrough time. Clients
can be grouped by their available bandwidth and processing
time. Different qualities of stream (e.g., varying frame rate
in video and application sharing or frequency range in voice
transmission) can be provided to each group.

7



5.4. Replicated Input Broadcasting

Figure 7 shows the replicated input broadcasting distri-
bution architecture. For some classes of application, this ap-
proach provides a low-bandwidth mechanism for synchro-
nizing the views of multiple users. Also, this architecture
provides an easy way of creating a collaborative version of
certain existing single-user applications.

In this approach, each participant has a separate instance
of the shared application on his/her PC. The instances are
synchronized by broadcasting each participant’s inputs to
the other instances so that they can be applied locally. A
CCCM unit is responsible for broadcasting the inputs and
ensuring that they are applied in the same order to each in-
stance of the application.

If the application is a reactor (that is, does not initiate
its own activity, as with most word processors), the CCCM
needs only to serialize inputs, applying them in the same
order at each host. If the application is an actor (that is, it
carries out its own activities in parallel with the player, as
with a game), the CCCM needs to ensure that inputs are
applied to all instances at the same point in their execution.
This requires that the application provide a mechanism to
permit barrier synchronization.

5.4.1 Examples

Microsoft’s Groove [13] combines synchronous and asyn-
chronous collaboration. Users may collaborate in real-time
via a suite of tools such as a shared whiteboard. In addition,
users can collaboratively edit Word documents.

Groove’s collaborative Word editing is enabled via repli-
cated input broadcasting. Both participants must run Word.
Each user’s inputs are broadcast to the other, and enacted
on both the local and remote instances of word. An ex-
plicit floor control policy is used to ensure that only one
participant at a time provides input to the application. The
collaboration is purely WYSIWIS.

Age of Empires 2 [6] is a highly successful real-time
strategy game, released in 2000, and still popular despite the
release of its sequel in 2005. In the game, players develop
a city through the ages while fighting neighbouring cities.
Players may simultaneously perform inputs. The game ap-
plication itself is an actor, as AI routines constantly advance
gameplay even in the absence of user inputs.

The CCCM units on each client cooperate to gather user
inputs and inject them into the game at the same point. The
game is paused on each peer before the inputs are applied.
The game then continues running until the next synchro-
nization point. In an interesting tradeoff, inputs are delayed
before their application. This allows higher frame rate, as
concurrency control is resolved asynchronously with game
operation, at the cost of worsened feedback time.

In addition to Age of Empires, this approach is used in
numerous other real-time strategy games [12].

5.4.2 Qualities and Tradeoffs

The principal benefits of this approach are that it in some
cases, it provides lower bandwidth use than other replicated
approaches (section 5.5) and that, as a replicated architec-
ture, it provides good availability.

In general, however, feedback time is delayed by the
CCCM’s distributed process for selecting the order in which
updates are applied. In the special case of floor control (as
in the Groove example above), feedback time is optimized
at the cost of requiring participants to take turns.

The decision between using this architecture versus
replicated state synchronization (section 5.5) depends
largely on the bandwidth consumption of the two ap-
proaches. In Age of Empires, the messages required to en-
code user inputs are far smaller than the those required to
compute state changes [6]. Conversely, far less data would
be required to capture the changes in a word processor doc-
ument than to encode the sequence of mouse and keyboard
actions required to enact the changes. Additionally, this ar-
chitecture is restricted to pure WYSIWIS views; if relaxed
WYSIWIS is preferred, replicated state synchronization is
a better choice.

This approach has good availability properties, in that
the failure of one peer does not prohibit other peers from
continuing. Some care is required with turn-taking proto-
cols to ensure that the failed peer does not indefinitely hold
the right to input.

A significant drawback of this approach is that it pro-
vides effectively no security, as all participants must be
trusted with all application data.

The scalability of this approach is limited by available
bandwidth, since each peer broadcasts its changes to all
other peers.

This distribution architecture requires all participants to
install the complete application, thus is less easily deploy-
able than other approaches (section 5.2.) Deployment may
be further complicated by the presence of firewalls, mak-
ing peer-to-peer communication difficult. Centralized ap-
proaches (sections 5.1 and 5.3) are significantly easier to
deploy in the presence of firewalls.

5.5. Replicated State Synchronization

Figure 8 shows the replicated state synchronization dis-
tribution architecture. For some kinds of application, this
approach provides a low-bandwidth mechanism for syn-
chronizing relaxed WYSIWIS applications. Here, partic-
ipants interact directly with the application. The applica-
tion’s state is divided into a shared context, containing data

8



Participant's PC

Application

Shared 
Context

Local 
Context

Participant's PC

Application

Shared 
Context

Local 
Context

Figure 8. Replicated State Synchronization

common to all participants and a local context, which stores
data specific to the given participant.

The shared contexts of the different participants are syn-
chronized. All updates to the shared context pass through a
CCCM unit whose task is to broadcast the updates to other
participants and resolve conflicts in applying the updates.
The CCCMs may use any of a range of pessimistic and op-
timistic concurrency control schemes [11].

5.5.1 Examples

The replicated state synchronization architecture has been
applied in surprisingly diverse contexts. We present exam-
ples of its use in a shared text editor, a real-time strategy
game, and a network of military command and control sys-
tems.

SubEthaEdit [24] is a relaxed WYSIWIS shared text edi-
tor. Any number of participants can edit the same document
in real-time, seeing each others’ changes as they are made.
Participants can scroll the document separately. Awareness
of other participants’ actions is provided via telepointers,
colour-coding, and scroll bar-based awareness widgets. The
shared context stores the contents of the document and the
awareness information. The local context stores the partici-
pant’s own settings, such as font selection and cursor posi-
tion.

The real-time strategy game NetStorm: Islands at
War [12] replicates game state amongst all players’ Shared
Context components, and broadcasts commands that reflect
the actions of game units. As with Age of Empires 2 (sec-
tion 5.5.1), the application of user inputs to the game must

be synchronized via a barrier-wait mechanism.
Command and control systems support cooperation

in the real-time deployment of military assets. Sys-
tems developed under the Multilateral Interoperability Pro-
gramme [19] follow the replicated state synchronization
distribution architecture. The shared context contains infor-
mation from each country’s system, in that country’s pro-
prietary format. The applications are heterogeneous, sep-
arately developed by each country. The synchronization,
in addition to its usual duties of concurrency control and
consistency maintenance, is therefore also responsible for
translating updates to a common form that can be applied
to all replicas. Consistency is maintained via a dOPT-like
algorithm [9].

5.5.2 Qualities and Tradeoffs

The replicated state synchronization distribution architec-
ture is particularly useful in cases where availability is
important. As with other replicated approaches (see sec-
tion 5.4), it is possible for participants to continue in case
of failure of a network link or another participant, as the
application and its data are available on each local node.

As discussed in section 5.4.2, bandwidth consumption of
this approach may be significant, depending on the amount
and frequency of data change. The replicated input broad-
casting architecture (section 5.4) may be more appropriate
depending on the cost of transmitting inputs versus state
changes.

The performance of this architecture largely depends
on the chosen CCCM approach. In general, locking
approaches penalize feedback time, while optimistic ap-
proaches reduce fidelity in cases when conflicts result in
rollbacks or fixups [11]. Scalability is also influenced by the
choice of CCCM; locking scales poorly, while optimistic
approaches scale well when conflicts are infrequent.

This architecture shares the scalability and security con-
cerns of other replicated approaches (see section 5.4).

6. Conclusion

To build effective groupware systems, developers need
to be able to understand the tradeoffs involved in the choice
of competing distribution architectures. To aid this, we have
identified quality attributes of interest to groupware devel-
opers, and have shown the strengths and weaknesses of ar-
chitectures found in groupware applications in use by thou-
sands of people with respect to these attribues.

The importance of these quality attributes and their ef-
fect on system design is evident in the design of several of
the applications surveyed in this paper. For example, We-
bArrow is primarily aimed at group meetings which may
be organized at short notice for diverse participants. This

9



scenario puts a premium on ease of deployment; however,
scalability and availability are less important since group
sizes are generally small. This suggests that the generic thin
client architecture would be appropriate, and this is what
WebArrow uses. One constraint of the generic thin client
is that it can be bandwidth intensive due to the size of dis-
play updates; WebArrow resolves this though the use of the
centralized mixer with broadcaster.

Previous work in this area has focused almost exclu-
sively on performance. By taking considering a wider range
of quality attributes of a number of commercially successful
distribution architectures, we have provided further assis-
tance to developers in making informed choices for future
designs.

7. Acknowledgements

We gratefully acknowledge the support of the Natural
Science and Engineering Research Council of Canada and
of the Canadian Department of National Defence’s Direc-
torate of Land Command Systems Program Management.
We would like to thank our colleagues in the EQUIS lab for
their stimulating discussion around these topics.

References

[1] K. Baker, S. Greenberg, and C. Gutwin. Empirical
development of a heuristic evaluation methodology for
shared workspace groupware. In Proc. ACM Conference
on Computer-Supported Cooperative Work, pages 96–105.
ACM Press, 2002.

[2] S. Baset and H. Shulzrinne. An analysis of the Skype peer-
to-peer internet telephony protocol. In IEEE Infocom, 2006.
To appear.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. SEI Series in Software Engineering. Addison-
Wesley, 1998. ISBN 0-201-19930-0.

[4] J. Beardsley. Seamless servers: The case for and against. In
T. Alexander, editor, Massively Multiplayer Game Develop-
ment, pages 213–227. Charles River Media, 2003.

[5] Y. W. Bernier. Latency compensating methods in
client/server in-game protocol design and optimization. In
Game Developers Conference, 2001.

[6] P. Bettner and M. Terrano. 1500 archers on a 28.8: Network
programming in Age of Empires and beyond. In Game De-
velopers Conference, 2001.

[7] C. Butcher and B. House. Recreating the LAN party online:
The networking and social infrastructure of Halo 2. In Game
Developers Conference, 2005.

[8] P. Dewan. Architectures for collaborative applications.
In M. Beaudouin-Lafon, editor, Computer Supported Co-
operative Work. John Wiley & Sons Ltd., Jan. 1999. ISBN
0-471-96736-X.

[9] C. Ellis and S. Gibbs. Concurrency control in groupware
systems. In Proceedings of the ACM Conference on the

Management of Data (SIGMOD ’89, Seattle, WA, USA,
May 2–4), pages 399–407. ACM Press, 1989.

[10] GoToMeeting. www.gotomeeting.com.
[11] S. Greenberg and D. Marwood. Real time groupware

as a distributed system: Concurrency control and its ef-
fect on the interface. In Proceedings of the ACM Con-
ference on Computer-Supported Cooperative Work (CSCW
’94, Chapel Hill, NC, USA, Oct. 22–26), pages 207–217.
ACM Press, 1994.

[12] J. Greer and Z. B. Simpson. Minimizing latency in real-time
strategy games. In D. Treglia, editor, Game Programming
Gems 3, pages 488–495. Charles River Media, 2002.

[13] Groove. www.groove.net.
[14] S. Junuzovic, G. Chung, and P. Dewan. Formally analyzing

two-user centralized and replicated architectures. In Proc.
ECSCW ’05, pages 83–102. Springer-Verlag, 2005.

[15] D. Kushner. Enineering EverQuest: Online gaming de-
mands heavyweight data centers. IEEE Spectrum, 42(7):34–
39, July 2005.

[16] F. Laramée. Dead reckoning in sports and strategy games.
In S. Rabin, editor, AI Game Programming Wisdom 2, pages
499–504. Charles River Media, 2004.

[17] J. Lee. Considerations for movement and physics in MMP
games. In T. Alexander, editor, Massively Multiplayer Game
Development, pages 275–289. Charles River Media, 2003.

[18] M. Mintz. MSN Messenger Protocol.
http://www.hypothetic.org/docs/msn.

[19] NATO Mutilateral Interoperability Programme. Multilat-
eral Interoperability Programme Technical Interface De-
sign Plan, version 2.5, December 2005. Available from
www.mip-site.org.

[20] W.G. Phillips. Architectures for synchronous group-
ware. Technical Report 1999-425, Queen’s University,
Kingston, Ontario, Canada, May 1999. Available from
www.cs.queensu.ca.

[21] W.G. Phillips, T.C.N. Graham, and C. Wolfe. A calculus for
the refinement and evolution of multi-user mobile applica-
tions. In Proceedings of the Twelfth International Workshop
on Design, Specification and Verification of Interactive Sys-
tems (DSV-IS ’05), LNCS, pages 137–148. Springer-Verlag,
2005.

[22] J. Randall. Scaling multiplayer servers. In D. Treglia, editor,
Game Programming Gems 3, pages 520–533. Charles River
Media, 2002.

[23] ShowEQ open-source project.
http://www.showeq.net.

[24] SubEthaEdit. Available from
www.codingmonkeys.de/subethaedit.

[25] TeamSpeak. http://www.goteamspeak.com.
[26] WebArrow. www.webarrow.com.
[27] WebEx. www.webex.com.
[28] J. Yan and B. Randell. A systematic classification of cheat-

ing in online games. In NetGames ’05: Proceedings of 4th
ACM SIGCOMM workshop on Network and system support
for games, pages 1–9, New York, NY, USA, 2005. ACM
Press.

10


