
Toward Quality-Driven Development of 3D Computer
Games

T.C. Nicholas Graham and Will Roberts

School of Computing, Queen’s University, Kingston, Canada, K7L 4L5
graham@cs.queensu.ca, wildwilhelm@gmail.com

Abstract. The development of video games is a complex software engineering
activity bringing together large multidisciplinary teams under stringent
constraints. While much has been written about how to develop video games,
there has been as yet little attempt to view video game development from a
quality perspective, attempting to enumerate the quality attributes that must be
satisfied by game implementations, and to relate implementation techniques to
those quality attributes. In this paper, we discuss desired quality attributes of 3D
computer games, and we use the development of our own Life is a Village game
to illustrate architectural tactics that help achieve these desired qualities.

1 Introduction

Gaming software sales grew to $24.5 billion world wide in 2004 [6], while in the
United States alone, 228 million computer games were sold in 2005 [4]. The gaming
industry has become a significant part of the software development world.

Games are challenging to develop. They involve complex algorithms in graphics,
artificial intelligence, database and distributed systems, have stringent performance,
usability and correctness requirements, and at the same time, are developed under
aggressive delivery schedules. Game development teams are multidisciplinary, and
for top titles include 100 or more people.

As yet, the software engineering literature has had little to say about how to
develop games. In this paper, we discuss aspects of why developing games is different
from developing other forms of software, and, motivated by a framework suggested
by Bass et al. [1], we propose a set of architectural tactics that are helpful in game
development. These tactics provide guidelines for how to structure games to address
their quality requirements. The tactics are motivated and illustrated by our experience
with the development of Life is a Village, a 3D computer-aided exercise game.

The paper is organized as follows. We first introduce Life is a Village, from which
our examples will be drawn. We then discuss quality attributes of interest to games.
Finally, we introduce our architectural tactics for game development and relate them
to those quality attributes.

2 T.C. Nicholas Graham and Will Roberts

Fig. 1. Life is a Village game and player.

2 Life is a Village

Life is a Village is an experimental game testbed intended for exploration of
computer-aided exercise [12], in which physical exertion is part of the game play.1
The goal of the game is to gather resources from a large exterior landscape and use
them to build an interesting village. The player traverses the landscape in search of
resource nodes (such as wood, stone, etc.) When a node has been found, the player
dispatches a villager from his/her village to start harvesting the resource. Once
sufficient resources of the correct type have been collected, the player can add a new
structure to the village.

The player uses a recumbent exercise bicycle to control the game (figure 1).
Players navigate the terrain on their bicycle in the obvious way: pedaling moves
forward; pedaling quickly moves forward quickly. Going uphill makes cycling harder;
going downhill makes cycling easier. The player uses a handheld, wireless PS2
controller to steer, change gears, and provide button-based commands to the game.
Exercise is an integral part of the game; the more players pedal, the faster they find
resource nodes, the faster their villagers work, and therefore, the faster they can add to
their village.

The core game framework has been implemented, but more work is to be done to
make it a “fun” and playable game, such as adding additional village structures and

1 More information on Life is a Village can be found at

http://dundee.cs.queensu.ca/wiki/index.php/Life_is_a_Village

Toward Quality-Driven Development of 3D Computer Games 3

additional resource types. The development of this game motivates the tactics
described in the remainder of this paper.

3 Quality Attributes for 3D Games

In this section, we review a number of quality attributes that are important to game
development. This list is far from exhaustive, but serves as a representative set of
qualities most important to game developers. Drawing from the presentation of Bass
et al. [1], we select attributes divided into business time, development time and
runtime. In section 4, we will then show how our architectural tactics address these
quality attributes.

3.1 Business Qualities: Time to Market

Game developers face significant pressures to bring their products to market quickly.
This pressure derives from a number of sources.

Games are often tied to events such as the release of a movie or the start of a sports
season. For example, this year’s Olympic Winter Games were accompanied by the
Torino 2006 game; recent films such as King Kong, Spider-Man 2 and the Lord of the
Rings trilogy have all been supported by video game releases. Each year sees the
release of a profusion of football, hockey and soccer games featuring that season’s
players. Games must be released on schedule for the event with which they are
associated, or risk losing their appeal.

Games that take a long time to develop risk falling behind the technology curve,
leading to a spiral of further delays as artwork and special effects are updated to avoid
appearing dated upon release. Additionally, console platforms have an expected
lifetime of about five years, meaning that late releases risk catching their chosen
platform on the decline.

Finally, the cost to develop a game for the next generation of consoles is estimated
at $15-25 million [5]. Given such outlays, publishers face intense pressure to release
quickly and begin recouping their investment.

3.2 Development-Time Qualities: Testability, Modifiability, Reusability

Modern computer games are complex and detailed, typically requiring tens of hours
to complete. Games are highly graphical, and necessarily have non-deterministic
behaviour. Some games have such complex artificial intelligence that their behaviour
is “emergent”, or unpredictable. All of these factors make games difficult to test.
Games have stringent correctness requirements. Console games are distributed and
played from a disk, so patches cannot be issued after the game’s release. PC games,
on the other hand, are routinely supported by patches, costing the publisher significant
post-release development resources and distribution costs, as well as damaging its
reputation. For example, the game Battlefield 1942, released in 2002, is currently

4 T.C. Nicholas Graham and Will Roberts

supported by over 270 MB of patches; Rome: Total War, released in 2004, requires
over 130 MB of patches for correct play.

Modifiability is an important quality attribute of games. Games may evolve
significantly during their development in the search for the elusive “fun” quality.
Games are often extensively modified after their release as game expansions are
developed. Massively multiplayer games evolve considerably over their online life,
sometimes completely changing their character. Modifiability is a pre-cursor to
reusability; the success of projects often relies on reuse of code from earlier projects.

3.5 Runtime Qualities: Usability, Performance

Usability of games differs significantly from that of other kinds of software. The main
task of someone playing a game is to be entertained (or simply, to have fun.) Fun
games routinely violate all normal rules for the design of usable systems. Games often
provide players with information in inefficient forms, provide overly complex
command interfaces and force players to perform low-level tasks that could quite
reasonably be automated. However, a first-person shooter game that provided the
player with the location of all enemies, a racing game that prevented players from
losing control of their car, or a Tetris game that automatically chose the best location
for a falling block would not be fun. Game usability must therefore balance the ease
of learning and use of the game’s interface with the fun that using the interface
provides.

The primary performance metric in video games is frame rate, measured in frames
per second (fps). A minimal value ensuring smooth animation is approximately 30
fps. A maximal value would match the refresh rate of the player’s monitor; modern
CRT monitors have a refresh rate of 75-85 Hz. Game players claim to be able to
perceive the difference of frame rates up to 200 Hz, meaning that high frame rates
may be necessary for marketing reasons even in cases where the benefit to game play
is not clear.

Both measures of average frame rate and worst frame rate are important. Average
frame rate gives a sense of how well the game is performing in general. Worst frame
rate indicates how well the game does when under stress, perhaps the very time that
player’s require best performance.

4 Tactics for Game Development

Architectural choices can greatly influence a game’s quality attributes. The trade
literature provides diverse advice on how to architect games (e.g., for sports games
[15], for massively multiplayer online games [13] and for real-time strategy games
[11]). There is, however, little to help game developers choose broad architectural
strategies in a principled manner. We advocate the use of architectural tactics [1] to
help developers make informed architectural choices. Architectural tactics provide
high-level advice for how to structure a software system. Tactics are not code or
design patterns, but are higher-level, more generic techniques. Tactics influence
quality attributes: a given tactic may improve one attribute while worsening another.

Toward Quality-Driven Development of 3D Computer Games 5

–++++Decompose application into independent
components

+––Identify opportunities for parallel execution

+Avoid blocking actions in main frame loop

++++Use scripting languages to allow rapid
modification of game

++Structure application around existing
components

–+++Create tools allowing non-programmers to
engage in development

–++++Decompose application into independent
components

+––Identify opportunities for parallel execution

+Avoid blocking actions in main frame loop

++++Use scripting languages to allow rapid
modification of game

++Structure application around existing
components

–+++Create tools allowing non-programmers to
engage in development

Ti
m

e
to

 M
ar

ke
t

Te
st

ab
ilit

y
M

od
ifi

ab
ilit

y
R

eu
sa

bi
lit

y
U

sa
bi

lit
y

(F
un

)
Pe

rfo
rm

an
ce

 (F
PS

)

Table 1. Architectural tactics for game development and quality attributes that they influence.
’+’ indicates a positive influence on the quality attribute, ’-’ a negative influence, and ’ ’ a
tuneable influence.

An architect can therefore analyze which tactics best meet the trade-offs required
for his/her project. The approach of linking architectural tactics to software quality
attributes has already been applied to human-computer interaction more broadly [2,
7], but not to game development.

Table 1 shows the tactics we propose for game development. This list should be
viewed as a starting point; ultimately, our goal is to provide a rich set of tactics that
developers can study before committing to a concrete architecture. These tactics were
identified as a result of our experience with developing the Life is a Village game as
well as consulting the game development trade literature. Developing a more
complete set of will require the expertise of a wide group of game developers.

In sections 4.1 through 4.6, we review the six tactics presented in table 1, and show
how they influence the quality attributes discussed in section 3. The tactics are
illustrated with examples from the development of the Life is a Village game.

4.1 Tactic: Create tools allowing non-programmers to engage in development

To understand how games are developed, it is useful to consider the structure of game
development teams. Table 2 shows the composition of the teams that developed five
popular video games between 2002 and 2005. (The table was produced by consulting

6 T.C. Nicholas Graham and Will Roberts

 Battlefield
1942

(2002)

World of
Warcraft

(2004)

Civilization
4 (2005)

Battle for
Middle
Earth
(2005)

F.E.A.R.
(2005)

Producer 2 6 3 8 14
Designer 3 29 2 11 9
Writer 5 2
Artist 12 41 34 39 18
Programmer 11 29 18 33 24
Audio 3 14 6 9
Video 35 7 3
Quality
Assurance

51 114 26 73 56

Actor 18 36 1 16
Total 100 304 97 179 149

Table 2. Breakdown of development teams for five popular computer games.

the credits released by the games’ publishers. For consistency, all people appearing in
development roles in the credits are included in the table; no attempt was made to
distinguish between part-time and full-time roles.)

Table 1 reveals three interesting points. First, game development teams for
premiere (known as “AAA”) games are large, involving upwards of 100 people.
Second, these teams are highly interdisciplinary, involving design, story writing,
creation of artwork, music, sound effects, voice acting, creation of video cut-scenes,
programming and quality assurance. Programmers represent only 10%-20% of the
development team. Third, the role of quality assurance is enormous, ranging over
25%-50% of the team’s personnel.

The tasks of artists and designers include creating and animating entities that
appear in the game world, designing the physical structure and appearance of game
“levels” (interior or exterior), and scripting encounters between the players and the
environment.

Since all of these tasks involve programming-like activities, one approach is to
have the artists/designers specify the behaviour they desire, leaving programmers
realize the specification. It is far better to allow non-programmers on the development
staff to perform these tasks directly, without the involvement of programmers: artists
can get faster turn-around on their ideas, and programmers cease to be a bottleneck in
the process. All game development studios purchase at least some commercial tools to
help empower artists, for example tools for modeling entities (e.g., Maya and
SoftImage XSI) and tools for animation (e.g., Alias MotionBuilder). Larger studios
can afford to build custom tools helping with other aspects of development.

This tactic helps with time to market by allowing artists/designers to be more
productive. It helps reusability, since once developed, the tools can be used in future
projects. Usability is enhanced, since designers can more quickly iterate between
development and testing. Performance may be hindered as high-level tools may
produce less optimized output than hand-crafted code.

Toward Quality-Driven Development of 3D Computer Games 7

Base Texture

Detail Texture (rock)

Detail
Texture
(water)

Generated
Terrain

Fig. 2. A terrain consists of a polygon mesh with an overlaid base texture and detail texture

4.1.1 Illustration: Landscape Generation in Life is a Village
We applied this tactic in Life is a Village by developing a tool for procedural
generation of landscapes. This allows people without programming skill to quickly
develop rich 3D worlds. In 3D games, exterior landscapes are typically represented as
a polygon mesh covered in a texture. The polygon mesh is covered in a base texture,
an image that is stretched over the terrain’s area. Often, a detail texture is blended
with the base texture to give additional detail in the neighborhood close to the camera,
reducing blurriness (figure 2).

Terrains can of course be created manually by a programmer by writing the
appropriate DirectX or OpenGL commands to create and texture the terrain geometry.
More realistically, artists use tools such as Leveller2 and Terragen3 to draw the 3D
model of the terrain and to paint it with the desired texture. Such tools export a
heightmap and a texture. The heightmap is a matrix specifying the height y of the
terrain at each (x, z) point, and is used to generate the features of the terrain during the
game’s runtime. Terrain modeling tools such as these can lead to beautiful results, at
the cost of significant manual labour.

2 Leveller: http://www.daylongraphics.com/products/leveller
3 Terragen: http://www.planetside.co.uk/terragen

8 T.C. Nicholas Graham and Will Roberts

<terrain name="hill" mapcolour="07ab0b">
<edge bleed="30" crumble="5" />
<height scale="0.03" bottom="0.01" top="0.20" />
<noisycolour scale="0.02" offset="10" >

<colour value="(95,150,16)" />
<colour value="(82,111,58)" />

</noisycolour>
</terrain>

Fig. 3. Landscapes are generated from a terrain map, a simple bitmap image showing where
each type of terrain is located.

For Life is a Village, we took an alternative approach of generating landscapes
procedurally from a high-level description. This approach allows developers to
quickly generate landscapes of arbitrary size, reducing time to market. Landscapes
consist of numerous terrain types (e.g., hills, mountains, forest), each with differing
properties such as height and coloration.

Figure 3 shows the inputs that a developer must provide to the terrain generation
tool. The developer uses a paint program to create a bitmap representing where each
terrain type appears. In the bitmap, terrain types appear representing mountains, hills,
forest, plain, river and lake.

The properties of the terrain types are defined in XML. (Future plans involve
building a simple GUI editor for terrain types.) Attributes of terrain types include the
range of colours that can appear in the terrain, the height range of the terrain, the
“noisiness” of the terrain (e.g., smooth, rolling hills vs jagged peaks), and properties
allowing shadows to be pre-computed. The result of running the tool is a heightmap
and a base texture. Figure 2 shows the result of running the inputs shown in figure 3,
and an example of the rendered terrain.

4.2 Tactic: Decompose application into independent components

This tactic represents one of the fundamental lessons of software engineering, that it
is important to decompose software system into components with well-defined
interfaces that can be developed by different people. While this tactic is important to
all large software products, it is of particular interest to the development of games,
where large teams work under intense time pressure. Adopting this tactic, most
modern games are based on a well-understood set of core components.

This tactic aids time to market by allowing parallel work, testability by providing
hooks for unit testing, modifiability through localization of change, and reusability
through the provision of components that may be modified for use in other games.
Performance may be negatively impacted by rigid component interfaces or by
components’ information hiding, but may also be improved by algorithmic insights
afforded by separation of concerns.

Toward Quality-Driven Development of 3D Computer Games 9

Fig. 4. The architecture of Life is a Village, in Workspace Architecture notation [9].

4.2.1 Illustration: Architecture of Life is a Village
Figure 4 shows the architecture of the Life is a Village game. This shows how the
game is decomposed into high level components that can be given to different
development teams. The components present in this architecture are typical of modern
3D games. The architecture is expressed in Workspace Architecture notation [9]. The
core of the application is the Game, which runs in its own thread. The game takes
input from various input devices, such as the bicycle and joystick. The input manager
runs asynchronously in its own thread. Output is provided by calls to a Graphics
Engine, which in turn updates the Display, and to a Sound Engine, which sends data
to the Speakers.

The AI component is responsible for villager behaviour. The Physics component
deals with collision detection and realistic behaviour of the player and non-player
characters when jumping and falling.

The User Data and Game World Data components represent data about the
player’s state and the state of the game world itself.

4.3 Tactic: Structure application around existing components

A critical strategy for quickly developing complex games is the re-use of components
from other projects, or the purchase of third-party components. Examples of highly
successful third-party components include the Unreal game engine4 and the Havok
physics engine5. Reuse is critical to game development due to the importance of time

4 Unreal Engine: http://www.unrealtechnology.com/html/technology/ue30.shtml
5 Havok Physics Engine: http://www.havok.com

10 T.C. Nicholas Graham and Will Roberts

to market; there simply isn’t time to build all components of a game from scratch. A
significant part of the value of game development companies is the base of software
they have available allowing them to develop new games quickly.

Reuse of components can help time to market by reducing code that has to be
written, but can also increase time to market if the time to adapt the component to its
new use is excessive, or if the component ultimately is a poor match with its
requirements. Reuse helps with testability if the component has already been
extensively tested in other contexts. As above, modifiability may be helped through
localization of change, and performance may be either improved or worsened
depending on the details of the components. Reuse may negatively impact usability
through locking the developers into a particular style of gaming, or may improve
usability by supporting varied and complex interaction styles that would be
prohibitive to program from scratch.

4.3.1 Illustration: Use of open-source components
Life is a Village relies heavily on third-party components:
• The Object-Oriented Graphics Rendering Engine (OGRE)6 is an open-source 3D

graphics rendering engine that clearly illustrates the trade-offs of component use.
While OGRE abstracts the low-level details of DirectX and OpenGL, dramatically
reducing the effort of developing 3D graphics code, it has an incomplete feature
set, third part add-ons of mixed quality, and difficulty integrating with commercial
modeling tools.

• The Open Dynamics Engine (ODE)7 is an open-source physics engine. ODE
supports collision detection and correct physical behaviour of objects acting under
force.

• OpenAL8 is an open-source 3D sound engine adopted by such well-known titles as
Doom 3 and Quake 4.

The gaming world has seen a strong convergence on what predefined components
should be used and a perhaps surprisingly strong list of open-source tools.
Additionally, an increasing number of companies have created strong niches in the
development of third party tools for game development.

4.4 Tactic: Use scripting languages to allow rapid modification of game
Scripting languages have become a common technique for reducing the time to
develop games and for reducing the skill level required of game developers. Games
almost uniformly use C/C++ for core graphics, low-level AI and networking.
Scripting languages such as Python or Lua [8] can then be used to encode the game
play itself. Development of custom languages may be appropriate when domain
information can be encoded in the language [10], but the cost of developing and
maintaining custom languages may exceed their value [14]. Some games open their
scripting languages to their player base, leading to a profusion of game enhancements
produced and made available by players.

6 OGRE 3D Graphics Engine: http://www.ogre3d.org
7 Open Dynamics Engine: http://www.ode.org
8 OpenAL: http://www.openal.org

Toward Quality-Driven Development of 3D Computer Games 11

IF at_tree AND NOT chop AND NOT drop_off_wood
 THEN chop AND NOT move

IF at_tree AND chop AND chop_timeout
 THEN NOT chop AND switch_targets
 AND reverse_path AND drop_off_wood AND move

IF drop_off_wood AND at_wood_drop_off
 THEN NOT drop_off_wood AND drop_wood
 AND switch_targets AND reverse_path
 AND go_to_tree AND move

IF NOT chop AND NOT drop_off_wood
 THEN go_to_tree AND move

Fig. 5. AI rules for a villager chopping wood and returning it to the village.

Scripting languages may improve time to market, as it is quicker to write and
debug code in high-level languages. Time may be lost, however, to working around
an awkward or poorly designed scripting framework, or one that is poorly supported
by debugging tools. The testability of code may be improved, as scripting languages
typically provide more runtime checking than raw C++ code. Scripts are typically
high-level and interpreted, therefore more modifiable than low-level code. Since they
support a fast code-execution cycle, scripts allow quicker refinement of gameplay
mechanics, which may increase the usability of the final product. Scripting languages
are typically slower than compiled code, so excessive use of scripting in time-critical
areas may reduce performance.

4.4.1 Illustration: AI Scripting
Life is a Village uses a simple scripting language (adapted from Champandard [3]) to
define villager behaviour. This allows behaviour to be quickly defined and changed,
supporting rapid, experimental development. Figure 5 shows the rules specifying the
behaviour of a villager whose job is to walk from the village to a tree, chop wood
until his bag is full, then return to the village and drop off the wood.

The language is based on rules specified using propositional logic. A rule is
triggered if its antecedent holds. Once triggered, the rule engine ensures that the rule’s
consequent holds. For example, the rule

IF NOT chop AND NOT drop_off_wood
 THEN go_to_tree AND move

will be triggered if the villager is not currently chopping wood or dropping off wood
in the village. If triggered, the rule ensures that the villager is walking to the tree.

Rules are bound to the application via semantic actions; atoms in the antecedent
query the game state, while atoms in the consequent may modify game state in order
to make the consequent true.

This language helps collect AI decisions into one place, and allows villager AI to
be modified without recompilation of the program. It also, however, illustrates
problems with the scripting approach. When developers attempted to add more
resources to the game, they discovered difficulties in generalizing the rules, since

12 T.C. Nicholas Graham and Will Roberts

there is no facility for parameterizing the resource being collected. The possible
solutions included making many slightly modified copies of the rules, or burying the
problem in the application through more powerful semantic actions. Neither approach
was satisfactory, so the scripting language itself must be modified.

4.5 Tactic: Avoid blocking actions in main frame loop

Games are driven via a main loop responsible for computing the display for the
next frame. The time taken to compute each frame is directly related to the time
required to compute each iteration of this loop; e.g., to maintain a frame rate of 20
frames per second, frames must be computed within 50 ms. To optimize worst frame
rate, this 50 ms must be treated as a soft real-time bound for each frame rather than an
average to be achieved over the execution of the program.

In order to increase the game’s frame rate, it is important to architect the main
frame loop to contain no excessively lengthy computations, and particularly, no
computations of unpredictable length.

4.5.1 Illustration: Input Handling
In traditional graphical user interfaces, input is handled via an event mechanism,
where user inputs such as keystrokes and mouse button clicks are transmitted to the
application via a callback mechanism (e.g., as provided by Java Swing’s listener
architecture.) Continuous inputs such as mouse motion are converted into a discrete
set of events. In 3D games, inputs are instead handled by polling the input devices
within the main frame loop. Thus if a game controller button is depressed or a
joystick moved, the game will be able to react to the input within the main frame
loop, and modify the game state appropriately. This approach of course requires a
sufficiently high frame rate that the devices are polled often enough to provide
responsive input.

In Life is a Village, one of our input devices is a Tunturi E6R recumbent bicycle.
The bicycle can be polled for inputs representing the speed at which the user is
cycling, the current tension of bicycle, what (if any) buttons the user is pushing, and
the user’s heart rate. Polling is performed via a proprietary protocol via a COM port
link between the bicycle and computer.

Polling the bicycle takes a variable amount of time, ranging between 5 ms and 20
ms. Assuming the bicycle is polled once per frame, this time is added to the frame
computation cost, unacceptably impacting frame rate. The solution, as shown in
figure 4, is to run the input manager in its own thread. The input manager
continuously polls the bicycle (and other input devices) in its own thread. When the
main frame loop checks the input state, the input manager provides the last value
obtained from the input device. Values from the bicycle may therefore be a few
milliseconds out of date, but the result can be provided without blocking, and
therefore without impacting frame rate.

Toward Quality-Driven Development of 3D Computer Games 13

4.6 Tactic: Identify opportunities for parallel execution

Modern gaming platforms support extensive parallelism. Microsoft’s Xbox 360
game console provides three 3.2 GHz dual core PowerPC processors, or six cores in
total, in a shared memory environment. Sony’s forthcoming PlayStation 3 is built
around a 3.2 GHz Cell Processor consisting of seven Synergistic Processing Elements
(SPE’s), each a 128 bit SIMD RISC processor, all connected by a 10 GBps bus.
Desktop PC’s are following the trend towards parallel architectures, with both Intel
and AMD having scheduled quad-core CPU’s for release in 2007. The challenge of
programming this next generation of consoles is how to distribute the computation
required in the game amongst these many processing elements.

The benefit of parallelism is a potential improvement in performance. Parallel
programs are harder to write and debug, and therefore may negatively impact time to
market and testability.

4.6.1 Illustration: Pathfinding
Pathfinding involves finding a reasonable path for agents in the game world that have
to move from one location to another. For example, if a villager has to move from the
village to a tree selected by the player, the game needs to first compute the route that
the villager will follow. Path computations can be time-consuming, especially if there
are many to do at the same time, and so make a good candidate for parallel execution.
Additionally, path computation is not time-sensitive, in that a brief delay in
computation will simply cause the villager to wait, playing an idle animation, before
moving towards the tree. Pathfinding is mediated via a CAXVillagerPathManager
component, which maintains a pool of threads that are assigned to a queue of path
computation requests.

The six tactics presented in this section have shown how high-level approaches to
architecting games can help meet quality requirements. The tactics each address one
or more of the quality attributes identified in section 3, sometimes positively, and
sometimes negatively. Relating tactics to quality attributes helps developers make
reasoned architectural decisions.

5 Conclusion

In this paper, we have discussed quality attributes of interest to 3D video games, and
proposed six tactics for addressing these quality attributes. The collection of tactics
allows game developers to consider broad approaches to development in the context
of how design choices affect game qualities. We illustrated the tactics through
examples drawn from the development of the Life is a Village computer-aided
exercise game.

Future work includes expanding the list of tactics and the quality attributes
addressed. For example, we plan to consider tactics useful in the development of
multi-player games.

14 T.C. Nicholas Graham and Will Roberts

Acknowledgements

We gratefully acknowledge the support of the National Science and Engineering
Research Council in performing this work. The Life is a Village game benefited from
the hard work of Irina Skvortsova, Rob Fletcher, Kevin Grad, Kevin Kassil, Joseph
Lam, Banani Roy, Paul Schofield, and Sean Richards.

References

1. Len Bass, Paul Clements and Rick Kazman, Software Architecture in Practice, second
edition, Addison-Wesley Professional, 2003.

2. Len Bass, Bonnie E. John, Natalia Juristo Juzgado, Maria Isabel Sánchez Segura, Usability-
Supporting Architectural Patterns, in Proceedings of the International Conference on
Software Engineering, pp. 716-717, 2004.

3. Alex J. Champandard, AI Game Development, New Riders Publishing, 2003.
4. Entertainment Software Association, Top 10 Industry Facts, 2005, Available at

http://www.theesa.com/facts/top_10_facts.php
5. John J. Geoghegan, The Console Transition: A Publisher’s Perspective, BusinessWeek

Online, December 14, 2005.
6. Ronald Grover, Cliff Edwards, Ian Rowley and Moon Ihlwan, Game Wars, BusinessWeek

Online, February 28, 2005.
7. Bonnie E. John, Len Bass, Maria Isabel Sánchez Segura and Rob J. Adams, Bringing

Usability Concerns to the Design of Software Architecture. In Proceedings of EHCI/DSVIS,
pp. 1-19, 2004.

8. Matthew Harmon, Building Lua into Games, in Game Programming Gems 5, pp. 115-128,
Charles River Media, 2005.

9. W.G. Phillips, T.C.N. Graham and C. Wolfe, A Calculus for the Refinement and Evolution
of Multi-User Mobile Applications In Proceedings of Design, Specification and Verification
of Interactive Systems, Lecture Notes in Computer Science, pp. 137-148, 2005.

10. Falco Poiker, Creating Scripting Languages for Nonprogrammers, AI Game Programming
Wisdom, Charles River Media, pp. 520-529, 2002.

11. Bob Scott, Architecting an RTS AI, AI Game Programming Wisdom, Charles River Media,
pp. 397-401, 2002.

12. Brian K. Smith, Physical Fitness in Virtual Worlds, IEEE Computer, pp. 101-103, October
2005.

13. Shea Street, Massively Multiplayer Games using a Distributed Services Approach, in
Massively Multiplayer Game Development 2, Charles River Media, pp. 233-241, 2005.

14. Paul Tozour, The Perils of AI Game Scripting, AI Game Programming Wisdom, Charles
River Media, pp. 541-554, 2002.

15. Terry Wellmann, Building a Sports AI Architecture, in AI Game Programming Wisdom 2,
Charles River Media, pp. 505-514, 2004.

