
The Workspace Model:

Dynamic Distribution of Interactive Systems

by

WILLIAM GREG PHILLIPS

A thesis submitted to the School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

July, 2006

Copyright © William Greg Phillips, 2006

i

Abstract

This thesis presents an architectural model for synchronous groupware called the

Workspace Model, which provides a clean separation of conceptual structure from

distributed implementation. The model includes a formally-defined, distribution

transparent, conceptual level architectural model with appropriate abstractions for

the development of groupware; a formally-defined implementation level architec-

tural model that exposes the distributed system issues abstracted at the conceptual

level; a formal relation between the two levels that allows a range of implementa-

tions to be automatically computed for any conceptual level architecture; and an

explicit representation of runtime change.

We argue that this combination of properties allows the model to satisfy needs

arising from three communities: end-users, application programmers, and toolkit

developers. End users require that their groupware systems support fluid collab-

oration, perform efficiently, and behave in a predictable manner. Application pro-

grammers need an environment that is appropriately expressive and that doesn’t

require them to commit prematurely to a distributed implementation. Toolkit im-

plementors need a model that is formally represented, that provides a range of

distributed implementations, that supports efficient incremental refinement of con-

ceptual architectures to distributed implementations.

The Model has been designed such that all syntactically correct conceputal level

archictures can be refined to fully refined architectures by a finite computation. A

proof sketch of this key property is offered.

The Workspace Model has been implemented in a toolkit and runtime system

called fiia, which demonstrates that the model is both practically implementable

and usable for the creation of groupware programs. The fiia programming model

and the implementation of fiia itself are presented.

ii

Acknowledgements

I have heard it said that a doctoral dissertation is the ultimate in self-indulgent solo

research. If so, then I feel tremendously cheated, because this work has been very

much a part of a rich and ongoing collaborative enterprise.

My most sincere appreciation goes to my doctoral supervisor, Nick Graham,

leader of the EQUIS lab at Queen’s, whose initial germ of an idea eventually grew

into the work reported in this document. Nick was always there when I needed

him, offering useful advice, criticism, cajolery, and steadfast encouragement, each

at exactly the right times.

Much that is good about this work grew out of early discussions with other mem-

bers of the EQUIS lab, including Tore Urnes, Gary Anderson, and Crazy Tim Wright.

Later interactions with David Smith, Rob Fletcher, Banani Roy and especially Chris

Wolfe helped me regain my enthusiasm, just when I needed it for the final push.

Members of the RMC Symbiotic Computing Lab provided feedback on various

earlier versions of this work. This includes my colleagues Bob St. John, Lobna

Chérif, Sandy Berg, Jeff Paul, and Mike LeSauvage, as well as my students Grant

Griswold, Bruce Conlin, Len Terpstra, Michel Hutchson, Ian Krepps, Scott McLean

and David Leblanc.

Present and former members of IFIP Working Group 2.7/13.4 provided both en-

couragement and sharply pointed questions. While they have all been helpful in one

way or another, I would particularly like to thank Len Bass, Morten Borup Harn-

ing, Gilbert Cockton, Joëlle Coutaz, Phil Gray, Bonnie John, Rick Kazman, Laurence

Nigay, Fabio Paternò, Philippe Palanque, Kevin Schneider and Leon Watts.

This work has been completed entirely on a part-time basis. I’d like to go on

record as saying that this is not the best way to earn a doctorate. However, if you

have to do it, you’ll absolutely need supportive bosses in your day job. Fortunately

I have had them, in the persons of Aziz Chikhani, Doug Dempster, Yui-Tong Chan,

Bernard Mongeau, Jacques Hamel, Côme Rozon, and Derrick Bouchard.

Scott Knight provided the existence proof that a part-time doctorate is possible;

thanks for holding up the light at the end of the tunnel. And thanks also to my

co-part-timers Alain Beaulieu, Sylvain Leblanc and Ron Smith for providing just the

right balance of support and derision. You’ll get there too guys, I know you will.

My examining committee of Saul Greenberg, Tom Dean, Jim Cordy and Pat Mar-

tin provided many excellent comments; the final version of this dissertation much

the better for their suggestions.

Finally, I’d like to thank my wife Karen and children Tatiana, Shona and Tristan

for always being there to remind me of why I was doing this, and for putting up with

me so well, even at my most distracted. My kids have never really known a father

who wasn’t working on his doctorate... I wonder what we’ll do next!

iii

iv

Statement of Originality

I, William Greg Phillips, certify that all results in this thesis are original, unless oth-

erwise noted. Specifically, those results due to other authors which have appeared

in the literature have been cited as necessary.

Earlier versions of some parts of the work reported in this thesis have previously

appeared as [101, 102, 103, 104].

v

Table of Contents

Abstract . i

Acknowledgements . ii

Statement of Originality . iv

Table of Contents . v

List of Tables . x

List of Figures . xi

Chapter 1. Introduction . 1
1.1. Synchronous groupware . 2

1.1.1. Vision scenario . 3
1.1.2. Groupware is hard to build well 4

1.2. Software architecture . 6
1.2.1. Applying architecture to groupware 7

1.3. Research motivation . 8
1.4. The Workspace Model . 10

1.4.1. Overview . 10
1.4.2. A Workspace example . 11

1.5. Contributions of this thesis . 17
1.6. Presentation . 18

Chapter 2. Literature Review . 20
2.1. Conceptual architecture . 20

2.1.1. Distribution transparency . 21
2.1.2. Separation of user interface from state 21
2.1.3. Intermediate layers . 22
2.1.4. Notification mechanism . 23
2.1.5. Collaboration through shared state 24
2.1.6. Tree structure . 24
2.1.7. Collaboration through asynchronous messaging 25
2.1.8. Formality . 26

2.2. Implementation architectures . 26
2.2.1. Centralized . 27
2.2.2. Replicated . 29
2.2.3. Semi-replicated . 32

2.3. Mapping from conceptual to implementation 35
2.4. Evolution . 37
2.5. Summary . 39

Table of Contents — Continued

vi

Chapter 3. Desiderata and Overview of the Workspace Model 41
3.1. Desiderata for a model of groupware architecture 41

3.1.1. User requirements . 42
3.1.2. Application programmer requirements 43
3.1.3. Toolkit implementor requirements 43
3.1.4. Summary . 44

3.2. Conceptual architecture . 44
3.2.1. Workspaces . 45
3.2.2. People . 46
3.2.3. Nodes . 46
3.2.4. Components . 47
3.2.5. Connectors . 48
3.2.6. Ports . 49
3.2.7. Interpretation . 50

3.3. Refinement . 51
3.3.1. Refinement rules . 52
3.3.2. Examples . 53

3.4. Implementation architecture . 54
3.4.1. Components . 55
3.4.2. Connectors . 58
3.4.3. Ports . 59
3.4.4. Synchronization implementations 59
3.4.5. Multiple implementations are possible 60

3.5. Evolution calculus . 61
3.6. Conclusion . 63

Chapter 4. Core Elements and the Conceptual Level 64
4.1. Core model elements . 64

4.1.1. Person . 64
4.1.2. Computational node . 65

4.2. Conceptual level model elements . 65
4.2.1. Workspace . 66
4.2.2. Components . 66
4.2.3. Connectors . 67
4.2.4. Ports . 70
4.2.5. Components redux . 72
4.2.6. Attributes . 74
4.2.7. Relations among conceptual level elements 75
4.2.8. Conceptual level summary . 76

4.3. Conceptual level evolution calculus 77
4.3.1. Meta-notation and pattern matches 78
4.3.2. Workspaces . 81
4.3.3. Nodes . 82

Table of Contents — Continued

vii

4.3.4. Components . 82
4.3.5. Ports . 84
4.3.6. Components and nodes . 84
4.3.7. Connectors . 85
4.3.8. Connectors and ports . 86
4.3.9. People . 87
4.3.10. Attribute modification . 87
4.3.11. An example evolution sequence 89

4.4. Conceptual level reflection operations 91
4.5. Summary . 93

Chapter 5. Implementation Level and Refinements 94
5.1. Implementation level model elements 94

5.1.1. Implementation components 94
5.1.2. Connectors . 95
5.1.3. Ports . 96
5.1.4. Relations among implementation level elements 96

5.2. Infrastructure components . 97
5.2.1. Transmitter and receiver . 97
5.2.2. Concurrency control and consistency maintenance 98
5.2.3. Message broadcaster . 99
5.2.4. Channel and channel endpoint 99
5.2.5. Cache and mirror cache . 100
5.2.6. Generic infrastructure component 101

5.3. Implementation level evolution calculus 101
5.3.1. Components . 102
5.3.2. Ports . 102
5.3.3. Connect and disconnect . 103
5.3.4. Implementation level reflection operations 104

5.4. Refinements from the conceptual to the implementation level 105
5.4.1. Components . 107
5.4.2. Ports . 108
5.4.3. Calls . 110
5.4.4. Subscriptions . 112
5.4.5. Synchronization . 114
5.4.6. Channels . 115
5.4.7. Inter-level reflection operations 117
5.4.8. An example refinement . 118

5.5. Summary . 120

Chapter 6. Applying the Workspace Model 121
6.1. Scenario-based modelling . 122
6.2. Component design . 125

Table of Contents — Continued

viii

6.2.1. Structural view . 125
6.2.2. Evolution view . 127
6.2.3. Component interaction design 128
6.2.4. Analysis of alternatives . 129

6.3. Architectural analysis . 131
6.3.1. Fault tolerance . 131
6.3.2. Recovery and restoral examples 133
6.3.3. Transient failures, etrans . 135
6.3.4. Catastrophic failures, ecat . 139
6.3.5. Designing for fault tolerance 141

6.4. Application development . 142
6.4.1. The fiia programming model 142
6.4.2. Evolution operations in fiia 144
6.4.3. Component definition in fiia 146
6.4.4. Port declaration in fiia . 148
6.4.5. Port use in fiia . 149
6.4.6. Vocabularies in fiia . 151
6.4.7. Advantages of developing in fiia 152

6.5. Conclusion . 154

Chapter 7. The fiia Runtime System . 155
7.1. Interacting with the fiia prototype . 156
7.2. Conceptual level view of the fiia runtime 158

7.2.1. Evolution and incremental refinement 159
7.2.2. Runtime dynamics . 161
7.2.3. The architecture component 164
7.2.4. The refinery and refinement rules 165

7.3. Implementation level view of the fiia runtime 169
7.3.1. Communications architecture 171
7.3.2. Threading architecture . 172

7.4. Experience using fiia . 173
7.5. Conclusion . 176

Chapter 8. Evaluation . 177
8.1. User requirements . 177

8.1.1. Evolution . 177
8.1.2. Implementation efficiency . 178

8.2. Application programmer requirements 179
8.2.1. Conceptual expressiveness 180
8.2.2. Distribution transparency . 183

8.3. Toolkit implementor requirements 184
8.3.1. Formal representation . 184
8.3.2. Implementation expressiveness 185

Table of Contents — Continued

ix

8.3.3. Refinement . 186
8.4. Conclusion . 196

Chapter 9. Conclusion and Future Directions 197
9.1. The Workspace Model as a software engineering tool 197
9.2. Enhancements to the Workspace Model 198
9.3. Security . 200
9.4. Alternate programming approaches 200
9.5. Implementation issues . 200
9.6. Groupware interfaces . 201
9.7. Summary . 202

References . 203

Appendix A. Notation Summary for the Workspace Model 216

Appendix B. Definitions . 218

x

List of Tables

Table 8.1. Summary of the Progress property of refinement. 193

xi

List of Figures

Figure 1.1. Key elements of the Workspace Model. 10
Figure 1.2. Shona arrives at the auditorium and sets up. 12
Figure 1.3. Tristan joins Shona at the auditorium. 14
Figure 1.4. A server-based, centralized implementation of the architecture

shown in figure 1.3. 15

Figure 2.1. Centralized implementation architectures. 28
Figure 2.2. Replicated implementation architectures. 30
Figure 2.3. Semi replicated architectures. 33

Figure 3.1. Conceptual level view of the multi-user CASE tool. 45
Figure 3.2. Example refinement rules for implementing components. 53
Figure 3.3. A simplified version of figure 3.1 showing only the CASE tool-

related components and connectors. 55
Figure 3.4. One possible implementation of figure 3.3. 56
Figure 3.5. Example evolution operation definitions. 62

Figure 4.1. Core notation. 65
Figure 4.2. Conceptual level notation. 66
Figure 4.3. Semantically equivalent synchronization group depictions, canon-

ical description in the centre. 71
Figure 4.4. A simplified summary of the main elements of the conceptual level. 76
Figure 4.5. Meta-notation used in evolution calculus and refinement diagrams.

Shaded elements are implementation level. 79
Figure 4.6. Conceptual level operations on workspaces. 81
Figure 4.7. Conceptual level operations on nodes. 82
Figure 4.8. Conceptual level operations on components. 83
Figure 4.9. Port creation and destruction. 85
Figure 4.10. Anchoring and floating components. 86
Figure 4.11. Conceptual level operations on connectors. 87
Figure 4.12. Attaching connectors to ports. 88
Figure 4.13. Detaching connectors from ports. 89
Figure 4.14. A sample evolution sequence, showing the creation of part of the

Clicker example from section 1.4.2. 90

Figure 5.1. Implementation level notation. 95
Figure 5.2. Implementation level infrastructure components. 98
Figure 5.3. Operations on implementation level components. 103
Figure 5.4. Operations on implementation level ports. 104
Figure 5.5. Implementation level port connection and disconnection. 105
Figure 5.6. The schema used for refinement rules. 106
Figure 5.7. Refinements of components. 107
Figure 5.8. Refinements of ports . 109
Figure 5.9. Refinements for call connectors. 111

List of Figures — Continued

xii

Figure 5.10. Refinements for subscriptions. 113
Figure 5.11. Refinements for synchronizations. 115
Figure 5.12. Centralised refinements for channels. 116
Figure 5.13. Distributed refinements for channels. 117
Figure 5.14. An example of the application of refinement rules. 119

Figure 6.1. The scenario from section 1.1.1, represented as a series of infor-
mal Workspace diagrams. 123

Figure 6.2. Component design for the CASE tool, motivated by the need to
both collectively and independently browse diagrams. 126

Figure 6.3. Workspace communication diagram. 129
Figure 6.4. Workspace model representations of (a) restoral and (b) recovery. 133
Figure 6.5. The conceptual level architecture of the clicker example, with

available nodes shown. 134
Figure 6.6. A peer-to-peer replicated store implementation of the clicker ex-

ample. 136
Figure 6.7. A replicated store implementation of the clicker example, in which

one replica is on Shona’s server. 137
Figure 6.8. A centralized store implementation of the clicker example, with

the store on Shona’s tablet. 138
Figure 6.9. A possible conceptual architecture for recovery, cr, resulting from

the catastrophic failure of Shona’s tablet. 140
Figure 6.10. A simple “clicker”. 143
Figure 6.11. The fiia evolution operations required to configure the “clicker”

example of figure 6.10. 144
Figure 6.12. Definition of the fiia store Value, as an MVC-style model. 147
Figure 6.13. Definition of the fiia reactor Clicker, which is also a wxPython

Frame. 148
Figure 6.14. Configuring one side of the “clicker” example in stand alone mode. 153

Figure 7.1. The clicker example running in fiia, on two nodes, with both node
consoles shown. (The node console is a development tool allowing direct
interaction with the fiia runtime.) . 157

Figure 7.2. A conceptual level view of the fiia runtime. 158
Figure 7.3. The incremental implementation evolution process as implemented

in fiia. 160
Figure 7.4. Example of the fiia runtime dynamics. 162
Figure 7.5. Rule application for the rules matched in figure 7.4 163
Figure 7.6. Triples representing the fact that a conceptual store count is an-

chored to a node n in a workspace w. 165
Figure 7.7. Application of refinement rules in the refinery and the architecture. 166
Figure 7.8. The graphical specification and Python implementation of the Lo-

calCall refinement rule, from figure 5.9(a). 168

List of Figures — Continued

xiii

Figure 7.9. The implementation level architecture of the fiia runtime system,
showing the main node and one thin node. 170

Figure 7.10. Refinement performance of fiia as the number of Workspace ele-
ments grows. 175

Figure 8.1. Workspace depictions of well-known architectural styles. 181

1

Chapter 1

Introduction

This thesis presents an architectural model for synchronous groupware that pro-

vides a clean separation of conceptual structure from distributed implementation.

Called the Workspace Model, it includes an evolution calculus that allows the formal

description of architectural change at runtime, whether this be user-driven concep-

tual change (such as adding a new user to a collaboration) or system-driven imple-

mentation change (such as the failure of a network link). The model defines a formal

relation between the conceptual and the implementation level, allowing automatic

generation and incremental computation of the set of implementation architectures

corresponding to any given conceptual architecture.

Groupware is challenging to implement in part because it is difficult to design

and program fluid usable collaboration support while simultaneously coping with

low-level distributed system issues such as the maintenance of shared state and

response to partial failure [61]. The aim of our model is to address this issue by

separating the essential component and interaction semantics of a groupware sys-

tem from the system’s distributed implementation at runtime. This separation al-

lows functionality and design time quality attributes like clarity, maintainability, and

reusability to be considered separately from runtime quality attributes like perfor-

mance, availability, and security.

We have designed and formally specified the Workspace Model, and have im-

plemented it within our novel fiia groupware development toolkit. Our preliminary

experience with the model suggests that its separation of concerns makes it a use-

ful software engineering approach when considered from the perspectives of end

users, application programmers, and groupware toolkit developers.

This research sits at the intersection of the studies of synchronous groupware

and of software architecture. In the remainder of this chapter we present brief in-

troductions to these two fields. We also define the problem that our work is intended

2

to address, and identify key attributes of an effective solution. This is followed by

brief overview of the Workspace Model and a list of its core contributions. We close

with a road map to the balance of this document.

1.1 Synchronous groupware

As predicted by J.C.R. Licklider in the 1960s [80], the emergence of high-bandwidth

networks and inexpensive computers has lead to the widespread use of computers

for communications and collaborative tasks. This has required the study of how to

engineer interactive software that supports multiple users. Such software is often

called groupware [6], or synchronous groupware in the special case of software

supporting realtime collaboration. In the balance of this paper, “groupware” is used

to mean synchronous groupware.

There are many kinds of groupware applications, each with different develop-

ment and ergonomic requirements. Some support pure communications tasks; for

example, Internet telephones [73, 7] and chat programs [137] allow people to con-

verse using voice or text, while media spaces [33] contribute to mutual awareness

in work groups by allowing people to see views of others’ offices. Tools like Web-

Ex [142], GoToMeeting [53], and WebArrow [141] provide support for distributed

meetings of small to medium sized groups, including voice communication, screen

and application sharing, file exchange, and other services.

Other applications support the collaborative production of work artifacts, such

as school assignments [89], bank loan applications [72], software designs [65] or

geophysical simulations [45]. These applications typically support both discussion

and the realtime manipulation of shared artifacts.

Away from a work context, games that allow people to collaborate and compete

across computer networks have also become enormously popular. Services such

as GameSpy [51] and Xbox Live [146] allow millions of people to connect and play

together. Massively multiplayer games such as World of Warcraft [144] allow thou-

sands of people to meet, socialize and adventure together in the same persistent

virtual world.

3

1.1.1 Vision scenario

To make our discussion more concrete, we outline the following scenario, which

represents a vision of the kind of groupware we would like to provide. We follow the

scenario with a brief analysis of why this kind of groupware is so difficult to build.1

Our scenario begins with Dave at his workstation computer in his office in Canada,

fleshing out an initial design for a new software system using a computer aided soft-

ware engineering (CASE) tool. Ian, who is a member of the same project team,

walks into Dave’s office to see what progress Dave has made. Since Dave’s office is

somewhat cramped, Dave opens a new CASE tool interface on a large, touch-screen

display across the hall; this interface is different from the one on his workstation

and is more appropriate for use with a touch-screen. Dave and Ian move across the

hall, bringing along the tablet computer that Ian had in his bag.

The design Dave and Ian are working on is fairly complex. Despite the touch-

screen’s large size it has a relatively low resolution and doesn’t show all the detail

that they would like to see. Part of the screen is occupied by an object palette

provided by the CASE tool’s interface; Ian lends Dave his tablet computer and they

free up some screen space by moving the palette onto the tablet. They use the tablet

and the touch-screen together to modify and extend their design as their discussion

progresses.

After an hour’s work, Dave and Ian decide to get opinions about their initial

approach from their colleagues Karen and Tatiana. Karen is visiting a customer site

in Japan and her laptop has only a high-latency, medium-bandwidth connection to

the corporate network; Tatiana is in the same building as Dave and Ian and her

workstation has a low-latency, high-bandwidth connection.

Dave sends Karen and Tatiana invitations to join him and Ian remotely, and both

of them accept. Their copies of the CASE tool start up, displaying Dave and Ian’s

design; at the same time a voice channel is opened between the four of them. The

team browses through the various diagrams in the design together, each proposing

1We return to this scenario in chapters 3 and 6 to illustrate the Workspace Model.

4

modifications directly on the design as they proceed, sometimes in parallel. At one

point Karen needs to check something on an overview diagram while Dave, Ian and

Tatiana are discussing a more detailed one, so she temporarily decouples her view

from the group’s. After finding the information she needs, she rejoins the group view

and makes a few quick changes to the detailed diagram; the group discusses her

suggestions and decides to incorporate them. When the four of them are satisfied,

Ian, Tatiana and Karen depart to work on other tasks; Dave returns to his office and

continues elaborating the design.

1.1.2 Groupware is hard to build well

There are almost no existing systems that support the fluidly dynamic collabora-

tion depicted in this scenario. Assuming that the large screen is driven by its own

computer, moving the CASE tool from Dave’s computer to the large screen would

require saving the current design, closing the design on Dave’s computer to pre-

vent conflicting changes, and reopening the design in a new instance of the CASE

tool on the large display. Moving the tool palette from the large display to Ian’s

tablet would simply not be possible. Initiating the remote collaborative session with

Karen and Tatiana would require setting up a “conference” using an application-

sharing tool like WebArrow [141], sending out email invitations, and then collab-

orating using the services provided by the WebArrow tool. And, since WebArrow,

like most other application sharing systems, supports only sharing whole applica-

tions or screens, Karen’s quick check of another diagram without interrupting her

collaborator’s work would not be possible. The overhead of collaborative software

use is clearly excessive: small wonder that groupware has enjoyed limited success

outside niche applications like instant messaging, meeting support, and multiplayer

gaming.

But the fluid collaboration in our scenario is exactly the kind of collaboration we

would expect if our four participants were all in the same room, using physical tools

like pens, paper and whiteboards! Why is it so hard to create software systems that

support dynamic, natural collaboration?

5

Greenberg argues persuasively that the problem is a lack of appropriate high-

level abstractions and tool support, which forces programmers to deal with a host

of issues not immediately related to the semantics of their applications [61]:

Yet when we look at groupware, programming tools are back in the
dark ages. Groupware development in non-research settings requires
a highly-trained programmer adept at writing low-level code. The pro-
grammer’s task often includes implementing a network protocol atop of
sockets, dealing with multimedia capture and marshalling (e.g., audio
and video), writing various compression/decompression modules for in-
formation transmission, worrying about distributed systems issues such
as concurrency control, developing a session management protocol so
participants can create, join and leave conferences, and creating some
kind of persistent data store so that information is retained between ses-
sions. This list goes on and on.

To take one concrete example, consider the point in the scenario where Karen

and Tatiana join Dave and Ian’s collaboration. Clearly this requires the instantiation

of some form of distributed system—but what should that distributed system be?

Tatiana is on the local area network, so it might be reasonable to have her remotely

access the same design representation that Dave and Ian are using. But Karen, in

Japan and connected by a high-latency network link, might be better served by hav-

ing a copy of the design transferred to her computer so that she can interact with it

locally. Of course, this requires concurrency control and replica consistency main-

tenance to keep Karen’s copy in sync with the other: how should this be effected?

Using current technologies, the developer of our hypothetical CASE tool would

have to deal with all of these issues, in addition to the core issues of how the case

tool itself should behave and how best to support its effective collaborative use. This

includes the prediction, at design time, of what distributed system implementation

would be most appropriate at runtime.

The result is that development effort that should be invested in improving the

users’ collaborative experience ends up wasted instead on low-level issues—and we

end up with inflexible, hard to use groupware that doesn’t support the kinds of

collaborations illustrated in our scenario. The situation with groupware is analogous

to the early development of graphical user interfaces (GUIs) [61]. Initially, GUIs

6

were simply too hard to program and not economical for most applications. With the

arrival of well-designed window systems and GUI toolkits, programmers suddenly

had a repertoire of appropriate abstractions to call on; now systems without GUIs

are the rare exception.

Completely addressing the issues raised by Greenberg constitutes a research

and development program for a lifetime. In this work we restrict ourself to those

issues relating to the dynamic distributed implementation of groupware systems.

1.2 Software architecture

Our approach to dynamic distributed implementation is based on a model of the

software architecture of groupware systems. Software architecture is about the

elements in a system and their relation to one another, and is normally expressed

in terms of the system’s computational components and the connections between

them [99, 118]. It is not concerned with details of data representation or with al-

gorithms; while these are essential to the construction of real software they are

typically specified in other representations. An architectural representation allows

temporary abstraction of such details so that larger structural issues may be con-

sidered independent of lower level concerns.

Software architecture contributes throughout the development life cycle of soft-

ware systems [8, 20, 118]. Architectures for synchronous groupware particularly

help in the challenges of programming distributed systems with exigent perfor-

mance and usability requirements.

An adequate description of a system’s software architecture typically requires

multiple architectural views, each of which is concerned with different aspects of

the system [29]. For example, Kruchten’s “4+1 architectural blueprint” includes

four key views, plus scenarios to tie them together [76]. The views that he suggests

are a logical view, representing key problem domain concepts; a process view, which

documents concurrency and interprocess communication; a development view, rep-

resenting the organization of software modules in the development environment;

and a physical view, which maps deployed runtime components onto physical pro-

7

cessors connected by network links. Kruchten’s taxonomy has been adopted and

extended in the standardization of the Unified Modeling Language [16].

Where an architecture is presented from multiple viewpoints each view is in-

tended to be complementary, in the same way that a building design may include

complementary architectural representations for structural support, electrical and

communications wiring, plumbing, and heating and ventilation. As with a building, a

full understanding of the software system requires an understanding of all relevant

views; however, each view supports different activities and is useful in and of itself.

1.2.1 Applying architecture to groupware

The concerns of interest in the development of groupware are much the same as the

concerns for other interactive software, with two notable additions. First, the key

issue that distinguishes groupware from other software is the requirement to repre-

sent information that is shared between users [97]. And second, because groupware

is inherently multi-user, it is almost always implemented as a distributed system.

In a previously-published review of software architectures for synchronous group-

ware [101], which is summarized and updated in chapter 2, we noted that the

literature on architecture for synchronous groupware addresses two distinct sets

of architectural concerns. Using Kruchten’s taxonomy, these two sets of concerns

can be characterized as logical/development and process/physical. We call the logi-

cal/development view the conceptual view and the process/physical view the imple-

mentation view.

The conceptual view is concerned with the groupware system as a software ar-

tifact; that is, the system as ultimately represented in its source code. It may also

represent the intended topologies of components at run time, from a logical per-

spective. In the conceptual view, the components tend to be associated with units of

software development like classes or modules and the connectors tend to represent

the use of one component by another in terms of source code or logical composi-

tion. Examples of this view include Dewan’s “zipper” generalization [37] of the Arch

reference model [130], the Abstraction-Link-View architecture of the Rendezvous

8

toolkit [66], the Presentation-Abstraction-Control* (PAC*) architecture [22], the im-

plicit architecture of the GroupKit toolkit [112], the Clock architectural style [58]

and the Clover architecture [77].

The concerns addressed in the conceptual view are largely related to the de-

velopment and maintenance of the software, as opposed to its use. The aim of

conceptual architectures is to propose an appropriate partitioning of the software

system to allow for efficient development, easy modification, and effective code or

component reuse. In particular, groupware architectures typically provide mecha-

nisms that minimize the developer’s need to deal explicitly with the distribution of

and concurrent access to shared state [62].

By contrast, the implementation view is concerned with groupware as a dis-

tributed system at runtime. In this view, components are instantiated objects either

associated with or realized as independent processes, and communicating via ei-

ther direct reference or inter-process communications mechanisms. Processes are

located on particular computational nodes (such as clients and servers) and commu-

nicate across network links. Shared state may be represented by a single component

remotely accessed by all participants, or by multiple replicated copies, the consis-

tency of which is maintained by a replica consistency maintenance algorithm [97].

All real groupware systems have an implementation architecture, which may be

more or less well documented.

The implementation view allows analysis of such concerns as performance, fault-

tolerance, and security, all of which are strongly influenced by runtime distributed

system topology and the inherent characteristics of the runtime environment.

1.3 Research motivation

While our review of existing groupware architectures found a broad range of ap-

proaches at both the conceptual and implementation levels, we did identify two

significant lacks. These stem from the fluid dynamic behaviours illustrated in our

scenario above, and from the need to understand and reason about the correspon-

dence between the conceptual and implementation views of a groupware system.

9

As illustrated in our scenario, human collaboration is inherently dynamic [40,

145]. People move between individual and collaborative work frequently and fluidly,

and are often involved in multiple simultaneous collaborations. Collaborations may

be brief or long running. The participants in any given collaboration may change

over time. A single tool may be used to support many collaborations; a single col-

laboration may make use of many tools.

Further, if a collaboration is to make use of groupware, that groupware will nec-

essarily be implemented on real computer systems connected by real networks. The

computers may be of varying capabilities, ranging from high performance servers

to small hand held devices like cell phones. Computers may join and leave a collabo-

ration as their users do, or for other reasons both planned and unplanned. Network

links will be of varying quality, and the quality of links will vary over time.

All this implies a need to reason about the dynamic properties of groupware sys-

tems, at the level of conceptual system structure as well as at the level of distributed

implementation.

The time-varying nature of both the conceptual and implementation levels also

suggests that groupware systems should be able to adapt, at runtime, to their

changing environments [62]. If the conceptual view is expressed in a distribution-

independent fashion, it is generally possible to realize a given conceptual architec-

ture using any of a number of implementation architectures [101]. However, to do

this we need to be able to identify precisely which implementation architectures

represent correct realizations.

In practice we find that current architectural approaches to groupware lack this

capability. Some conceptual architectures offer no direct support for identifying

corresponding implementation architectures, leaving the translation between views

entirely up to the designer [22]. Others, particularly those implemented in toolkits,

offer only a limited range of implementations [66, 112]. Those that do offer a greater

range of adaptability either lack the capacity to change their implementation at

runtime [4, 132] or lack any mechanism for determining which implementations are

semantically correct [81].

10

c c'

i i'

r

ei

r'

conceptual level

implementation level

ec

refinement

evolution

Figure 1.1: Key elements of the Workspace Model.

1.4 The Workspace Model

Our approach to addressing these concerns is the Workspace Model. In this section

we first provide an overview of the model itself, then illustrate its use with a brief

example. In chapter 3 we introduce the model in more detail using the CASE tool

scenario presented above, and we return to the CASE tool scenario in chapter 6 to

present Workspace Model approaches to scenario-based modelling and application

design. The formal definition of the model is in chapters 4 and 5 and an evaluation

of its properties is in chapter 8.

1.4.1 Overview

Figure 1.1 shows the key elements of the Workspace Model and how they relate

to one another. These elements are the conceptual level, the implementation level,

evolution at either level, and the refinement relation between levels.

In the Workspace Model, the architecture of a system is expressible at both the

conceptual and the implementation levels. A conceptual architecture describes the

structure of the elements making up an interactive system, without constraining

how they are to be implemented as a distributed system. Conceptual architectures

are illustrated by example in section 3.2 and formally defined in sections 4.1 and 4.2.

Implementation architectures are at a lower level of abstraction than conceptual

architectures, exposing such details as the instantiation of components on nodes,

11

mechanisms for inter-process communication, and the implementation of concur-

rency control and replica consistency maintenance. Implementation architectures

are presented in section 3.4 and formally defined in section 5.1.

The two levels are linked by a refinement relation R consisting of the reflexive

transitive closure of a set of individual refinement rules. In general, R maps a given

conceptual architecture to many implementation architectures. R therefore cap-

tures a space of possible implementations and R(c, i) indicates that implementation

architecture i is a valid refinement of conceptual architecture c. In figure 1.1, r

is a particular refinement of c where R(c, r(c)) — that is, r refines c to some valid

implementation r(c) = i. Section 3.3 provides an overview of refinement, which is

formally defined in section 5.4.

Finally, evolution (e) expresses architectural change over time at the conceptual

and implementation levels. In figure 1.1, ec(c), which is some series of conceptual

evolution operations applied to conceptual architecture c, produces c ′, a modified

conceptual architecture. Similarly, ei(i), a series of implementation level evolutions,

produces i ′, a modified implementation level architecture. Given an initial c and i

such that R(c, i), and some conceptual level evolution ec, it is the role of the runtime

system to choose an implementation level evolution ei such that (∃r ′)[r ′(c ′) = i ′ ∧

R(c ′, i ′)]. A similar condition, discussed later, applies to evolutions beginning from

the implementation level. Evolution is discussed in section 3.5. The set of atomic

evolutions make up the evolution calculus; the conceptual and implementation level

evolution calculi are defined in sections 4.3 and 5.3, respectively.

1.4.2 A Workspace example

The actual use of the Workspace Model and its supporting notation is best illustrated

with a simple example.2 The notation used in this section’s figures is summarized in

appendix A and explained in more detail in chapters 3, 4 and 5; here we explain just

enough to make the example understandable. The particular example used here is

2In fact, we contend that this is the simplest interesting shared-state groupware application, and
as such is a groupware equivalent of the canonical “Hello, world!” program.

12

Shona's
tablet

:Value

:Clicker

Shona's
server

Tristan's
tabletShona Tristan

Figure 1.2: Shona arrives at the auditorium and sets up.

discussed in more detail in the contexts of application development and reasoning

about fault tolerance in chapter 6.

In our example, Shona and Tristan are ushers at an auditorium. Their work

involves taking tickets and maintaining a count of the people who enter. They are

each provided with a “clicker”— a device that increments the count by one whenever

they click its button. The total count of patrons entering the auditorium through

either door is maintained in realtime and is visible on both clickers.

As head usher, Shona arrives first and begins to set up. Her clicker’s user inter-

face is implemented as software running on a small tablet computer. In addition to

the tablet, she also has access to a server, running in the auditorium’s administra-

tive offices. Her clicker maintains its count of patrons in a separate software com-

ponent called a “value”; Shona is not particularly concerned with where the value

is physically implemented, as long as it functions correctly. This initial situation is

illustrated by the conceptual level diagram in figure 1.2.

In the figure, the dotted lines represent the boundaries of Shona and Tristan’s

workspaces, which contain the physical objects, computers, and software of interest

to each of them. In Shona’s workspace we see Shona herself, along with two nodes

representing her tablet and her server. Her clicker’s user interface is shown as

a component of type Clicker which is anchored to her tablet, which means that it

must actually be instantiated there. The Clicker is connected to a Value component,

13

used to store the current patron count, which is not anchored to any node. This

means that the runtime system is free to instantiate the Value on any appropriate

node. The symbol in the upper right corner of the Clicker component shows that it

is a reactor; that is, a component that is passive except in response to externally-

provided inputs. The Value component is a store; like a reactor it is passive, however

it has the additional feature that it may be shared between multiple users.

The double-headed arrows between Shona and her Clicker are called subscription

connectors and represent asynchronous streams of events. Here, they indicate that

Shona is able to provide input to her Clicker interface and can observe any changes

in its state. The double-headed arrow from the Value to the Clicker similarly indicates

that the Value can send asynchronous events to the Clicker. The single-headed arrow,

called a call connector, allows Shona’s Clicker to synchronously modify and query

the state of the Value. The intent is that these connectors will be used in a classic

model-view-controller communication pattern [74], with the Clicker modifying the

Value as required, and the Value notifying the Clicker any time its state has changed.

The circles on the boundaries of the two components are ports, which represent

potential attachment points for connectors. The symbols in the ports correspond to

the kinds of connectors that may be attached, and (for call and subscription ports),

the directions of the arrows (into or out of the components) indicate whether they

are source or target ports. The unconnected port on Shona’s Clicker is a synchro-

nization port, whose use is illustrated below.3

When Tristan arrives at the auditorium he must set up his clicker interface and

associate its count with Shona’s count. This is a dynamic evolution of the system at

the conceptual level. The Workspace Model provides a language, called the evolu-

tion calculus, for representing such dynamic change. The conceptual-level evolution

calculus is defined in section 3.5. For the current instant we assume that appropri-

ate evolutions have been requested and that the end result is as shown in figure 1.3.

In the figure we see that Tristan has both Clicker and Value components and that

3In informal diagrams we often leave ports out to reduce visual clutter; the existence of a port may
be inferred by the attachment of a connector to a component.

14

Shona's
tablet

:Value

:Clicker

Shona's
server

Tristan's
tablet

:Value

:Clicker

Shona Tristan

Figure 1.3: Tristan joins Shona at the auditorium.

these have been configured similarly to Shona’s. Additionally, Tristan and Shona’s

Value components have been connected together by means of the double-line syn-

chronization connector. The precise semantics of synchronization are defined in

chapter 4; the intuition is that two synchronized components represent “the same

thing”, so Shona’s Value and Tristan’s Value are the same Value. This means, for

example, that if Shona presses the button on her Clicker and this causes a change

in the count maintained in her Value, Tristan’s Value’s count is identically updated.

Also, when Shona’s Value sends a message to her Clicker indicating that its state has

changed, Tristan’s Value will do likewise.

However, it is important to note that synchronization says nothing about how

this “sameness” is to be implemented: at the implementation level there could be

a single copy of the Value implemented on any available node, or there could be

multiple replicas of the Value, kept consistent with one another by any of a number

of replica consistency maintenance algorithms.

The Workspace Model’s refinement relation defines the space of allowable im-

plementations for any given conceptual level architecture. Refinement is expressed

in terms of a set of graph transformation rules, each of which has a precondition

and a postcondition. Where a rule’s precondition matches in the current architec-

ture the rule may be applied, generating a new, partially refined architecture which

conforms to the postcondition. The transitive closure of non-deterministic rule ap-

15

Shona's server

Tristan's tablet

Shona's tablet

:Clicker

Shona

:Value

:Clicker

Tristan

Figure 1.4: A server-based, centralized implementation of the architecture shown in figure 1.3.

plication on a given conceptual architecture generates all legal corresponding im-

plementation architectures. The refinement relation is discussed in section 3.3 and

defined in section 5.4. Application programmers need not understand, or indeed

see, the refinement rules—the rules would typically be implemented at the level of

a toolkit-provided runtime system supporting the Workspace Model.

One possible implementation of figure 1.3 is shown in figure 1.4. This is a cen-

tralized implementation, in which only one copy of the Value component has been

instantiated, on Shona’s server.

The arrows in the figure are implementation level connectors, indicated by the

fact that they have closed arrowheads as opposed to the open arrowheads used

at the conceptual level. Arrows with solid lines are local connectors, which have

essentially the same semantics as procedure calls. The dotted arrows are remote

connectors which are essentially the same as remote procedure calls.

The implementation level components corresponding to the conceptual Value

and Clicker components are visible in the figure. In our notation, shading is used

16

to distinguish implementation level components from conceptual level components.

The other components, identified by symbols, are infrastructure components fur-

nished at the implementation level to provide appropriate implementations of the

conceptual level semantics. The full suite of infrastructure components is defined in

section 5.2. In this figure we see:

• concurrency control and consistency maintenance components (CCCMs),

which mediate concurrent access to application components;

• transmitters and receivers, which allow communication over net-

work links between nodes; and

• a message broadcaster, which provides the asynchronous message de-

livery semantics of the subscription connector.

Since this figure explicitly represents the locations of components on nodes, the

links between them, and the places at which concurrency control is applied, it is

suitable for analyzing the system in terms of fault tolerance (if Shona’s server fails,

the count will be lost), performance (for a classic model-view-controller style inter-

action, updating a clicker’s value will require five network transmissions—a request

and a response each to update and then read the Value, plus an asynchronous mes-

sage to inform the Clicker that the Value’s state has changed), and security (since

the Value is implemented on Shona’s server, she has positive control over access

and modifications to it).

As mentioned above, figure 1.4 is just one of many implementation architectures

corresponding to the conceptual architecture of figure 1.3. Some other possible

implementations are shown in figures 6.6, 6.7 and 6.8 on pages 136, 137 and 138.

Developing software using a Workspace Model toolkit involves defining the appli-

cation components: in this example, the Clicker and Value components. Component

definitions are at the conceptual level of the model. A component definition includes

the ports that the component provides, the calls and messages sent and received

on those ports, and the internal algorithms and data structures used in the compo-

nent’s implementation. At runtime, components are assembled into conceptual level

17

architectures using evolution calculus operations. The application programmer’s

view of our fiia toolkit, which implements the full Workspace Model, is provided in

section 6.4.

The toolkit’s runtime system is responsible for applying the refinement rules

in an incremental fashion as the system is configured, and for generating the im-

plementation level architecture. The runtime is free to select any appropriate im-

plementation of the given conceptual architecture, so it is never necessary for the

application programmer to be concerned with this. However, for pragmatic reasons

it is also possible for the application programmer to provide hints to the runtime

regarding appropriate implementation architectures. The design of our fiia runtime

system is presented in chapter 7.

1.5 Contributions of this thesis

The core contribution of this thesis is a formally-specified architectural model for

synchronous groupware that provides a clean separation of conceptual structure

from distributed implementation, that allows automated mapping between these

two levels, and that provides explicit support for runtime architectural change at

both levels. In particular:

• We have developed a conceptual architectural model that allows developers

to concentrate on the function of their application, abstracting low-level dis-

tributed systems issues such as network transportation, allocation of compo-

nents to nodes, and concurrency control. We have shown that this conceptual

model allows the expression of the common architectural styles for groupware

that have been reported in the literature. We and others have applied the

model to the design of several applications ranging from a remote slide pre-

sentation tool to an exercise video game [56].

• We have developed an implementation architectural model that exposes the

distributed systems issues abstracted in the conceptual model. We have shown

that the implementation architectural model is sufficiently expressive to cap-

18

ture the common groupware distribution architectures reported in the litera-

ture. We have gained some practical experience with the model through its

use to implement several small applications.

• To link the two models together, we have precisely specified a refinement re-

lation showing how to map a single conceptual architecture to a set of imple-

mentation architectures. We have shown by example how different refinement

paths can capture tradeoffs in the quality attributes of the system being con-

structed. We have shown that this form of refinement is suitable for inclusion

in a toolkit: specifically, we have specified an implementation model for the

refinement relation (via graph transformation rules), and used it to show that

all refinement paths terminate in a fully refined implementation architecture,

and that refinement steps are composable. By implementing this operational

model via a rule engine, we have demonstrated that refinements can be effi-

ciently and incrementally computed in real-time.

• Finally, we have developed an evolution calculus formally specifying runtime

change in groupware architectures, and have shown how a runtime implemen-

tation can use this evolution calculus to permit changes to the architecture at

both the conceptual and implementation level, while retaining their correspon-

dence. We show how this allows runtime evolution of a groupware application,

both in the form of programmer-driven changes and changes in the runtime

infrastructure (e.g., due to partial failure of the distributed system).

1.6 Presentation

The remainder of this document is structured as follows. Chapter 2 provides a

review of the existing literature on groupware architecture. Chapter 3 begins with

desiderata for our work, based on the literature review of chapter 2 and amplifying

the material from sections 1.2.1 and 1.3. This is followed by a broad overview of

the Workspace Model, highlighting its key features and their application in more

detail than in section 1.4. A full formal specification of the Model itself is provided

in chapters 4 and 5. Chapter 6 illustrates how the Workspace Model may be applied

19

to scenario-based modeling, design support, architectural analysis and application

development. Chapter 7 presents the design of our Workspace runtime system, fiia,

which was itself developed using Workspace Model concepts. Chapter 8 provides

an evaluation of the Model against the design aims stated in chapter 3. Finally,

chapter 9 offers a concluding discussion and suggestions for future work.

Chapters 3 and 6 constitute a self-contained overview of the Workspace Model

and its applications and may be read alone.

The two appendices provide a quick-reference summary of the Workspace Model’s

graphical notation and definitions of certain key terms that are used in chapters 4

and 5.

20

Chapter 2

Literature Review

In section 1.3 we identified our research motivation as the desire to develop an

architectural approach to groupware that supports dynamic evolution, both at the

conceptual and implementation levels. In this chapter we survey the state of the

art in groupware architectures, in terms of both conceptual architectures and im-

plementation architectures. We follow this with a review of approaches for mapping

between conceptual and implementation architectures, and with a discussion of the

concept of architectural evolution. We close with a summary of the state of the art

in groupware architectures, in comparison with the goals identified in section 1.3.

2.1 Conceptual architecture

Conceptual architectures represent the developer’s view of a system’s components

and connectors, as well as their intended logical configuration at runtime. In this

section we survey the common themes that we have identified in groupware archi-

tectural reference models and architectural styles [8]. The survey is organized in

terms of core themes rather than as a series of tutorial descriptions of architectural

styles themselves. A tutorial survey of most of the core groupware architectures is

available separately [101].

The common themes we have identified in our review of conceptual architectures

for groupware are:

• distribution transparency;

• separation of user interface from program state;

• the use of intermediate layers to coordinate between interface and state com-

ponents;

• a notification mechanism for reporting state change;

• collaboration through shared state;

21

• tree structure; and

• collaboration through asynchronous messaging;

Each of these is discussed below, with specific examples from the groupware

literature. We also discuss one feature that we rarely encountered in conceptual

architectures for groupware: formality.

2.1.1 Distribution transparency

Most of the published conceptual architectures for groupware are distribution trans-

parent [30]. This means that the groupware developer may design a groupware sys-

tem at the level of logical interactions, ignoring (at least temporarily) such issues as

process boundaries, interprocess communication, network limitations, and partial

failure. Fully distribution transparent architectures include Suite [38], Weasel [57],

Clock [60], ALV [66], Dragonfly [4], C2 [128] and the PAC family of architectural

models [31, 94, 22, 32].

Some architectural styles for groupware are semi-transparent. For example,

GroupKit’s shared environments are fully distribution transparent; however Group-

Kit also includes an explicitly distributed remote procedure call construct [112]. The

Java Shared Data Toolkit (JSDT) [19] is based on the Java Remote Method Invoca-

tion [5] and therefore requires the programmer to deal explicitly with partial failure

in the form of mandatory exception handlers.

2.1.2 Separation of user interface from state

The structuring principle of separating the user interface from the application’s

state goes back to at least the 1960s [67]. It is now a commonplace in interac-

tive system toolkits, including for example Java Swing [140] and wxWidgets [120].

Representing a classic separation of concerns approach to software design, it is

intended to promote simplicity, modifiability and reuse.

In groupware architectures this separation is explicitly visible in the form of the

model components in Clock [60] and Dragonfly [4], the abstraction components in

22

PAC* [22] and ALV [66], GroupKit’s environments [112], Suite’s active values [38],

the JSDT’s shared byte arrays [19] and the Clover architecture’s shared functional

core [77]. It is also visible, at least implicitly, in the C2 architecture’s distinction

between components’ top and bottom sides [128] and in the stem portion of De-

wan’s generic model of groupware architectures [37] (see section 2.1.6). This last

is a generalization of the Arch model for interactive systems [130], which explicitly

includes a separate state component.

2.1.3 Intermediate layers

Many architectural approaches include intermediate layers between the interface

components and the state components. These intermediate layers may act as me-

diators or adapters, transforming syntax and semantics to account for mismatches

between the user interface and the application state [52]. They may also provide

other services, including the control of extra-component communication [31] or the

management of the dialogue between the user and the application [100].

The PAC* and Clover architectures provide intermediate layers at both the micro

and the macro levels [22, 77]. At the micro level, each PAC component1 includes

a controller which mediates between its user interface oriented presentation and

its application state oriented abstraction. At the macro level, PAC* borrows the

five layer structure of the Arch architecture [130] and includes logical interaction,

dialogue and functional core adapter layers in addition to its user interface physical

interaction layer and its application state functional core layer. Clover extends this

architecture by allowing an arbitrary number of layers.

Other architectural models that make explicit provision for intermediate layers

include Weasel [57], Clock [60], Dragonfly [4] and C2 [128]. Dewan’s generic model

of groupware architecture attempts to model all possible groupware architectures

in terms of an arbitrary number of layers [37].

1Clover components embed PAC components.

23

2.1.4 Notification mechanism

Complementing the separation of interface from state is the concept of a notifica-

tion mechanism that advises interested components when the application’s state

changes. This idea was first formalized in Smalltalk-76 as the model-view-controller

user interface paradigm [74] and is well-known as a design pattern under the name

Observer [52]. A notification mechanism reduces the coupling between state and

interface and allows the possibility of multiple interfaces responding independently

and appropriately to state changes.

The most common notification mechanism in groupware architectures is based

on events, which act as indications of state change. On receipt of an event, the

receiving component is expected to perform whatever computation is appropriate to

react to it, which may involve communication with the event sender. This technique

is used in GroupKit [112], Suite [38], the JSDT [19], C2 [128] and Dragonfly [4]. It

also forms the basis of the Notification Service Transfer Protocol (NSTP) [35, 98], an

attempt to standardize a general notification service for heterogeneous synchronous

groupware. The transmitted events may be simple indications of state change or

may carry arbitrary information [118].

An alternate notification mechanism is based on declarative constraints, as found

in Weasel [57], Clock [60] and ALV [66]. As used in these systems, constraints ex-

press a desired relationship between state and interface and are a higher level con-

cept than events; once declared, they are maintained automatically by a constraint

satisfaction algorithm in the underlying runtime system. While this is an appealing

concept, fully general constraint satisfaction algorithms are difficult to implement

efficiently, particularly for arbitrarily distributed systems [148].2 They can also be

difficult for developers to program effectively, occasionally resulting in surprising

and difficult to debug behaviours [136].

2In special cases, including Clock’s tree-structured distributed systems, they can be implemented
as efficiently as hand-tuned notification mechanisms [131, 132].

24

2.1.5 Collaboration through shared state

The combination of separate state components and a notification mechanism allows

for collaboration through shared state. In this approach, a single state component is

shared by multiple system users. When any user modifies the state, a notification is

provided to all. This allows each user’s interface to react appropriately. Interaction

through shared state is appropriate where groupware users are viewing or modify-

ing some shared artifact. All the groupware architectures mentioned in section 2.1.2

support collaboration through shared state.

2.1.6 Tree structure

Many groupware architectures use a hierarchical tree structure as their principal

topology. This structure may be used to identify shared versus private components,

to indicate visual containment, to facilitate structured communication between com-

ponents, or all three.

Groupware architectures deriving from the Arch reference model [130] typically

use a tree structure to indicate the distinction between shared and private compo-

nents. The shared components are found in the common “stem” of the tree, the

private components in the individual “branches”. Arch-derived groupware archi-

tectures include PAC* [22], Clover [77], and Dewan’s generic model [37]. Other

groupware architectures that are not directly derived from Arch but which use a

tree structure to separate private and shared components are Clock [60], Dragon-

fly [4], C2 [128], and to a lesser extent, GroupKit [112].

Visual containment is a common feature of user interfaces. For example a typical

text editor’s user interface will contain a menu bar and an editing area; the editing

area will contain the text area itself and a scroll bar. Visual containment may be nat-

urally represented by hierarchy; this approach is taken in Clock [60], Dragonfly [4]

and ALV [66].

Finally, hierarchy can be used to provide a structured communication mechanism

between components. In the PAC family of architectural styles [31, 94, 22, 32] the

25

PAC components are arranged in a tree, with the control facets managing commu-

nication up and down the hierarchy. In Clock [60] and Dragonfly[4], requests which

cannot be satisfied locally are automatically propagated up the architectural hierar-

chy and constraints (in Clock) or events (in Dragonfly) are propagated down. This

allows components to be moved easily from one level of the hierarchy to another.

2.1.7 Collaboration through asynchronous messaging

The final theme that we have identified in groupware architectures is communica-

tion through asynchronous messaging. This is typically used for the propagation

of input events, the distribution of state change notifications, and the delivery of

time-based media such as audio and video.

Most architectural styles for groupware (and indeed, most interactive systems

in general) include an event-based mechanism for dealing with user input. While

at some level these events are actually processed by a polling event loop, from the

programmer’s perspective they arrive asynchronously. Groupware systems using

asynchronous notification of user input include Weasel [57], Clock [60], ALV [66],

Dragonfly [4], GroupKit [112] and the JSDT [19]. PAC-based systems may also be

implemented using asynchronous input, though this is not a requirement of the

style [32].

Systems that use event-based notification mechanisms for state change may do

so either synchronously (that is, the response to the notification executes in the

event-sender’s thread) or asynchronously (in some other, possibly system-provided,

thread). From a high-level perspective the original model-view-controller interac-

tion pattern was intended to be asynchronous; however, the actual implementations

in the Smalltalk user interface toolkit [74] and derivatives like Java Swing [140] are

actually synchronous. Of the groupware architectures surveyed, C2 [128], Group-

Kit [112], the JSDT [19] and NSTP [98] provide true asynchronous change notifica-

tion.

Finally, asynchronous messaging is frequently used to deliver time dependent

media such as audio and video. This approach is frequently seen in commercial

26

groupware tools like Skype [7] and MSN Messenger [88]; it has also been used in

Clock [59] and in many other communication-oriented groupware tools.

2.1.8 Formality

One feature that we found only rarely in descriptions of conceptual architectures for

groupware was formality—most descriptions of groupware architectures are com-

pletely informal and may be more or less rigorous. The main exceptions to this rule

are C2 and Clock.

C2 is specified in terms of four different levels of abstraction: internal function-

ality of the component, the interface(s) exported by the component to the rest of

the system, interconnection of architectural elements in an architecture, and syn-

tactic rules of the architectural style [87]. This formal specification assists in pre-

cise communication among developers using C2, supports automated enforcement

of syntactic rules, and provides opportunities for other forms of automated design

support and runtime implementation [86].

The Clock language has a formal definition based on temporal logic [54]. The

multi-user version of the Clock system adds additional specification mechanisms,

including communications protocol models [131]. Clock’s formal definition allows

for the creation of automated design tools [55] and for experimentation with flexible

yet semantically correct distributed implementations of Clock systems [132].

In the next section we present the range of implementation architectures for

groupware systems. In section 2.3 we return to the issue of formality, and discuss

how formal representations of conceptual architectures can assist in the mapping

from the conceptual level to the implementation level.

2.2 Implementation architectures

As discussed in section 2.1.1, most groupware conceptual architectures purposely

hide the distributed system aspects of groupware systems from application program-

mers. This allows the designers of groupware applications to focus more directly on

27

problems in the application domain, while largely ignoring distributed implemen-

tation concerns. However, groupware systems are ultimately implemented as dis-

tributed systems, and the choice of distribution architecture will impact the system’s

performance, security, and fault tolerance, among other attributes.

In this section, we examine the range of implementation architectures for group-

ware systems that have been reported in the literature. The implementation archi-

tectures are illustrated using the Workspace notation introduced in section 1.4 and

summarized in appendix A on page 216. A full formal definition of the notation is

provided in chapters 4 and 5. Here, as in section 1.4 we provide enough informal

explanation to make the meanings of the diagrams clear.

For simplicity, in the discussion that follows we assume that each participant

has a user interface that manipulates shared state and (in most cases) private state,

using a model-view-controller style interaction with asynchronous notifications. We

show two participants in most diagrams. The architectures illustrated may be easily

extended to more users and more complex application structures. For example, the

shared state might in fact be a complex, active, shared application. Further, an in-

dividual application might use an arbitrary mix of the implementation architectures

discussed.

The figures in this section are drawn using the Workspace Model’s conceptual

level notation, which may appear odd given that we are discussing distributed im-

plementation. We have done this in order to keep the diagrams simple, avoiding

the implementation-level requirement to explicitly indicate infrastructure compo-

nents like CCCMs, message broadcasters, transmitters and receivers. We rely on

the conceptual level’s anchor relation to attach conceptual components to nodes;

this allows us to depict the implementation architectures abstractly yet precisely.

To reduce clutter, ports have been omitted from the diagrams in this section.

2.2.1 Centralized

In a fully centralized architecture, illustrated in figure 2.1(a), the application includ-

ing all user interfaces is located on a single server and only display services are

28

client
server

shared state

client

interface

private state

client

interface

private state

(a) server based, fully centralized application

display
services

display
services

shared state

client

(b) client based centralized application, WYSIWIS

interface

display
services

display
services

Figure 2.1: Centralized implementation architectures.

found at the users’ sites. Communication from the users’ sites to the application is

via interface-level events; communication in the reverse direction is via rendering

requests. The display services component shown in the diagram is used to trap user

input and reroute it to the actual user interface, and to render the contents of the

user interface on the user’s screen. This normally requires either specialized low

level software at the client sites and server sites, or a display-server based window-

ing system like the X Window System [149].

The main benefit of the fully centralized architecture is its simplicity. Designers

adopting this approach can largely ignore distributed system issues since the only

distribution is performed by the display services. Since there is only one instance

of the application running on a single platform, internal efficiency of the applica-

tion can be maximized and state consistency can be guaranteed relatively easily.

The architecture also provides for accommodation of latecomers (users who join a

groupware session after it has begun), since it is generally practical to provide them

with access to the application’s shared state or display [28].

The fully centralized architecture tends to be bandwidth intensive and sensitive

to network latencies, since communication between the server and the user sites is

29

at the level of interface events in both directions. However, performance is often

subjectively acceptable on high-speed local area networks [1, 66, 131]. The fully

centralized architecture also suffers from poor scalability. If the state updates or in-

terface view recalculation are computationally intensive, or if there is a large state

storage requirement per user, the resources of the server can quickly become ex-

hausted as the number of users in the groupware session grows [57]. This problem

is compounded by the fact that changes in the shared state will normally require

view recomputation to be performed for all users simultaneously [66].

The fully centralized architecture has been used in a number of research sys-

tems. The Rendezvous system was implemented using a centralized architecture

since this avoided the requirement for a distributed constraint maintenance im-

plementation. Rendezvous’ designers considered adapting it to other distribution

architectures [66], but implementations were never completed. The Clock runtime

system adopts the fully centralized distribution architecture by default; however,

Clock can also provide a semi-replicated architecture (section 2.2.3).

A variation of the fully centralized architecture, in which the application is found

on one of the client machines and there is no private state, is shown in figure 2.1(b).

This variation is used in window sharing systems like XTV [1] and distributed meet-

ing applications like WebEx [142], and WebArrow [141] to enable the collaboration

transparent sharing of single user applications. It is restricted to a strict What-You-

See-Is-What-I-See (WYSIWIS) [122] presentation. This variation is more scalable

than the architecture of figure 2.1(a) since only one view need be computed.

2.2.2 Replicated

A fully replicated architecture is the opposite of a fully centralized one: here all

shared data and computation is replicated at all sites. At least three major vari-

ants of this architecture are possible. In one variant the consistency of shared state

is maintained through an active replica maintenance policy. This is illustrated in

figure 2.2(a) by the synchronization connector between the two shared state com-

ponents. In the second variant, illustrated in figure 2.2(b), the consistency of shared

30

clientclient

interface

private state

interface

private state

(a) replication with state synchronization

shared state shared state

(c) replication with synchronized input

clientclient

interface interface

shared state shared state

display
services

display
services

clientclient

interface

private state

interface

private state

(b) replication with synchronized state modification

shared state shared state

? ?

Figure 2.2: Replicated implementation architectures.

31

state is maintained implicitly by ensuring that all modifications to shared state are

identical. (Shared state may be independently queried but not independently mod-

ified; this is indicated by the question mark on the call connector in figure 2.2(b).)

Finally, in the third variant, illustrated in figure 2.2(c), shared state is maintained im-

plicitly by ensuring that input to all user interfaces is identical; in this case all state

is effectively shared since there is no mechanism for manipulating private state.

An obvious liability of replicated distribution architectures is the requirement

that a separate copy of the application execute at each users’ site. This means that

replicated applications require more aggregate resources (processing power, mem-

ory, software licenses, etc.) than equivalent centralized applications. They may or

may not require more aggregate communications bandwidth than centralized appli-

cations, depending on the messaging protocols used and the contents of the mes-

sages. In environments with a mix of machine types and operating systems, the re-

quirement for identical applications at each site can become a significant constraint,

although multi-platform systems like Sun’s Java [5] mitigate this somewhat [10].

The main benefit of the replicated architecture is enhanced interface responsive-

ness. In the state synchronization variant, where an optimistic or operation trans-

form (OT) concurrency control algorithm is used to maintain synchronized state,

updates to shared state can be performed locally and are unaffected by network

latency [49, 132]. The same is true of the synchronized state modification variant,

provided that the ordering policy applied to state modification messages does not

add significant overhead. A further benefit of replicated architectures is that they

distribute the computationally expensive interface processing to the users’ com-

puters. This might be expected to lead to better scalability; however, in practice

scalability depends strongly on the overhead incurred in synchronizing the state of

the replicated instances. This may be significant, particularly for large numbers of

participants.

In the case of the replicated architectures with synchronized state modification

or input, some mechanism is required to effect the multi-source, multi-target sub-

scription arrow shown in figures 2.2(b) and (c). If no particular ordering policy is

32

required, as in the case of an OT-based system, simple broadcast will suffice. Causal

or total ordering may be implemented by a fully distributed algorithm like those pro-

vided in, e.g., the Horus group communication system [133]. More commonly, total

ordering is achieved by routing all user inputs through a central coordinator located

on one of the user’s machines or a separate server machine. This latter variant is

sometimes referred to as a centrally coordinated architecture [101].

Research groupware systems using a fully replicated architecture with state syn-

chronization include the CoWord editor [147], DreamTeam [114], Mushroom [71],

GroupDesign [70], GINA [12] and the original version of COAST [117]. Commercial

systems using this architecture include the multiuser text editor SubEthaEdit [125],

the real-time strategy game NetStorm: Islands at War [63], and the various military

command and control systems developed under the NATO-sponsored Multilateral

Interoperability Programme [91].

GroupKit is one of the few research systems to use the replication with syn-

chronized state modification architecture; this appears in the form of its multicast

remote procedure call construct [110, 112]. The technique is also used in numerous

real time strategy games [63] including Age of Empires 2 [14].3

Research systems using the replicated architecture with synchronized input in-

clude the Java Collaboration Environment (JCE) [2], Java Applets Made Multi-user

(JAMM) [10, 9], NCSA Habanero [24], the Prospero system [41], Ensemble [92], and

the most recent version of COAST [116]. Commercial systems include the collabo-

rative Word editing feature of Microsoft Groove [64].

2.2.3 Semi-replicated

In a semi-replicated distribution architecture some aspects of computation and state

are replicated while others are centralized. The policy for determining what is cen-

tralized and what is replicated may vary with the application or system. One com-

mon approach, illustrated in figure 2.3(a), is to to centralize shared state and repli-

3In the case of, e.g., Age of Empires 2 the shared state component shown in figure 2.2(b) is actually
a complex application with its own internal thread of control; however, the same general principles
hold true.

33

server

shared state

client

interface

private state

client

interface

private state

(a) server-based centralized shared state

server

shared
state 1

client

interface

private state

client

interface

private state

(b) combined centralized and replicated shared state

shared
state 2

shared
state 2

server

client

interface

private state

client

interface

private state

(c) hybrid centralized and replicated shared state

client

interface

private state

shared stateshared state

Figure 2.3: Semi replicated architectures.

34

cate private state and user interface. A minor variant of this approach (not shown)

has the shared state centralized on one of the client sites rather than on a server.

Figure 2.3(a) can be seen as a variation of figure 2.1(a) in which the interface and

private state have been moved to client machines, removing the requirement for the

display services component. As might be expected, the semi-replicated architecture

provides a mix of the benefits and liabilities of the centralized and replicated archi-

tectures. There is some evidence that with careful tuning the benefits can outweigh

the liabilities [132].

The semi-replicated architecture is more flexible than the centralized architec-

ture and accommodates latecomers better than the fully replicated architecture [68].

Semi-replicated applications generally scale better than either fully centralized or

replicated ones, since computationally intensive user interface calculations are found

at the user sites and communication paths are n-to-one rather than n-to-n [60]. They

are also simpler to develop, since consistency maintenance can be managed cen-

trally rather than via a distributed algorithm. If the protocol between the user sites

and the server site is standardized, then a variety of user applications can access

the shared data simultaneously [34].

The principal liability of the semi-replicated architecture is that responsiveness

of the user interface may be impacted by network latencies between the client sites

and the server. This effect can be mitigated by the introduction of caches at the

client sites at the expense of additional computational and storage overhead [60].

In certain cases it can also be effective to combine the semi-replicated architecture

with synchronized shared state and a high-performance consistency maintenance al-

gorithm [131, 132]. This kind of architecture is illustrated in figure 2.3(b). Note that

here the shared state has been divided into two parts, one of which is centralized

and the other of which is replicated and synchronized.

For more than two users it is also possible to create a hybrid architecture in

which shared state is centralized for some users and replicated for others. This is

illustrated in figure 2.3(c). Hybrids incorporating the architectures of figures 2.1(b)

and 2.2(c) are also possible [26]. Hybrid architectures may be attractive when nodes

35

vary significantly in their capabilities or in the quality of their network links [26].

The semi-replicated architecture is the basis of the Notification Service Trans-

fer Protocol (NSTP) [34, 35, 98], which has been used as the basis of a number of

synchronous groupware applications [90]. Variants of the semi-replicated architec-

ture are also found in Suite [38], those GroupKit applications incorporating cen-

tralized shared environments [112], Clock [60], the Java Shared Data Toolkit [19],

Jupiter [93], Promondia [50], the DOLPHIN system [124], Bentley’s system for air

traffic control [11], and Neil Stephenson’s fictional Metaverse [123].

The semi-replicated architecture is also widely used in multiplayer video games,

ranging from games that support on order of ten players such as Half-life [13],

Halo 2 [21] and Neverwinter Nights [18], to massively-multiplayer games support-

ing thousands of concurrent players such as EverQuest [119], Lineage [78] and Star

Wars: Galaxies [106].

This completes our review of implementation architectures for groupware. We

turn now to the question of how to map from conceptual architectures to implemen-

tation architectures.

2.3 Mapping from conceptual to implementation

One approach to mapping from a conceptual architecture to an implementation ar-

chitecture is to leave the choice entirely to the imagination of the developer. While

this clearly provides the ultimate in design time flexibility, it is less powerful than

approaches that offer the possibility of automated or semi-automated mappings,

implementation assistance, and support for architectural evolution at both the con-

ceptual and the implementation level.

In the current literature there are several alternative approaches to mapping

conceptual architectures to distribution architectures. These are:

Principled mapping. Implementation architectures can be developed by designers,

at design time, through the application of mapping guidelines. While still man-

ual, this reduces the amount of creativity required on the part of the designer

36

and supports the reuse of best practices. This approach has been applied for

example in the translation of PAC-Amodeus architectures to Java implementa-

tions [47].

Tool mapping. The mapping from conceptual architecture to implementation archi-

tecture can be performed by a tool. Tools such as Suite [39], GroupKit [112],

Clock [132], Rendezvous [66], COAST [117] and the DRADEL toolkit for C2 [86]

permit developers to work with relatively high-level, distribution-independent

abstractions as described in section 2.1.1. The actual implementation archi-

tecture is then generated by the tool without requiring further intervention

from the designer. This approach has the drawbacks that the selection of

implementation architectures are normally quite limited (in some cases, just

one) and the architecture chosen by the tool may not be optimal for either the

application or its deployed environment.

Open implementation. Open implementation approaches combine the flexibility of

principled mapping with the support of a toolkit. In an open implementation,

the toolkit’s mapping function may be customized through high-level parame-

ters [39], via meta-languages that control the runtime system [42, 79, 127], or

via meta-protocols allowing direct insertion of code into the toolkit itself [48,

95, 83]. For example, Clock allows the developer to provide architectural an-

notations regarding caching, concurrency control and replication that have an

effect on the runtime’s implementation behaviour [132]. Similarly, later ver-

sions of GroupKit provide a set of command-line switches that allow the choice,

at application startup, of centralized or replicated implementations for shared

environments [109].

Facet-based mapping. Facet-based mapping is a fine-grained version of open im-

plementation developed for the Dragonfly architecture and its TeleComput-

ingDeveloper toolkit [4]. Each conceptual level component is mapped onto a

composite implementation component consisting of a component-specific facet

provided by the developer plus system-provided facets that support for concur-

rency control, caching, and replication. The system provides several versions

37

of each kind of facet, which may be “plug replaced” at design time to provide

different runtime implementations.

Tool mapping, open implementation and facet-based mapping all require some

level of formality in the description of both the conceptual and implementation ar-

chitectures. In some cases, as in Clock and C2, the architecture is formally specified

independent of supporting tools. In other cases the only formal representation of the

architecture is implicit in the implementation of the tool itself. This makes it difficult

to formally reason about conceptual architectures and their implementations, and

reduces opportunities for additional tool support.

One common feature of the approaches described above is that they allow for

mapping from the conceptual to the implementation level at design time, or at the

latest, at application or toolkit startup time. None of these approaches support

the kind of fluid runtime behaviour discussed in sections 1.1.1 and 1.3; if we are

to achieve truly dynamic groupware then another approach to mapping will be re-

quired. This mapping approach must be combined with support, at runtime, for both

conceptual and implementation level evolution.

2.4 Evolution

Most groupware systems are designed to support at least a degree of conceptual

level evolution. For example, in GroupKit, users may start new collaborative ses-

sions with their associated applications and may join or leave existing collaborative

sessions [112]. This obviously implies some degree of implementation evolution as

well: new software components must be instantiated, new communication paths

must be established, and so on.

However, very few groupware systems provide explicit mechanisms for repre-

senting or reasoning about evolution architecturally, at either the conceptual or the

implementation levels. In this section we summarize the exceptions that we are

aware of, and provide a brief discussion of the related literature on dynamic archi-

tectures for distributed systems.

38

The C2 architecture is based on components communicating via multi-way asyn-

chronous message connectors that may span multiple address spaces [128]. Both

components and connectors have “top” and “bottom” sides; a message sent into the

bottom of a connector is received at the bottom side of all components that are at-

tached to the connector’s top, and vice versa. C2 supports runtime change through

an architecture modification language allowing the dynamic addition and removal

of components and connectors, and dynamic “welding” and “unwelding” of com-

ponents and connectors [96]. C2’s architectural model has an implicit one-to-one

mapping between conceptual components and their implementations; however con-

nectors may have complex implementations that change dynamically as components

are attached and detached. Connector implementations are not representable in the

C2 architectural model and no explicit mechanism is given for reasoning about im-

plementation correctness.

The DACIA system [81, 82] provides a framework for building distributed sys-

tems, that can adapt to available resources and support user mobility. It does this

through a mobile component model where components may move between process

spaces and the connectors between components are automatically preserved during

moves. DACIA’s connectors support only point-to-point asynchronous messaging.

Its evolution support consists of a set of primitives allowing components to be cre-

ated, destroyed, moved between hosts, and connected and disconnected from one

another. While both papers reporting DACIA provide examples of multiple imple-

mentation configurations intended to represent “the same application”, DACIA pro-

vides no mechanism for reasoning about the correspondence between application

semantics and distributed implementation. DACIA’s architectural representation is

at the implementation level only.

While both C2 and DACIA support the creation of dynamic groupware, neither

provide explicit representation of the transition between centralized and replicated

approaches to the implementation of shared state. Chung and Dewan describe a

system with exactly this property in [26]. Their system, which is aimed at the

collaboration-transparent sharing of single-user applications, supports the archi-

39

tectures shown in figures 2.1(b) and 2.2(b), plus “hybrid” combinations of these

architectures for three or more users. Their system allows for the creation and

destruction of application replicas and display services components and for the re-

routing of the connections between them. They provide a formal model of these

changes and a distributed coordination language for implementing them. The cre-

ation of new synchronized replicas is achieved by logging a compressed version of

the complete input event stream and replaying it on replica creation [25, 27].

Aside from the work on dynamic groupware discussed above, there is also a sig-

nificant body of literature on formal architectural approaches to dynamic distributed

systems. A comprehensive summary of this work is provided in [17]. As might be

expected, all work in this field is at what we refer to as the implementation level of

architectural description. A variety of formalisms have been proposed for discussing

architectural dynamics, including graphs (e.g., CommUnity [143]), process algebras

(e.g., Darwin [84]), and declarative logics (e.g., ZCL [36]).

2.5 Summary

In this chapter we have surveyed the state of the art in architectures for groupware

systems in terms of their conceptual representations, their distributed implemen-

tations, the mechanisms available for mapping between these two levels, and their

support for runtime change. We have identified that currently available approaches

lack certain key features when they are compared to the scenario and goals de-

scribed in chapter 1.

In the next three chapters we continue our presentation of the Workspace Model.

In chapter 3 we present our desiderata for an architecture for groupware, in terms

of requirements arising from user needs, application programmer needs, and toolkit

developer needs. This is followed by an overview of the Workspace Model, which has

been designed to fill those requirements. Chapters 4 and 5 provide a specification of

the Workspace Model itself. In chapter 6 we show how the Model can be applied to

the design, analysis and implementation of groupware systems that meet the needs

of users and application programmers. In chapter 7 we illustrate how the model

40

supports the development of toolkits by describing the implementation of our own

Workspace toolkit, fiia. Then in chapter 8 we return to the requirements identified

in chapter 3 and summarize how the Workspace Model addresses them.

41

Chapter 3

Desiderata and Overview of the Workspace Model

As shown in chapter 2, current architectural models for groupware lack key at-

tributes necessary for the effective development and runtime implementation of

scenarios like the one presented in section 1.1.1. In particular, no current model

of groupware architecture provides all of the following features:

• a formally-defined, distribution transparent, conceptual level architectural model

with appropriate abstractions for the development of groupware;

• a formally-defined implementation architectural model that exposes the dis-

tributed system issues abstracted at the conceptual level;

• a formal relation between the two levels, which allows a range of implementa-

tions to be computed for any conceptual level architecture; and

• an explicit representation of runtime change.

In the next section we lay out our rationale for these features in more detail,

from the perspective of the groupware user, the groupware application developer,

and the groupware toolkit implementor. This is followed by a more detailed overview

of our own model of groupware architecture, the Workspace Model. The full formal

definition of the Workspace Model is provided in chapters 4 and 5.

3.1 Desiderata for a model of groupware architecture

As described in section 1.3, our goal is to produce an architectural model for group-

ware that allows for fully dynamic behaviour at both the conceptual and implemen-

tation levels, with a precise link between the two. Ultimately, this model should

support the efficient development of groupware systems possessing the kind of fluid

behaviour described in the scenario in section 1.1.1.

42

In developing our architectural model, we need to ensure we satisfy the needs

of three communities: end-users, application programmers, and toolkit develop-

ers. End users require that their groupware systems support fluid collaboration,

perform efficiently, and behave in a predictable manner. Application programmers

need an environment that is appropriately expressive and that doesn’t require them

to commit prematurely to a distributed implementation. Toolkit implementors need

a model that is formally represented, that provides a range of distributed implemen-

tations, that supports efficient incremental refinement of conceptual architectures

to distributed implementations.

In the sections that follow we discuss these requirements, which constitute a

desiderata for a groupware architecture.

3.1.1 User requirements

Users want groupware systems that allow for fluid collaboration, that are acceptably

efficient, and that don’t provide unnecessary surprises in use. The implications of

these requirements on our model are:

Evolution. The model must provide an explicit representation of dynamic change

at both the conceptual and implementation levels. This must allow for user-

driven reconfiguration in response to changing needs, as well as system driven

reconfiguration in response to changes in the runtime environment, including

partial failure.

Implementation efficiency. The model must allow for reasonably efficient implemen-

tations of groupware systems. To meet this, the model should not introduce

unnecessary overheads and should include performance enhancing features

such as caching, as well as support for a range of replica consistency mainte-

nance approaches.

43

3.1.2 Application programmer requirements

As motivated in section 1.1.2, groupware application programmers need an appro-

priate set of high-level abstractions that simplify the construction of groupware sys-

tems and that avoid premature commitment to a particular distributed implementa-

tion. The implications of these requirements on our model are:

Conceptual expressiveness. The model must provide support for a range of design

approaches and must be capable of modelling a range of interesting group-

ware systems. As a minimum, we suggest that the conceptual level should sup-

port the core architectural features identified in sections 2.1.2 through 2.1.7:

separation of user interface from state, provision of intermediate layers, tree

structure, a notification mechanism, collaboration through shared state, and

asynchronous messaging.

Distribution transparency. It must be possible to represent design time components

and their run time architectural configurations without unnecessary reference

to how those components or configurations are to be implemented in a dis-

tributed system.

3.1.3 Toolkit implementor requirements

Toolkit implementors need to provide programming interfaces and runtime systems

that support the application programmer and user needs listed above. In order to do

this, they need a formal representation of the syntax and semantics of the systems

they are implementing, an appropriate range of distributed system implementations

to choose among, and a mechanism that allows for the automatic computation of

distributed implementations. The implications of these requirements on our model

are:

Formal representation. The architectural representations at both the conceptual

and implementation levels must have well-defined syntax and semantics, in

order to allow precise representation of evolution, at either level, and of the

mapping between levels.

44

Implementation expressiveness. At the implementation level, the model must al-

low for replicated, centralized and hybrid approaches to managing shared

state and must provide an appropriate range of implementations for any given

conceptual architecture. The implementation level must be represented in a

way that supports reasoning about performance, security, fault-tolerance, and

other key distributed system attributes.

Refinement. The model must provide a formal relation (refinement) between the

two architectural levels such that implementation architectures may be de-

rived automatically from conceptual architectures. In order to be useful and

implementable, the refinement relation must refine all possible conceptual

level architectures to fully refined architectures, and the computation of a

refined architecture must be tractable for large architectures.

3.1.4 Summary

This desiderata constitutes the requirements for a model of groupware architecture

that have guided us in our development of the Workspace Model. In the remaining

sections of this chapter we provide an overview of the model itself, and provide

explanations of how its particular features were chosen to meet these design aims.

The full formal definition of the Workspace Model follows in the next two chapters.

3.2 Conceptual architecture

In section 1.4.2 we introduced some of the core features of the Workspace Model by

means of our very simple “clicker” example. In this section we return to the multi-

user CASE tool example of section 1.1.1 and show how it can be represented using

the Workspace Model.

Recall that in our scenario Dave and Ian were working on their design for a

software system using a CASE tool, on a large touch-screen display across the hall

from Dave’s office. They had moved the CASE tool’s tool palette off the touch-screen

onto Ian’s tablet computer in order to make more room for their design. Towards

45

Dave

Dave's workspace

Ian

touch-screen

CASE tool
canvas

Ian's
tablet

Dave's
workstation

CASE tool

tool
palette

Karen's workspace (Japan)

CASE tool

Karen

telephony

Tatiana's workspace

CASE tool

Tatiana

telephony

telephony

design

design

design

?

!?

!?

!?

!?

mic
speaker

Dave

Karen's
laptop

Tatiana's
workstation

Figure 3.1: Conceptual level view of the multi-user CASE tool.

the end of the scenario, they had invited Karen and Tatiana to join them remotely to

discuss what they had created.

A conceptual architecture depicting this final collaborative situation is shown

in figure 3.1, using the Workspace notation.1 Workspace diagrams like this figure

represent point-in-time snapshots of the state of a system of interest. The scenario-

based analysis [23] of a system will normally require the generation of several such

diagrams, with the changes between them specified using the evolution calculus. We

show an informal scenario-based analysis of this CASE tool example in section 6.1.

3.2.1 Workspaces

The top-level feature of figure 3.1 is its three workspaces, indicated by the dotted

lines. A workspace is essentially a scoping mechanism and may contain people,

computational nodes, software and hardware components, and connectors between

them. In the diagram we see Dave, Karen and Tatiana’s workspaces and their con-

1A summary of the notation is provided in appendix A, starting on page 216.

46

tents.

For scenario modelling, workspaces provide a useful way to depict independent

contexts of use. For runtime implementation, the nodes found in a workspace (dis-

cussed below) provide the computational platforms on which software supporting

workspace owners may be instantiated.

3.2.2 People

The people found in workspaces represent direct system users and others who may

be affected by the system’s use, here including our scenario’s four participants. Ian

is shown in Dave’s workspace since he is making use of tools and objects “belonging

to” Dave. People are able to provide inputs to, and receive output from, other system

elements including other people. This communication is mediated by subscription

connectors (the double-headed arrows), which are discussed further below. People

are normally the main initiators of activity in the workspace.

The explicit representation of users in architectural models is relatively rare.

Since the Workspace Model’s conceptual level is intended to allow the represen-

tation of collaboration using groupware, people are an essential component of the

model.

3.2.3 Nodes

The nodes found in workspaces represent identifiable computational platforms that

are controlled by the workspace’s owner. Dave’s workspace includes his desktop,

the large touch-screen, and Ian’s tablet computer, which Ian has “donated” for his

use. In general a single computer may support multiple nodes, which is expected

to be the normal case for server computers; a node is essentially defined by an

executing process that acts on behalf of the node’s owner.

In this scenario we have explicitly represented the three nodes in Dave’s work-

space, as well as one node each in Karen and Tatiana’s workspaces. In some cases

we have explicitly located components on nodes in the diagram; this is the anchoring

47

relation discussed below.

A node’s presence in a workspace indicates that components in the workspace

may be instantiated on the node; nodes thus provide a bridge between the concep-

tual and implementation levels.

3.2.4 Components

Components are represented by rectangles. A component may be physical, like

a pen or a whiteboard; software-based, like a document or a user interface; or a

component may be an adapter between the physical and software worlds [43, 44].

Adapters include devices like mice, keyboards, microphones, speakers, cameras

and displays. In figure 3.1 we have shown the mic and speaker adapter components

that are associated with the touch-screen display in Dave’s workspace and that are

used to support the voice connection between the four scenario participants. There

would necessarily be other adapters in the represented workspaces; these are ab-

stracted in the connectors from the people to the software components with which

they interact.

The user interface and adapter components in Dave’s workspace in figure 3.1

are shown anchored to particular nodes, while the remaining components are float-

ing. The anchoring relation indicates that a component is directly associated with

a particular node. As shown in section 3.3, a software component that is anchored

to a node must be instantiated on that node; however, a component that is floating

may be instantiated on any node in its workspace. The anchor relation allows us

to indicate that, for example, adapter components are associated with particular

computers, that user interfaces are to appear on particular displays, or that critical

information is to be stored on high-availability servers. Since these are all issues of

direct interest to users, it is appropriate to represent them at the conceptual level.

The conceptual level includes three kinds of components. Reactors, such as the

mic, CASE tool canvas (canvas for short) and tool palette components, react to in-

put calls or messages arriving on connectors but are otherwise inert. Stores such

as the design components are purely passive. They are analogous to the model of

48

the model-view-controller architecture [74] or the abstraction of PAC [31], with the

added feature that they may be used to represent shared state, like the abstrac-

tion of ALV [66]. Finally actors, which are not found in this particular model, have

independent threads of control and may therefore initiate activity in a workspace.

Providing the three different component types in the Workspace Model’s concep-

tual level allows us to reason about the activity and the flow of information through

the system, as well as about what information is shared, or potentially shared, be-

tween a collaboration’s participants.

3.2.5 Connectors

Connectors represent available communication paths between components; the con-

ceptual level includes three kinds of connectors. Call connectors, shown with single

open arrow heads, are point to point, blocking, and analogous to procedure calls.

Complementing call connectors are subscription connectors (double open arrow

head), which are asynchronous and provide multi-source to multi-target message

delivery. The third connector type is the synchronization (double line or “equal

sign”), which provides an abstract representation of information sharing without

defining how that sharing is actually to be implemented.

A single call connector may support a vocabulary that includes multiple individ-

ual calls. Calls which modify the state of the called component are updates and may

be indicated by an exclamation mark (!) annotation; calls which return values are

requests and may be indicated by a question mark (?). If a call connector includes

both requests and updates, or if a single call in the connector both modifies state

and returns a value, then the connector is a request-update connector and may be

annotated with both a question mark and an exclamation point (!?).

In the figure, Dave and Ian’s tool palette is connected to the design by a request-

update connector. This implies that the tool palette can query the current design

and also modify it. The canvas is connected to the design by a request connector,

indicating that it may only request information from the design, such as its current

contents for display purposes.

49

On call and subscription connectors, the direction of the arrowhead indicates the

direction of communication; for call connectors, return values go in the direction

opposite the arrow.

Stores that are synchronized (like the design components in figure 3.1) return

consistent results for requests and emit consistent message streams; that is, they

may be thought of as representing “the same thing.” So, in figure 3.1 all the scenario

participants are viewing the same design.

Call connectors provide for the normal request-reply semantics of procedure

calls, which is a well-understood and frequently-used programming model. Sub-

scription connectors provide asynchronous message streams, including audio and

video streams, and thus support collaboration through asynchronous messaging.

Synchronization connectors, which are unique to the Workspace Model, provide for

collaboration through shared state. As in the example, synchronized stores typically

use subscription connectors as a notification mechanism—subscription connectors

thus play a dual role in the model.

3.2.6 Ports

Components are attached to connectors at ports, which are represented by small

circles found on component edges. The symbols within the circles represent the

type of connection supported. For call and subscription ports, arrows pointing into

the component indicate target ports while arrows pointing out of the component

indicate source ports.

As a shorthand (as in figure 3.1), we often omit ports from our diagrams since the

attachment of a connector to a component implies the presence of a port. However,

when we are concerned with the design of an individual components, the defini-

tion of which ports that component will provide, along with the ports’ vocabularies,

becomes critical. The formal refinement of a conceptual level architecture to its

implementation requires the explicit representation of ports. Ports are shown in the

“clicker” example in section 1.4.2 and are shown in connection with the CASE tool

scenario in section 6.2.3.

50

3.2.7 Interpretation

Interpreting the diagram in figure 3.1 requires an understanding of the intended

patterns of collaborations between the components. We show how this may be

explicitly represented using a UML-like notation [115] in section 6.2.3. Here we

provide a short informal description.

The CASE tool in this example is intended to operate using a shared-state, multi-

user model-view-controller style of interaction [74, 101]. In Dave’s workspace, Dave

and Ian are both looking at the canvas component, which shows the current state of

the design. Ian controls the tool palette and changes the currently selected tool as

necessary. Dave is working at the touch-screen, modifying the canvas. His inputs

to the canvas are passed to the tool palette, where they are interpreted by the cur-

rently active tool. The tool may query the design and modify the canvas to provide

incremental feedback reflecting Dave’s actions; when an action is complete, the ac-

tive tool modifies the design. When the design is modified, it sends out a notification

of change via its outgoing subscription connector. This allows the canvas and CASE

tool components in Dave’s workspace to provide an appropriately updated view.

Since Karen and Tatiana are working with the same design as Dave and Ian

(i.e., their design components are synchronized with the one in Dave’s workspace),

changes originating in Dave’s workspace are reflected in their design components,

which provide appropriate notifications via their subscription connectors. This al-

lows each participant in the collaboration to be kept aware of changes made by the

others. Changes made by either Tatiana or Karen via their CASE tools will similarly

be visible to the other participants.

The voice connection specified in the scenario is provided by telephony compo-

nents, which are interconnected by a multiple-input, multiple-output subscription

connector. All four scenario participants provide input to, and receive output from,

their telephony components; they can therefore all hear one another speak.

In a scenario-based design process our next step would be to make the diagram

more complete, for example by adding in the missing ports. Following this, we would

51

precisely define intended patterns of interaction between components and the vo-

cabularies required for each of the connectors and ports. The sum of all port vocab-

ularies on a component represents its complete interface; the sum of its expected

behaviours in response to each call or message in its vocabularies constitutes its

expected behaviour. Thus, from the component’s port descriptions we may design

internal data structures, algorithms, and required collaborations.

3.3 Refinement

As discussed in section 2.3, a traditional problem with the use of software architec-

tures in groupware development is that many proposed architectural styles are of

such a conceptual nature that they bear little obvious correspondence to the tech-

nologies used to implement the system. For example Dewan’s “zipper” model [37]

and the Clover model [77] both provide high-level abstractions for modelling multi-

user systems, but neither defines how an application developer should actually

implement the models using the facilities provided by available programming lan-

guages, frameworks or libraries. Architectural descriptions rarely address how to

move from a conceptual architecture to an implementation, leaving it to users of the

architectural style (i.e., application developers) with the problem of deciding how to

do so.

By contrast, the Workspace Model provides a refinement relation R that precisely

defines the legal implementations of any conceptual architecture. This helps devel-

opers by providing rules they can follow in the implementation of their conceptual

architectures, thus assisting the transition from conceptual to implementation view.

The refinement relation also helps toolkit builders by providing precise semantics

for implementation decisions that must be embodied in a toolkit. The refinement

relation is compositional, has a provably terminating computation, and may be ef-

ficiently computed for real systems. See chapter 8 for further discussion of these

properties.

Ideally, a toolkit would allow application developers to work entirely at the con-

ceptual level. Their work would consist of providing definitions for conceptual level

52

components and of defining conceptual level configurations of components and con-

nectors. The toolkit and an associated runtime would then implement the designed

conceptual architecture automatically as an appropriate distributed system. We de-

scribe a toolkit and runtime that does exactly this in chapter 7.

Refinement applies only to software components and connectors between them.

People are not refined, nor are adapter components. The connections between

adapter components and software components are assumed to be provided by a

lower-level service such as a windowing system.

3.3.1 Refinement rules

The refinement relation R is specified as a set of rules, written as a graph grammar,

which show how conceptual elements may be transformed to implementation ele-

ments.2 Each rule specifies one step of a refinement. The refinement relation R is

the reflexive transitive closure of the rule set.

A refinement rule consists of a pattern and a replacement. The pattern, which

appears on the left-hand side of the rule, is compared against the current conceptual

or partially-refined architecture. When a pattern matches in the architecture, it is

replaced by the result found in the right-hand side of the rule. The wavy arrow

between the two sides is pronounced “may be refined to”.

The refinement process consists of repeatedly applying refinement rules in any

order until no rule matches; at this point we have a fully refined implementation ar-

chitecture. Different orders of rule application will result in different refinements;

the set of all possible refinements of a conceptual architecture c defines the imple-

mentation architectures i for which the relation R(c, i) obtains.

A practical implementation of the Workspace Model must provide for incremen-

tal application of refinement rules in response to changes at either the conceptual

or implementation levels; we address this issue in sections 7.2 and 8.3.3.3.

The refinement rules are primarily of interest to toolkit developers. Application

2The rules could also be specified in a more conventional specification language, such as Z [121].
However, in our experience the graphical formalism is easier to read and to reason about.

53

(a)

(b)

:t

:t

0

*

*
?

*

*

*

*

?
*

*

Figure 3.2: Example refinement rules for implementing components.

programmers would normally work at the conceptual level, leaving refinement to

the toolkit and runtime system.

3.3.2 Examples

Figure 3.2 shows two of the refinement rules for implementing components. Anal-

ogous rules specify the possible refinements for ports and connectors. All of the

refinement rules that define the Workspace Model’s refinement relation are speci-

fied in section 5.4.

The rule in figure 3.2(a) specifies that a component that is not currently anchored

to a node may be anchored to any node in its enclosing workspace. On the left-hand

side of the rule we see a pattern in which a component is inside a workspace and

anchored to exactly zero nodes (the zero in the square is meta-notation indicating

“exactly zero”; the placement of a component over a node indicates the “anchored”

relation; the enclosure of components and nodes within the workspace dotted line

indicates workspace containment). The pattern requires that there also be at least

one node in the workspace. On the right-hand side we see the component anchored

to the available node.

54

The rule in figure 3.2(b) specifies how an anchored component of arbitrary type

t may be implemented on its anchoring node. The conceptual level component is

replaced by an implementation level component of type t (recall that all implemen-

tation level components are shown shaded). This is connected to a concurrency-

control and consistency maintenance component (CCCM), identified by the arrows

and crossbar symbol. The CCCM is a special-purpose infrastructure component

that must be provided by any Workspace runtime system. CCCMs are responsible

for mediating conflicting calls and messages and for maintaining the consistency of

replicated implementations of synchronized conceptual level stores. Infrastructure

components are further discussed in section 3.4 and the full suite of infrastructure

components is defined in section 5.2.

The rule in figure 3.2(b) also indicates that the component to be refined may

have any number of call and subscription source and target ports, as well as zero

or one synchronization ports. The “*” (zero or more) and “?” (zero or one) symbols

in the boxes are borrowed from regular expression languages. The right-hand side

of the rule shows that the synchronization port and all target ports will be attached

to the CCCM component after refinement, while all source ports will be attached to

the type t implementation component.

The refinement rules defined in section 5.4 specify the allocation of components

to computational nodes, the refinement of conceptual connectors into the types of

physical connectors available in real distributed systems, and the introduction of

special components to deal with concurrency control, consistency maintenance,

message broadcasting, the marshalling of network calls and return values, and

caching. In the next section we present an overview of the implementation-level

in which these concerns become visible. The full definition of the implementation

level is presented in chapter 5.

3.4 Implementation architecture

Like the conceptual level, the implementation level includes connectors, compo-

nents, ports, and the allowed attachments between them. However, the implemen-

55

Dave

Dave's workspace

Ian

touch-screen

CASE tool
canvas

Ian's
tablet

Dave's
workstation

CASE tool

tool
palette

Karen's workspace (Japan)

CASE tool
Karen

Tatiana's workspace

CASE tool Tatiana

design

design

design

?

!?

!?

!?

!?

Dave
Karen's
laptop

Tatiana's
workstation

Figure 3.3: A simplified version of figure 3.1 showing only the CASE tool-related components

and connectors.

tation level elements are simpler and more concrete than conceptual level elements

and are designed to be directly implementable in common programming languages.

In this section we illustrate the implementation level using one valid refinement

of the CASE tool portion of the conceptual architecture from figure 3.1. For con-

venience, a diagram of this portion of the conceptual architecture is shown in fig-

ure 3.3. The implementation level refinement of this architecture is shown in fig-

ure 3.4.

3.4.1 Components

Unlike the conceptual level, which has separate actors, reactors and stores, the im-

plementation level has only one kind of general purpose component, the implemen-

tation component. However, the implementation level also includes a set of special

purpose infrastructure components, which are implementation components provid-

ing particular services or capabilities necessary for implementing the conceptual

level semantics. An infrastructure component is represented by a shaded square

56

Dave's
workstation

Karen's laptop

Ian's
tablet

touch-screen

Tatiana's workstation

CASE tool
canvas

tool
palette

design

CASE tool

design

CASE tool

CASE tool

Dave

Ian

Karen

1

1

Tatiana

Figure 3.4: One possible implementation of figure 3.3.

57

with a symbol indicating its kind.3

Figure 3.4 shows implementation level counterparts for the CASE tool, CASE tool

canvas, tool palette and design components of figure 3.3. Where a component was

anchored to a particular node at the conceptual level, its implementation has been

instantiated on that node. Components that were floating at the conceptual level

have been assigned to nodes by the refinement process. For example, the concep-

tual level design component in Dave’s workspace that is floating in figure 3.3 has

been instantiated on the Dave’s workstation node in figure 3.4. In addition, the

infrastructure components required by the various refinements have also been in-

stantiated.

Four of the types of infrastructure components seen in figure 3.4 (CCCMs, trans-

mitters, receivers and message broadcasters) were introduced in section 1.4.2.

Here we review and expand the descriptions presented in that section, and also

introduce a new infrastructure component, the channel endpoint.

• Concurrency control and consistency maintenance components (CCCMs)

mediate concurrent access to application components. This allows application

components to be implemented with an assumption of single threaded seman-

tics, but then deployed in a multi-threaded, multi-user system.

In addition, CCCM components are responsible for enacting the replica consis-

tency maintenance protocols necessary for keeping replicated stores in sync

with one another. In the figure, the two CCCMs supporting the design compo-

nents on Dave’s workstation and Karen’s laptop are communicating by means

of channel endpoints (below) to enact such a protocol.

• Transmitters and receivers allow communication over network

links between nodes. They are responsible for marshalling and un-marshalling

call and message names, parameters, and return values, and for providing a

reliable request-response protocol.

3Infrastructure components may be drawn in any orientation; orientation is aesthetic and has no
semantic implication.

58

• Message broadcasters provide the asynchronous message delivery se-

mantics specified for subscription connectors. When a message is received

by a message broadcaster it is queued and the sending thread immediately

returns. The message broadcaster then delivers the message using its own

thread or threads, effectively decoupling message senders from message re-

ceivers. Message broadcasters are also used to support communication be-

tween the CCCMs supporting replicated store implementations, which is also

asynchronous.

• 1 Channel endpoints represent access to multi-point messaging channels.

Endpoints with the same channel number (here, channel 1) will all deliver the

same messages on their outgoing connectors. Channel endpoints are used

in the implementations of some subscription connectors and some synchro-

nization connectors. Channels and channel endpoints are provided by many

group communication frameworks, including for example Spread [3] and Ho-

rus [133]. They offer a useful and highly efficient asynchronous multi-point

message distribution abstraction with ordering and performance guarantees.

There are further infrastructure components including caches and centralized

ordering components, all of which described in detail in section 5.2. Infrastructure

components provide the support required to implement conceptual level semantics.

3.4.2 Connectors

The implementation level includes two types of connectors: local connectors, which

may only connect components on the same node, and remote connectors, which

may connect components on different nodes. Local connectors are indicated by

solid lines and remote connectors by dotted lines, both with closed arrowheads.

Both connector types are point to point and blocking. Local connectors may be im-

plemented by direct references and procedure calls or method invocations. Remote

connectors represent network messaging and are found only between transmitters

and receivers.

59

The thick grey line shown between the channel endpoints is not part of the for-

mal Workspace notation, but is a useful visual indication that two or more chan-

nel endpoints are communicating on the same channel. It can be considered as a

pseudo-connector.

3.4.3 Ports

At the implementation level the only type of port is the local port. As with

conceptual call and subscription ports, an arrowhead pointing into a component

indicates a target port and an arrowhead pointing out of a component indicates a

source port.

Local ports are found only in the implementations of conceptual level ports and

not in other connections between infrastructure components. They are responsible

for providing the pass-by-value semantics of conceptual level connectors. A local

source port may act as the source of exactly one connector, but a local target port

may be the target of multiple connectors. An infrastructure component may be both

the source and the target of multiple local connectors.

3.4.4 Synchronization implementations

The Workspace Model refines synchronized stores to use any of the centralized,

replicated and hybrid shared state strategies illustrated in figure 2.2(a) and fig-

ures 2.3(a) and (c). The other distribution architectures discussed in section 2.2 are

also supported by the Workspace Model; however, these are not automatic refine-

ments for synchronized stores since they would have an effect on the semantics of

other application components.

In the conceptual architecture of figure 3.3 there are three design stores that are

synchronized with one another. The implementation shown in figure 3.4 provides

this synchronization using a hybrid architecture: the stores in Dave and Karen’s

workspaces are replicated, while the stores in Dave and Tatiana’s workspaces have

a centralized implementation on the Dave’s workstation node. In this particular sce-

60

nario this is probably a reasonable architecture: Tatiana’s workstation is connected

to Dave’s by a high-speed local network, so any latencies in her interactions with

the shared design will be minimal; Karen in Japan has a much slower network so a

local replica may provide her with a more responsive interaction.

As mentioned above, the replicated shared state approach requires that any

changes to one state replica also be reflected in all others using some replica con-

sistency maintenance algorithm, for example using locking, two-phase commit, a

distributed operation transform [126] or an undo/redo protocol like ORESTE [69].

The interactive performance of the replicas will be strongly affected by the choice

of algorithm. Enacting the algorithm is the responsibility of the replicated com-

ponents’ associated CCCMs; the communications required is provided by shared

channels between the CCCMs. In figure 3.4 these channels are represented by the

channel endpoints; other implementations of channels, which do not rely on group

communication frameworks, are also allowed by the refinement rules.

As discussed in section 2.2, the various strategies for the distributed implemen-

tation of shared state provide different quality attributes in different situations. The

Workspace Model is unique among groupware architectures in allowing any combi-

nation of strategies to be chosen and dynamically modified at runtime.

3.4.5 Multiple implementations are possible

It is important to note that figure 3.4 represents just one valid refinement of the

conceptual architecture of figure 3.3. For example, different decisions could have

been made regarding the allocation of components to nodes or the implementation

strategy for shared data. Further, a cache might be introduced on the Tatiana’s

workstation node to retain copies of previously-seen design information, improving

responsiveness when this information is revisited.

61

3.5 Evolution calculus

As discussed in section 2.4, an important characteristic of groupware systems is

their need to support runtime evolution. Evolution can come as a result of partici-

pants entering or leaving a collaborative session; as a result of participants moving

from one location to another, perhaps using different devices; as a result of partic-

ipants’ goals changing, affecting their tools and how they are used; and as a result

of changes to the underlying distributed system such as network failure or the in-

troduction of a new node.

The Workspace Model’s evolution calculus allows us to model change resulting

from any of these stimuli. Changing users, locations, tasks or goals typically result

in change at the conceptual level. Distributed system changes typically result in

change at the implementation level. When an evolution occurs at one level, the

refinement rules are used to find a sequence of further evolutions at either or both

levels such that the refinement relation R between the levels may be restored.

The evolution calculus consists of a set of operations at each of the two levels.

Operations are defined using a graph-based notation similar to that used for refine-

ment rules. Each evolution operation definition consists of an operation signature, a

pattern and a result. When the operation is invoked on an architecture that matches

the pattern, the architecture is transformed such that the elements of the pattern

now match the result. Where an operation fails to match a pattern the architecture

is not modified.

Two sample operation definitions are shown in figure 3.5, one at the conceptual

level and one at the implementation level. There are a total of twenty-nine opera-

tions in the calculus, twenty at the conceptual level and nine at the implementation

level. These are defined using a total of fifty operation definitions. These definitions

are given in sections 4.3 for the conceptual level and 5.3 for the implementation

level.

Figure 3.5(a) partially defines the attach operation that allows a store to join a

synchronization. The operation’s signature is attach(A, k, p) where A is the archi-

62

attach(A, k, p)A

(a)k k

0

disconnect(A, p, q)A

(b)

p q p q

p

0

p

Figure 3.5: Example evolution operation definitions.

tecture to which the operation is applied and p and k are the identifiers of a syn-

chronization port and a synchronization connector respectively. The pattern for this

operation will match if A contains a synchronization port p (identifiers are shown

in diamonds) that is not attached to any synchronization connectors (the zero in

the square) and A also contains a synchronization connector k that is attached to

no ports. The result of the operation is identical to A except that k is attached to

p. There is another rule with the same signature allowing a store to attach to a

synchronization connector that is already attached to other stores.

Figure 3.5(b) shows a disconnect operation at the implementation level. The

rounded-cornered squares are generic symbols that represent implementation level

components or ports. Thus, this definition matches if there is a connector or port p

that is connected to a connector or port q via a local connector. The result of the

operation is to disconnect the two, destroying the connector in the process. This

evolution might be invoked in response to a conceptual level change or as a result

of a network failure.

In response to evolutions at the conceptual and evolution level, further evolu-

tions may be carried out at one or both levels that return the system to a state

where the current conceptual architecture refines to the current implementation

architecture, as illustrated in figure 1.1. In this way, traceability between the two

levels is maintained. Additionally, it is possible to apply evolutions at either the con-

ceptual or implementation level, depending on which is more appropriate for the

63

evolution being specified. For example, adding a new participant to a collaboration

would initially be reflected as a change at the conceptual level (with corresponding

changes to the implementation), whereas the addition of a cache to a link in order

to improve performance would be an evolution at the implementation level only.

3.6 Conclusion

The Workspace Model provides a distribution-transparent conceptual level, a pre-

cise formal process for the implementation of conceptual architectures as distributed

systems, and explicit support for the sorts of runtime evolution that occur over the

lifetimes of groupware applications. The Workspace Model has been specifically de-

signed to meet the requirements for a model of groupware architecture that were

laid out in section 3.1.

The next two chapters provide the full, formal definition of the Workspace Model.

Chapter 4 presents the conceptual level and its evolution operations. Chapter 5

presents the implementation level, its evolution operations, and the refinements

between levels. Readers wishing to proceed to an overview of applications of the

Workspace Model may prefer to skip to chapter 6 on page 121.

64

Chapter 4

Core Elements and the Conceptual Level

As discussed in the previous chapter, The Workspace Model is divided into a con-

ceptual level and an implementation level, with two core constructs (people and

computational nodes) that are visible at both levels. This chapter specifies the core

constructs and the conceptual level including the conceptual level evolution calcu-

lus and a set of reflection operations allowing inspection of the current conceptual

architecture. Chapter 5 specifies the implementation level, its evolution calculus,

and the refinement relation that maps between the two levels.

The terms side-effect free, request, update, request-update, passive, active, de-

terministic, non-deterministic, and consistent are used in specific technical senses

in these chapters. For definitions, see appendix B on page 218.

4.1 Core model elements

The notation for the Workspace Model’s core elements is shown in figure 4.1. The

two core elements are person and node. These are briefly introduced below. How-

ever, since people and nodes are present at both the conceptual and implementation

levels of the Workspace model, they are discussed further in the presentations of

those levels.

4.1.1 Person

The people in workspace diagrams are the raison d’être and main initiators of ac-

tivity in the system. Other elements in the system exist to support their activities.

Because of this, we often describe the Workspace Model as a “human centred archi-

tectural style”.

People are also treated as a special type of component in workspace diagrams.

See section 4.2.5 for more details.

65

nodeperson

Figure 4.1: Core notation.

4.1.2 Computational node

In order to support virtual objects, workspaces contain computational nodes. A

node represents an identifiable element of computing power available to the owner

within the workspace. For example, a node might be a laptop computer or a process

running on the owner’s behalf on a remote server. A node is always contained within

a single workspace; this is indicated by graphical containment. Nodes are non-

overlapping.

4.2 Conceptual level model elements

The conceptual level of the Model is intended to serve two purposes. First, it sup-

ports the description of multi-user interaction scenarios, which may be employed

in requirements gathering or in early-phase architectural exploration for a given

system. This use is described in more detail in chapter 6 and in [102].

Second, the conceptual level can be used to provide a precise but abstract soft-

ware architectural description which may later be transformed automatically into a

running implementation. This transformation is described in detail in section 5.4.

The conceptual level notation is summarised in figure 4.2. In addition to the

two core constructs already presented in figure 4.1, the conceptual level includes a

small set of component, connector and port types. Roughly speaking, components

are things, connectors are communication paths between things, and ports are at-

tachment points for connectors, found on the surfaces of components.

66

Components

Connectors

Portsreactor

actor

store

call
subscription
synchronization

call

subscription
synchronization

workspace

Workspace

Figure 4.2: Conceptual level notation.

4.2.1 Workspace

A workspace serves to bound a collection of people and the physical and virtual

objects (components) that support their activities. Every workspace has an owner,

who is a person. Items in the workspace belong to the owner. Ownership is indicated

as an attribute (see section 4.2.6).

Workspaces are always distinct. In the visual language, this is indicated by the

constraint that workspaces may not be drawn as overlapping.

4.2.2 Components

Components represent the objects found within a workspace. The objects may be

purely physical (e.g., a whiteboard), purely virtual (e.g., a slide in an electronic

presentation), or they may act as adapters between the physical and virtual worlds

(e.g., a computer display, video camera, or mouse). Each component exists in exactly

one workspace and is owned by the owner of that workspace.

Within the Workspace model we distinguish between three kinds of components

as shown in figure 4.2: reactors, actors, and stores.

It is difficult to explain characteristics of the three kinds of components without

first discussing connectors and ports. We therefore delay complete definition of

components to section 4.2.5. However, in the interim an approximate intuition is:

67

• A reactor is a software or hardware component that is passive (inert until acted

upon, see appendix B). Once acted upon it may send messages to, or directly

operate on, other components to which it is connected.

• An actor is a software or hardware component that is active; that is, it has

the ability to independently initiate activity within the workspace by sending

messages or directly operating on other components.

• A store is a software or hardware component that is passive. It may send asyn-

chronous messages to other components but may not act directly on them. In

addition, stores may represent information that is shared between workspaces.

Components have types and may also have names. These may be specified using

a textual notation in the centre of the component symbol. For example, a component

called “myEditor” of type “emacs” might be shown with myEditor:emacs in its cen-

tre; an unnamed component of type “emacs” might be shown with the label :emacs.

The name and type are visible as attributes of the component (see section 4.2.6).

4.2.3 Connectors

In the Workspace Model’s conceptual level, connectors are first-class entities that

may be attached to components at ports. There are three kinds of connectors: call,

subscription, and synchronization. Call connectors allow synchronous method invo-

cations; subscription connectors allow asynchronous one-way message delivery; and

synchronization connectors mediate state-sharing within and across workspaces.

Call and subscription connectors are directed, so they have source and target

ends. Communication may be initiated only at source ends. In the diagrammatic

notation, the target end is indicated by an arrowhead.

Synchronization connectors are undirected; however, order of attachment to a

synchronization connector has semantic significance. See section 4.2.3.4 for details.

In this section we first discuss an important restriction on the values passed by

workspace connectors, then describe the three kinds of connectors in more detail.

68

4.2.3.1 Values passed By Workspace connectors

All values passed by workspace connectors must be either immutable or passed by

value. This prevents a component from having a direct reference to another compo-

nent’s internal state, which is undesirable since it would allow for inter-component

communication that is not architecturally visible.

In effect, this restriction creates a strong semantic division at the component

boundary. Objects on the “inside” of a component may hold arbitrary references

to other objects inside the same component. However, all communication between

components must be mediated by workspace connectors.

4.2.3.2 Call

A call connector allows a source component to invoke methods1 provided by a port

on a target component. An individual method invocation is referred to as a call. Call

connectors have the following characteristics:

• Call connectors connect a single source to a single target.

• The source and target of a call connector must be within the same workspace.

• Calls have a blocking semantics; that is, the thread of control that initiated the

call at the source end of the connector blocks until the call completes on the

target.

• Call connectors have an associated vocabulary which identifies the calls they

support. The vocabulary of a call connector may include requests, updates,

and update-requests in any combination (see appendix B).

• If a call connector’s vocabulary consists entirely of requests it is a request con-

nector, which may be indicated graphically by a ? annotation on the connector

arrow.

• If a call connector’s vocabulary consists entirely of updates it is an update

connector, indicated graphically by a ! annotation.

1“Methods” is used in a generic sense in this document and should not be taken to imply that
components need be implemented in object-oriented languages.

69

• If a call connector’s vocabulary consists of a combination of requests and up-

dates, or includes one or more request-updates, it is a request-update connec-

tor, indicated graphically by a !? annotation. Call connectors without annota-

tions are also assumed to be request-update connectors.

4.2.3.3 Subscription

A subscription connector allows one or more sources to provide a stream of mes-

sages to one or more targets (subscription connectors are many-to-many). The term

“message” is used here in a broad sense: for example, notification of a mouse click

might be carried by a message, as might a frame of video forming part of a video

stream.

Subscription connectors have the following characteristics:

• Subscriptions may connect one or more source ports to one or more target

ports.

• Sources and targets of a given subscription connector need not be in the same

workspace.

• Subscription connectors are non-blocking: that is, delivery of a message into a

subscription connector may return before the message has been delivered to

the subscription’s target(s).

• Each subscription connector has a vocabulary of messages it can pass.

4.2.3.4 Synchronization

A synchronization connector allows two or more stores, which need not be in the

same workspace, to be mutually synchronized. The intuition is that if stores are

synchronized then they are intended to represent “the same object”. For example,

if there is a store representing a document in one workspace and a similar store in

another workspace that is synchronized with the first, then the two stores represent

the same document.2

2Note that this says nothing about the actual implementation of the document object or objects.

70

A group of mutually synchronized stores is referred to as a synchronization

group. Within a synchronization group, components converge to consistency (see

appendix B) and all message streams emitted from the components are consis-

tent. More precisely, the first condition means that at any time t1, there exists

time t2 > t1, such that if the system is quiescent from t1, at t2 the synchronized

components will be consistent.

Synchronization connectors have the following properties:

• A synchronization connector may connect any number of stores.

• The connected stores may be in different workspaces.

• The connected stores must be of the same concrete type.3

• Unlike call and subscription connectors, components do not explicitly commu-

nicate with one another over synchronization connectors. Rather, synchroniza-

tion connectors reflect the presence of mechanisms in the underlying runtime

system which keep components mutually consistent.

• As a notational convenience, we allow multiple point-to point synchronization

connector symbols to represent a single synchronization group. There is no

ambiguity in this representation since a store may be a member of at most

one synchronization group. Figure 4.3 illustrates five semantically equivalent

synchronization group depictions. The canonical depiction is shown at the

centre of the diagram.

• Synchronizations are undirected; that is, there is no concept of source and

target in synchronization groups.

• When a store s joins an existing synchronization group g and s is inconsistent

with the members of g, it is s that is modified to bring about consistency.

4.2.4 Ports

Components may provide any number of ports, which represent attachment points

for connectors. Ports are created dynamically on component surfaces. If “static”

3In future versions of the Workspace Model, we hope to be able to relax this definition to some
form of type compatibility.

71

a:

c:b:

a:

c:b:

a:

c:b:

a:

c:b:

a:

c:b:

Figure 4.3: Semantically equivalent synchronization group depictions, canonical description

in the centre.

or “permanent” ports are required, they can be created at component instantiation

time and not destroyed. The kinds of ports a component may provide is constrained

by component kind; see section 4.2.5 for details.

For directional connectors (calls and subscriptions) there are separate source

and target ports. Communication is initiated at source ports and delivered to target

ports. In the graphical representation of directional ports, source ports are shown

with the arrow pointing out of the component and target ports are shown with the

arrow pointing into the component.

Each port is given a name at the time of its creation. Particularly in the case of

source ports, this name is expected to be used by the runtime system to map ports

to syntactically visible elements in the providing component’s code. However, it is

possible to create a port that serves no useful purpose; it is up to the component

designer and runtime user to ensure that port creations are sensible.

4.2.4.1 Call ports

A call source port may be attached to at most one outgoing connector. If a compo-

nent requires multiple references to similar objects — for example a set of shapes

in a drawing editor or a list of pages in a presentation editor — this is implemented

72

by creating one call source port for each reference.

A call target port may have any number of incoming connectors.

Each call port defines a vocabulary of calls that it supports — in effect, an inter-

face. If the vocabulary of the target port is not a superset of the vocabulary of the

source port, runtime errors (reported as exceptions or by some other means) may

result.

4.2.4.2 Subscription ports

A subscription source port may be attached any number of outgoing connectors.

As with call source ports a component that requires multiple outgoing subscription

connectors (perhaps to serve different groups of target components) may provide

multiple subscription source ports.

A subscription target port may have any number of incoming connectors.

Each subscription port defines a vocabulary of messages that it supports. Mes-

sages received at a target port which are not in that port’s vocabulary may be ig-

nored.

4.2.4.3 Synchronization ports

A synchronization port may be attached to at most one synchronization connector (in

the canonical representation). The vocabulary of a synchronization port is implicitly

defined by the type of the store on which it is found. A store may provide no more

than one synchronization port.

4.2.5 Components redux

Now that we have defined connectors and ports, we return to the definition of the

three kinds of components: reactors, actors and stores. We also discuss people,

who play a role similar to that of an actor component in workspace architectural

descriptions.

73

4.2.5.1 Reactor

A reactor is a component that may store data, perform computation and act directly

on other components by means of calls. A reactor:

• must be passive and deterministic,

• may provide call source and target ports,

• may provide subscription source and target ports, and

• must not provide a synchronization port.

Physical objects that react to their environment are often modelled as reactors,

as are hardware components that generate messages only in response to external

action (such as keyboards or mice). Software components without their own threads

of control (such as the objects in most object-oriented languages) are also modelled

as reactors.

4.2.5.2 Actor

An actor is a component that may store data, perform computation, act directly on

other components and initiate activity in a workspace. An actor:

• may be active and non-deterministic,

• may provide call source and target ports,

• may provide subscription source and target ports, and

• must not provide a synchronization port.

Hardware components that independently generate messages (e.g., cameras and

displays) or that behave in a non-deterministic manner according to the definition

of appendix B (e.g., clocks) are often modelled as actors. Software components with

internal threads of control (e.g., servers) are likewise modelled as actors.

4.2.5.3 Store

A store is a component that may store data and perform computation, but that may

not act directly on other components. In essence, stores are data storage end points.

74

In addition, stores may be sharable across workspaces; that is, they may be synchro-

nized with other stores. A store:

• must be passive and deterministic.

• may provide call target ports,

• must not provide call source ports,

• may provide subscription source and target ports, and

• may provide one synchronization port.

Physical objects that act principally as data stores (e.g., books and whiteboards)

may be modelled as stores, as would the Model component in the Model-View-

Controller architecture [74] or the Abstraction component in the PAC architecture [31].

A telephone call might be partially modelled as two synchronized stores, one in the

workspace of each call participant.

4.2.5.4 Person

In workspace architecture diagrams, people may be viewed as a particular kind

of component, similar in nature to actors. From this perspective, they have the

following characteristics:

• People may be active and non-deterministic.

• A person is assumed to have subscription source and target ports, to be able to

create messages (e.g., by physical movement) and to receive messages (e.g.,

by direct sensory perception). For example, a person may manipulate the

location of, and click the buttons of, a mouse, may draw on a whiteboard,

or may observe the contents of a display. All of these are modelled using

subscription connectors with appropriate vocabularies.

• A person provides neither call ports nor synchronization ports.

4.2.6 Attributes

Workspaces, connectors, components and ports may have arbitrary attributes asso-

ciated with them. For example, a workspace might have an owner attribute and a

75

component might have a name attribute. There are two kinds of attributes:

Observed. An observed attribute represents currently-observed state and may be a

dynamically computed value.

Intent. An intent attribute may be set to any one of its allowed values using the

appropriate evolution calculus operation.

Each intent attribute a has a corresponding observed attribute a ′. Components

may have observed attributes that are not associated with intent attributes. For

instance, a connector might have a “lag” attribute that gives currently-observed

communication delay on the connector.

Attributes may be used to provide “implementation hints” to the underlying run-

time system. For example, a synchronization connector might be given an attribute

suggesting that a centralized implementation would be most appropriate.

4.2.7 Relations among conceptual level elements

Conceptual level elements may be related to one another in several ways, which

are depicted in workspace diagrams using simple diagrammatic conventions. The

relations and diagrammatic conventions are described below.

Containment. Workspaces may contain nodes, components and connectors. If a

node, component or connector e is depicted inside the boundary of a work-

space w, then e is contained within w. The exceptions to this rule are subscrip-

tion and synchronization connectors, which are not subject to the containment

relation. The containment relation affects certain evolution and refinement

operations.

Port Provision. Components provide ports. If a port p is depicted on the boundary

of a component c, then p is provided by c.

Attachment. Connectors may be attached to components at ports. If the end of a

connector k is shown touching a port p, then k is attached to p. In cases where

the meaning is clear, we occasionally omit ports in workspace diagrams. If

76

reactor

store

subscription

node

actor

call

synchronization

independently active; may
change internal state,
make calls or send
messages without external
stimulus; always in a
single workspace

passive, may be shared;
changes internal state or
sends messages only in
response to incoming calls
or messages; always in a
single workspace

passive; changes internal
state, makes calls or
sends messages only in
response to incoming calls
or messages; always in a
single workspace

point to point, procedure
call semantics, blocking;
source and target must be
in the same workspace

multiple message sources
and message targets;
asynchronous message
delivery; sources and
targets may be in different
workspaces

undirected; may connect
an arbitrary number of
stores, which must all be
of the same type and
which may be in different
workspaces

always in a single
workspace; may have
actors, reactors, or stores
anchored to it

Figure 4.4: A simplified summary of the main elements of the conceptual level.

a connector k is shown touching the boundary of a component c, then k is

attached to some (unseen) port p provided by c.

Anchoring. Components may be anchored to nodes. If a component c is shown

superimposed on a node n in a workspace diagram, then c is anchored to n. A

component that is anchored to a node must be instantiated on that node.

4.2.8 Conceptual level summary

A simplified summary of the conceptual level’s main elements is provided in fig-

ure 4.4. In the figure, ports are not shown but should be assumed to exist every-

where that connectors attach to components.

Each kind of component (actor, reactor and store) is shown with the kinds of con-

nectors to which it may be attached. An arbitrary number of connectors of each type

may be attached to a component, with the exception that stores may be attached to

at most one synchronization connector.

77

4.3 Conceptual level evolution calculus

The complete configuration of conceptual level workspace elements at any point in

time is referred to as a runtime conceptual level architecture or simply architecture.

Architectures change over time as workspace elements are added to or removed

from them, or as the relationships between those elements are altered.

The evolution calculus is an algebra consisting of the universe of architectures

and allowed operations over architectures. In this section we define the conceptual

level of the evolution calculus. There is also an implementation level calculus, which

is defined in section 5.3.

Operations in the evolution calculus are specified in an algebraic style using a

diagrammatic notation. The specifications make use of the core and conceptual level

notation already introduced in figures 4.1 and 4.2, as well as a meta-notation, which

is introduced in figure 4.5 and described in section 4.3.1.

Each operation in the calculus is of the form ω(A,p∗), where ω is the operation,

A is the current architecture, and p∗ is a list of parameters. The result of each

operation is a new architecture A ′.

The effect of each operation ω(A,p∗) in the calculus is specified using one or

more diagram pairs, each consisting of left- and right-hand sides (see the evolution

specification element in figure 4.5). The left-hand side of the diagram represents a

pattern that must be matched in A (that is, the pattern must appear as a part of A)

for the operation to succeed. Essentially, the left-hand side is a precondition.

If the left-hand pattern can be matched for an operation ω(A,p∗), then the ar-

chitecture A ′ resulting from ω(A,p∗) differs from A in exactly the same ways that

the left-hand side of the diagram differs from the right-hand side. Differences may

include the presence or absence of workspace elements as well as alterations in any

of the relations defined in section 4.2.7. Any workspace elements or relations not

explicitly depicted in the left-hand side are unchanged in A ′. The one exception is

for operations which destroy components: if a component is destroyed, it is removed

from any relationships in which it previously participated even if that relationship

78

is not explicitly shown on the diagram. (For example, we can prove by structural

induction that the node shown on the left side of figure 4.7 (b) is necessarily con-

tained in a workspace; after the node is destroyed it no longer participates in the

containment relation.)

Some operations are specified by multiple diagram pairs (e.g., createCallSource

in figure 4.9). An operation ω(A,p∗) that can be matched against any one of its

corresponding diagrams will complete.

If no pattern corresponding to an operation can be matched, then the operation

is an identity on the architecture, that is, ω(A,p∗) = A. In an implementation of the

Workspace Model, an operation resulting in an identity on the architecture would

be expected to raise an exception, since its use likely represents an error.

Any architecture that may be produced by starting from an empty architecture

(one containing no elements) and applying some sequence of evolution calculus op-

erations is a syntactically correct (well-formed) architecture. The evolution calculus

is therefore analogous to a production system that generates syntactically correct

architectures, where each operation specification is a production. In this view, the

set of evolution specifications constitutes a graph grammar for the language of ar-

chitectures.

4.3.1 Meta-notation and pattern matches

The meta-notation used in evolution calculus and refinement definitions is shown in

figure 4.5. The meta-notation includes a template for evolution calculus specifica-

tions, a set of generic workspace element symbols, a means of identifying particular

workspace elements, and symbols for cardinality constraints. For convenience, the

generic symbols for both the conceptual and the implementation level are shown

here; implementation level elements are shown shaded. See chapter 5 for further

discussion.

79

n unique identifier

0 exactly zero

?

*
zero or one

zero or more

Cardinality

Identifiers

Generic Elements

connector

operation(A)A

Evolution Specification

+ one or more

port

component or
port

component

Figure 4.5: Meta-notation used in evolution calculus and refinement diagrams. Shaded ele-

ments are implementation level.

4.3.1.1 Evolution specification

As discussed in the previous section, an operation ω(A,p∗) is specified by one or

more diagrams, which take the form of the evolution specification of figure 4.5. The

left-hand side of the diagram (labelled A) represents a precondition which must be

matched in A for the operation to succeed.

For a pattern to match, all elements shown in the left-hand side of the diagram

must be present in A, with the identifiers and cardinalities given, and taking part in

any relations depicted in the diagram (see section 4.2.7).

4.3.1.2 Cardinality

Cardinality constraints on pattern matches are given using standard symbols bor-

rowed from regular expression languages, enclosed in squares. Where a cardinality

symbol is shown on an element that participates in one or more relations with other

elements, a match requires that there be that many elements participating in the

given relation. Relations bind tighter than cardinality constraints. An element with

no cardinality symbol must have a cardinality of exactly one.

The “exactly zero” cardinality allows a match only where there are exactly zero

80

of the indicated elements in any depicted relations. For example, the left-hand side

of figure 4.6(a) will match if A includes a workspace w that contains exactly zero

components, zero nodes, and zero call connectors.

One slightly tricky case is where an element is both shown “naked” (cardinality

one) and separately with a cardinality indicator of zero. This means that the element

appears exactly once in the depicted relations. For example, in figure 5.12(a) the

conceptual channel must be the source of exactly one call connector and the target

of exactly one call connector for the left-hand side of the diagram to match.

All cardinality indicators are greedy; that is, if an appropriate match is found

then the match includes all matching elements.

4.3.1.3 Generic elements

Generic elements are useful to indicate that a particular rule will match more than

one kind of element. (They are not essential, but reduce the number of diagrams

necessary to specify the full set of evolution and refinement rules.)

Generic components match reactors, stores and actors. Generic ports match call,

subscription and synchronization ports. The generic “component or port” symbol

matches all components and ports. The generic connector matches calls, subscrip-

tions and synchronizations. Unshaded generic component, port and “component or

port” symbols match only conceptual level elements; shaded ones match only imple-

mentation level elements, and the half-shaded “component or port” symbol matches

all components or ports at either level.

4.3.1.4 Identifiers

Each workspace element in an architecture has a unique identifier indicated by a

diamond. These are used in evolution calculus operation signatures to specify the

operation’s target(s).

Where an operation will result in creation of a new workspace element, that

element’s identifier forms part of the operation’s signature and the identifier must

81

createWorkspace(A, w)A

(a)

destroy(A, w)A

(b)

w

0
0

w

0

Figure 4.6: Conceptual level operations on workspaces.

not be in use in A. This ensures that an identifier identifies at most one workspace

element.

In the following sections we define the effects of the conceptual level evolution

calculus operations using our diagrammatic notation. Each diagram is accompa-

nied by explanatory text intended as an aid to its interpretation. Uses of the meta-

notation are explained in the description of the diagram in which they first appear.

4.3.2 Workspaces

Figure 4.6 (a). It is always possible to create a new workspace. (The left-hand

side of the diagram is empty indicating the null precondition). New workspaces are

initially empty. (This is indicated by the fact that the only change between the two

sides of the diagram is the appearance of workspace w; no other relationships in the

architecture, including workspace containment, are changed.)

Figure 4.6 (b). A workspace may be destroyed only if it is empty. (The zero cardi-

nality indicator on the node, component and connector symbols matches in a greedy

fashion within the scope of any represented relations, here containment within the

workspace w.)

82

moveNode(A, n, w)A

(c)

createNode(A, w, n)A

(a)

destroy(A, n)A

(b)

ww n

w
n

0

w
n

0

n
0

Figure 4.7: Conceptual level operations on nodes.

4.3.3 Nodes

Figure 4.7 (a). A node may always be created within an existing workspace. The cre-

ated node is contained in the workspace and initially has no components anchored

to it. Anchoring is defined in section 4.3.6.

Figure 4.7 (b). A node with no anchored components may be destroyed.

Figure 4.7 (c). A node with no anchored components may be moved into a particular

workspace. This moves it out of the workspace in which it had previously been

contained. An attempt to move a node into the workspace in which it is already

contained will fail to match the left-hand side of the diagram (which shows two

distinct workspaces, w and an anonymous one); however, it will still have the desired

(null) effect.

4.3.4 Components

Figure 4.8 (a), (b) and (c). A component may be created within a workspace. A

newly-created component has no ports and is neither attached to any connector nor

anchored to any node.

Figure 4.8 (d). A component may be destroyed, provided none of its ports are at-

83

:t

:t

createStore(A, t, w, c)A

(a)

w w
c

createReactor(A, t, w, c)A

(b)

w w
:t

createActor(A, t, w, c)A

(c)

w w

c

c

destroy(A, c)A

(d)

moveComponent(A, c, w)A

(e)

c c

w w0

0

c 0*

Figure 4.8: Conceptual level operations on components.

tached to any connectors (see section 4.3.7). Destroying a component also destroys

all ports present on its interface (see section 4.3.5).

Figure 4.8 (e). A component may be moved from one workspace to another, provided

none of its ports are attached to call connectors. Such a move leaves synchronization

and subscription connectors attached (since they are not shown in the figure) and

does not change the provision relation of the component’s ports. For clarity, ports

are not shown in this figure.

84

4.3.5 Ports

Ports may be created on component boundaries. The kind of the component con-

strains the kinds of ports that may be created on it. On creation a port is assigned a

name, indicated here by n. Ports are always unattached when created. Attachment

is defined in section 4.3.8.

Figure 4.9 (a) and (b). Call source ports may be created only on actors and reactors.

Figure 4.9 (c), (d) and (e). Call targets ports and subscription source and target

ports may be created on any component.

Figure 4.9 (f). Synchronization source ports may be created only on stores. A store

may provide a maximum of one synchronization port.

Figure 4.9 (g). A port may be destroyed only if it is not attached to any connector.

4.3.6 Components and nodes

Software components need not be associated with particular nodes at the concep-

tual level of the workspace calculus. However, it frequently makes sense to asso-

ciate hardware components with particular nodes, e.g., to indicate that a particular

mouse is attached to a particular computer. It may also make sense to associate

software components to particular nodes, e.g., for performance reasons or to en-

sure that certain information is present on a laptop that is about to be disconnected

from a network.

Figure 4.10 (a). A component may be anchored to a node that is contained within the

same workspace, as long as it is not already anchored to another node. Anchoring a

component has no effect on ports or connectors.

Figure 4.10 (b). A component that is anchored to a node may be floated off of it.

Floating a component leaves it in the same workspace. Floating a component has

no effect on ports or connectors. A component that is floating may be instantiated

on any available node in its containing workspace.

85

createCallTarget(A, c, p, n)A

(c)

createCallSource(A, c, p, n)A

(a)

cc

createCallSource(A, c, p, n)A

(b)

c c

cc

createSubscrSource(A, c, p, n)A

(d)

cc

createSubscrTarget(A, c, p, n)A

(e)

cc

destroy(A, p)A

(g)

createSyncPort(A, c, p, n)A

(f)

cc

0

n

n

n

n

n

n

p

p

p

p

p

p

p

0

Figure 4.9: Port creation and destruction.

4.3.7 Connectors

Figure 4.11 (a) and (b). Call connectors may be created within workspaces. Newly

created connectors are not initially attached to ports.

Figure 4.11 (b) and (c). Subscription and synchronization connectors are not subject

to workspace containment and may simply be created.

Figure 4.11 (d), (e) and (f). Connectors that are not attached to ports may be de-

stroyed. See section 4.3.8 for the definitions of attachment and detachment.

86

anchor(A, c, n)A

(a)

c
0n n

c

float(A, c)A

(b)

cc

Figure 4.10: Anchoring and floating components.

4.3.8 Connectors and ports

Connectors may be attached to, and detached from, corresponding ports. Call con-

nectors may be attached only to ports in the same workspace; subscription and syn-

chronization connectors are not restricted by workspace boundaries. Since ports

are always on components, we occasionally refer to connectors as being attached to

components where this does not result in a loss of clarity.

Figure 4.12 (a). A call connector with an unattached source end may be attached to

a call source port that is also unattached.

Figure 4.12 (b). A call connector with an unattached target end may be attached to

a call target port, regardless of any other connectors attached to that port. (This

allows a call target port to have multiple incoming connectors.)

Figure 4.12 (c). A subscription connector may be attached to a subscription source

port. A subscription source may be the source of multiple connectors, and a sub-

scription connector may have multiple sources.

Figure 4.12 (d). A subscription connector may be attached to a subscription target

port, regardless of any other connectors attached to that port. As with sources, a

subscription connector may be attached to multiple target ports and a subscription

target port may accept multiple incoming connectors.

Figure 4.12 (e). A synchronization connector that is not attached to any ports may

be attached to an unattached synchronization port.

Figure 4.12 (f). A synchronization connector that is already attached to one or more

87

createSubscription(A, k)A

(b)

k

createCall(A, w, k)A

(a)

w
k

createSyncGroup(A, k)A

(c)

k

destroy(A, k)A

(d)

k

destroy(A, k)A

(e)

k

destroy(A, k)A

(f)

k

w

00

0 0

0

Figure 4.11: Conceptual level operations on connectors.

components may be attached to a free synchronization port on another component,

provided that all attached components are of the same type (here indicated by t).

Figure 4.13 (a) through (e). Any attached connector/port pair may be detached.

4.3.9 People

As discussed in section 4.2.5.4, a person may provide subscription source and tar-

get ports which may be attached to subscription connectors. These represent the

person’s ability to perceive the environment and supply input to the system. Sub-

scription connectors between people and components do not form part of the formal

model and so are not specified here.

4.3.10 Attribute modification

As discussed in section 4.2.6, any workspace element may have arbitrary attributes

associated with it. The attributes are not normally shown in the architectural di-

88

attach(A, k, p)A

(a)

attach(A, k, p)A

(b)

p

attach(A, k, p)A

(c)

p

attach(A, k, p)A

(d)

attach(A, k, p)A

(e)k k

0

attach(A, k, p)A

(f)

:t

k

0

:t

:t

:tk

0

k

k

k

k

k

k

p

k

k

p

0

p

p

p

pp

p

0

p

p

0

+

Figure 4.12: Attaching connectors to ports.

agrams in this specification. The list of these attributes and values of the intent

attributes may be modified at runtime.

The operation for setting the value of an attribute is:

setAttribute : A× e× string× value→ A

The effect of this operation on an architecture in A is to set the value of an intent

attribute, named by the string, on an element from e to the given value. The value

may be of any type.

Some attributes, such as a component’s type, are immutable. An attempt to

modify an immutable attribute will fail.

Attributes may also be deleted. The operation to delete an attribute is:

delAttribute : A× e× string → A

89

detach(A, k, p)A

(a)

k

detach(A, k, p)A

(b)
k

detach(A, k, p)A

(c)

k

detach(A, k, p)A

(d)
k

detach(A, k, p)A

(e)
k

k

k

k

k

k

p

p

p

p

p

p

p

p

p

p

Figure 4.13: Detaching connectors from ports.

4.3.11 An example evolution sequence

Figure 4.14 illustrates a sequence of conceptual level evolution operations, which

creates a portion of the architecture illustrated in figure 1.2 on page 12. The figure

is a time sequence, read from top to bottom, showing successive snapshots of the

conceptual architecture A. At each point in time, we show the evolution or evolu-

tions performed on the left, the resulting architecture in the centre, and explanatory

notes on the right. In the explanatory notes, the numbers in square brackets refer to

the figure numbers of the evolution operation specifications used in the evolutions.

For this example, we assume that we start with an empty architecture A. In

step (a) of figure 4.14 we apply the createWorkspace operation to A, supplying an

identifier of 1 for the new workspace.4 The pattern shown in the left-hand side of the

4Recall that identifiers used in the creation of new objects must not be in use in the architecture
prior to the object’s creation; that is, all identifiers must be unique.

90

(a)
createWorkspace(A, 1) 1

(b)
createNode(A, 1, 2)
createNode(A, 1, 3)

12

(c)
createStore(A, Value, 1, 4)
createReactor(A, Clicker, 1, 5)

1

2
:Clicker

5

:Value
4

(d)
anchor(A, 5, 2) 1

2
:Clicker

5

:Value
4

(e)
createCallSource(A, 5, 6, 'count')
createCallTarget(A, 4, 7, 'in')
createCall(A, 8)

1

2

:Clicker
5

:Value
4

6 count
8

7in

1

2

:Clicker
5

:Value
4

6 count

8

7in

(f)
attach(A, 8, 6)
attach(A, 8, 7)

in the empty
architecture, create a

new workspace with an
identifier of 1 [4.6(a)]

in workspace 1, create
a node 2 and a node 3

[4.7(a)]

in workspace 1, create
a store 4 of type Value
and a reactor 5 of type
Clicker [4.8(a) and (b)]

anchor reactor 5 to
node 2 [4.10(a)]

create call source 6
named "count" on

reactor 5, call target 7
named "in", on store 4
[4.8(a) and (b)], and
call connector 8 in

workspace 1 [4.11(a)]

attach call connector 8
to port 6 [4.12(a)] and

port 7 [4.12(b)]

3

3

3

3

3

Figure 4.14: A sample evolution sequence, showing the creation of part of the Clicker example

from section 1.4.2.

91

evolution specification in 4.6(a) matches the empty architecture (in fact, it matches

any architecture), so the architecture A is modified such that it matches the right-

hand side of the specification. This results in the architecture shown in the centre

column of figure, which now includes a workspace with an identifier of 1.

In step (b) we then apply the createNode operation twice, creating two nodes in

the workspace 1, identified by the numbers 2 and 3. Note that if we had attempted

to apply the createNode operations in step (b) before having created the workspace,

the operations would have failed since the left-hand side of the operation specifica-

tion in figure 4.7(a) would have failed to match.

In step (c) we create a store 4 of type Value and a reactor 5 of type Clicker, both

in workspace 1. The types Clicker and Value are assumed to be defined external to

the Workspace Model.

In step (d) we anchor the Clicker reactor 5 to the node 2. An anchored conceptual

component may be instantiated only on the node to which it is anchored; this is

discussed further in section 5.4.1. The Value store 4 is left floating, which means

that it may be instantiated on any available node.

In step (e) we create a call source 6 named “count” on the Clicker reactor and

a call target 7 named “in” on the Value store. As discussed in section 4.3.5, port

names are used to associate ports with internal features of components and are

not required to be unique in the architecture. We also create a call connector 8 in

workspace 1. This call connector is initially unattached.

Finally, in step (f) we attach the call connector 8 to ports 6 and 7. The evolution

specifications in figures 4.12(a) and (b) ensure that the source end of the connector

attaches to the source port and the target end of the connector attaches to the target

port.

4.4 Conceptual level reflection operations

In order to request any of the operations specified in the preceding section, the user

or component must be able to specify the parameters that appear in each opera-

tion’s signature (e.g., component or connector identifiers). It is therefore a practi-

92

cal necessity that the system provide reflection operations allowing the discovery of

workspaces, nodes, components, ports and connectors of interest. For example, if

two users decide to work together on a document, at least one of them will need a

mechanism for determining the identity of an attached synchronization connector

that would support the required sharing.

For such operations to be useful, user or system provision of attributes like

names of components and owners of workspaces will likely be essential. Reflec-

tion operations therefore appear to be a practical necessity for the effective use of

evolution operations. A minimal list of the required reflection operations is given

here.

In each definition below, the signature of each operation is provided. In the

signatures, A is the set of architectures, e of workspace element identifiers, w of

workspace identifiers, n of node identifiers, c of component identifiers, k of con-

nector identifiers, p of port identifiers, “string” of character strings and “value” of

arbitrary values.

• Given the identity of any workspace element (workspace, node, component,

port, or connector), returns the names of its attributes.

getAttributes : A× e → P(string)

• Given the identity of any workspace element and the name of one of its at-

tributes, returns the appropriate intended or observed attribute value.

getIntendedValue : A× e× string→ value

getObservedValue : A× e× string→ value

• Returns the identities of all workspaces in the current architecture.

getWorkspaces : A → P(w)

• Returns the identities of all synchronization connectors in the current archi-

tecture.

getSynchronizations : A → P(s)

• Given the identity of a workspace, returns the identity of all nodes found within

it.

getNodes : A×w → P(n)

93

• Given the identity of a workspace, returns the identity of all components found

within it.

getComponents : A×w → P(c)

• Given the identity of a workspace, returns the identities of all connectors found

within it.

getConnectors : A×w → P(k)

• Given the identity of a node, returns the identity of all components anchored

to it.

getAnchored : A× n → P(c)

• Given the identity of a component, returns the identities of all its ports.

getPorts : A× c → P(p)

• Given the identity of a port, returns the identity of its providing component.

getProvidingComponent : A× p → c

• Given the identity of a port, returns the identity of all attached connectors.

getAttachedConnectors : A× p → P(k)

• Given the identity of a connector, returns the identities of all attached ports.

getAttachedPorts : A× k → P(p)

Reflection operations are also required at the implementation level and to map

between the implementation level and the conceptual level. These operations are

defined in sections 5.3.4 and 5.4.7, respectively.

4.5 Summary

This completes the definition of the conceptual level of the Workspace Model. The

definition of the implementation level and of the refinement relation between the

two levels is found in the following chapter.

94

Chapter 5

Implementation Level and Refinements

Configurations of components, connectors and ports at the conceptual level are re-

fined into corresponding configurations of lower level components, connectors and

ports constituting an actual implementation, with the nodes identified in the previ-

ous chapter providing the bridge between the two levels. This chapter presents the

implementation level and the rules making up the refinement relation.

The chapter is structured as follows. In section 5.1 we introduce the compo-

nents, connectors and ports that make up the implementation level. This is followed

in section 5.2 by a discussion of the special purpose infrastructure components used

at the implementation level to realize the conceptual level semantics. The evolu-

tion calculus operations for the implementation level are defined in section 5.3. In

section 5.4 we present the refinements that map from the conceptual level to the

implementation level.

5.1 Implementation level model elements

The implementation level notation is summarised in figure 5.1. It includes one kind

of component, two kinds of connectors and one kind of port (the local port), which

has both source and target versions.

5.1.1 Implementation components

Conceptual level components are implemented by configurations of implementation

level components and connectors. In diagrams, implementation level components

are shown shaded to distinguish them from conceptual level components. (In hand-

drawn diagrams, implementation level components may be identified by shading in

a triangle at the upper left corner of the component.) At the implementation level

95

Component and Port Connectors

component local
remote

local

Figure 5.1: Implementation level notation.

there is only one kind of component. It may be either passive or active and may

provide local source and target ports.

In analysis diagrams it is occasionally useful to annotate implementation level

components as representing actors, reactors or stores using the symbols from the

conceptual level. Such annotation, while allowed, does not form part of the formal

model.

5.1.2 Connectors

Conceptual level connectors are implemented by configurations of implementation

level connectors and components. The two implementation level connector types

are:

Local. A local connector enables local procedure calls or method invocations as

defined in most imperative programming languages. The call may include

parameters, may produce a return value, and transfers the thread of control to

the called component (i.e., the calling component blocks until the call returns).

A single local connector is sufficient to implement a call. The call is made in

the direction of the arrow and the return value goes in the opposite direction.

Remote. A remote connector provides inter-nodal messaging. Remote connectors

provide for a request-reply protocol; that is, a reply may be returned on the

same connector on which the request was sent. However, senders need not

block on replies. Where a request-reply protocol is desired, e.g., for imple-

menting remote calls, this must be implemented by the components at either

96

end of the connector. (See the transmitter and receiver components in sec-

tion 5.2.1.) A remote connector may be used in place of a local connector, i.e.,

on a single node; however, this would normally have a negative performance

impact.

5.1.3 Ports

The implementation level provides only local ports, used with local connectors. (Re-

mote connectors are attached only between transmitters and receivers; see sec-

tion 5.2.1.) Local ports have source and target versions. As at the conceptual level,

a source port is shown with its arrow pointing out of the host component and a

target port is shown with its arrow pointing into the target component.

An implementation source port is responsible for ensuring that all parameters

of procedure calls or method invocations which traverse it are passed by value, as

discussed in section 4.2.3.2. Similarly, implementation target ports must ensure that

all return values are passed by value. This is to ensure that no direct references to

the internal state of components are ever passed on local connectors.

Connections between infrastructure components (described in section 5.2) are

direct and do not require ports.

As with conceptual level ports, implementation level ports are named. This al-

lows for mapping between a port and some construct visible within the the providing

component. For source ports this is normally a syntactic variable or an element of a

list or array. A target port may correspond to a callable interface on the containing

component.

5.1.4 Relations among implementation level elements

As at the conceptual level, implementation level elements may be related to one

another in several ways, which are depicted in workspace diagrams. The relations

and diagrammatic conventions are described below.

Note that the sets of implementation level workspace elements are identified

97

by capital letters to distinguish them from the sets of conceptual level workspace

elements.

Instantiation. Implementation level components are instantiated on nodes. If an

implementation level component C is shown superimposed on a node n, then

C is instantiated on n.

Port Provision. Implementation level components provide ports. If a port P is de-

picted on the boundary of a component C, then P is provided by C.

Connection. Implementation level connectors connect ports and infrastructure com-

ponents. If the end of a connector K is shown touching two ports P1 and P2,

then K connects P1 and P2 (and the same for infrastructure components). For

visual clarity we frequently omit ports in workspace diagrams. If a connector

K is shown touching two components C1 and C2 then K connects two unseen

ports P1 provided by C1 and P2 provided by C2. The exception is where a con-

nector is shown touching an infrastructure component, since these have no

ports.

5.2 Infrastructure components

The implementation level of the Workspace Model includes a number of components

with specialised functions, which are used in the implementation of conceptual level

constructs. These are referred to as infrastructure components and must be in-

cluded in any implementation of the Workspace Model. The infrastructure compo-

nents are illustrated in figure 5.2 and defined in the remainder of this section.

5.2.1 Transmitter and receiver

Transmitter-receiver pairs provide bridges between local connectors and remote

connectors. Where a conceptual level connector must be implemented across node

boundaries, these pairs will be inserted into the connector implementation to pro-

vide the required communication means.

98

message
broadcaster

concurrency control/
consistency
maintenance

cache mirror cache

channel
endpoint

transmitter receiver

nn channel

generic infrastructure
component (meta-notation)

Figure 5.2: Implementation level infrastructure components.

Transmitter-receiver pairs are used to implement two-way reliable messaging

using a request-reply protocol. An invocation on a transmitter by a local connector

will block while the request-reply protocol completes.

A transmitter may be attached to one outgoing remote connector. A receiver may

accept any number of incoming remote connectors.

5.2.2 Concurrency control and consistency maintenance

The simplest workspace components are coded for use in a single-threaded envi-

ronment with no replication, however they are normally used in a multi-threaded

environment and stores may be replicated in support of synchronization. The con-

currency control and consistency maintenance (CCCM) component is responsible

for resolving concurrency control issues and for maintaining replica consistency.

CCCM components implement the concurrency control policies necessary for

the use of single threaded components in a multi-threaded environment. They also

provide for synchronization of replica stores and for cache invalidation (see sec-

tion 5.2.5).

CCCMs may implement a range of concurrency control policies (e.g., uncon-

strained, simple locking, transactional locking, optimistic, etc.) and a range of

consistency maintenance algorithms (locking, two phase commit, distributed op-

99

eration transform [49], ORESTE [69], etc.). Concurrency control algorithms and

consistency maintenance policies are not explicitly represented in the Workspace

Model; Workspace implementations are responsible for ensuring that only mutually-

compatible CCCM implementations are connected for consistency maintenance pur-

poses.

5.2.3 Message broadcaster

Message broadcasters are used in the implementation of subscription connectors

and in centralized implementations of channels (see below). They accept messages

as inputs and broadcast them to one or more subscribers. A message broadcaster

provides messages to each of its outputs in the same order they were received on

its inputs; ordering is the same on all outputs.

A message broadcaster is an actor and delivers messages in its own thread or

threads of control. It therefore acts as a bridge between synchronous calls on its

input side and asynchronous message delivery on its output side.

5.2.4 Channel and channel endpoint

In implementing groupware it is frequently necessary for a group of components

to communicate with one another. While it is possible to connect n components

using n(n − 1) transmitter-receiver pairs, it is normally simpler to consider these

communication paths as channels [15], particularly for large values of n. Channels

are asynchronous. Messages sent into a channel at any one of its endpoints are

received at all endpoints, including the sender.

Figure 5.2 shows conceptual level channels and implementation level channel

endpoints. The conceptual level channels appear only in the refinements of sub-

scription connectors and synchronization groups specified in section 5.4 and are

not used directly at the conceptual level. Channels may be refined using a set of dis-

tributed channel endpoints or by making use of a centralized message broadcaster

to provide channel ordering. In the special case of a channel whose only source

100

is a single message broadcaster, a channel may be implemented simply as a call

connector. See section 5.4.6 for channel refinements.

Channels and channel endpoints are identified by a channel number, shown as

n in figure 5.2. In workspace diagrams, any two channel endpoints with the same

channel number represent endpoints on the same channel. While not part of the

formal model, it is frequently useful to draw lines between endpoints on a channel

to visually indicate their connection. This is normally done using a wide, lightweight

line; see figure 3.4 on page 56 for an example. In hand drawings another convention

such as a wiggly line or a special colour may be used.

As a minimum, channels must implement local FIFO ordering of messages. That

is, messages originating at a given source must be delivered to all targets in the

order sent. Messages originating at different sources may be interleaved differently

at different targets.

For some applications, causal or total ordering may be required. Where this is

the case, it may be necessary to specify a particular channel implementation through

an implementation hint. Some consistency maintenance algorithms require particu-

lar ordering policies on their communications channels; the correct match of CCCM

and channel implementations must be provided by the runtime system.

5.2.5 Cache and mirror cache

Where deterministic pure requests are implemented using remote connectors, we

may use caches to reduce latency by eliminating unnecessary communication on the

network. Caching is implemented using cache and mirror cache components.

Cache. A cache will be found at the source end of the call. Its function is to store

the responses to requests. Caches may receive, and are responsible for acting

on, cache invalidation messages from mirror caches.

Caches may be either simple or prefetch. On receipt of a cache invalidation

message a simple cache will discard any corresponding cache entries; how-

ever, a prefetch cache may initiate requests to determine appropriate new

101

values for those entries.

Mirror cache. Also called cache controller. A mirror cache will be found at the tar-

get end of a call. Its role is to keep track of what entries the corresponding

cache is currently maintaining and to invalidate or update the cache as neces-

sary.

The mirror cache may receive, and is responsible for acting on, cache invalida-

tion messages from its connected CCCM when the state of the target changes.

It must pass these on to its corresponding cache as appropriate.

Mirror caches may be simple or presend. Based on the messages received

from the CCCM component the mirror cache computes what invalid entries its

corresponding cache is holding and then either transmits the minimum invali-

dation messages (simple cache), or computes new values by making requests

of the target component and transmits update messages (presend cache).

Pure updates have no return values and therefore need not be cached. Request-

updates are assumed to modify the call target and so cannot reliably be cached. At

least some pure requests on non-deterministic components may not be cacheable

either. Since a request-update connector may contain both requests and updates

it may be necessary to provide selective caching in such cases. The architectural

employment of cache and mirror cache components is defined in section 5.4.3.

5.2.6 Generic infrastructure component

The generic infrastructure component is not truly a component, but rather an ex-

tension to the meta-notation introduced in section 4.3.1. It is used to represent “any

infrastructure component” in figure 5.5(b).

5.3 Implementation level evolution calculus

Implementation level operations are defined by an evolution calculus in the same

manner as for the conceptual level operations. The semantics of the implementa-

102

tion level calculus operations are specified in this section, using the meta-notation

introduced in figure 4.5 on page 79.

5.3.1 Components

The allowed operations on implementation level components are defined in fig-

ure 5.3.

Figure 5.3 (a). A component may be instantiated on a node. Newly instantiated

components are not connected to other components.

Figure 5.3 (b). A component may be destroyed. In contrast to the conceptual level,

where a component must first have all attached connectors removed before it is

destroyed, destroying an implementation level component also destroys all attached

connectors. This is because implementation level connectors are not truly first-

class workspace objects. See section 5.1.2 for further discussion. Note that in this

diagram connectors are destroyed whether they are attached via ports or directly to

the destroyed component.

Figure 5.3 (c). A component may be moved from its current node to another node.

All attached connectors will be destroyed by the move. The component’s state will

be observationally equivalent after the move (this is not explicitly represented on the

diagram.) An attempt to move a component onto the node on which it is currently

instantiated will have no effect; such an attempt will fail to match the left-hand side

of this diagram.

Figure 5.3 (d) and (e). Components may be copied, either onto a new node (d) or

onto the node on which the original is instantiated (e). As with moves, a copy of

a component must be observationally equivalent to the original. Initially, a copied

component will be unconnected. The original component is unaffected.

5.3.2 Ports

Figure 5.4 (a) and (b). Local source and target ports may be created on component

boundaries. Created ports are initially unconnected. All ports must be named.

103

move(A, c, n)A

(c)

instantiate(A, t, n, c)A

(a)

n n

:tc

destroy(A, c)A

(b)

c
* *

* *

n n

cc
* *

* *
copy(A, c, n, d)A

(d)

c

n

c

n

d

copy(A, c, n, d)A

(e)

n

c
n

dc

Figure 5.3: Operations on implementation level components.

Figure 5.4 (c) and (d). Local source and target ports may be destroyed. At the

implementation level, connectors are second-class objects and may not exist inde-

pendently of ports. Therefore destroying an implementation level port also destroys

any connectors for which the port was either a source or a target.

5.3.3 Connect and disconnect

Figure 5.5 (a). An unconnected local source port may be connected to any imple-

mentation level port or component on the same node, by a new local connector.

Local source ports may be the source of not more than one connector.

Figure 5.5 (b). An infrastructure component may be connected by local connector to

any implementation level port or component on the same node. The infrastructure

component may act as the source of any number of local connectors.

104

createLocalSource(A, c, p, n)A

(a)
createLocalTarget(A, c, p, n)A

(b)

c c

c c

destroy(A, p)A

(c)
destroy(A, p)A

(d)

?

*

n

n p

p

p

p

Figure 5.4: Operations on implementation level ports.

Figure 5.5 (c). A transmitter that is not currently the source of a remote connector

may be remotely connected to a receiver. Receivers may accept any number of

incoming connectors. The transmitter and receiver may be on the same or different

nodes.

Figure 5.5 (d) and (e). Two connected elements may be disconnected. This action

implicitly destroys the connector.

5.3.4 Implementation level reflection operations

The implementation level requires a set of reflection operations similar to those for

the conceptual level introduced in section 4.4 on page 91. As in that section, we

here describe a minimum set.

As noted in section 4.2.7, upper case letters are used to identify the sets of

implementation-level workspace element identifiers in the signatures that follow.

The conceptual level reflection operations getAttributes, getIntendedValue,

getObservedValue, getPorts and getProvidingComponent that are defined in

section 4.4 are also defined at the implementation level, with the substitution of

upper case letters for lower case letters in their signatures.

In addition, the following operations are unique to the implementation level:

105

connect(A, p, q)A

(a)

remoteConnect(A, p, q)A

(c)

0

disconnect(A, p, q)A

(d)

p

q

p

q

connect(A, p, q)A

(b)

p q p q

disconnect(A, p, q)A

(e)
p q p q

0

q q

p

q

p

q

p p

Figure 5.5: Implementation level port connection and disconnection.

• Return the identities of all implementation level components.

getImplComponents : A → P(C)

• Given the identity of a node, return the identities of all components instanti-

ated on it.

getInstantiated : A× n → P(C)

• Given the identity of a component or port, return all connected components or

ports.

getConnected : A× (P ∪ C) → P(P ∪ C)

5.4 Refinements from the conceptual to the implementation level

A key concept in the Workspace Model is that conceptual level architectures are

realized by corresponding implementation level architectures. By design, the model

provides multiple possible implementations for any but the simplest conceptual level

architectures. The process of deriving an implementation level architecture from a

106

Figure 5.6: The schema used for refinement rules.

conceptual level architecture is called “refinement” and is the subject of this section.

The allowed refinements are presented in the form of a graph grammar consist-

ing of pattern matches and replacement patterns. This grammar defines the total

space of allowable implementations for any given conceptual level architecture.

In principle, for a conceptual level architecture A we begin by finding a match

m between A’s structure and the left-hand side of some refinement rule. We then

replace m by the implementation specified on the right-hand side of that rule. This

gives us a partially-refined architecture A ′. We repeat the process until no further

rule matches are possible.

The refinement rules use the meta-notation and pattern match rules introduced

in section 4.3.1 on page 78. Refinements rules are written in the refinement schema

illustrated in figure 5.6. The squiggly arrow means “may be refined to” or “may be

implemented as”.

As in the operation definitions, if the left-hand pattern of a refinement rule can be

matched for an architecture A ′, then the rule operates by transforming A resulting

in an A ′ that differs from A in exactly the same ways that the left-hand side of

the rule differs from the right-hand side. Differences may include the presence

or absence of workspace elements as well as alterations in any of the Workspace

relations. Any workspace elements or relations in A that are not explicitly depicted

in the left-hand side of the rule are unchanged in A ′. The one exception is for

operations which destroy components: if a component is destroyed, it is removed

from any relationships in which it previously participated even if that relationship is

not explicitly shown on the diagram.

The refinement rules have been designed to meet the toolkit implementor re-

quirements of section 3.1.3. In chapter 8 we prove that the rules are implementable

107

(a)

(b)

:t

:t

0

*

*
?

*

*

*

*

?
*

*

(c)

00

(d)

00

*

*

Figure 5.7: Refinements of components.

in that they tend monotonically towards fully refined architectures and the compu-

tation of the refinement relation is provably terminating.

Each of the sections that follow has one or more associated figures defining a

set of related refinement rules. For greater clarity, each refinement rule is also

described in the section’s text. The operation of the refinements is illustrated by a

small example in section 5.4.8.

5.4.1 Components

The main refinements for components are illustrated in figure 5.7. Stores which are

part of synchronization groups may also be implemented according to the refine-

ments presented in section 5.4.5.

Figure 5.7(a). A conceptual level component that is not anchored to any node may

be anchored to any node in its workspace. (Note that this is anchoring as part of

the refinement process; it is not the conceptual level anchoring evolution specified

in figure 4.10(a).)

108

Figure 5.7(b). A conceptual level component of type t that is anchored to a node may

be implemented on that node. The implementation will include an implementation

level component of type t plus a CCCM. Any synchronization port and all incoming

call and subscription ports appear on the CCCM component and any outgoing ports

appear on the implementation component of type t.

Note that the refinement in figure 5.7(b) does not apply to conceptual channels,

which are not true conceptual components and have no type t. The refinement of

conceptual channels is defined in section 5.4.6.

Figure 5.7(c) and (d). Components which have no semantically valid implementation

may be removed from the architecture, along with all their ports. Actors, reactors

and stores that are in workspaces with no nodes may not be implemented unless

they are members of a subscription group that includes at least one other member.

Figure 5.7(c) will match any conceptual level component that is not attached to a

synchronization connector; figure 5.7(d) will match stores that are the sole member

of a synchronization group. Recall that actors and reactors may not have synchro-

nization ports. (Stores that are members of synchronization groups with at least one

other member may be refined by the rule in figure 5.11(a).)

5.4.2 Ports

Figure 5.8(a) and (b). Call ports refine to single local ports, either source or target

as appropriate. Any connectors which were attached to the call port are attached to

the new local port. The name of the local port is the same as the name of the call

port.

Figure 5.8(c). Subscription target ports refine to single local target ports. Any

connectors that were attached to the subscription port are attached to the new local

port. The name of the local port is the same as the name of the subscription port.

Figure 5.8(d). A subscription source port refines to a local source port that is con-

nected to a message broadcaster by a local connector. The message broadcaster

is instantiated on the same node as the component providing the refined port. Any

connectors that were attached to the subscription source are attached to the mes-

109

(d)

(a)

(b)

(c)

* *

*

n n

nn

n n

nn

(e)

nn

* *

n

* *

*

* *

(f)

* *

0

Figure 5.8: Refinements of ports

sage broadcaster. The name of the local source port is the same as the name of the

subscription port.

Figure 5.8(e). Two subscription source refinements having the same name may

be merged. Any connectors which were attached to the message broadcasters in

the subscription source refinements are attached to the remaining message broad-

caster. This refinement is used to merge the multiple, identically named subscription

sources on a component that may result from the refinement in figure 5.11(a).

Figure 5.8(f). Synchronization ports that are not attached to synchronization con-

nectors require no refinement and may be removed from the architecture.

The refinements for synchronizations (see section 5.4.5) convert synchroniza-

tion ports to pairs of local ports, so no other synchronization port refinements are

required.

110

5.4.3 Calls

Figure 5.9(a). Calls between components or ports on the same node may be imple-

mented directly by local connectors.

Figure 5.9(b and c). Calls between components and ports may be implemented

by inserting transmitter-receiver pairs in the call path to mediate the inter-nodal

communication. This is possible for components and ports on the same node and

on different nodes; however, there may be an unnecessary performance penalty

incurred by this approach where the ports are in fact on the same node.

Figure 5.9(d). Call paths may include caches in order to reduce unnecessary net-

work latency. The intended operation of a cached call path is as follows:

• When a request is initiated at the call source connector, the call goes first to

the cache. If a result value corresponding to the request is cached, the value

is returned immediately.

• If the result is not currently cached, the call proceeds through the transmitter-

receiver pair, mirror cache, CCCM, and ultimately to the target component.

• The result is returned via the reverse path. The mirror cache, which is on the

same node as the target, caches a copy of the request-result pair, as does the

cache.

• Any updates to the target component are detected by the CCCM. The CCCM

computes a conservative characterisation of what cached results would be

invalidated by the update. For more precise characterisations, the application

programmer could provide a specialised CCCM. However, in the worst case,

the CCCM can conservatively declare all cached results from that component

to be invalid.

• The CCCM calls the mirror cache via its outgoing local connector to inform

it of the cache invalidation. The mirror cache then determines exactly which

of the currently-cached entries are invalid and both removes them from its

cache mirror and advises the cache of the invalidation by means of the update

connector.

111

(a)

(d)

(b)

(c)

(e)

0

(f)

0

Figure 5.9: Refinements for call connectors.

112

Note that if a conceptual level component has many incoming call connectors,

its implementation may have many attached mirror caches. All mirror caches must

be notified of all cache invalidations.

Pure updates are not cached since they return no result. Request-updates are

likewise not cached, since the result returned by a request-update is not necessarily

valid after the update completes. Finally, requests made of actors cannot normally

be cached because of actors’ inherent non-determinism, unless the developer ex-

plicitly declares that a request on an actor is cacheable.

5.4.4 Subscriptions

5.4.4.1 People and subscriptions.

At the conceptual level, people may act as the source and target of subscription con-

nectors. These connectors represent people’s provision of input using (for example)

voice, keyboards and mice, as well as people’s attention to audible, visible or other

signals. Hence, these connections are inherently conceptual.

For this reason, subscription connections to and from people are not refined and

are not the subject of the refinement rules in this section.

5.4.4.2 Refinable subscription connections.

The asynchronous semantics of subscriptions is provided by the message broad-

casters which form part of the implementation of subscription source ports (see

figure 5.8(d)).

The multi-point to multi-point nature of subscriptions is provided by channels.

The refinement of a subscription connector into a channel is defined in figure 5.10.

The refinement of channels is addressed in section 5.4.6.

Figure 5.10(a). Where two message broadcasters on the same node are both sources

of a common subscription connector and not sources of any other connectors, the

message broadcasters may be combined. This means that one of the two is removed

113

(a)

(b)

n
0

n

(c)

n n

(d)

n n

(e)

nn

*

*

*

*

0

0

(f)
0

0 0

Figure 5.10: Refinements for subscriptions.

and the incoming connectors that were attached to the removed broadcaster are

rerouted to the remaining broadcaster.

Figure 5.10(b). This refinement allows creation of a new channel. If a message

broadcaster is a source of a subscription connector that has no attached channel,

then a new channel may be created and the message broadcaster attached to that

by a call connector. The message broadcaster is detached from the subscription

connector, and channel is attached to the subscription connector as a source. The

number of the new channel must be different from any other channel or channel

endpoint in the architecture.

Figure 5.10(c). If a message broadcaster is a source of a subscription connector that

does have a channel as a source, then the message broadcaster may be attached to

the channel by a call connector. The message broadcaster is detached from the

114

subscription connector.

Figure 5.10(d). Where a channel is the source of a subscription connector, and

that subscription connector has a target which is an implementation level port or

component, the channel may be connected to that target by a call connector. The

target is disconnected from the subscription connector.

Figure 5.10(e). Where a subscription connector has a channel for a source and has

no other sources or targets at either the conceptual or implementation levels, that

subscription connector may be refined away.

Figure 5.10(f). A subscription connector with no targets may be removed from the

architecture.

5.4.5 Synchronization

The refinements for synchronization allow for any combination of centralized and

replicated state within a synchronization group.

Figure 5.11(a). A store that is synchronized with an already-implemented compo-

nent (see section 5.4.1) may be refined by simply moving its subscription and call

ports to the implemented component. As in component refinement, call and sub-

scription target ports are attached to the CCCM component and subscription source

ports are attached to the component implementation. (Recall that stores may not

have call source ports.)

In effect, this is a centralized implementation, since it refines two or more con-

ceptual level stores into a single store implementation.

Figure 5.11(b). Where a CCCM component is attached to a synchronization group,

and that group has no attached channel, a new channel may be created and attached

to the synchronization group. As in figure 5.10(b), the new channel must have a

unique number not currently in use in the architecture.

Figure 5.11(c). Where a CCCM component is attached to a synchronization group

and that group has an attached channel, the attachment may be refined to local

source and local target connectors attached the the channel via call connectors.

115

(a)

(b)

(c)

n
0

(d)

n n

* *

* *

* *

*

*

n

* *

n

0

*

0

n

*

(e)

0

Figure 5.11: Refinements for synchronizations.

In effect, figures 5.11(b) and (c) allow for a replicated implementation of synchro-

nization. The CCCMs are required to enact some replica consistency maintenance

protocol, communicating with one another via the channel. Where a synchronization

group has three or more end points, a mix of centralised and replicated implemen-

tations is possible.

Figure 5.11(d). A synchronization group attached to a channel that has no other

attached synchronization ports may be refined away.

5.4.6 Channels

In figures 5.10 and 5.11, conceptual level channels were introduced to handle the

n-way communication required for the implementation of subscriptions and of repli-

cated synchronization groups. Figures 5.12 and 5.13 and this section present the

refinements that transform conceptual level channels to channel implementations.

116

(a)

0
0

n*
*

* *
n

0

(b)

0
0

n

*

n
0

0

*

Figure 5.12: Centralised refinements for channels.

Figure 5.12(a) This refinement applies to a channel that has an arbitrary number

of incoming and outgoing call connectors, no attached subscription or synchroniza-

tion connectors, and that has not yet been partially refined to include any channel

endpoints. In this case, the channel may be refined by replacing the channel by a

message broadcaster, which provides the required asynchronous channel semantics

and the strongest ordering guarantee. The message broadcaster is instantiated on

the same node as one of the incoming call connector sources.

Figure 5.12(b) This refinement applies to a case similar to that of figure 5.12(a),

except that there may be only one call connector incoming to the channel and its

source must be a message broadcaster. In this case each outgoing call connector

may simply be attached to the message broadcaster.

Figure 5.13(a) and (b). A call connection from a component c to a conceptual level

channel designated n may be refined to a connection to a channel implementation

for n, where the new channel implementation is instantiated on the same node as c.

The conceptual level channel is otherwise unaffected.

Figure 5.13(c) and (d). If a component c is connected to a conceptual level channel

designated n and a channel implementation for n already exists, then the connec-

tion from c to the channel may be refined as a connection from c to the channel

implementation.

The refinements in figure 5.13 allow connected channels to be implemented us-

117

(b)

(a)

n n

n

n n

n

(c)

n n

nn

(d)

n n

nn

(e)

n0

Figure 5.13: Distributed refinements for channels.

ing any number of channel implementations between one and the number of connec-

tions from components to the channel. So, a fully centralised implementation (where

all components are connected to a central channel implementation) is allowed, as is

a fully distributed implementation.

5.4.7 Inter-level reflection operations

Supporting dynamic evolution at runtime requires a mechanism for relating the cur-

rent conceptual level architecture to the current implementation level architecture.

The following reflection operations are therefore provided:

• Given the identity of a conceptual level element, return the identities of all

implementation-level elements that form part of its implementation.

getImplementation : A× e → P(E)

118

• Given the identify of an implementation level element, return the identities of

all conceptual level elements that it implements.

getConceptual : A× E → P(e)

5.4.8 An example refinement

The application of refinement rules is illustrated by the example refinement se-

quence shown in figure 5.14, which is read left to right, top to bottom.

Figure 5.14(a) shows an initial conceptual level architecture and figure 5.14(f)

shows its final refinement. The other figures show partially-refined architectures

that include both conceptual and implementation level elements. The text to the

right of each architecture diagram indicates the refinement rule applied to trans-

form it into the subsequent architecture. The elements that the rule matches are

shown with dark outlines for ease of identification.

In figure 5.14(a) we can match rule 5.7(a), which states that an unanchored com-

ponent may be anchored to any node in its workspace. The result of this refinement

is shown in figure 5.14(b).

Figures 5.14(b) and (c) illustrate component instantiation. In (b), the Value com-

ponent and the node it is anchored to are matched by rule 5.7(b), resulting in the

conceptual level Value’s replacement by a CCCM, an implementation level Value,

and a local connector. In (c) a similar transformation is performed on the Clicker

component. As specified by the transformation rule, the Value’s call target port is

hosted on its implementation’s CCCM while the Clicker’s call source port is hosted

on the Clicker implementation component.

In figure 5.14(d) the call source and target ports can be matched by refinement

rules 5.8(b) and (a), respectively, which transform them into local source and target

ports. The ports’ names remain unchanged.

Finally, in figure 5.14(e) the call connector, its source and target, and the nodes

the source and target are on match rule 5.9(b), which replaces the call by a transmitter-

receiver pair, two local connectors and a remote connector. The final, fully refined

architecture is shown in figure 5.14(f).

119

:Clicker

:Value

count

in

:Clicker

:Value

count

in

refinement 5.7(a):
floating
component
anchored to node

refinement 5.7(b):
anchored
component
instantiated,
target port on
CCCM

:Clicker

count

in

:Value refinement 5.7(b):
anchored
component
instantiated,
source port on
component
implementation

in

:Value

:Clicker
count

refinement 5.8(b):
(top) call target on
implementation
level component
becomes local
target

refinement 5.8(a):
(bottom) call
source on
implementation
level component
becomes local
source

in

:Value

:Clicker
count

refinement 5.9(b):
call connector
between two
implementation
level elements on
different nodes
implemented
using a
transmitter-
receiver pair

in

:Value

:Clicker
count

(a) (b)

(c) (d)

(e) (f)

Figure 5.14: An example of the application of refinement rules.

120

Recall that refinements may be applied in any order and that any matching re-

finement may be applied at any time. So, for example in the architecture shown in

figure 5.14(a) we could have matched the same refinement chosen (5.7(a)) using the

other node; we could also have matched refinement 5.7(b) to the Clicker component

and its node before anchoring the Value component. The number of possible refine-

ments expands significantly for more complex conceptual level architectures, par-

ticularly those including subscription connectors or synchronization groups. Some

examples of alternate refinements for a slightly more complex conceptal level ar-

chitecture (that shown in figure 6.5 on page 134) are shown in figures 1.4, 6.6, 6.7

and 6.8 on pages 15, 136, 137 and 138.

5.5 Summary

This concludes the definition of the Workspace Model. In the next chapter we de-

scribe how the model may be used for scenario-based analysis, component-level

design, architectural analysis of recovery and restoral from partial failure, and as a

programming framework.

121

Chapter 6

Applying the Workspace Model

In this chapter we examine how the Workspace Model can be applied to a range of

tasks that occur in the development of groupware systems.

Scenario-based modeling is a technique that is often used in the requirements

analysis and early design phases of interactive software development, and includes

a rich body of notations and practices [23, 113]. We illustrate how the Workspace

Model can be used to supplement these in order to provide an early architecture-

based model of groupware systems. The Workspace Model’s inclusion of high-level,

groupware-appropriate abstractions like separate contexts of work, shared informa-

tion, and communication via asynchronous message streams makes it well suited to

this task.

We then demonstrate how the Workspace Model can be applied to the component

level design of a groupware system, in terms of determining what components the

system should consist of and what their patterns of communication should be.

The Workspace Model’s clean separation of conceptual and implementation lev-

els also makes it useful for the analysis of “non-functional” run time properties such

as fault tolerance, security, and performance. In section 6.3 we provide a detailed

example illustrating how the model can be used to reason about service restoral and

recovery from partial failure.

Finally, in section 6.4 we illustrate how the Workspace Model may be directly

applied to the problem of programming groupware systems. This is presented in

terms of the programming interface provided by our fiia toolkit, by means of a small

sample program.

122

6.1 Scenario-based modelling

Scenario-based analysis and modelling is frequently used to support the require-

ments definition and early design of software systems, particularly interactive sys-

tems [23, 113]. As practised by Carroll and others, scenarios are typically modelled

as narrative text, with supporting pictures or diagrams where useful. The pictures

normally document possible user interface designs and relationships between users

and the systems under consideration. Scenarios may be used to understand the

behaviour of current systems or to assist in envisioning the behaviour of desired

systems.

TheWorkspace Model provides a mechanism to extend classic scenario-based de-

sign by providing a lightweight representation of possible architectures for group-

ware (or single user) systems, in their contexts of use. In this section we return

to the CASE tool scenario initially presented in section 1.1.1 and show how the

Workspace Model can be used to model the scenario informally and to draw archi-

tectural implications from it.

Figure 6.1 illustrates the CASE tool scenario as a series of Workspace diagrams,

each of which represents a point-in-time snapshot of a possible system architecture.

The designs grow progressively more detailed as the scenario progresses and more

decisions are made.

In figure 6.1(a) we see Dave working in his office, using his CASE tool’s user

interface to interact with a design. This diagram, and the rest in the figure, are very

informal and represent the kinds of things that designers might draw in a white-

board session. For instance, in this diagram the types of the components (actor,

reactor, or store) are not shown and there are no nodes or workspaces depicted.

The next step in the scenario is Ian walking into Dave’s office, depicted by fig-

ure 6.1(b). The fact that there are no arrows between the CASE tool and Ian repre-

sent the fact that Dave’s office is not well laid out for collaborative brainstorming.

This is why Ian and Dave move across to the large touch-screen, as shown in fig-

ure 6.1(c).

123

(a) Dave working in his office (b) Ian joins him

(c) Dave and Ian move to the touch-screen
display across the hall.

(d) Ian lends Dave the use of his tablet and they move
the CASE tool's palette onto it.

(e) Karen and Tatiana join the collaboration remotely.

Figure 6.1: The scenario from section 1.1.1, represented as a series of informal Workspace

diagrams.

124

Ian now has arrows to and from the CASE tool on the touch-screen, indicating

that he has the ability to participate actively in the collaboration. At this point it

also becomes interesting to explicitly represent nodes; this allows us to illustrate

the fact that Dave left his CASE tool running on his workstation and has another

interface, connected to the same design, on the touch-screen. We have left the

design component floating to indicate that the actual computer it is instantiated

on is unimportant. The design component now has subscription arrows leaving it,

indicating that if either of its two connected interfaces alter it, it has the ability to

notify the other.

In figure 6.1(d) Ian has allowed Dave the use of his tablet computer, and Dave has

moved the CASE tool’s palette off the touch-screen and onto it. In representing this

we have had to add some detail to the CASE tool’s design, splitting its interface into

a palette and a canvas and indicating the communication links between them. We

have not bothered to elaborate the design of the CASE tool on Dave’s workstation.

The diagram shows that Dave is working on the canvas at the touch-screen and Ian

is manipulating the tool palette on the tablet.

Finally, figure 6.1(e) depicts the scenario after Karen and Tatiana have remotely

joined the collaboration. Workspaces are shown to indicate distinct work contexts.

Each workspace contains a design component and the three designs are synchro-

nized, indicating that the participants at all three locations are working with the

same design. A subscription connector annotated “voice” has also been added to

the diagram, indicating that the participants can talk to one another. This final

sketched diagram is an informal version of figure 3.1 on page 45.

As seen in diagrams of figure 6.1, the Workspace Model can be used to concisely

capture architectural snapshots of interesting systems. It clearly represents essen-

tial groupware concepts including distinct contexts of use, data sharing between

session participants, where user interfaces are instantiated, and where stream-

based communication is intended to occur. The Workspace Model’s visual notation

has been specifically designed to allow for partially-complete sketches, so if some

decisions have not yet been made, details may be omitted where appropriate and

125

easily added later.1

In the next section we take a particular aspect of this scenario and explain how

we can use it to drive the component level design of a groupware system.

6.2 Component design

Towards the end of the scenario in section 1.1.1, Dave, Ian, Tatiana and Karen are

all working together on the design. “At one point Karen needs to check something

on an overview diagram while Dave, Ian and Tatiana are discussing a more detailed

one, so she temporarily decouples her view from the group’s. After finding the

information she needs, she rejoins the group view....”

6.2.1 Structural view

This scenario fragment implies that the design is made up of a number of different

diagrams, that it is possible for the collaborators to ensure that they are always

looking at the same diagram (the “group view”) and that it is possible to decouple

from, and later rejoin, the group view.

In the Workspace Model, this suggests that the concepts of “the design” and

“the current diagram” should be represented as separate stores that can be inde-

pendently shared. One store would hold all the diagrams that constitute the design;

the other would hold an index into the design, perhaps as simple as a single integer,

indicating which diagram is currently being viewed and modified.

This idea is illustrated in figure 6.2. In part (a) of the figure both the design and

the current diagram are being shared by the group.2 In part (b) of the figure Karen

has detached her current diagram store from the group’s view. This gives her the

ability to independently browse through the diagrams. By re-attaching her current

diagram store to the current diagram synchronization connector, she immediately

1An earlier version of the Workspace model, presented in [102], did not have this property; it was
added as a result of user feedback obtained during an informal usability test of the notation.

2Only Dave and Karen are shown, but the intent is that Tatiana’s design and current diagram stores
are also members of the appropriate synchronization groups.

126

Dave Karen

design design

current
diagram

current
diagram

CASE toolCASE tool

Dave Karen

design design

current
diagram

CASE toolCASE tool

(a) same design, same diagram

(b) same design, different diagram

current
diagram

Figure 6.2: Component design for the CASE tool, motivated by the need to both collectively

and independently browse diagrams.

rejoins the group view. (Recall that when a component joins an existing synchro-

nization group, it is the joining component whose state is modified to match that of

the group.)

In addition to the structural implications shown in figure 6.2, this aspect of the

scenario has implications on the CASE tool user interface. For instance, the inter-

face will have to provide mechanisms meaning “change diagrams independently”

and “join the group view”. The creation of such mechanisms is a complex user in-

terface design problem in its own right. One of the goals of the Workspace Model is

to provide an appropriate set of high-level abstractions (like shared stores) that free

designers from worrying about low level issues and allows them more time to carry

out such design [61].

127

The representation of shared information is the key issue to be considered in the

analysis and design of collaborative systems [97]. Because the Workspace Model

provides a clear and explicit representation of information sharing, the modelling

technique encourages questions regarding how information is to be shared and how

shared information should be divided into components. The separate components

for the design and current diagram components shown in figure 6.2 arise simply and

naturally from questions that the model forces us to ask in order to draw appropriate

diagrams.

6.2.2 Evolution view

We can also consider the evolutions that would be required to create the architec-

ture shown in figure 6.2(a) to derive some insight into the dynamic properties of the

system’s architecture.

In order for Karen to join Dave’s design session as shown in figure 6.2(a), two

synchronization connectors must be created and attached to the design and current

diagram components in Dave’s workspace. Appropriate components of the same

types must be created in Karen’s workspace and then connected to the same syn-

chronization connectors. In principle either Dave or Karen could perform any of

these actions. In practice, it appears reasonable that Dave would create the synchro-

nization connectors and attach his components to them, then provide the identifiers

for those synchronization connectors to Karen so that she could likewise attach her

components.

Of course, Karen and Dave should not be expected to think in terms of connectors

and components, which are concepts more suited to application developers than to

end users. Ideally, there would be a user interface in Dave’s workspace (perhaps

as part of his CASE tool) that would allow him to say, in effect, “share this design

with Karen”, and a similar interface in Karen’s workspace that would allow her to

say “work with Dave on his design”.3

3This kind of requirement is normally referred to as session management and mechanisms and
user interfaces supporting it are a necessary part of any groupware system [111].

128

Continued analysis would involve the creation and modelling of further scenarios

to fully explore the expected behaviours of the system and the implications of those

behaviours on system architecture and user interface.

6.2.3 Component interaction design

As illustrated in the previous sections, the Workspace Model provides support for an

initial division of a running system into logically-necessary components. In figure 6.2

we see three components for each user: a user interface, a design and a current

diagram. This provides a reasonable starting point for detailed design.

Diagrams like figure 6.3 represent runtime snapshots, similar in nature to the

Unified Modelling Language’s (UML) object diagrams [115]. As object diagrams

may be extended with message sequences to create UML communication diagrams,4

so may Workspace models be extended to create Workspace communication dia-

grams. This extension allows us to design the sequence of calls and messages that

result from any initial activity in the system, effectively designing the dynamic be-

haviour of the configured system.

Figure 6.3 shows a simple collaboration imposed over the diagram of figure 6.2(a).

This illustrates one design for the sequence of events that is to unfold when Dave

indicates he wants to move to the next diagram in his design. As with UML commu-

nication diagrams, the numbers on each message or call indicate the sequence of

events. Here, the intended sequence is:

1. Dave activates some feature of the CASE tool interface that means “go to the

next diagram”.

2. The CASE tool component calls an inc() method provided by the current dia-

gram component. This changes the state of Dave’s current diagram compo-

nent, as well as all current diagram components synchronized with it.

4Formerly called collaboration diagrams, but fortunately the new name clashes less with common
groupware usage!

129

Dave Karen

design design

current
diagram

current
diagram

CASE toolCASE tool
1: [next]

2:inc()3:update()
4:getNumber()

5:getDiagram()

6: [redisplay]

3:update()
4:getNumber()

5:getDiagram()

6: [redisplay]

Figure 6.3: Workspace communication diagram.

3. Dave and Karen’s current diagram components emit asynchronous update()

messages on their outgoing subscription connectors. These messages are re-

ceived by their respective user interface components.

4. The CASE tool components query the current diagram components for the cur-

rent diagram, then...

5. ... get that diagram from the design components and...

6. ... update Dave and Karen’s displays to show the appropriate slide.

The sequence shown in steps 2 through 4 is the classic Model-View-Controller

(MVC) object interaction [74], with the CASE tool component playing the part of the

view and the controller, and the current diagram component the part of the model.

6.2.4 Analysis of alternatives

For stores to be generally useful in representing shared information, it is almost

always necessary for them to provide some form of notification when their internal

state changes. This allows, e.g., Karen’s user interface component to be notified

when Dave advances to the next diagram. The exact mechanism used for the noti-

fication may vary considerably and is a significant application design decision. For

instance, here we have used a simple “update” message, without any other informa-

tion, as in the original Smalltalk-80 conception of MVC. It would also be possible to

130

use an information-bearing message that includes the new diagram number in the

message itself, as well as any of several other variations [118].

The important point is that Workspace collaboration diagrams render design

choices of this kind explicit and allow them to be reasoned about. For instance, it

is always the case that workspace components may be located remote from one an-

other across networks. Thus, the sequence shown in steps 2 through 4 of figure 6.3

may require six network transmissions in the worst case, one each way for each call

or message. This could be reduced to four network transmissions by including the

new slide number in the update message, which might make Dave’s display appear

more responsive to his commands.

The responsiveness of Dave’s display could be further improved by keeping a

local copy of the current diagram in the CASE tool component and fetching the new

diagram before issuing the increment command to the shared current diagram.

The cost of this approach in comparison to the approach shown in figure 6.3

would be duplicated code and added complexity in the CASE tool component, as well

as the possibility of new failure modes. For instance, knowing to ignore the incoming

update() message requires the addition of new logic to the CASE tool component

and current diagram components, possibly including a serial number to link inc()s

to update()s. It also introduces the possibility of race conditions (what if Karen had

moved to a new diagram at about the same time?) as well as incoherent behaviour

(what happens if the local copy of the current diagram in CASE tool gets out of

sync with that maintained by the current diagram component?) Reasoning about

these kinds of trade offs is an important part of the design process; modelling them

using workspace collaboration diagrams renders the reasoning more explicit and

therefore more rigorous.

In order to fully understand the required dynamic behaviour of a system it is nec-

essary to consider the interesting scenarios and activities that might arise in its use.

Each of these may then be modelled in a collaboration diagram to describe its dy-

namic behaviour. The collection of collaboration diagrams may then be considered

as representing an initial dynamic specification of the required system behaviour.

131

6.3 Architectural analysis

In addition to providing support for the design of dynamic groupware systems, the

Workspace Model can also be used to analyze certain non-functional properties of

groupware systems. In the next few sections we provide a detailed discussion of

the use of the Workspace Model to reason about fault tolerance. Similar analyses

are also possible for properties such as security, and performance issues such as

bandwidth usage, feedback and feedthrough.

What makes the Workspace Model particularly well suited to these kinds of anal-

yses is its clean separation between the conceptual and the implementation levels.

The conceptual level and component implementations specify the desired functional

behaviour of the system. The implementation level expresses the actual distributed

system configuration at runtime. Since many non-functional properties emerge from

distributed implementations, the Workspace Model’s explicit representation of dis-

tribution, as separate from desired semantics, allows for precise analyses of these

properties.

6.3.1 Fault tolerance

In a distributed system, fault tolerance refers to the ability of a running system to

continue to operate in the face of partial failure. The failure may be of one of the

nodes on which a running system is implemented; of one or more of the communi-

cations links between systems; or of a key piece of software on which the system

relies. Failures may be transient or long-lived.

In the Workspace System, the response of a running system to partial failure may

be either restoral or recovery. The best case is a restoral, in which all user-visible

system functions are restored, for example by re-establishing a failed network con-

nection. Where this is impossible, the aim of a recovery is to put the system into a

semantically coherent state with the minimum impact on the users.

In the Workspace Model, a partial failure manifests itself as one or more un-

requested evolutions at the implementation level. For example, the loss of contact

132

with a node will initially be recognised as the unplanned disconnection of any re-

mote connectors targeting components on that node. In an implemented workspace

system, this would first be detectable by the transmitter and receiver components

implementing the ends of the failed connection.

The Workspace Model representations of restoral and recovery are illustrated

in figure 6.4(a) and (b), using the same notation as figure 1.1 on page 10. Both

parts of the figure begin with an implementation level architecture i that is a valid

implementation of the current conceptual architecture c; that is, R(c, i). The initial

failure is represented as an evolution eif at the implementation level that results

in a new implementation architecture if, where if is not a valid refinement of c.

Here, eif is used as a shorthand to represent either a single evolution or a sequence

of evolutions; in general, an actual system-level failure will manifest as multiple

evolutions.

Part (a) of figure 6.4 represents a restoral. Here, a further sequence of imple-

mentation level evolutions ei1 through ein are applied to if to produce ir such that

R(c, ir) — that is, such that the resulting implementation level architecture ir is a

valid refinement of c.

Where restoral is not possible, it is necessary to modify the conceptual architec-

ture in some way in order to effect a recovery. This is represented in figure 6.4(b).

Here, a sequence of evolutions ec1 through ecm are applied to c to produce cr while a

sequence of evolutions ei1 through ein (not the same sequence as in (a)) are applied

to if to produce ir, such that R(cr, ir).

It is always possible to find sequences of ec and ei such that R(cr, ir), with the

trivial solution being one in which all elements of c and if are deleted to arrive at

empty architectures at both levels. Clearly, this is unlikely to be satisfactory to the

system’s users! To provide good failure properties, the aim is to find the minimally

disruptive sequence of ec such that there exists a possible sequence of ei allowing

R(cr, ir). Just how disruptive that sequence of ec will have to be is dependent on the

initial conceptual level architecture c, its initial implementation i, the nature of the

failure eif, and just what the users consider “disruptive”.

133

c

i

r

eif
if ei1 ein

... ir

r'

c

i

r

eif
if ei1 ein

... ir

ec1 ecm

... cr

r'

(a) restoral (b) recovery

Figure 6.4: Workspace model representations of (a) restoral and (b) recovery.

We do not pretend to have an algorithm meeting this requirement—rather we

merely suggest that the Workspace Model’s clean separation of the conceptual and

implementation levels may provide an appropriate framework for reasoning about

it.

6.3.2 Recovery and restoral examples

To illustrate these concepts concretely we return to the “clicker” example of sec-

tion 1.4.2.

Recall that the scenario has Shona and Tristan are working at two doors of an

auditorium, counting the number of people who enter. They are each provided with a

“clicker” device that increments the count by one whenever they click its button and

also displays the current count. Since the current count is represented by shared

stores, Shona and Tristan are updating the same count at the same time.

We suppose that Shona and Tristan each have small tablet computers on which

their Clicker user interfaces are to be implemented (that is to say, their Clicker inter-

faces are anchored to their tablet nodes). Additionally, Shona’s workspace includes

a server node hosted on another computer; this server node is “headless” and there-

fore does not allow the instantiation of user interface components. The tablets and

the server are all connected by a wireless networks. This conceptual-level architec-

ture is illustrated in figure 6.5.

Applying the refinement rules given in chapter 5, we see that there are many

134

Shona's
tablet

count
:Value

clicker
:Clicker

dependents

count

Shona's
server

Tristan's
tablet

count
:Value

clicker
:Clicker

dependents

count
Shona Tristan

Figure 6.5: The conceptual level architecture of the clicker example, with available nodes

shown.

possible implementations of this conceptual level architecture. For the purposes of

this section, we consider four of these:

• a pure peer-to-peer implementation, in which the Value store has implementa-

tions on both tablets and the server is not used (figure 6.6 on page 136);

• a server-based peer-to-peer implementation, in which the Value store has im-

plementations on Shona’s server and Tristan’s tablet (figure 6.7 on page 137);

• a centralized store implementation, in which the Value store is implemented

only on Shona’s tablet (figure 6.8 on page 138); and

• a centralized store implementation, in which the Value store is implemented

on Shona’s server (originally presented in chapter 1, figure 1.4 on page 15).

Likewise there are many possible failures eif that we might imagine; here we

consider two. The first example is a transient hardware failure on Shona’s tablet,

etrans, which causes it to lose all data; however, the tablet remains connected to the

network and is still a usable node in Shona’s workspace. An analysis of restoral

or recovery from this failure is presented in section 6.3.3. The second example is

a catastrophic failure of Shona’s tablet, ecat, which removes it from her workspace

entirely; its analysis is presented in section 6.3.4.

135

6.3.3 Transient failures, etrans

At the instant after the transient failure of Shona’s tablet, all three implementation

architectures if will look the same as shown in their respective figures, except that

the node representing Shona’s tablet will be empty and the internal state of all com-

ponents that had been on that node will be irretrievably lost. The analysis regarding

restoral or recovery begins by comparing this implementation architecture with the

conceptual architecture of figure 6.5, and then determining whether a recovery or

a restoral is possible.

In the case of the transient failure, all nodes remain available in the architecture.

This means that the conceptual architecture c is unaffected and that a complete

structural restoral is possible in principle for all three implementation architectures.

By “structural restoral” we mean that it is possible to create all necessary implemen-

tation components, on appropriate nodes, such that we have an implementation ir

where R(c, ir). However, there will be varying degrees of disruption to Shona and

Tristan’s use of their clicker interfaces, and in one case the current count will be

lost.

6.3.3.1 Peer-to-peer implementation, etrans.

In the peer-to-peer implementation illustrated in figure 6.6 at the instant after the

transient failure, both Shona’s Clicker and Value will have been removed from the

architecture, along with all supporting infrastructure components and their connec-

tors.

Since c shows that Shona has a Clicker anchored to her tablet node, and her

tablet node is available, we can instantiate a new Clicker there. Obviously this will

not have any of the local state that her former Clicker had, since that state has been

irretrievably lost. However, since the only local state of a Clicker is its window title,

this is unlikely to be significant.

The conceptual level also requires that Shona’s Clicker be attached to a Value

(synchronized with Tristan’s Value) via call and subscription connectors. To provide

136

Tristan's tablet

Shona's tablet

:Clicker

Shona

:Value

:Clicker

Tristan

:Value

Shona's
server

Figure 6.6: A peer-to-peer replicated store implementation of the clicker example.

Shona with this Value we have several choices. The simplest would be to have Shona

remotely access Tristan’s Value component; this effectively moves us to a central-

ized implementation like that of figure 6.8 except with the Value and its associated

infrastructure components on Tristan’s tablet rather than Shona’s.

Alternatively we could create a new Value for Shona by copying the state of Tris-

tan’s Value and instantiate it one either Shona’s server or her tablet. We could then

create the required connector implementations, either local or remote as necessary.

With either choice, the synchronization connector could be implemented using any

one of the allowed channel implementations, for example with a centralized message

broadcaster (as in figure 6.6) or channel endpoints.

Structurally, this represents a complete restoral. In terms of the state of the

application, it is near-complete: Shona’s Clicker window title has been lost; however,

the count has been maintained. Shona will temporarily lose access to her Clicker

while the system is being restored; however, Tristan retains the ability to use his

137

Shona's serverShona's tablet

:Clicker

Shona

:Value

Tristan's tablet

:Clicker

Tristan

:Value

Figure 6.7: A replicated store implementation of the clicker example, in which one replica is

on Shona’s server.

Clicker user interface throughout the process.

6.3.3.2 Centralized implementation on Shona’s tablet, etrans.

We now consider the effects of the transient failure, etrans, on a centralized imple-

mentation in which the the sole Value implementation is on Shona’s tablet. This

implementation architecture is illustrated in figure 6.8.

As in the case of the peer-to-peer architecture, the implementation architecture

immediately after the failure is the same as figure 6.8, but with all the components

and connectors on Shona’s tablet erased. Also as in that case, we can provide a

structurally complete restoral, using any one of a number of implementation archi-

tectures.

The most significant difference in this case is that the current state of the Value

object (the current count) will have been irretrievably lost when Shona’s tablet

138

Tristan's tablet

:Clicker

Tristan

Shona's tablet

:Clicker

Shona

:Value

Shona's
server

Figure 6.8: A centralized store implementation of the clicker example, with the store on

Shona’s tablet.

failed, since that was the only place it was stored. When the first of the required

new Value components is created and connected to a Clicker it will be initialized to

a count of zero. Clearly this will be disruptive to both Shona and Tristan.

6.3.3.3 Centralized implementation on the server, etrans.

The transient failure of Shona’s tablet in the centralized store on server case (fig-

ure 1.4) is very similar in effect to the transient failure on the peer-to-peer imple-

mentation.

As in that case, Shona will experience a transient loss of access to her Clicker

while the restoral is in progress and Shona’s restored Clicker will have lost its previ-

ous window title. However, as in the peer-to-peer case the count will be undisturbed

and Tristan will retain the ability to use his Clicker throughout.

139

6.3.4 Catastrophic failures, ecat

In the case of a catastrophic failure of Shona’s tablet, the three initial implementa-

tion architectures if will be the same as shown in figures 6.6 through 1.4, except

with Shona’s tablet, all the components on it, and all the connectors either on it or

to or from it, removed.

Since Shona’s tablet is not longer physically present we clearly cannot provide a

complete restoral, so some series of conceptual level evolutions ec will be necessary

to create an architecture cr that will allow recovery.

Because of the failure of Shona’s tablet we are required to remove its node

from the conceptual architecture c. In order to do this we must first float any

components anchored to it (see figures 4.7(b)) and then destroy the node itself (fig-

ure 4.10(b)). In principle this would allow Shona’s conceptual-level Clicker to remain

in her workspace, as long as it could be implemented on some other node. However,

since Shona’s server does not permit the instantiation of user-interface components,

there is nowhere to actually create a new Clicker for her (Tristan’s tablet may not be

used since it is not in Shona’s workspace.) The only way to resolve this is to remove

Shona’s Clicker and all its ports from the conceptual-level architecture through a

destroy evolution (figure 4.8(d)); however, in order to do this we must first detach

all attached connectors (figures 4.13(a) and (d)).

Shona’s Value component is unaffected by these changes: since it was not an-

chored to the tablet node it need not be floated; and since it can still be implemented

on either Shona’s server (or Tristan’s workspace, as part of a group of synchronized

stores) it need not be destroyed.

The end result of these evolutions is the conceptual architecture for recovery cr

illustrated in figure 6.9.5

We can then determine the implementation level evolutions necessary for each

of the three if such that we have a recovered implementation ir which is a legal

implementation of cr, that is, R(cr, ir).

5We could also destroy the two unterminated connectors in this architecture, but that is not strictly
necessary since they will have null implementations.

140

count
:Value

dependents

Shona's
server

Tristan's
tablet

count
:Value

clicker
:Clicker

dependents

count
Shona Tristan

Figure 6.9: A possible conceptual architecture for recovery, cr, resulting from the catastrophic

failure of Shona’s tablet.

6.3.4.1 Peer-to-peer implementation, ecat.

In the case of the peer-to-peer implementation and catastrophic failure of Shona’s

tablet, the main implementation evolutions requires required support the imple-

mentation and connection of Shona’s Value component. We can either instantiate

a new Value component on Shona’s server, synchronizing it with Tristan’s by any

legal synchronization implementation, or we can simply switch to a centralized im-

plementation of the synchronization in which the Value on Tristan’s tablet is used to

implement both conceptual level stores.

The end result is that Shona loses her Clicker user interface; however, Tristan’s

interface and Value are unaffected, as is the current count value.

6.3.4.2 Centralized implementation on Shona’s tablet, ecat.

If the catastrophic failure occurs to Shona’s tablet while the implementation is as

shown in figure 6.8 then we have lost not just Shona’s Clicker component, but also

the Value component that was implementing both Shona and Tristan’s Valuestores.

As in the analogous case for the transient failure, the current value of the count will

be unavoidably lost.

In this case we must create one or more implementations for Shona and Tristan’s

141

Value stores. (Since they are synchronized, a single implementation will suffice;

however a peer-to-peer implementation is not precluded.)

The end result is that Shona loses her Clicker interface, the current value of the

count is lost, and Tristan experiences the temporary inability to update the count.

6.3.4.3 Centralized implementation on the server, ecat.

Finally, for the centralized implementation of the Value store on the server, only

Shona’s Clicker and the connections to and from it are affected. Tristan should see

no interruption in the availability of his Clicker interface, and the count will not be

lost.

6.3.5 Designing for fault tolerance

In the preceding sections we have discussed fault tolerance analysis from the per-

spective of examining the ability to provide service restoral and recovery after fail-

ures, given an initial implementation of a particular conceptual architecture.

It is perhaps more useful to approach the problem from the other direction: given

a conceptual architecture, including a set of available nodes, it is possible to use the

Workspace model to design a runtime architecture to meet given fault tolerance

requirements.

For example, in the clicker example above, we might imagine that the most im-

portant feature of the system is maintaining an accurate count. If we assume that

the portable tablets are more failure-prone than the server, a server-based central-

ized implementation might be most appropriate. Alternately, a replicated implemen-

tation will provide a degree of system redundancy.

The key point is that the Workspace Model provides us with an explicit represen-

tation of the distributed system implementation, distinct from the desired function-

ality, which allows us to reason about these issues in a rigorous fashion.

142

6.4 Application development

In addition to its uses for analysis, design, and reasoning about non-functional run-

time attributes, the Workspace Model can also be used directly for application de-

velopment and the runtime control of system execution, given an appropriate devel-

opment toolkit and a runtime system that supports the appropriate semantics.

We have implemented one such toolkit and runtime system called fiia.6 The fiia

toolkit is implemented in the Python programming language [134] using the wx-

Python interface to the wxWidgets widget set [107, 46, 120], and supports applica-

tion development in Python. The operations and semantics of the model are exactly

those defined in the Workspace Model; however, the syntax of evolution and reflec-

tion operations has been adapted to make it more natural for Python programmers

and convenience functions have been provided. In this section we explain how an

application programmer develops software using fiia and provide short code sam-

ples. In chapter 7 we provide an overview of the internal implementation of the fiia

runtime system.

The Python language binding provided by fiia is just one possible approach to

using the Workspace Model in software development. A separate toolkit with a

radically different syntax and programming model is currently being implemented

by Christopher Wolfe in the Microsoft .NET [108] environment, as part of a related

research effort.

6.4.1 The fiia programming model

A programmer using the fiia toolkit has two main tasks: developing fiia-aware com-

ponents and providing sequences of conceptual-level evolution operations that as-

semble the desired configurations of these components and their connectors at run-

time. The two tasks are not necessarily separate, since the evolution scripts may

themselves be embedded in fiia-aware components; however, the evolution scripts

6The name fiia is drawn from Ursula K. Le Guin’s 1966 novel Rocannon’s World, in which members
of an alien race called the Fiia are described as intelligent, nomadic, communal, telepathic and the
willing servants of a human-like race.

143

count
:Value

clicker
:Clicker

dependents

count

count
:Value

clicker
:Clicker

dependents

count
Shona Tristan

Figure 6.10: A simple “clicker”.

may also be independent of the component definitions.

In this section we present component definition and configuration in fiia. The

discussion is based around the example presented in chapter 1, which is illustrated

in figure 6.10. Once again, the scenario has Shona and Tristan working at two doors

of an auditorium, counting the number of people who enter. They are each provided

with a “clicker” device that increments the count by one whenever they click its

button and also displays the current count. Since the current count is represented

by shared stores, Shona and Tristan are updating the same count at the same time.

From a Workspace Model perspective, each of Shona and Tristan have an inter-

face reactor of type Clicker, which provides a single-button interface. Initially, the

button’s label is a question mark. When the Clicker is connected to a store of type

Value by the connectors shown, its button’s label takes on the value stored, which

is expected to be an integer. Each time the button is pressed by either Shona or

Tristan, the value of the integer is incremented by one. A change in the integer’s

value causes a message to be sent via both Value’s subscription ports; receipt of

this message by a Clicker causes it to update its button’s value accordingly.7 If the

Clicker is disconnected from the Value, the button’s label reverts to a question mark.

While obviously very simple, this application serves to illustrate most of the key

features of the Workspace Model as implemented in fiia.

In section 6.4.2 we describe the key fiia evolution operations required to config-

7This is a classic model-view-controller style interaction [74].

144

Executed in each workspace:

count = fiia.Component(Value)

clicker = fiia.Component(Clicker, title=’fiia Clicker’)

call = fiia.connect(clicker, ’count’, count)

subscr = fiia.connect(count, ’dependents’, clicker)

Executed once in Tristan’s workspace:

sync = fiia.synchronize(count, shonaCount)

Figure 6.11: The fiia evolution operations required to configure the “clicker” example of fig-

ure 6.10.

ure this application. The necessary fiia component definitions are discussed starting

in section 6.4.3.

6.4.2 Evolution operations in fiia

In fiia, evolution requests are represented by a set of functions provided in the in-

terface of a Python module called fiia. The functions required to configure the ar-

chitecture of figure 6.10 are Component, connect and synchronize.8

Figure 6.11 shows the conceptual-level evolution requests necessary to create

the architecture of the clicker application shown in figure 6.10, assuming appro-

priate definitions for the Value and Clicker components. The first four lines of

code in figure 6.11 would have to be executed once in each of Shona and Tristan’s

workspaces. The final line would be executed once in Shona’s workspace.

The first line of figure 6.11 requests creation of a new conceptual level compo-

nent of type Value. The kind of component represented by Value (in this case, store)

is determined from the component’s definition, as are its ports. Since no workspace

was specified, the component is created in the current workspace. The return value

from the creation request, assigned to the variable clicker, is a Universally Unique

8By Python convention [135], class and factory function names start with capital letters and other
function names start with lower-case letters; Component is capitalized as it has the semantics of a
factory function.

145

IDentifier (UUID, a Python character string) generated by the fiia runtime and iden-

tifying the conceptual level Value component created.

The second line of the figure requests creation of a Clicker component. The frag-

ment title=’fiia Clicker’ is a parameter that will be passed to the constructor

of the implementation-level Clicker component, in this case representing the desired

title text of the Clicker window.

The third line requests that the count source port of the component identified by

the variable clicker be connected to the component identified by the variable count.

No target port name need be specified since default call and subscription target

ports are automatically provided by the fiia system for each component. The kind of

connector required (here, a call connector) is inferred from the kind of the source

port.

The connect function is a convenience function which, when used with call ports,

is equivalent to a createCall evolution followed by attach evolutions for the target

and source ends, in that order. The value returned by connect is the UUID of the

created call connector.

The fourth line of the figure connects the dependents subscription source port

of the count object to the appropriate default target port on the clicker. Since sub-

scription connectors are multi-point to multi-point, connect is more complex for sub-

scription connectors than for call connectors: if the requested source port is already

attached to a subscription connector, that connector is connected to the target port;

otherwise a new subscription connector is created and attached first at the source

end then at the target end.

Once these four lines have been executed in each workspace, the only remaining

step is for Tristan to synchronize the his Value store with Shona. This requires him to

have access to the UUID of Shona’s store, represented by the shonaCount variable

in the last line of figure 6.11.

Tristan could acquire this UUID via reflection on the architecture. The fiia sys-

tem provides all the reflection operations specified in section 4.4, as well as a fully

146

general query mechanism based on the SPARQL query language [105].9 In princi-

ple, these could be used to construct a workspace browser tool, which would make

component synchronization a “drag and drop” operation. They could also form the

basis of a specialized user interface on the Clicker component for locating shared

values. Since fiia UUID’s are simply strings, Tristan could also acquire the UUID by

an “out of band” mechanism such as email [138].

In any event, once Tristan has the UUID of Shona’s count store, he can cause the

final line of figure 6.11 to be executed. The synchronize function is a convenience

function analogous to connect. In this example it is equivalent to a createSyncGroup

followed by an attach at Shona’s end then an attach at Tristan’s end. As explained

in section 4.2.3.4, the effect of this is that the current state of Tristan’s count is

replaced by that of Shona’s, and subsequently the two represent the same count.

If Shona’s count store had already been attached to a synchronization group

prior to this evolution request, Tristan’s store would have joined that group. If Tris-

tan’s store had already been a member of a synchronization group, the synchronize

function would have reported an error.

In addition to the functions discussed here, the fiia module also provides a dis-

connect function which is the dual of connect; a diverge function which is the dual of

synchronize; and functions implementing all the other conceptual-level workspace

operations specified in section 4.3.

6.4.3 Component definition in fiia

Components in fiia are instances of normal Python classes 10 that obey a few simple

conventions and conform to a few constraints. Component definitions for fiia imple-

mentations of the Value and Clicker components are shown in figures 6.12 and 6.13.

The interaction between the components has been implemented using a standard

MVC pattern [74] in which the Value sends its dependents an update message when

it is modified.

9The query language and its implementation are discussed in chapter 7.
10A fiia component may be an arbitrary network of Python objects, one of which provides a

façade [52] for the component. Here we are speaking specifically of the class defining the façade.

147

class Value(fiia.Store):

 fiia_ports = {'dependents': fiia.SubscriptionSource}

 fiia_vocabulary = [fiia.Method('current', pure_request=True)]

 def __init__(self):
 self.value = None

 def set(self, value):
 self.value = value
 self.changed()

 def current(self):
 return self.value

 def on_synchronize(self):
 self.changed()

 def changed(self):
 self.dependents.update()

subclass of
fiia.Store

port declaration

current() method is a pure
request and therefore cacheable

vocabulary
declarations

(optional)

standard Python
constructor

MVC-style
notification

Called by fiia
when this store
is synchronized

to another

Since dependents is a
subscription port, sends

update() as an
asynchronous message

Figure 6.12: Definition of the fiia store Value, as an MVC-style model.

Components in fiia are expected to subclass one of the fiia-provided base classes

Store, Reactor or Actor so that the runtime system can automatically determine com-

ponent kind. In our examples the class Clicker inherits from Reactor and is therefore

deemed to be a reactor; the class Value inherits from Store and is deemed to be a

store. Following normal Python semantics, inheritance is transitive, so some other

class inheriting from Value would also be a store.

In addition to serving as component kind markers, the three fiia base classes are

themselves instances of a custom metaclass which provides an appropriate imple-

mentation of port and vocabulary inheritance (see below). A subclass may inherit

fiia_ports attributes from more than one superclass; in this case the port dictio-

naries are merged with any conflicts being resolved in accordance with Python’s

standard method resolution order for multiple inheritance. A subclass may also

declare its own fiia_ports attribute; in this case the new port declarations are

merged with the superclass port declarations. Analogous rules are applied for in-

heritance of the fiia_vocabulary attribute.

148

class Clicker(fiia.Reactor, wx.Frame):

 fiia_ports = {'count': fiia.CallSource}

 def __init__(self, title='Untitled'):
 wx.Frame.__init__(self, None, -1, title)
 self.button = wx.Button(self, -1, '?')
 self.Bind(wx.EVT_BUTTON, self.inc, self.button)

 def inc(self, evt):
 try:
 self.count.set(self.count.current() + 1)
 except:
 self.update()

 def update(self):
 try:
 self.button.SetLabel(str(self.count.current()))
 except:
 self.button.SetLabel('?')

 def on_count_connect(self):
 try:
 if self.count.current() is None:
 self.count.set(0)
 finally:
 self.update()

 def on_count_disconnect(self):
 self.update()

subclass of
fiia.Reactor and

wx.Frame

port declaration

standard Python
constructor, creates

wxPython one-
button interface

count is a call
source, so uses

may raise
exceptions

clicks on the
button call the
inc() method

called by the
Value, and also

internally

called
automatically by

fiia when the
count port is
connected...

... and
disconnected

Figure 6.13: Definition of the fiia reactor Clicker, which is also a wxPython Frame.

In order to provide additional flexibility, inheritance from the fiia base classes

is not mandatory. Any component that does not inherit from a fiia base class is

assumed to be a reactor; also, such components will not support port and vocabulary

inheritance.

6.4.4 Port declaration in fiia

In the raw Workspace Model, ports are dynamically added to components after they

have been created. The fiia system uses a streamlined approach in which call and

subscription target ports are provided automatically; each component has one call

target and one subscription target and stores have a synchronization port.

Components may declare any number and combination of call and subscription

149

source ports by means of a fiia_ports class level attribute.11 Source ports are

associated by name with instance variables of the classes that provide them—so

for example the Value’s “dependents” port declared in the second line of 6.12 is

associated with a Valueinstance’s self.dependents instance variable. Similarly, in

figure 6.13, the class Clicker is declared to have a call source port named “count”,

which is associated with the instance variable self.count.

6.4.5 Port use in fiia

Since ports are managed by the fiia runtime system, component code should never

assign to port variables. If a component wishes to modify one of its ports’ con-

nections, it should call the appropriate fiia evolution operation. A component has

access to its own UUID through a fiia_uuid attribute which is initialized by the

runtime system at the time of component creation. Since UUIDs are merely strings,

they may be passed from one component to another; this provides a mechanism for

bootstrapping arbitrarily complex connections of fiia components using code found

within the components themselves.

To make calls on call ports or send messages on subscription ports, a compo-

nent simply invokes a method on its port variable using the normal Python method

invocation syntax. So, for example, the changed method of figure 6.12 is sending

the asynchronous update message out the Value component’s dependents port. If a

subscription connector is attached to the dependents port and that subscription con-

nector has targets, this message will cause the attempted invocation of an update

method on each of the target components (see the updatemethod in the Clicker com-

ponent in figure 6.13). Where a message sent out a port has parameters, these are

also delivered with the method invocation; this allows for arbitrarily rich message

structures.

Since subscriptions are asynchronous, sending any message out a subscription

source port is always legal in fiia. If there is no connector attached to the port,

11fiia also provides “multiports”, which are essentially lists to which ports may be dynamically
added and removed; these are not further discussed here.

150

or the connector has no targets, or the targets are incapable of processing the re-

ceived message, any exceptions are silently absorbed by the system (but logged for

debugging purposes).

Unlike subscription connectors, call connectors are synchronous; therefore mak-

ing a call on a call source port may well cause an error to be reported. An error could

occur for any one of several reasons: the source port may not have an attached con-

nector; the connector may be implemented across a network link that has failed; the

connector may not have an attached target; or an error may occur in the target’s

processing of the call.

Errors are reported using standard Python exceptions; calls made via call source

ports should therefore be protected using exception-handling mechanisms.12 This

is illustrated in the inc, update, and _on_count_connect methods of the Clicker

class in figure 6.13.

It is often useful for components to perform particular actions when their ports

are connected or disconnected. The fiia system provides a simple, lightweight mech-

anism to support this. If a component provides a method called on_synchronize

(like the Value component), this will be called whenever that component joins a syn-

chronization group. If a component provides a method with a name of the form

on_portname_connect or disconnect (like the Clicker component) then the fiia sys-

tem will automatically invoke this method whenever the port with the indicated

name is connected or disconnected, as appropriate.

As specified in section 4.2.3.1, all objects passed on workspace connectors must

be passed by value. In fiia this is implemented by having source ports perform

a Python deepcopy operation on all parameters and return values for the calls and

messages they originate. Additionally, calls, subscriptions and synchronizations may

all span process boundaries. This means that any parameter or return value passed

out a port may be subject to byte-serialization. Finally, components that may be

12Strictly speaking, not all calls need be protected. In particular, a call which will only be invoked
in response to another incoming call may simply propagate any errors backwards to the originating
call site. However, any calls resulting from user input, from receipt of an asynchronous message, or
from the operation of an independent thread in an actor should be protected.

151

moved from one node to another at runtime may also need to be copied and byte-

serialized for transmission. fiia uses Python’s standard pickle module for serializa-

tion.

6.4.6 Vocabularies in fiia

As discussed in section 4.2.4, a port in the Workspace model may have an associated

vocabulary, which defines the calls or messages that it supports.

The fiia system’s vocabulary support is strictly optional, and is used to provide

information to the runtime system regarding semantic properties of calls on compo-

nents. This information is used to support certain runtime optimizations, including

caching and the avoidance of unnecessary concurrency-control.

fiia vocabulary declarations are made at the component level rather than the

port level. Similar to port declarations, vocabulary declarations use the class-level

attribute fiia_vocabulary. An example of a fiia vocabulary declaration is provided

in the third line of the Value component in figure 6.12.

A fiia vocabulary is a list of fiia.Method objects, one for each component method

of interest. Method objects provide two attributes which may be set in the construc-

tor.

The pure_request attribute identifies methods which are guaranteed to make no

modifications to component state, which do not access any other components, and

(in actors) which will not be modified by any strictly internal processes. The re-

turned values of such methods are referentially transparent, and as such may be

cached. This supports the introduction of cache and mirror cache components into

call paths, as shown in the refinement of figure 5.9(d), and allows the CCCM compo-

nent to provide a cache invalidation indication when any non-request call or message

arrives at the component. Only methods whose pure_request attribute is True may

be cached. In the Value component, the current method is a pure_request.

The no_cc attribute is used to indicate methods which need not be subjected to

a component’s normal concurrency control policy. The use of the no_cc attribute is

motivated by experience from the Clock system [132]. Clock’s developers noted that

152

a frequent logical necessity in groupware systems is for one user to obtain exclusive

access to some aspect of a shared object’s state prior to modifying it. For example,

if one user is moving an object in a drawing program, it is usually nonsensical to

allow another user to attempt to move it at the same time. In practice, this means

that when a user clicks on an object that user should obtain an exclusive lock on the

object’s position, and that the user interface component should allow no movement

before having obtained such a lock.

Clearly the act of obtaining a lock should be subject to strong concurrency

control—if two users simultaneously attempt to click on an object, only one should

obtain the lock. However, once the lock has been obtained, the winning user has

complete control over the object’s position and therefore any methods relating to

object movement need not be subject to concurrency control. In practice, over high-

latency connections this technique can result in orders of magnitude improvement

in perceived feedback times when compared to either a centralized implication or a

replicated implementation with naïve concurrency control [132].

6.4.7 Advantages of developing in fiia

In this section we present some of the advantages of programming in fiia.

fiia programs are semi-transparent to distribution. That is, the programmer need

not write code to deal with any distributed system issues except those that are

inherent in the possibility of partial failure. This is manifested in fiia code as the

need to protect calls on call ports with exception handling mechanisms.

This approach closely follows the design principles advocated by Waldo et al.

in their influential paper on distributed system language design [139], which es-

sentially expresses the rationale underlying the design of the Java Remote Method

Invocation (RMI) system.

fiia’s design is distinct from RMI in several ways. In Java RMI, method param-

eters or return types which are serializable are passed by value, while those that

implement the Remote interface are passed by reference. Any object that imple-

ments Remote is potentially in another process space. In fiia all parameters and

153

app = wx.PySimpleApp()

count = Value()

clicker = Clicker(title=’Standalone clicker’)

clicker.Show()

count.dependents = clicker

clicker.count = count

clicker.on_count_connect()

app.MainLoop()

Figure 6.14: Configuring one side of the “clicker” example in stand alone mode.

return types traversing ports are passed by value, and access to remote components

(attachment of connectors to ports) is arranged by evolution operations.

This provides a fiia component with a clear “inside” and “outside”. Any normal

object reference is guaranteed to be “inside” (local) and to obey normal Python by-

reference semantics. Conversely, objects may be passed out ports without fear of

external modification, since they are always passed by value; similarly call and mes-

sage parameter actuals and return values from calls may be modified with impunity

since they are guaranteed to be private copies. We feel that this programming model

is simpler and less error prone than the Java RMI model.

One feature of fiia bears repeating: fiia components are simply Python classes

that follow a few conventions and obey a few constraints. This means that fiia com-

ponents may be created using any Python programming environment; exercised

outside the fiia runtime system; tested using the standard Python unit testing frame-

works; and analysed using standard Python profiling tools. It also means that the

user interfaces of fiia components may be constructed using any available Python

interface builder. In short, fiia components are full participants in the rich Python

open source ecosystem.

As an illustration of this, figure 6.14 shows the Python code necessary to config-

ure and initialize an approximation of one side of the “clicker” example of figure 6.10

in a stand alone mode. It is interesting to compare this with the code in figure 6.11.

Naturally, without the fiia runtime, component synchronization is impossible.

154

Also, the “subscription” connector created by figure 6.14 has a single target and

synchronous, rather than asynchronous semantics. Finally, parameters and return

values in a stand alone configuration like this will be passed by reference rather

than by value, providing semantic traps for the unwary.

6.5 Conclusion

In this chapter we have illustrated the use of the Workspace Model for scenario

based modeling, component design, reasoning about runtime properties like partial

failure, as well as its direct use as a programming model.

The Workspace Model’s usefulness in scenario-based modeling for groupware

comes directly from the fact that it allows direct representation of key groupware

concepts: independent contexts of use, shared information, and communication via

shared messaging. These concepts also make the model useful for component level

design, in that drawing precise models of groupware systems encourages designers

to ask appropriate architectural questions.

The Workspace Model’s usefulness for architectural analysis derives primarily

from its clean separation between the conceptual and implementation levels. The

conceptual level represents the users’ desired collaborative configurations; the im-

plementation model represents the actual configuration and constrains what is ac-

tually possible.

Finally, the programming model offered by the fiia toolkit provides a direct appli-

cation of the Workspace Model’s conceptual semantics to the problem of groupware

development. In the next chapter we describe the internal design of the fiia runtime

itself.

155

Chapter 7

The fiia Runtime System

In the previous chapter we described the application programmer’s view of the fiia

system. In this chapter we describe our prototype implementation of the fiia runtime

system itself.

The fiia runtime prototype was developed mainly to assist with the validation of

the refinement rules presented in chapter 5. It also represents a proof-of-concept

implementation of the Workspace Model, demonstrating that the model is both im-

plementable and practical.

In developing fiia the emphasis has been on correctness, rather than perfor-

mance. However, we have implemented several small applications in fiia including

the “clicker” example, a distributed slide presentation system, a chat program, and a

simple object-based drawing system; all exhibit acceptable interactive performance.

Our prototype supports the full suite of conceptual level elements and evolutions

defined in chapter 4, the full suite of implementation level elements and evolutions

defined in sections 5.1 through 5.3, and the the full suite of refinements defined in

section 5.4. It is capable of incrementally maintaining a correctly-refined implemen-

tation level given arbitrary conceptual level evolutions over time. It does not yet

support restoral or recovery from implementation level failures.

The fiia runtime prototype is implemented in approximately four thousand phys-

ical source lines of Python [134]. It makes extensive use of the Python standard

library, as well as the wxPython graphical user interface toolkit [46, 107]. The

runtime was itself designed and implemented using Workspace concepts, and the

implementation makes extensive internal use of fiia infrastructure components in-

cluding local ports, CCCMs, message broadcasters, transmitters and receivers. The

runtime executes on any platform supporting Python and wxPython, which includes

Microsoft Windows, Mac OS X, Linux, and most versions of Unix.

We describe the fiia runtime from the outside in, beginning in section 7.1 with

156

a brief description of how an application developer can interact with fiia using the

node console. This is followed in section 7.2 by a conceptual level description of

the fiia runtime’s major components and their operation. Section 7.3 provides a

discussion of selected implementation level issues. Finally, in section 7.4 we report

on our experience using fiiaand present some basic performance measurements.

7.1 Interacting with the fiia prototype

Nodes in fiia are started by executing a Python initialization script. In the current

fiia prototype there is always one main node, which must be started first and which

listens on port 16025 for incoming TCP/IP connections from other nodes. The rest

of the nodes in the system are thin nodes which are provided with the main node’s

host name at startup in order to establish a connection. The main node includes the

current architecture representation and the machinery for performing evolutions

and refinements; thin nodes include only the node console and a local node manager.

There may be any number of thin nodes, each of which may be in any workspace.

The implementation level and communications architecture of fiia are discussed in

more detail in section 7.3.

After initialization, each node provides an interactive Python interpreter, called

the node console, which allows for the execution of arbitrary Python programs.

Since the node console is “inside” fiia, these programs may include arbitrary calls

on the runtime itself. The node console is intended for use by developers. In an end-

user system, the node console would be replaced or supplemented by a graphical

program launcher and collaborative session manager.

Figure 7.1 shows the node consoles of two nodes that are running the “clicker”

example from section 1.4.2, along with the clicker one-button interfaces themselves.

In the node consoles, the command prompt is indicated by “>>>” and lines which

begin with this are Python statements entered by the user. Other lines are output of

the Python interpreter.

The upper node console shows the commands which Shona’s node must execute

in order to create her clicker. After the first line, which imports the definitions of

157

Figure 7.1: The clicker example running in fiia, on two nodes, with both node consoles shown.

(The node console is a development tool allowing direct interaction with the fiia runtime.)

the Value and Clicker classes from the clicker module, the next four lines are exactly

those shown in figure 6.11. The first five user-entered lines in the lower node console

(Tristan’s) are exactly the same.

In order to allow for the synchronization of Tristan’s count to Shona’s, Tristan

needs the UUID of Shona’s count component. Here we have satisfied this require-

ment by printing the UUID in Shona’s node console (it is the long string beginning

with “19-”) and copying and pasting it into Tristan’s node console. The final user-

entered line in Tristan’s node console effects the synchronization.

The node console allows full access to fiia’s commands, including the conceptual

level evolutions and the reflection operations. It also allows full introspection of all

components implemented on its node, which provides an extremely useful tool for

debugging purposes.

This completes our brief overview of the user interface of the fiia prototype. We

now discuss the runtime’s implementation, at the conceptual level.

158

architecturearchitect

refinery

implemented
elements

to other
workspaces

node
managers

conceptual evolution
requests and

reflection operations

conceptual
evolutions and

reflection
operations

conceptual
evolution
notifications

implementation
evolution requests

implementation
evolutions

refinement rule
application

Figure 7.2: A conceptual level view of the fiia runtime.

7.2 Conceptual level view of the fiia runtime

A conceptual level view of the fiia runtime’s internal structure is shown in fig-

ure 7.2.1 It consists of:

• at least one architecture store, which maintains a current model of the sys-

tem’s conceptual and implementation architectures and supports conceptual

and implementation evolutions, as well as reflection operations, exactly as de-

fined in chapters 4 and 5;

• one architect reactor per architecture, which provides the “Pythonized” syntax

discussed in section 6.4, translates it into operations on the architecture, and

advises the refinery of any conceptual level changes;

• one refinery reactor per architecture, which applies refinement rules to the ar-

chitecture in response to notification of conceptual level evolutions, and which

then requests the actual realization of implementation level evolutions by the

appropriate node manager

• one node manager reactor per node, which creates, destroys, manipulates and

maintains direct references to all implemented workspace elements, including

user-defined components, infrastructure components, and ports; and

• the implemented components themselves, from which conceptual level evo-

1In this and the following diagrams in this chapter, ports are elided to reduce clutter.

159

lution and reflection requests may originate. The node console is an imple-

mented component.

The fact that notifications of changes to the architecture are sent to the refinery

by the architect, rather than by the architecture itself, bears explaining. This ap-

proach has been adopted to prevent what we call the “duelling refineries” problem.

If the refinery received its change notifications directly from the architecture, then

(based on the definition of synchronization) all refineries in the global architecture

would be similarly notified. This would result in all refineries attempting to perform

refinements simultaneously on the same elements, which is clearly undesirable. By

configuring the patterns of communication as we have, we ensure that a single re-

finery is responsible for refinements resulting from any particular conceptual level

change.

It is also worth noting that the connection between a node manager and its im-

plemented elements is a local connector rather than a call connector. In fact, the

node managermaintains a Python object reference to each implemented component

and port on its node, which it uses to effect implementation level evolutions on them.

7.2.1 Evolution and incremental refinement

Before describing the runtime dynamics of the fiia system we first present fiia’s

approach to the problem of incremental runtime evolution.

The refinement rules defined in section 5.4 allow us to generate the complete set

of implementation architectures for a given conceptual level architecture. However,

in a runtime system this is not sufficient, since we need to provide for incremental

implementation evolution at runtime. The key problem is this:

• given a current conceptual architecture c, an implementation i satisfying R(c, i)

(that is, i is a correct refinement of c), and a conceptual evolution of c resulting

in c ′,

• find a sequence of implementation level evolutions of i that produces i ′, where

R(c ′, i ′).

160

c c'

i i'

r
ip'

refinement
rule
application

conceptual evolution

shadow

conceptual evolution

rp'

Figure 7.3: The incremental implementation evolution process as implemented in fiia.

Of course, an arbitrary sequence of such implementation level evolutions is un-

likely to satisfy the user: rather, we require a sequence of evolutions that is both

rapidly implementable and minimally disruptive.

Figure 7.3 illustrates the approach that we have taken in fiia to solving this prob-

lem. When a conceptual evolution is applied to c, the runtime records this in the

conceptual architecture. It then applies a series of shadow conceptual evolutions to

i. The effect of these shadow evolutions is to produce a partially refined architec-

ture i ′p that is a correct refinement of c but that may include some conceptual level

elements. The fiia runtime then applies its set of refinement rules (exactly the rules

defined in section 5.4) to i ′p, producing i ′ such that R(c ′, i ′) and i ′ is a completely

implemented architecture.

This process allows fiia to incrementally respond to arbitrary conceptual level

evolutions with only minimal changes to the implementation level architecture.

We envision that a similar system could be employed for making dynamic adjust-

ments to the implementation level (and possibly also conceptual level) architectures

in response to changing performance requirements or environmental conditions,

including partial failure. This appears to be considerably more complex than sup-

porting incremental conceptual evolution and remains for future work.

In the next section we provide a small example that illustrates the fiia runtime’s

dynamic response to conceptual level evolution, based on the clicker example pre-

sented in section 7.1.

161

7.2.2 Runtime dynamics

Figure 7.4 illustrates the runtime’s dynamic behaviour in response to the conceptual

level connect request in the fourth user-entered line of figure 7.1:2

call = fiia.connect(clicker, ’count’, count)

This line requests the creation of a connection from the clicker component’s “count”

port to the default source port on the count component. In the following description,

we assume that the clicker and the count are implemented on a single node, node n.

The process begins with the node console requesting that a connection be made

from the clicker’s “count” port to the count component (1). This request is received

by the architect which then requests that the architecture create a new conceptual

level call with a freshly generated UUID of k (2), and sends a notification to the re-

finery that this new call has may require refinement (3). Since the notification is an

asynchronous message the refinery’s response will occur in a separate thread; pos-

sibly in parallel with the subsequent calls from the architect to the architecture. For

presentation purposes, here we imagine that the architect’s calls on the architecture

execute first.

Once the call k has been created, the architect asks the architecture for the UUID

p corresponding to the clicker’s “count” port (4) and tells the architecture to attach

p to the connector k (5). It then notifies the refinery that both p and k have changed

and may therefore need refinement (6). This process is repeated for the other port, q

(7, 8, 9). At the conceptual level, we have now completed the requested connection.

When the refinery receives the notification of a conceptual level change, it fol-

lows the incremental evolution and refinement process described in the previous

section. It does this by successively applying each of a list of rules to the archi-

tecture attempting to perform a graph match outwards from the element that has

changed. Most match attempts will fail. It first applies conceptual shadow evolution

rules, then refinement rules.

2In figure 7.4, some parameters of the calls and messages shown have been elided to simplify the
presentation.

162

 port named
"count" with

UUID pi

architecturearchitect

refinery

node console

node
manager,
node n

1: fiia.connect(clicker,
 "count", count)

2: create_call(k)
4: p = port_by_name(clicker, "count")
5: attach(k, p)
7: q = port_by_name(count)
8: attach(k, q)

3: conceptual(k)
6: conceptual(k, p)
9: conceptual(k, q)

[shadow evolutions and rule applications,
most failing to match]
10: shadow evolution, NewConnector
11: shadow evolution, AttachCallEnd
12: shadow evolution, AttachCallEnd
13: refinement rule application, LocalCall

14: connect(pi, qi)

(pi and qi are the implementations
of p and q, respectively)

15: connect(port with UUID qi)

 component
with UUID

clicker

16: on_count_connect()

Shona's workspace

Figure 7.4: Example of the fiia runtime dynamics.

When a rule does match, the rule performs a transformation on the implemen-

tation level architecture and reports any changed elements back to the refinery.

The refinery queues these changed elements for recursive rule application attempts,

since the transformation resulting from one rule’s match may allow another to match

as well. If the implementation level changes require the actual instantiation, con-

nection, disconnection, destruction, etc., of an implemented element, the refinery

requests this of the appropriate node manager. The recursive process of rule ap-

plication bottoms out when no rule in the rule set causes a transformation of the

architecture.

The effects of the rules which match in this case (10-13) are illustrated in fig-

ure 7.5. The left side of the figure shows the conceptual architecture at the com-

pletion of (9). The right side of the figure shows the corresponding implementation

level. Each box on the right side of the figure represents a different point in time,

with time increasing downwards. The conceptual level representation is unaffected

by rule application.

The arrival of message (4) will cause the rule NewConnector to match (10). New-

Connector is a shadow evolution rule, which matches when a conceptual level con-

nector has no implementation at all. It provides an initial implementation which is

163

n

n

n

n

n

n
p k q pi qi

Conceptual level Implementation level

pi qi k'

11: NewConnector
(shadow evolution)

pi qiks

12: AttachCallEnd
(shadow evolution)

pi qi
ks

13: AttachCallEnd
(shadow evolution)

pi qi
14: LocalCall
(refinement rule)

ki

tim
ex = unique identifier

 (UUID)

Figure 7.5: Rule application for the rules matched in figure 7.4

simply a copy of the conceptual level connector, added to the implementation ar-

chitecture. Here, it matches the conceptual level call connector k and responds by

creating an implementation level shadow, ks.

The next rule to match is AttachCallEnd, which is another shadow rule. Attach-

CallEnd matches conceptual level calls which are connected at either the source or

target end, but whose current implementations not connected. It transforms the

implementation level by attaching the current (shadow) implementation of the call

connector to the implementation of the element to which the conceptual call is at-

tached. Here, on its first match it connects the shadow call ks to the implementation

of p, which is a LocalSource port pi (11); on its second match it does the same thing at

the target end of ks with LocalTarget qs (12). At this point we have a partially refined

architecture that is a correct refinement of the current conceptual architecture.

The final rule to match is LocalCall, which is exactly the refinement specified

in figure 5.9(a) on page 111. LocalCall has the effect of replacing the shadow call

connector ks with a local connector ki from port pi to port qi.

Since local connectors are real implementation level constructs, at this point

the refinery sends a message to the node manager for node n, requesting that it

establish a local connection from port pi to port qi (see (14) in figure 7.4).

164

The node manager maintains a mapping from UUIDs to Python objects for all

elements implemented on its node, including components and ports. It finds the

port objects corresponding to the UUIDs pi and qi, and instructs the LocalSource

implementation with UUID pi (which will be the port named “count” on the clicker

component) to connect itself to the port with UUID qi (which will be the default call

target port on the count component) (15).

This creates the initially-requested connection. The final step, as discussed in

section 6.4.5, is that the “count” port on the clicker component invokes the clicker

component’s on_count_connectmethod so that the clicker can take any appropriate

action (16).

This completes our discussion of the dynamics of the fiia runtime system. In

the two subsections that follow we provide more detailed descriptions of the core

components of the fiia runtime: the architecture, the refinery, and the refinement

rules.

7.2.3 The architecture component

The core of the fiia runtime is the architecture component, which maintains the

current model of the system’s conceptual and implementation architectures. The

architecture is stored as a triple graph using a modified version of the World Wide

Web Consortium (W3C) Resource Description Framework (RDF) [85] format. Each

triple is of the form (subject, predicate, object), where a subject is a workspace

element, an object is a workspace element or an attribute, and a predicate indicates

a relation between a subject and an object. For example, to represent the fact that

a store count is anchored to a node n in a workspace w, we would use the triples

shown in figure 7.6.

In the figure, w, n and count are UUIDs, Workspace, Node and Store are pre-

defined types, and is_a, is_in and anchored_to are pre-defined relations. The

architecture provides all of the types and relations defined in chapters 4 and 5, plus

a few additional ones used for internal purposes. The types are organized in a type

lattice which is also stored in the triple store; for example:

165

(w, is_a, Workspace)

(n, is_a, Node)

(n, is_in, w)

(count, is_a, Store)

(count, is_in, w)

(count, anchored_to, n)

Figure 7.6: Triples representing the fact that a conceptual store count is anchored to a node

n in a workspace w.

(Store, subtype_of, ConceptualComponent).

is an entry in the triple store specifying that the type Store is a subtype of the type

ConceptualComponent. The type lattice is used to simplify the expression of some

of the refinement rules.

Maintaining all architectural elements and their relationships and attributes in

a triple store allows for arbitrary queries to be performed on the architecture, in

a uniform manner. The architecture supports queries using a slightly modified ver-

sion of the SPARQL graph query language [105]; an example query is discussed in

section 7.2.4.

The implementations of the triple store and the SPARQL query engine are heavily

modified versions of the RDFLib Python library for RDF processing [75].

7.2.4 The refinery and refinement rules

As discussed above, the refinery iteratively applies a list of refinement rules to the

architecture in response to change notifications provided by the architect. When

a rule matches and transforms the architecture, this may lead to recursive rule

application on the transformed elements. The recursion bottoms out when a round

of rule application results in no further modifications the architecture.

The refinery itself has no knowledge of refinements all. Rather, each refinement

rule is coded in its own class supporting a match-transform-realise protocol and the

refinery has a list of such classes. To apply a rule to the architecture, the refinery

166

Creating and applying a rule in the refinery (simplified):

rule = architecture.refine_with(LocalCall(uuid))

if rule.matched:

rule.realise(self)

The architecture’s refine_with method:

def refine_with(self, rule):

rule.match(self)

if rule.matched:

rule.transform(self)

return rule

Figure 7.7: Application of refinement rules in the refinery and the architecture.

creates a new rule instance, passing the UUID of the changed element as a param-

eter to the rule’s constructor (this is called self.start inside the rule object). It

then calls the architecture’s refine_with method with the rule instance as the pa-

rameter. The architecture attempts to match the rule and returns the rule object for

further processing by the refinery. This is illustrated in the first line of figure 7.7.3

The complete body of the architecture’s refine_with method is shown in the

lower part of figure 7.7. The architecture calls the rule’s match method, passing

itself as the parameter. In the match method the rule attempts to find a match for

its precondition in the current architecture’s graph. If it finds a match it stores

the UUIDs of the matching elements as instance attributes and sets its matched

property to True. (An example of a rule implementation is provided in figure 7.8 and

discussed below.)

If the rule did match, the architecture will then call the rule’s transformmethod,

again passing itself to the rule as the parameter. The transform method will modify

the architecture such that the rule’s postcondition is satisfied. Finally, the architec-

ture returns the rule to the calling context, in this case the refinery.

When the rule object is returned to the refinery its matched property is checked.

3The top part of the figure is slightly simplified for presentation purposes; in the real refinery
implementation the rule creation and call to refine_with are actually embedded in a loop that tra-
verses all the refinement rules and provides exception handling.

167

If the value of matched is True, the refinery calls the rule’s realise method, in

which the rule may notify the refinery of further elements against which rules should

be applied, or may request that the refinery communicate with one or more node

managers to realize an actual implementation level change.

A slightly simplified version of the LocalCall refinement rule is illustrated in

figure 7.8, along with the graphical specification of the refinement it implements,

which is copied from figure 5.9(a).

The match method determines whether or not this rule matches in the current

architecture, starting from the UUID (self.start) that was passed to it on rule

creation.

The heart of the match method is a SPARQL query, which is defined in the

graph.Pattern object called where. In the pattern, all strings beginning with a

question mark in are unbound match variables; self.start is the element from

which the match begins; and is_a, source_of, target_of and instantiated_on

are relations with the obvious meanings. This pattern will match if self.start is

a Call, and has a ?source and a ?target, both of which are instantiated_on a

common ?node.4 The correspondence between the query pattern’s variables and

the graphical specification is indicated at the top of the figure.

The pattern is applied against the architecture using the query_object method,

which returns a result object. If the result object’s ?source entry is non-null (i.e.,

has been bound by the query), then the pattern found a match. In this case the

LocalCall stores the UUIDs of the matching source, target and node, and sets its

matched attribute to True.

As explained above, if there is a match then the transform method will subse-

quently be called with the architecture as a parameter. In the LocalCall rule the

required transformation is simple: the source is connected to the target with a

local call; the fact that the new local call is the implementation of the original call’s

conceptual counterpart is recorded, and the call is erased from the architecture.

4Only implementation level entities may be subjects of the instantiated_on relation, so we need
not explicitly check that the source and target are implementation level elements.

168

?source ?target

self.start

?node

local

class LocalCall(Rule):

 def match(self, A):
 where = graph.Pattern([
 (self.start, is_a, Call),
 ('?source', source_of, self.start),
 ('?target', target_of, self.start),
 ('?source', instantiated_on, '?node'),
 ('?target', instantiated_on, '?node')])
 result = A.query_object(where)
 if result.select('?source'):
 self.source = result.select_the('?source')
 self.target = result.select_the('?target')
 self.node = result.select_the('?node')
 self.matched = True

 def transform(self, A):
 local = A._connect_local(self.start, self.target)
 A.implement(self.start, local)
 A.erase(self.start)

 def realise(self, refinery):
 refinery.connect(self.source, self.target, self.node)

pattern to match

the architecture

match pattern in
architecture

if match found,
?source will have a

non-null value

match start
point, passed in
at rule creation

 create local
connector in
architecture

 record that local is
new implementation
replacing self.start

remove self.start
from the

architecture

 called only if match() set
self.matched to True

request creation of
local connector in
running system

Figure 7.8: The graphical specification and Python implementation of the LocalCall refinement

rule, from figure 5.9(a).

169

Finally, on return to the refinery the rule’s realise method is called. This simply

requests that the refinery have the appropriate node manager implement the re-

quired connection. Here there are no modified or newly introduced partially-refined

entities on which rules might be applied. If there had been, a call like

refinery.implementation_change(self.component)

would be included in the realise method to notify the refinery that rule matches

should be attempted starting from the self.component element.

7.3 Implementation level view of the fiia runtime

We turn now to an implementation level view of the fiia prototype, along with a

discussion of selected lower-level implementation issues.

As mentioned in section 7.1, our prototype version of the fiia runtime provides a

single architecture component which is instantiated on a distinguished node called

the main node.5 An arbitrary number of thin nodes may be connected to the main

node via TCP/IP. Each node is an independent Python interpreter running in its own

operating system level process. Each node is a member of some workspace; a thin

node may belong to the same workspace as the main node or a different one; a

node’s workspace is determined during its initialization.

An implementation-level view of the fiia prototype is shown in figure 7.9. At the

top of the figure is the main node, which includes the architecture and its associated

architect and refinery components. One thin node is shown at the bottom of the

figure; other thin nodes would be connected to the main node in the same fashion.

Each node includes a node manager and a node console, plus all infrastructure

components necessary for correct implementation of the workspace semantics. In

addition to the connections shown, each node manager can communicate with all

other node managers; this is necessary for such things as moving a component from

one node to another.

5The eventual intent is that there would be one or more main nodes per workspace, with a mech-
anism allowing workspaces to discover one another or become aware of one another via out-of-band
signalling; however, our prototype has not yet reached this stage.

170

thin node

main node

architecture

architect

refinery

fiia
module

node
console

other
implemented
components

other
implemented
components

other
implemented
components

implemented
components

and ports

node
manager

fiia
module

node
console

other
implemented
components

other
implemented
components

other
implemented
components

implemented
components

and ports

node
manager

Figure 7.9: The implementation level architecture of the fiia runtime system, showing the

main node and one thin node.

One component not discussed in section 7.2 but appearing in the implementation

of each node is the fiia module. This is a normal Python module that is accessible

to any component or script by means of a normal Python module import (it is au-

tomatically available in the node console). The fiia module provides uniform global

access to fiia’s classes and evolution operations via its connection to the architect

component. This connection is established at node initialization, and is direct in the

case of the fiia module on the main node, and remoted for the fiia modules on thin

nodes.

The fiia module also maintains a record of its own node and workspace UUIDs,

which are provided as over-ridable defaults wherever these are required in evolution

171

operations.

The fiia module also automatically adds a preferred_node attribute to any call

to fiia.Component. Except in the case of components that have been explicitly

anchored, this attribute is used by the refinery’s component instantiation rules as a

hint regarding the node on which a component should be instantiated.

7.3.1 Communications architecture

A naïve implementation of the Workspace model might use one TCP/IP stream for

each transmitter-to-receiver connection. For any reasonably complicated architec-

ture this approach would use an inordinate amount of operating system resources,

especially since most of the streams would be idle most of the time.

The fiia prototype instead establishes one bidirectional TCP/IP stream between

each pair of nodes. This is managed by a communications subsystem that is not

represented in figure 7.9—in effect, this represents the implementation of the im-

plementation of fiia interprocess communication.

Python’s standard ThreadingTCPServer mechanism is used to listen for incom-

ing connection requests from other nodes. On the receiving end, the actual connec-

tion is managed by a NodeRequestHandler, which is effectively an actor component

with its own thread. On the sending end there is a NodeClient, which is a reac-

tor that transmits messages on request. The NodeClient and NodeRequestHandler

communicate using a custom request-reply protocol.

The actual transmitter and receiver objects provided by the fiia infrastructure are

therefore quite simple. A transmitter knows the UUID of its associated receiver and

has a direct connection to the NodeClient connected to that receiver’s node. When

it receives a message destined for that receiver it serializes the message’s contents,

adds the receiver’s UUID, and passes it to the NodeClient for transmission.

The receiving NodeRequestHandler uses the receiver UUID included with the

message to determine message routing and forwards the message to the correct

receiver. The receiver de-serializes the message and passes it on to its connected

component. Return values (if any) are then serialized and passed back to the Node-

172

RequestHandler, which transmits them back to the originating node. There they

are returned to the originating transmitter, de-serialized, and passed back along the

chain to the originating component.

Calls arriving at transmitters block awaiting the returned values. Subscription

messages are transmitted non-blocking, consistent with the asynchronous semantics

of subscription connectors.

7.3.2 Threading architecture

The Workspace model is inherently multi-threaded, and so is fiia. As indicated above,

each node has a minimum of one thread for its ThreadingTCPServer and one for

each NodeRequestHandler connected to another node. In addition, each node has a

thread for its wxPython event loop, which allows for user interaction. Finally, every

message broadcaster component also provides its own thread.

At first blush, the number of threads in a fiia runtime might seem to make devel-

opment of the fiia toolkit and fiia applications complex in the same way that all multi-

threaded programming is complex. However, the presence of the CCCM compo-

nents dramatically simplifies things: application components (including, e.g. fiia’s

architect, refinery, architecture, and nodemanager components) are all programmed

using a single-threaded model. Only infrastructure components need make special

provision for multi-threading.

The wxPython event loop thread presents special challenges. As is common in

modern user interface toolkits, any modifications to the state of user interface com-

ponents is required to take place in the wxPython event loop. However, a quick

examination of, e.g. figure 6.6 on page 136 shows that the Clicker component, which

is a wxPython wx.Frame subclass, is being called from an event broadcaster’s inter-

nal thread.

The solution adopted is to provide a specialized CCCM for wxPython user inter-

face components. This blocks any incoming method calls that aren’t already in the

wxPython event loop thread on a synchronized queue, then posts a message to the

event thread using wxPython’s wx.CallAftermechanism such that the return value

173

is put into the queue when available. This allows the caller to unblock and return

appropriately, while still satisfying wxPython’s own threading model.

In our current prototype implementation of fiia there is only one thread per

NodeRequestHandler. This means that an in-progress call from node a to node b

effectively blocks any other messages from a to b until it completes. This represents

a potentially serious performance bottleneck, since a slow computation can block

others arbitrarily. It is also a possible source of deadlock. If a call from a to b causes

a call from b to a, which in turn causes another call from a to b, there will be no

thread available to handle this last call.

At the same time, one thread per message broadcaster is somewhat wasteful, in

that most message broadcasters are expected to be idle most of the time. Given that

Python can only generate a finite number of threads before thrashing, a complicated

architecture with many message broadcasters could prove problematic.

A planned future enhancement to fiia will address these two issues by moving

to a thread-pool approach where message broadcasters and messages received at

NodeRequestHandlers will be handled by a common pool of threads. While this

thread pool will necessarily be finite, it should be possible to have a large enough

thread pool to handle most reasonable architectures without running out of threads.

7.4 Experience using fiia

As indicated in the introduction to this chapter, the fiia toolkit and runtime system

was created mainly to aid in the development and validation of the refinement rules

presented in section 5.4. This proved to be an invaluable exercise—it is easy to be

sloppy when drawing diagrams; much harder to lie to running code.

The fiia runtime is not yet a production quality groupware toolkit. That said,

we have used the fiia prototype to produce a number of small groupware systems.

Applications developed to date include the clicker implementation presented in sec-

tion 6.4, a chat application, a simple object-based drawing program, and an applica-

tion for presenting PowerPoint-style presentations. This last was used by the author

to present [104] at the DSV-IS 2005 conference.

174

The fiia system does introduce some performance overheads when compared to

single-user systems or hand coded groupware applications. These come primarily

from the indirection of inter-component communication through multiple infrastruc-

ture elements (local ports, CCCM’s, etc.) and from the semantic requirement to pass

all parameters and return values by value.

However, in use, the performance of fiia-based applications appears to be subjec-

tively acceptable. In the DSV-IS 2005 presentation the author had a slide controller

unit and the slides themselves on a first generation tablet PC and the presentation

display on a laptop connected to a projector; the two computers communicated by

means of an ad-hoc wireless network. Changing from one slide to another was vir-

tually instantaneous, despite the requirement to transmit the contents of each slide

(approximately 200 kB) from the tablet PC to the laptop as each slide changed.6

In addition to interactive performance, it is also interesting to consider the per-

formance of the refinement computation itself. Figure 7.10 shows the time required

to request, compute and implement refinements as the number of elements and

relations in the architecture increases.

The graph shows one thousand data points gathered in one execution of a bench-

mark program in a single-node topology. Each data point represents the time re-

quired for refinement and implementation of a small conceptual architecture con-

sisting of one component with one call source port and one call target port, con-

nected by a call connector to another (previously created) component. The concep-

tual level fiia script to request a single instance of this architecture is:

current = fiia.Component(TimeTest)
fiia.connect(current, ’neighbour’, prev)
prev = current

The timer was started just prior to issuing the component creation request and

stopped when the on_neighbour_connect method in the newly instantiated compo-

nent was called, signifying completion of the connection. Times were measured on

an IBM ThinkPad T40 laptop with a 1.6 GHz Intel P4-M processor and 1.5 GB of

6This inefficient topology was deliberately chosen to demonstrate the system’s performance.

175

●●

●●●●
●
●●
●
●●●

●
●●
●
●●
●
●●●

●
●
●
●
●
●

●●●●
●
●●

●
●●

●
●●
●
●●
●

●
●●

●
●●
●
●●

●

●●
●
●

●
●
●

●
●●
●●
●

●●
●
●●
●●
●

●
●●
●●
●

●

●●
●●●
●●
●

●

●●●
●
●

●

●
●
●
●●

●

●
●

●
●●
●
●
●

●

●●
●
●●

●
●●
●
●●

●

●●

●

●

●

●
●

●

●
●
●●●

●
●
●●
●●
●
●
●
●
●

●
●●
●

●●

●

●
●

●●

●
●●
●
●●

●

●
●
●●

●

●
●

●
●●●●
●

●●

●
●
●
●●
●
●●
●
●
●
●●

●

●

●
●●

●
●
●
●

●●●●
●
●

●
●●
●
●
●
●
●
●
●●

●
●
●
●●

●

●

●
●
●●●
●

●

●

●
●●
●
●
●
●●

●

●
●
●●

●
●●●●

●
●
●
●

●

●●
●

●

●
●●●
●

●

●
●

●

●●
●

●
●
●

●

●
●●

●

●
●●
●●●●●●

●

●
●●
●●●

●

●

●
●

●

●●
●●●
●●

●
●●●
●●
●
●●

●

●●
●
●●

●
●

●
●
●
●
●

●
●●

●
●

●

●
●
●
●
●●

●

●
●
●
●●
●

●●

●
●
●●●●
●

●
●●●

●
●
●

●

●●●
●

●●
●●

●

●

●

●

●

●
●
●
●
●●●●●
●●
●●

●

●

●

●

●●●●
●
●
●●●●
●●●
●
●
●●
●

●
●
●

●●

●

●

●

●
●●
●

●
●

●

●

●
●

●
●
●
●●

●

●●●●
●

●

●●●
●
●
●
●

●

●

●

●

●

●

●

●
●
●
●●
●
●

●●●
●
●●
●
●

●●●
●
●
●
●

●

●

●

●
●
●●
●

●
●
●
●
●
●
●
●●
●●
●

●

●

●

●

●

●
●

●
●●●
●
●
●

●
●

●
●

●
●●
●●

●

●

●
●●
●

●

●●●
●
●
●
●

●

●

●●

●●●
●
●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●●

●
●
●

●
●

●●●
●

●
●
●
●
●
●●●
●
●●
●
●
●
●●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●●
●

●
●●

●

●
●

●

●
●

●

●●

●

●
●

●
●
●
●●
●
●

●●
●

●

●

●

●

●
●
●

●●

●
●
●●●
●●

●

●

●
●

●
●●
●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●●

●●●
●●
●

●
●

●●●
●

●

●●
●
●●
●

●

●

●●
●
●

●

●
●
●

●
●●●
●
●●

●

●

●

●
●

●
●
●

●

●●●●

●
●
●●●
●●●

●
●
●
●●
●
●
●
●●●
●
●
●

●

●

●

●

●

●

●
●●
●
●

●
●

●●

●●
●

●

●
●
●

●

●●●●●

●●
●●
●

●

●

●

●
●

●
●
●●
●
●
●

●●
●
●●

●

●●●

●●
●●

●

●
●
●●
●
●

●
●
●
●

●●
●

●
●

●

●

●

●

●

●
●
●●●
●
●
●

●

●●

●
●●
●

●

●●
●
●
●
●●●
●
●●●●●●

●

●●●

●
●
●

●

●●

●●●●●

●

●●

●

●

●

●●●
●●

●

●

●

●
●●●●
●

●
●●●

●

●●●
●

●
●
●

●●●
●

●

●

●

●●
●

●

●●
●●●●
●
●●●

●
●●

●
●●
●

●

●●

●
●
●●

●

●
●

●●●●
●

●

●

●
●●
●●
●●
●
●
●
●●
●●

●●●
●●
●

●

●
●
●
●
●

●
●

●

●●
●

0 200 400 600 800 1000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Number of components created

T
im

e
to

 c
om

pl
et

e
re

fin
em

en
t (

se
co

nd
s)

Figure 7.10: Refinement performance of fiia as the number of Workspace elements grows.

memory, running Windows XP Professional Service Pack 2, Python 2.4.2, and wx-

Python 2.6.1.

As is evident from the graph, fiia’s time to compute and implement refinements

increases linearly with the number of elements and relations in the architecture.

Profiling of the fiia runtime indicates that the majority of the system’s time in this

benchmark is spent executing the SPARQL queries in the rule implementations and

that it is this time component that grows as the number of elements increases.

Clearly, if large numbers of conceptual elements need to be created quickly, the

current fiia system’s refinement performance unlikely to be adequate. However,

for the kinds of systems we have built so far, which consist of small numbers of

large grained components, refinement performance is acceptable. As indicated in

the beginning of this chapter, thus far fiia has been implemented with a focus on

correctness rather than performance; many optimizations to the system are clearly

176

possible.

7.5 Conclusion

The fiia prototype represents an initial, somewhat primitive implementation of the

Workspace Model’s semantics and dynamics. It has been extremely useful in vali-

dating and polishing the Workspace Model’s refinement rules, and serves as a proof-

of-concept that the Workspace Model is implementable in practice. Implementing

groupware in fiia has proven to be extremely easy (the chat application was writ-

ten in less than thirty minutes, most of which was spent tinkering with the user

interface) and initial performance of the runtime is better than expected.

Clearly there is much work to be done before fiia will be usable as a production

quality groupware system. In addition to the threading and performance enhance-

ments mentioned above there are many other directions that could be pursued in

fiia’s ongoing development; some of these are discussed as future work in chapter 9.

177

Chapter 8

Evaluation

In section 3.1 we presented a desiderata for a model of groupware architecture,

from the point of view of groupware system users, application programmers, and

toolkit implementors. The Workspace Model, presented in chapters 3 through 7,

has been designed to meet exactly the requirements identified in that desiderata.

In this chapter we return to the desiderata requirements (shown as boxed text in

the sections below) and evaluate the Workspace Model against them. Our evaluation

includes reference to examples presented in the preceding chapters, reports of our

implementation experience, and proof sketches based on the formal definition of

the Workspace Model from chapters 4 and 5. In some cases, particularly where we

address the software engineering properties of the Workspace Model, our evaluation

is necessarily tentative; these cases are indicated.

In the sections that follow we present our evaluations in the order of the desider-

ata, dealing first with with user requirements, then with application programmer

requirements, and finally with toolkit implementor requirements.

8.1 User requirements

Users want groupware systems that allow for fluid collaboration, that are acceptably

efficient, and that don’t provide unnecessary surprises in use.

8.1.1 Evolution

The model must provide an explicit representation of dynamic

change at both the conceptual and implementation levels. This

must allow for user-driven reconfiguration in response to chang-

ing needs, as well as system driven reconfiguration in response

to changes in the runtime environment, including partial failure.

178

The conceptual and implementation level evolution calculus specified in sec-

tions 4.3 and 5.3 provide the Workspace Model’s mechanism for explicitly repre-

senting runtime change.

At the conceptual level, the evolution calculus allows users to create workspaces,

place nodes in workspaces and move nodes from one workspace to another, create

components, anchor them to nodes if desired, create connectors, and attach connec-

tors to components. Most important for groupware systems, it provides an explicit

representation of state sharing, in the form of the synchronization relation. Nat-

urally, all these concepts would be represented in other terms in application user

interfaces; however,

As illustrated in section 6.3, the Workspace Model also provides for system

driven reconfiguration in response to changes in the runtime environment includ-

ing partial failure. This allows Workspace-based systems to provide for restoral or

recovery as appropriate.

Our current fiia toolkit supports user-driven reconfiguration but does not yet

support system-driven reconfiguration. Computing correct and efficient implemen-

tation reconfigurations in response to changing system capabilities or partial failure

is a challenging issue that is discussed further in chapter 9.

8.1.2 Implementation efficiency

The model must allow for reasonably efficient implementations

of groupware systems. To meet this, the model should not in-

troduce unnecessary overheads and should include performance

enhancing features such as caching, as well as support for a

range of replica consistency maintenance approaches.

The Workspace Model’s implementation level has been designed to be as efficient

as possible, given the constraints imposed by distribution transparency and the re-

quirement to have a uniform semantics for all calls and messages. However, the

model does introduce several types of implementation overhead, including:

• indirections embedded in inter-component call implementations;

179

• the semantic requirement to pass all parameters and return values by value;

• the possibility of unnecessary network communication (as opposed to network

communication that is logically required for the functioning of the system).

It is important to note that the distinction between the conceptual and imple-

mentation levels, and the refinement process between them, is not a significant

source of inefficiency. As shown in section 7.4 and discussed in section 8.3.3.3, our

experience with the fiia toolkit is that actual computation of refinements is accept-

ably efficient; this despite the fact that fiia was not designed for efficiency. Further,

once a conceptual architecture has been refined to an implementation, actual calls

and messages proceed across implemented architectures without reference to the

refinement rules.

The implementation level does provide support for caching and for a range of

replica consistency maintenance approaches, including high-performance approaches

such as operational transforms [126]. As discussed in section 7.4, experience with

our fiia system suggests that the overheads introduced by the Workspace Model are

not significant in at least some real applications.

8.2 Application programmer requirements

As motivated in section 1.1.2, groupware application programmers need an appro-

priate set of high-level abstractions that simplify the construction of groupware sys-

tems and that avoid premature commitment to a particular distributed implementa-

tion.

180

8.2.1 Conceptual expressiveness

The model must provide support for a range of design ap-

proaches and must be capable of modelling a range of interest-

ing groupware systems. As a minimum, we suggest that the con-

ceptual level should support the core architectural features iden-

tified in sections 2.1.2 through 2.1.7: separation of user inter-

face from state, provision of intermediate layers, tree structure,

a notification mechanism, collaboration through shared state,

and asynchronous messaging.

The conceptual level of the Workspace Model supports all the features identified in

sections 2.1.2 through 2.1.7 of this document. Separation of user interface from

application state is supported by the division of the system into components, and

in particular by the location of state in store components. Intermediate layers and

tree structures are possible through the attachment of components to one another

in appropriate topologies (some examples are shown in figure 8.1, discussed below).

The subscription connector provides the required notification mechanism as well as

the capacity for collaboration through asynchronous messaging. Finally, the syn-

chronization connector and its replicated and centralized implementations provide

the collaboration through shared state.

Models of several groupware systems are been presented elsewhere in this pa-

per using the Workspace Model, ranging from our very simple “clicker” application

to the more complicated CASE tool scenario. The Workspace Model was also used

to illustrate a variety of distributed system implementations of groupware systems

in section 2.2. The model has been used by others in the design of an immersive

exercise-based game, called “Life is a Village” [56]. Finally, as discussed in chap-

ter 7, the Workspace model has been used to design and implement the fiia system,

as well as a number of small groupware programs within the fiia system. All of these

uses speak for the expressiveness of the model from an application developer’s per-

spective.

As further evidence that the Workspace Model allows designers to represent a

wide range of conceptual architectures, figure 8.1 illustrates several well-known

181

functional
core adapter

C

model

controller

P A

component component

connector

component component component

(a) model-view-controller (MVC)

(b) groupware C2

(d) presentation-abstraction-control (PAC)

logical
interaction

physical
interaction

dialogue
controller

functional
core

(c) groupware Arch

view

functional
core adapter

logical
interaction

physical
interaction

dialogue
controller

functional
core

P A

P A

C

C

Figure 8.1: Workspace depictions of well-known architectural styles.

182

architectural styles, re-expressed as Workspace conceptual architectures.

Figure 8.1(a) shows the MVC architectural style, per Krasner and Pope’s original

formulation [74]. The controller and view are both modelled as reactors, each able

to directly call the other and the model; the model is a store that provides change

notifications as asynchronous messages on its outgoing subscription connector.

Figure 8.1(b) shows a groupware example in the C2 layered style, with two layers

of components and one connector. C2 components are actors with distinct “top” and

“bottom” sides, which communicate via asynchronous messaging. The C2 connec-

tor is component-like [128]; here the connector is modelled by a stateless reactor

that routes messages from its top to its bottom and vice versa, connected to the

components above and below it by subscriptions.

Figure 8.1(c) shows an Arch-style five-layer architecture [130] that has been

“unzipped” as suggested in the style suggested by Dewan’s generic model of group-

ware architecture [37]. In this particular architecture, the top two layers are shared,

while the bottom three layers are separate for each user.

Finally, figure 8.1(d) shows a tree-structured PAC architecture. The PAC style

does not explicitly specify the thread model of agent facets, nor how intra-agent

and inter-agent communication is to be accomplished. Here we have somewhat

arbitrarily designated the presentation as a reactor, the control as an actor, and

the abstraction as a store. Communication between the three facets of an agent

is by calls, except in the case of notifications from the abstraction; communication

between levels of the hierarchy is via asynchronous messages.

As with implementation level expressiveness, we acknowledge that we have ap-

plied the Workspace Model’s conceptual level to the design of a relatively limited

number of systems. Further experience, particularly with larger and more compli-

cated systems, will be required to determine whether it is truly expressive enough

to adequately model a wide range of applications.

183

8.2.2 Distribution transparency

It must be possible to represent design time components and

their runtime architectural configurations without unnecessary

reference to how those components or configurations are to be

implemented in a distributed system.

A designer using the Workspace Model operates at the level of component and port

definitions, and of sequences of conceptual level evolution operations that compose

components and their ports into systems using connectors. All of these features

are distribution transparent, except where exposing distributed system issues to

support user visible system features.

As illustrated in section 6.4, a programmer designing a Workspace conceptual

component is concerned with the component’s internal data structures and algo-

rithms and with the component’s communication with other components via its

ports. The designer does not know, and need not know, whether any other com-

ponents in the system will be local, remote, or even mobile. The pass-by-value se-

mantics of Workspace calls and messages ensure that local and remote components

will always behave identically. Since the system does not guarantee that there will

necessarily be a connector attached to any call port, the designer is required to

provide exception handling in the event that a call on a call port fails. However,

this is independent of whether the failure results from an incompletely configured

conceptual level or a distributed system partial failure [139].

All conceptual level evolution operations are also distribution transparent except

for the anchor and float operations, which explicitly refer to nodes. An earlier ver-

sion of the Workspace Model lacked anchor and float for exactly this reason. How-

ever, it appears evident that at runtime users sometimes really do care on what com-

puter particular software components are instantiated. Examples include the desire

to control the display device on which a user interface component appears, and the

desire to control the location of data on portable computers prior to a planned dis-

connection from a network. The anchor and float operations need only be used in

184

cases like this.

In sum, the conceptual level is almost, but not entirely, distribution transparent.

We argue that the few places where the distributed system level has been allowed

to appear at the conceptual level are both well-justified and appropriate.

8.3 Toolkit implementor requirements

Toolkit implementors need to provide programming interfaces and runtime systems

that support the application programmer and user needs listed above. In order to do

this, they need a formal representation of the syntax and semantics of the systems

they are implementing, an appropriate range of distributed system implementations

to choose among, and a mechanism that allows for the efficient incremental com-

putation of distributed implementations in response to changing user needs and

changing system environments.

8.3.1 Formal representation

The architectural representations at both the conceptual and im-

plementation levels must have well-defined syntax and seman-

tics, in order to allow precise representation of evolution, at ei-

ther level, and of the mapping between levels.

The syntax of the Workspace Model consists of its workspaces, nodes, components,

ports, connectors, and the allowed relationships between them, which are specified

in chapter 4 for the conceptual level and chapter 5 for the implementation level.

The allowed relationships at each level are defined by the evolution calculus. If we

start with an empty architecture at either level and systematically apply evolution

operations to it, we can (in principle) generate the entire space of syntactically

correct architectures.

The semantics of the Workspace Model’s elements are defined precisely but in-

formally in chapters 4 and 5. The semantics at the conceptual level were chosen to

match the important core concepts for the design of groupware that were described

185

in chapter 2 (see section 8.2.1 for further discussion of this point). The semantics of

the implementation level are deliberately very simple and were chosen to be directly

implementable in most common programming languages. A fully formal semantic

model would be possible using a process algebra or similar technique; however, the

value of such a formulation at the architectural level is not clear.

To the best of our knowledge, the Workspace Model represents the only formally-

specified architecture for synchronous groupware that includes separate conceptual

and implementation levels, as well as a formal mapping between them.

8.3.2 Implementation expressiveness

At the implementation level, the model must allow for replicated,

centralized and hybrid approaches to managing shared state and

must provide an appropriate range of implementations for any

given conceptual architecture. The implementation level must

be represented in a way that supports reasoning about perfor-

mance, security, fault-tolerance, and other key distributed sys-

tem attributes.

TheWorkspace Model supports a full range of architectures for implementing shared

state, including replicated, centralized and hybrid approaches. A hybrid architec-

ture for the CASE tool example is illustrated in figure 3.4 on page 56. A range

of different centralized and replicated architectures for the “clicker” example are

illustrated in figures 1.4, 6.6, 6.7, and 6.8.

Support for reasoning about distributed system attributes is provided by several

implementation level features. These include:

• components being located on identified nodes;

• differentiation between local and remote connectors;

• indication of where parameters and return values are copied for passage by

value (local ports) and serialized for network transmission (transmitters and

receivers);

• indication of the threading model for delivery of asynchronous messages (mes-

sage broadcasters);

186

• indication of the locations where concurrency control is applied and replica

consistency maintenance algorithms enacted (CCCMs); and

• indication of how multi-cast message transmission is achieved (either using

message broadcasters or channel implementations).

Fully understanding attributes like performance requires an understanding of

such things as the replica consistency maintenance algorithms enacted by CCCMs,

the message ordering policies provided by channels, and the cache invalidation and

refresh policies implemented by caches. These are deliberately represented out-

side the model; however, an understanding of distribution topologies plus those

attributes is sufficient to support effective performance analysis.

Section 6.3 illustrates the Workspace Model’s support for analysis of fault toler-

ance. As demonstrated in that section, the model’s separation of conceptual from

implementation levels, plus the refinement relation between the two levels, allows

for precise reasoning about recovery and restoral from system failure, and the rela-

tionship between a current implementation and the users’ intent.

While we are satisfied with the expressiveness of the implementation level, we

acknowledge that we have applied it to the development of only one runtime system

(fiia) and a relatively small suite of applications. Further use and experimentation

will be required to determine whether it is adequate for a broader set of applications

or whether it will need to be extended.

8.3.3 Refinement

The model must provide a formal relation (refinement) between

the two architectural levels such that implementation architec-

tures may be derived automatically from conceptual architec-

tures. In order to be useful and implementable, the refinement

relation must refine all possible conceptual level architectures

to fully refined architectures, and the computation of a refined

architecture must be tractable for large architectures.

187

The formal definition of the refinement relation from the conceptual to the imple-

mentation level is provided in section 5.4 and its use to generate implementation-

level architectures is illustrated in sections 1.4.2, 3.4, and 6.3.

For refinement to be useful, it must always be possible to refine a syntactically

correct conceptual architecture to a fully refined implementation architecture by

repeated application of the refinement rules. This property will hold if:

• refinement terminates (termination); and

• at termination, the architecture is fully refined (completeness).

In sections 8.3.3.1 and 8.3.3.2 we provide proof sketches of the termination and

completeness properties. We follow this in section 8.3.3.3 with a proof that the com-

putation of a single refinement (as opposed to the computation of the full refinement

relation) is tractable.

In addition to these proofs, our implementation of the refinement mechanism

in our fiia toolkit, illustrated in section 7.2.4, gives us further confidence that the

refinement relation has been appropriately specified for use in a toolkit.

8.3.3.1 Refinement termination

We sketch the proof of termination as follows:

For a finite conceptual architecture c, the complete refinement relation may be

computed as follows. Call the set of refinement rules Q. For each rule r ∈ Q, find

all distinct subgraphs in c where the left hand side of r matches. At each match,

apply r to c producing a partially refined architecture c ′; let C1 be the set of all c ′

so produced. Repeat the process recursively for all c ′ ∈ C1 and all r ∈ Q, producing

a tree of architectures. The process ends for a particular architecture cn when no

rule r ∈ Q matches in cn.

This algorithm will terminate if two conditions hold:

Finite Branching. At each level n in each branch of the tree, the set Cn of partially

refined architectures is finite; and

188

Branch Termination. For all branches in the refinement tree, we ultimately reach

an architecture where no rule r ∈ Q matches.

We consider first the Finite Branching condition. Since the left hand side of each

each refinement rule r contains a finite but non-zero number of architectural ele-

ments in a finite number of relations to other elements, and the initial architecture

c is finite, any r can match in c only a finite number of times. And, since Q is finite,

C1 must also be finite. The same argument applies for each c ′ ∈ C1 and thus for

all subsequent levels of refinement Cn. Therefore the Finite Branching condition

holds.

The Branch Termination condition may be proved by structural induction over

the set of refinement rules Q.

The minimal structures in partially refined architectures are patterns of archi-

tectural elements that never appear in the left-hand side of a refinement rule. An

architecture that consists only of minimal structures requires no refinement; there-

fore, its refinement trivially terminates.

The rules in Q may be grouped into several categories.

Removal rules. Some rules remove non-minimal structures from the architecture

and are therefore monotonic towards minimal structures. These are rules 5.7(c)

and (d),1 5.8(e) and (f), 5.9(e) and (f), 5.10(a), (e) and (f), 5.11(a), (d), and (e),

5.12 (b), and 5.13(e).

Non-minimal transformations. Some rules transform non-minimal structures into

minimal structures. These are rules 5.7(b), 5.8(a) through (c), 5.9(a) through (d),

and 5.12(a).

Addition of minimal structures. Rules 5.13(a) and (b) add new minimal structures

(channel endpoints) to the architecture and also reroute call connectors from

channels to the channel endpoints. Since these rules only match where a call

connector is attached to a channel, and each rule application removes such

an attachment, the rules may only be applied a finite number of times. And,

1For convenience, in this section we refer to rules directly by their figure numbers.

189

since removing call connectors from channels eventually allows the removal

rule 5.13(e) to match, these rules are monotonic towards minimal structures.

Relation modification. Some rules change relations.

• Rule 5.7(a) anchors floating components. Since only anchored compo-

nents may be implemented (an implemented component is a minimal

structure), and there is no other rule which floats anchored components,

this rule is monotonic towards minimal structures.

• Rule 5.13(c) and (d) reroute call connectors from channels to channel

endpoints. Since there is no rule that reroutes call connectors from chan-

nel endpoints to channels, channel endpoints are minimal structures, call

connectors attached to channel endpoints are refined to minimal struc-

tures by rules 5.9, and removing call connectors from channels eventu-

ally allows the removal rule 5.13(e) to match, these rules are monotonic

towards minimal structures.

Addition of non-minimal structures. Some rules add new non-minimal structures to

the architecture.

• Rule 5.8(d) replaces a subscription source port with its implementation.

However, the only rule that matches a subscription source implementa-

tion is the removal rule 5.8(e), so this rule is monotonic towards minimal

structures.

• Rules 5.10(b) through 5.10(d) add new call connectors to the architec-

ture. Since each call connector added removes an attachment between

an implemented component and a subscription connector, these rules can

only match a finite number of times. And, since removing attachments

from subscription connectors eventually allows removal rule 5.10(e) to

match, these rules are monotonic towards minimal structures.

• Rules 5.10(b) and 5.11(b) add new channels to the architecture. However,

channels may only be added to subscription connectors and synchroniza-

tion connectors which do not have channels attached to them already, so

190

these rules may only be applied a finite number of times.

• Rule 5.11(c) replaces a connection between a CCCM and a channel with

two call connectors and two local ports. Since this replacement may only

be done once for each CCCM to channel connector, this rule may only be

applied a finite number of times.

It is also important that the rules in category 5, which introduce new non-minimal

structures into the architecture, are not mutually recursive. (If they were, it would

be possible for the refinement algorithm to be trapped in an endless loop.) By in-

spection, we see that these rules add only new call connectors, new channels and

new ports, and that in no case do these elements replace another of the elements

on this list, so there is no mutual recursion.

In summary, each refinement rule either is monotonic towards minimal struc-

tures or may be applied only a finite number of times in a given architecture. So,

repeated application of refinement rules to any branch of the refinement relation

will result in only minimal structures. Therefore the Branch Termination condition

holds.

Since both the Finite Branching and Branch Termination conditions hold, there

is a provably terminating algorithm for computing the refinement relation.

8.3.3.2 Refinement completeness

Refinement completeness requires that all architectures cn for which no r ∈ Q

matches are fully refined (or ground) architectures. A ground architecture is one

that contains only workspaces, nodes, and implementation level components, con-

nectors and ports.2

We sketch a proof of refinement completeness as follows:

The refinement relation is complete if the following two conditions hold:

Initiation. All non-ground syntactic forms that can appear in a conceptual level ar-

chitecture are subject to one or more refinement rules.

2Recall that people and subscription connectors between people and components are allowed in
Workspace diagrams but are not part of the formal notation and not subject to refinement.

191

Progress. All refinement rules either generate ground architectures, or generate

partially refined architectures all of whose non-ground elements are subject

to further refinement.

To prove the Initiation condition, we must consider all syntactically correct con-

ceptual level architectures. Syntactically correct conceptual level architectures are

defined by the conceptual level evolution calculus of section 4.3. Examining this

calculus, we identify the following categories of non-ground syntactic forms:

Conceptual components, which may provide ports, which are always contained within

workspaces, and which may be either floating or anchored to nodes.

• Components in workspaces that contain no nodes cannot be directly in-

stantiated. The are removed from the architecture by rules 5.7(c) and

(d). The one exception are stores that are members of synchronization

groups containing other stores; these are refined by rule 5.11(a).

• Components that are floating in a workspace that contains nodes may be

anchored to any of the nodes by rule 5.7(a).

• Components that are anchored to a node will be instantiated by rule 5.7(b).

Ports, which are always on the surface of conceptual components. As shown above,

conceptual components are always either instantiated on nodes (in which case

their ports are moved to the instantiated components), or removed along with

their ports.

• Attached and unattached call ports and subscription ports on instanti-

ated components are refined by rules 5.8(a) through (d). Call ports and

subscription target ports become local ports. Subscription target ports

become local ports connected to message broadcasters, with any outgo-

ing subscriptions attached to the message broadcaster.

• Synchronization ports that are attached to synchronization connectors

are refined to a pair of local ports by rule 5.11(b).

• Unattached synchronization ports are removed from the architecture by

rule 5.8(f).

192

Call connectors, which may be attached at their source end, target end, or both, to

call ports. As shown above, call ports are always ultimately refined to local

ports.

• Call connectors lacking either a source or a target are removed from the

architecture by rules 5.9(e) or (f).

• Call connectors having both a source and a target are refined by rules 5.9(a)

through (d).

Subscription connectors, which may have zero or more sources and zero or more

targets, all of which will be subscription ports. As shown above, subscription

source ports are refined to message broadcasters (from the perspective of the

connector) and target ports to local ports.

• Subscription connectors with no sources are removed from the architec-

ture by rule 5.10(f).

• Subscription connectors with at least one source are refined by rule 5.10(b).

Synchronization connectors, which may have zero or more attached subscription

ports.

• Synchronization connectors with no attached synchronization ports are

removed from the architecture by rule 5.11(e).

• Synchronization connectors with at least one connected synchronization

port are refined by rule 5.11(e).

Since all syntactic forms that may be found in conceptual level architectures

have refinements, the Initiation condition holds.

To prove the Progress condition, we consider each of the refinement rules in turn.

For the progress condition to hold, either the right hand side of the rule must be a

ground architecture, or it must consist only of sub-architectures that are guaranteed

to be subject to further refinement.

Table 8.1 summarises the refinement rules and the rules that match their right-

hand sides. In some cases the way in which the right-hand sides are matched in by

193

Rule Rules matching right-hand-side (or ground)

5.7(a) 5.7(b)

5.7(b) 5.8(a), (b), (c), (d), and (f), and 5.11(a), (b), and (c)

5.7(c) and (d) ground

5.8(a) 5.9(a) through (e)

5.8(b) 5.9(a) through (d) and (f)

5.8(c) 5.10(d)

5.8(d) and (e) 5.10(a), (b) and (c)

5.8(f) ground

5.9(a) through (f) ground

5.10(a) 5.10(b), (c), (d), and (e)

5.10(b), (c) and (d) 5.9(a) through (f) and 5.10(c), (d), and (e)

5.10(e) 5.13(e)

5.10(f) ground

5.11(a) 5.8(a), (b), (c), and (d), and 5.11(b)

5.11(b) 5.11(c)

5.11(c) 5.11(c) and (d)

5.11(d) 5.13(e)

5.11(e) ground

5.12(a) and (b) 5.9(a) through (f)

5.13(a) and (b) 5.9(a) and (c), 5.10(c), (d), and (e), and 5.11(c) and (d)

5.13(c) and (d) 5.9(a) through (d), 5.10(c), (d), and (e), and 5.11(c) and (d)

5.13(e) ground

Table 8.1: Summary of the Progress property of refinement.

other rules is straightforward; however, other cases require more careful consider-

ation. These are addressed below.

Conceptual level components and ports. As shown in the discussion of the Initiation

condition, (starting on page 191), conceptual components are always refined

to implementation components and conceptual ports are always refined to lo-

cal ports, plus message broadcasters in the case of subscription source ports.

Generic connectors. In rules 5.8 (a) through (e), the connectors shown on the right-

hand side are generic connectors, which may be either implementation-level

(in which case they are ground and require no further consideration) or con-

ceptual level. These latter are addressed below.

“Dangling” conceptual connectors. In rules 5.8(a) through (e), 5.10(a) through (d),

5.11(a) through (c) and 5.12(a) and (b), conceptual connectors are shown with

“dangling” ends, which may or may not be attached to (unseen) components

194

or ports. For the Progress condition to hold, it is essential that all such connec-

tors be subject to further refinement. We consider the three connector types

in turn.

Call connectors. If a call connector lacks either a source or a target it will be

removed from the architecture by rules 5.9(e) and (f). If it has both a

source and a target, then these may be either conceptual or implementa-

tion level. If either end is conceptual level, it must be a component or a

port; as proven above, conceptual components and ports are eventually

refined to implementation level. If both ends are implementation level,

the call connector is refined by rules 5.9(a) through (d).

Subscription connectors. Subscription connectors with no targets are refined

at their source ends only. If a subscription connector has one or more con-

ceptual level targets, these must be subscription target ports, attached

by the evolution in figure 4.12(d). As shown above, such ports are always

refined to local target ports, thereby allowing rule 5.10(d) to match. If a

subscription connector has no sources it will be removed from the archi-

tecture by rule 5.10(f). If it has conceptual level sources, these must be

one of the following:

• Subscription source ports, attached by the evolution in figure 4.12(c)).

As shown above, these are always refined to message broadcasters

(from the perspective of the subscription connector), which allows

rules 5.10(b) and (c) to match.

• Channels, attached by rule 5.10(b). In this case, rule 5.10(c), (d) or

(e) will match.

Synchronization connectors. Synchronization connectors may be attached to

subscription source ports by the evolutions in figures 4.12(e) and (f).

In this case, they will be matched by rules 5.7(d) or 5.11(a), (b), (c) or

(d). Synchronization connectors may also be attached to channels, by

rule 5.11(b). In this case they will be matched by rules 5.11(c) or (d).

195

The remainder of cases are straightforward. It is therefore clear that all refine-

ment rules either generate ground architectures, or generate partially refined ar-

chitectures all of whose non-ground elements are subject to further refinement. The

Progress condition is therefore satisfied. In conjunction with the Initiation condition,

this proves that the refinement relation is complete: that is, that all architectures in

which no further rules match are ground architectures.

8.3.3.3 Tractable computation of refinement

In addition to termination and completeness, the use of the refinement relation in a

toolkit requires that computation of refinement be tractable. However, computing

the entire refinement relation using the algorithm sketched in the proof of termi-

nation would in fact require a calculation exponential in the number of workspace

elements and relations and would therefore be intractable for large architectures.

Fortunately, in practice it is never necessary to compute all possible refinements

of a large architecture. In many cases, a single refinement will be adequate. In oth-

ers, such as in the case of determining an appropriate strategy for a failure recovery

or restoral, it is necessary to compute only a small set of candidate refinements for

a bounded sub-graph of the complete conceptual architecture.

Computing a single refinement is linear in the number of elements and relations

in the architecture. Consider a conceptual architecture c. Application of a single

rule r to c will result in either a match failure, in which c is unchanged, or a match,

which will result in a partially-refined architecture c ′. A simple approach to gener-

ating a fully-refined architecture is therefore the following, which computes a single

refinement branch:

1. Begin with the conceptual architecture c.

2. Iteratively apply each of the individual rules to c until some rule r matches,

generating c ′.

3. Repeat from step 1, replacing c with c ′.

4. When no rule r matches in the current architecture, refinement is complete.

196

As argued above, all refinements either are monotonic towards minimal struc-

tures or may be applied only a finite number of times, where that number is defined

by a number of relations. Therefore computation of a single refinement is linear in

the number of elements and relations in the conceptual architecture.

Our implementation of refinement in the fiia runtime, discussed in section 7.2.4,

uses exactly the approach explained above above. It considers only bounded sub-

graphs, defined by the scope of a single conceptual level change. Our experience

with fiia shows that this approach is both effective and efficient.

8.4 Conclusion

In sum, the Workspace Model meets all of the significant requirements identified in

the desiderata of section 3.1 and introduces a number of new ideas that should be

considered for inclusion in other modeling languages or systems. In the next and

final chapter we identify areas for future enhancement of the model, its implemen-

tation, and its use for the construction of interesting groupware systems.

197

Chapter 9

Conclusion and Future Directions

We have presented the Workspace Model, a formally-defined architectural model for

groupware that provides a clean separation between conceptual structure and dis-

tributed implementation. The Workspace Model includes an evolution calculus that

allows the formal description of architectural change at runtime. It supports both

user-driven conceptual change and system-driven implementation change. The two

levels of architectural description are linked by a refinement relation, which allows

the automatic generation of the set of implementation architectures corresponding

to any given conceptual architecture.

As demonstrated in chapter 8, the Workspace Model possesses the essential

properties required of a dynamic architectural model for synchronous groupware.

However, this is not to say that the model is in any sense a perfect or ultimate model

of groupware architectures.

In this chapter we present suggestions for future work that arise out of the model

in its current form. We divide the presentation into three sections: validation of the

model as a software engineering tool; enhancements to the model itself; alternate

programming approaches; issues arising from implementation of the model; and

groupware interface issues arising from the model’s semantics.

9.1 The Workspace Model as a software engineering tool

One of our intents in developing the Workspace Model was that it would provide

an appropriate set of abstractions for the development of groupware systems. The

modelling examples presented in chapter 6, the completed applications discussed

in chapter 7, and the design of the fiia runtime system itself all suggest that we

have succeeded in this intent. Also suggestive are the use of the Workspace model

to design an immersive, three dimensional, exercise based game [56] and the fact

198

that the Workspace Model has been used successfully in an undergraduate software

architecture course at Queen’s University.

However, thoroughly validating the Workspace Model from a software engineer-

ing perspective will require considerably more development experience with signif-

icant groupware applications. Some of the specific open questions are:

• Does use of the Workspace Model by real groupware designers actually pro-

voke appropriate questions at appropriate points in the development life cycle,

thereby leading to more appropriate designs?

• Does the Workspace Model scale well as a design and implementation repre-

sentation, both in terms of the development of large systems, and in terms of

its use by large numbers of developers?

• Is groupware designed using the Workspace Model easier and less expensive

to implement than groupware developed using other approaches?

• Is groupware implemented using the Workspace Model easier and less ex-

pensive to enhance and maintain than groupware developed using alternate

approaches?

As with many issues in software engineering, actually answering these questions

poses considerable practical difficulties.

9.2 Enhancements to the Workspace Model

There are many possible extensions and enhancements to the Workspace Model.

Here we highlight a few of these.

Nested components. In its current form the Workspace Model supports a flat com-

ponent model that does not allow components to be defined as nested struc-

tures of lower level components. This is a useful feature that is found in many

other architectural models. An earlier version of the Workspace Model did

include nested components; however, their presence significantly complicated

the formal definition of evolution and refinement rules and this feature was

199

temporarily abandoned. Now that the flat version of the model has been fully

defined and validated, both through proof and prototype, it would be interest-

ing to re-open this area of investigation.

More detailed architectural representations. The Workspace Model currently pro-

vides no mechanism for explicitly representing replica consistency mainte-

nance algorithms, caching algorithms, or channel ordering policies. A formal

mechanism for incorporating this information into the model would be useful.

Further distributed implementations. The Workspace Model does not currently in-

clude refinements that automatically generate such features as clusters, feder-

ations, partial replication, and “hot-standby” servers. Since these features are

widely used in commercial groupware systems, their inclusion in the model

should be investigated.

Representation of internal component state. In the current model an implemented

component that has acquired interesting internal state is indistinguishable

from a freshly-created component. This means that some combinations of evo-

lution and refinement that are structurally correct in fact discard state that

might be interesting to the user. Ensuring that this doesn’t happen (as we do

in the fiia runtime) currently requires this fact to be represented outside the

model.

Dynamic adaptation to preserve quality attributes. The intelligent selection of an im-

plementation architecture for a conceptual architecture may require balanc-

ing such quality-related concerns as device and network capabilities, perfor-

mance requirements, security and privacy concerns, and required levels of

fault tolerance in different failure scenarios. All of these concerns (and oth-

ers) may change dynamically at runtime. A completely adaptive Workspace

Model would provide explicit representation of these concerns as well as a

mechanism for reasoning from them to a choice of implementations.

Constraints. As indicated in chapter 2, several other groupware systems support

the direct use of dynamically maintained declarative constraints. The addition

of these to the Workspace Model should be investigated.

200

9.3 Security

As defined in this document, the Workspace Model makes no provision for secu-

rity: in principle, any user or software component can invoke any operation in any

workspace. Clearly any production quality implementation of the Workspace Model

would need to take security and privacy issues into account.

Prior work based on an early version of the Workspace Model suggests that the

model can provide an appropriate base for secure collaborative systems, with the

addition of appropriate security provisions [129]. In particular, the execution of the

conceptual level evolution calculus operations provides a “hook” for the operation

of a security reference monitor.

Further investigation of security and privacy issues, including an update of [129]

to account for the current version of the Workspace Model, would be appropriate.

9.4 Alternate programming approaches

Our fiia prototype offers programmers only minimal syntactic sugar over a a rela-

tively literal interpretation of the Workspace Model’s conceptual level component

and connector architecture and evolution calculus. Many other programming ap-

proaches are possible, each with their own particular characteristics. An investiga-

tion of the space of such programming approaches would be useful.

One such investigation is already ongoing, in follow-on research by Christopher

Wolfe. This is looking at the use of the Workspace Model to provide fully distributed

groupware semantics semi-automatically to programs written in the C# language

for Microsoft’s .NET runtime.

9.5 Implementation issues

The development and initial use of the fiia prototype exposed a number of imple-

mentation level issues which are either outside the scope of the current model or

only indirectly hinted at. These include:

201

Debugging support. Debugging in the fiia toolkit can sometimes be unnecessarily

difficult. In our experience, the problems arise from the temporal separa-

tion between conceptual level requests and their effects at the implementa-

tion level, as well as from well-known issues with debugging multi-point asyn-

chronous message communications (as implemented by subscription connec-

tors). Significant research is required into effective debugging representa-

tions of these issues.

Exposing architectural knowledge inside components. It would sometimes be use-

ful to make knowledge available in the architecture directly available to com-

ponent implementations. For example, consider a distributed representation

of a card table as in [66]. When a card is in a player’s “hand” its value is

visible to that player but not concealed from other players. We can imagine

that the state of the table is maintained in a store component and that players’

components may query the store. In this case, it would be useful to be able to

respond differently depending which player is making the request. Naturally,

the requesting player’s identity could be encoded with the request itself (with

appropriate cryptographic authentication, if necessary). However, this infor-

mation is already implicitly represented in the architecture in the structure of

components and connectors.

This kind of scenario appears to be common enough that it would be useful

to make the answer to “who made this request or sent this message?” easily

available at the component level.

9.6 Groupware interfaces

There are a large number of well-known user interface issues that would have

to be addressed in any production quality groupware system developed using the

Workspace Model. These include such things as inter-user awareness at many lev-

els of detail, coordination mechanisms for facilitating group action, mechanisms for

distinguishing between private and shared information and for moving information

202

between these categories, mechanisms for acquiring exclusive access to shared ob-

jects and for distinguishing who has such access, and so on.

In addition, the Workspace Model presents a number of new or extended con-

cerns which would also have to be addressed in any real implemented system. These

include:

Fine-grained session management. Most commercial groupware systems include some

form of session management tool allowing users to contact one another and

join into shared sessions. In the Workspace Model, sharing is at the level of

synchronized stores; however, this is a programming construct that should

almost certainly not be exposed directly to users—users need only care that

they are working on or with “the same thing”. Since sharing is possible at

the individual store level, “sessions” can be relatively fine grained and fluid.

Appropriate user interfaces for managing such fine grained and fluid collabo-

ration do not yet exist, so fine-grained session management interfaces present

an interesting area for further study.

Reporting partial failure. In most groupware systems, partial failure is manifested

as the disappearance of one or more users from a collaborative session, or

as an inability for the session to continue. However, the Workspace Model’s

support for fine-grained collaboration provides the possibility of relatively fine-

grained partial failure. How to make such failures visible to the user, at either

a system-wide or application specific level, is an interesting user interface

research problem.

9.7 Summary

The Workspace Model provides a formal multi-level approach to the specification,

development and runtime implementation of distributed groupware systems. Like

many such approaches, it raises as many questions as it answers. We look forward

to addressing these questions in the coming years.

203

References

[1] H. Abdel-Wahab andM.A. Feit. XTV: A framework for sharing X window clients
in remote synchronous collaboration. In Proceedings of the IEEE Conference
on Communication Software: Communications for Distributed Applications
and Systems (Tricomm ’91, Chapel Hill, NC, USA, April), pages 159–167,
1991.

[2] H. Abdel-Wahab, O. Kim, P. Kabore, and J.P. Favreau. Java-based multimedia
collaboration and application sharing environment. In Colloque Francophone
sur L’Ingenierie des Protocoles (CFIP’99), Nancy, France, pages 451–463,
April 26–29 1999.

[3] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tolerant architecture and
protocol for wide area group communication. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks (FTCS-30, DCCA-8,
New York, NY), pages 327–336, June 2000. Also available from spread.org.

[4] G.E. Anderson, T.C.N. Graham, and T.N. Wright. Dragonfly: Linking concep-
tual and implementation architectures of multiuser interactive systems. In
Proceedings of the 22nd International Conference on Software Engineering
(ICSE ’00, Limerick, Ireland, June 4–9), pages 252–261, 2000.

[5] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
second edition edition, 1997. ISBN 0-201-31006-6.

[6] R.M. Baecker. Readings in Groupware and Computer-Supported Cooperative
Work: Assisting Human-Human Collaboration. Morgan Kaufmann Publishers,
1993. ISBN 1-55860-241-0.

[7] S.A. Baset and H. Shulzrinne. An analysis of the Skype peer-to-peer internet
telephony protocol. In IEEE Infocom, 2006. To appear.

[8] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI
Series in Software Engineering. Addison-Wesley, 1998. ISBN 0-201-19930-0.

[9] J. Begole, M.B. Rosson, and C.A. Shaffer. Supporting worker independence in
collaboration transparency. In Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST ’98), pages 133–142. ACM Press,
1998.

[10] J. Begole, C.A. Struble, C.A. Shaffer, and R.B. Smith. Transparent sharing of
Java applets: A replicated approach. In Proceedings of the ACM Symposium
on User Interface Software and Technology (UIST ’97, Banff, Alberta, Canada,
Oct. 14–17), pages 55–64. ACM Press, 1997.

204

[11] R. Bentley, T. Rodden, P. Sawyer, and I. Sommerville. An architecture for tai-
loring cooperative multi-user displays. In J. Turner and R. Kraut, editors, Pro-
ceedings of the ACM Conference on Computer-Supported Cooperative Work
(CSCW ’92, Toronto, Canada, Oct. 31–Nov. 4), pages 187–194. ACM Press,
1992.

[12] T. Berlage and A. Genau. A framework for shared applications with replicated
architecture. In Proceedings of the ACM Symposium on User Interface Soft-
ware and Technology (UIST ’93, Atlanta, GA, USA, Nov. 3–5), pages 249–257.
ACM Press, 1993.

[13] Y.W. Bernier. Latency compensating methods in client/server in-game protocol
design and optimization. In Game Developers Conference, 2001. Available
from www.gamasutra.com.

[14] P. Bettner and M. Terrano. 1500 archers on a 28.8: Network programming in
Age of Empires and beyond. In Game Developers Conference, 2001. Available
from www.gamasutra.com.

[15] K.P. Birman. The process group approach to reliable distributed computing.
Communications of the ACM, 36(12):37–53,103, December 1993.

[16] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Object Technology Series. ACM Press/Addison-Wesley, 1999. ISBN 0-
201-57168-4.

[17] J. Bradbury. Organizing definitions and formalisms for dynamic software ar-
chitectures. Technical Report 2004-477, Queen’s University, March 2004.
Available from www.cs.queensu.ca.

[18] Mark Brockington. Client-side movement prediction. In Thor Alexander, edi-
tor, Massively Multiplayer Game Development, pages 293–303. Charles River
Media, 2003.

[19] R. Burridge. Java Shared Data Toolkit User Guide version 2.0. Sun Microsys-
tems, JavaSoft Division, 1999. Available from http://java.sun.com.

[20] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons
Ltd., 1996. ISBN 0-471-95869-7.

[21] Chris Butcher and Bart House. Recreating the LAN party online: The net-
working and social infrastructure of Halo 2. In Game Developers Conference,
2005. Available from www.cmpevents.com/GD05.

[22] G. Calvary, J. Coutaz, and L. Nigay. From single-user architectural design to
PAC*: A generic software architecture model for CSCW. In Human Factors in
Computing Systems: CHI ’97 Conference Proceedings (USA), pages 242–249.
ACM Press/Addison-Wesley, 1997.

205

[23] J.M. Carroll. Making Use: Scenario-Based Design of Human-Computer Inter-
actions. MIT Press, 2000. ISBN 0-26203-279-1.

[24] A. Chabert, E. Grossman, L. Jackson, S. Pietrowicz, and C. Seguin. Java object
sharing in Habanero. Communications of the ACM, 41(6):69–76, June 1998.

[25] G. Chung and P. Dewan. A mechanism for supporting client migration in a
shared window system. In Proceedings of the ACM Symposium on User Inter-
face Software and Technology (UIST ’96, Seattle, WA, USA, Nov. 6–8), pages
11–20. ACM Press, 1996.

[26] G. Chung and P. Dewan. Towards dynamic collaboration architectures. In
CSCW ’04: Proceedings of the 2004 ACM conference on Computer supported
cooperative work, pages 1–10, New York, NY, USA, 2004. ACM Press.

[27] G. Chung, P. Dewan, and S. Rajaram. Generic and composable latecomer ac-
commodation service for centralized shared systems. In Proceedings of the
IFIP 2.7 Working Conference on Engineering for Human-Computer Interac-
tion (EHCI ’98, Herkalion, Crete, September 14–18), pages 129–147, 1998.

[28] G. Chung, K. Jeffay, and H. Abdel-Wahab. Accomodating latecomers in shared
window systems. Project Overviews, IEEE Computer, 26(1):72–74, January
1993.

[29] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and
J. Stafford. Documenting Software Architectures: Views and Beyond. SEI
Series in Software Engineering. Addison Wesley, 2003. ISBN: 0-201-70372.

[30] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts
and Design. Addison-Wesley, third edition, 2000. ISBN 0201-619-180.

[31] J. Coutaz. PAC, an object oriented model for dialog design. In Proceedings of
the IFIP Conference on Human Computer Interaction (INTERACT ’87), pages
431–436. Elsevier Science Publishers B. V. (North-Holland), 1987.

[32] J. Coutaz. PAC-ing the architecture of your user interface. In Proceedings of
the Fourth Eurographics Workshop on Design, Specification and Verification
of Interactive Systems (DSV-IS ’97), pages 15–32. Springer Verlag, 1997.

[33] J. Coutaz, F. Bérard, E. Carraux, and J. Crowley. Early experience with the
mediaspace CoMedi. In Proceedings of the IFIP 2.7 Working Conference on
Engineering for Human-Computer Interaction (EHCI ’98, Herkalion, Crete,
September 14–18), pages 57–72. Kluwer Academic Publishers, 1998.

[34] M. Day. What synchronous groupware needs: Notification services. 6th IEEE
Workshop on Hot Topics in Operating Systems (HotOS-VI), 1997.

206

[35] M. Day, J.F. Patterson, J. Kucan, W.M. Chee, and D. Mitchell. No-
tification service transfer protocol version 1.0. Technical Report 96-
08, Lotus Workgroup Technologies, November 15 1996. Available from
http://research.lotus.com.

[36] V.C. de Paula, G.R.R. Justo, and P.R.F. Cunha. Specifying and verifying re-
configurable software architectures. In PDSE ’00: Proceedings of the In-
ternational Symposium on Software Engineering for Parallel and Distributed
Systems, page 21, Washington, DC, USA, 2000. IEEE Computer Society.

[37] P. Dewan. Architectures for collaborative applications. In M. Beaudouin-
Lafon, editor, Computer Supported Co-operative Work, pages 169–193. John
Wiley & Sons Ltd., January 1999. ISBN 0-471-96736-X.

[38] P. Dewan and R. Choudhary. A high-level and flexible framework for imple-
menting multiuser user interfaces. ACM Transactions on Information Sys-
tems, 10(4):345–380, October 1992.

[39] P. Dewan and R. Choudhary. Coupling the user interfaces of a multiuser pro-
gram. ACM Transactions on Computer-Human Interaction, 2(1):1–39, March
1995.

[40] A. Dix, D. Ramduny, and J. Wilkinson. Interaction in the large. Interacting
with Computers, 11(1):9–32, December 1998.

[41] P. Dourish. Consistency guarantees: Exploiting application semantics for con-
sistency management in a collaboration toolkit. In Proceedings of the ACM
Conference on Computer-Supported Cooperative Work (CSCW ’96, Boston,
MA, USA, Nov. 16–20), pages 268–277. ACM Press, 1996.

[42] P. Dourish. Using meta-level techniques in a flexible toolkit for CSCW applica-
tions. ACM Transactions on Computer-Human Interaction, 5(2):1–39, March
1998.

[43] E. Dubois, L. Nigay, and J. Troccaz. Consistency in augmented reality sys-
tems. In Proceedings of the IFIP 2.7 Working Conference on Engineering for
Human-Computer Interaction (EHCI ’01, Toronto, Canada, May), Published
as Lecture Notes in Computer Science vol. 2254, pages 117–130. Springer-
Verlag, 2001.

[44] E. Dubois, L. Nigay, J. Troccaz, O. Chavanon, and L. Carrat. Classification
space for augmented surgery, an augmented reality case study. In A. Sasse
and C. Johnson, editors, Proceedings of the 7th IFIP Conference on Human
Computer Interaction (INTERACT ’99, Edinburgh, UK), pages 353–359. IOS
Press, 1999.

[45] D.A. Duce, J.R. Gallop, I.J. Johnson, K. Robinson, C.D. Seelig, and C.S. Cooper.
Distributed collaborative visualization – the MANICORAL approach. In Proc.
Eurographics UK Conference, pages 69–85, March 1998.

207

[46] R. Dunn et al. The wxPython interface to the wxWidgets user interface toolkit.
wxpython.org.

[47] T. Duval and L. Nigay. Implémentation d’une application de simulation selon le
modèle PAC-Amodeus. In Proceedings of the 11th Conférence francophone In-
teraction Homme-Machine (IHM ’99, Monpellier, France), pages 86–93, 1999.

[48] W.K. Edwards, E.D. Mynatt, K. Petersen, M.J. Spreitzer, D.B. Terry, and M.M.
Theimer. Designing and implementing asynchronous collaborative applica-
tions with Bayou. In Proceedings of the ACM Symposium on User Inter-
face Software and Technology (UIST ’97, Banff, Alberta, Canada, Oct. 14–17),
pages 119–128. ACM Press, 1997.

[49] C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. In Pro-
ceedings of the ACM Conference on the Management of Data (SIGMOD ’89,
Seattle, WA, USA, May 2–4), pages 399–407. ACM Press, 1989.

[50] U. Gall and F.J. Hauck. Promondia: A Java-based framework for real-time
group communication on the Web. In Proceedings of the 6th World Wide Web
Conference, (Santa Clara, CA. April 7–11). Elsevier Science Publishers B. V.
(North-Holland), 1997.

[51] Gamespy. www.gamespy.com.

[52] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley, 1995. ISBN 0-201-
63361-2.

[53] GoToMeeting. www.gotomeeting.com.

[54] T.C.N. Graham. Declarative Development of Interactive Systems, volume 243
of Berichte der GMD. R. Oldenbourg Verlag, July 1995.

[55] T.C.N. Graham, C.A. Morton, and T. Urnes. ClockWorks: Visual programming
of component-based software architectures. Journal of Visual Languages &
Computing, 7(2):175–196, June 1996.

[56] T.C.N. Graham and W. Roberts. Toward quality-driven development of 3D com-
puter games. In Proceedings of the Thirteenth International Workshop on De-
sign, Specification and Verification of Interactive Systems (DSV-IS ’06), July
2006. To appear.

[57] T.C.N. Graham and T. Urnes. Relational views as a model for automatic
distributed implementation of multi-user applications. In Proceedings of
the ACM Conference on Computer-Supported Cooperative Work (CSCW ’92,
Toronto, Canada, Oct. 31–Nov. 4), pages 59–66. ACM Press, 1992.

208

[58] T.C.N. Graham and T. Urnes. Linguistic support for the evolutionary design of
software architectures. In Proceedings of the 18th International Conference
on Software Engineering (ICSE 18, Berlin, Germany, Mar. 25–29), pages 418–
427. IEEE Computer Society Press, 1996.

[59] T.C.N. Graham and T. Urnes. Integrating Support for Temporal Media into
an Architecture for Graphical User Interfaces. In Proceedings of the 19th
International Conference on Software Engineering (ICSE ’97, Boston, MA,
USA, May 19–23). IEEE Computer Society Press, 1997.

[60] T.C.N. Graham, T. Urnes, and R. Nejabi. Efficient distributed implementation
of semi-replicated synchronous groupware. In Proceedings of the ACM Sym-
posium on User Interface Software and Technology (UIST ’96, Seattle, WA,
USA, Nov. 6–8), pages 1–10. ACM Press, 1996.

[61] S. Greenberg. Toolkits and interface creativity. Journal of Multimedia Tools
and Applications, in press. Invited submission to the Special Issue on Group-
ware.

[62] S. Greenberg and D. Marwood. Real time groupware as a distributed sys-
tem: Concurrency control and its effect on the interface. In Proceedings of
the ACM Conference on Computer-Supported Cooperative Work (CSCW ’94,
Chapel Hill, NC, USA, Oct. 22–26), pages 207–217. ACM Press, 1994.

[63] J. Greer and Z.B. Simpson. Minimizing latency in real-time strategy games. In
D. Treglia, editor, Game Programming Gems 3, pages 488–495. Charles River
Media, 2002.

[64] Groove. groove.net.

[65] J.C. Grundy. Engineering component-based, user-configurable collaborative
editing systems. In Proceedings of the IFIP 2.7 Working Conference on
Engineering for Human-Computer Interaction (EHCI ’98, Herkalion, Crete,
September 14–18), September 1998.

[66] R.D. Hill, T. Brinck, S.L. Rohall, J.F. Patterson, and W. Wilner. The Rendezvous
language and architecture for constructing multi-user applications. ACM
Transactions on Computer-Human Interaction, 1(2):81–125, June 1994.

[67] C. I. Johnson. Interactive graphics in data processing: Principles of interactive
systems. IBM Systems Journal, 7(3/4):147–173, 1968.

[68] S. Junuzovic, G. Chung, and P. Dewan. Formally analyzing two-user central-
ized and replicated architectures. In Proceedings of the European Conference
on Computer Supported Cooperative Work (ECSCW ’05, Paris, Sept. 18–22),
pages 83–102, 2005.

209

[69] A. Karsenty and M. Beaudouin-Lafon. An algorithm for distributed groupware
applications. In Proc. 13th International Conference on Distributed Comput-
ing Systems (ICDCS), pages 195–202, 1993.

[70] A. Karsenty, C. Tronche, and M. Beaudouin-Lafon. GroupDesign: Shared edit-
ing in a heterogeneous environment. Usenix Journal of Computing Systems,
6(2):167–195, 1993.

[71] T. Kindberg, G. Coulouris, J. Dollimore, and J. Heikkinen. Sharing objects
over the Internet: The Mushroom approach. In Proceedings of IEEE Global
Internet ’96 (Mini-conference at GLOBECOM ’96, London, England, Nov. 20–
21). IEEE ComSoc, 1996.

[72] M. Kobayashi, M. Shinozaki, T. Sakairi, M. Touma, and S. Daijavad. Collab-
orative customer services using synchronous Web browser sharing. In Pro-
ceedings of the ACM Conference on Computer-Supported Cooperative Work
(CSCW ’98, Seattle, WA, USA), pages 99–108, 1998.

[73] M. Kolon and W.J. Goralski. IP Telephony. McGraw Hill, September 1999.

[74] G.E. Krasner and S.T. Pope. A cookbook for using the Model-View-Controller
user interface paradigm in Smalltalk-80. Journal of Object-Oriented Program-
ming, 1(3):26–49, August/September 1988.

[75] D. Krech et al. The RDFLib Python library for RDF processing. rdflib.net.

[76] P. Kruchten. Architectural blueprints—The "4+1" view model of software ar-
chitecture. IEEE Software, 12(6):42–50, November 1995.

[77] Y. Laurillau and L. Nigay. Clover architecture for groupware. In Proceedings
of the ACM Conference on Computer-Supported Cooperative Work (CSCW
’02, New Orleans, LA, USA), pages 236–245. ACM Press, 2002.

[78] Jay Lee. Considerations for movement and physics in MMP games. In Thor
Alexander, editor, Massively Multiplayer Game Development, pages 275–289.
Charles River Media, 2003.

[79] D. Li and R. Muntz. COCA: Collaborative objects coordination architecture.
In Proceedings of the ACM Conference on Computer-Supported Cooperative
Work (CSCW ’98, Seattle, WA, USA), pages 179–188, 1998.

[80] J.C.R. Licklider. The computer as a communication device. Science and Tech-
nology, April 1968. Reprinted in Digital Systems Research Center Tech Note
61, August 7, 1990, available from www.hpl.hp.com.

[81] R. Litiu and A. Prakash. Developing adaptive groupware applications using
a mobile component framework. In Proceedings of the ACM Conference on
Computer-Supported Cooperative Work (CSCW ’00, Philadelphia, PA, USA),
pages 107–116. ACM Press, 2000.

210

[82] R. Litiu and A. Prakash. DACIA: A mobile component framework for build-
ing adaptive distributed applications. SIGOPS Operating System Review,
35(2):31–42, 2001.

[83] S. Lukosch. Customizable data distribution for synchronous groupware. In
Proceedings of the 6th International Conference on Enterprise Information
Systems (ICEIS 2004), pages 70–77, 2004.

[84] J. Magee and J. Kramer. Dynamic structure in software architectures. In SIG-
SOFT ’96: Proceedings of the 4th ACM SIGSOFT symposium on Foundations
of software engineering, pages 3–14, New York, NY, USA, 1996. ACM Press.

[85] F. Manola and E. Miller. Resource Description Framework (RDF) Primer.
World Wide Web Constorium (W3C), February 2004. w3.org/TR/-
rdf-primer/.

[86] N. Medvidovic, D.S. Rosenblum, and R.N. Taylor. A language and environment
for architecture-based software development and evolution. In ICSE ’99: Pro-
ceedings of the 21st international conference on Software engineering, pages
44–53, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[87] N. Medvidovic, R.N. Taylor, and Jr. E.J. Whitehead. Formal modeling of soft-
ware architectures at multiple levels of abstraction. In Proceedings of the
California Software Symposium 1996 (CSS ’96, Los Angeles, CA), pages 28–
40, April 1996.

[88] M. Mintz. MSNMessenger protocol. http://www.hypothetic.org/docs/msn.

[89] A. Mitchell, I.R. Posner, and R.M. Baecker. Learning to write together using
groupware. In Human Factors in Computing Systems: CHI ’95 Conference
Proceedings (Denver, CO, USA, May 7–11), pages 288–295, 1995.

[90] D. Mitchell. A component approach to embedding awareness and conversa-
tion. InWETICE ’98: Proceedings of the 7th Workshop on Enabling Technolo-
gies, pages 82–89, Washington, DC, USA, 1998. IEEE Computer Society.

[91] NATO Mutilateral Interoperability Programme. Multilateral Interoperability
Programme Technical Interface Design Plan, version 2.5, December 2005.
Available from mip-site.org.

[92] R.E. Newman-Wolfe, M.L. Webb, and M. Montes. Implicit locking in the En-
semble concurrent object-oriented graphics editor. In J. Turner and R. Kraut,
editors, Proceedings of the ACM Conference on Computer-Supported Coop-
erative Work (CSCW ’92, Toronto, Canada, Oct. 31–Nov. 4), pages 265–272.
ACM Press, 1992.

[93] D.A. Nichols, P. Curtis, M. Dixon, and J. Lamping. High-latency, low-bandwidth
windowing in the Jupiter collaboration system. In Proceedings of the ACM

211

Symposium on User Interface Software and Technology (UIST ’95, Pittsburgh,
PA, USA, Nov. 14–17), pages 111–120. ACM Press, 1995.

[94] L. Nigay and J. Coutaz. Building user interfaces: Organizing software agents.
In Proc. ESPRIT’91 Conference, pages 707–719, 1991.

[95] T. O’Grady. Flexible data sharing in a groupware toolkit. Master’s thesis,
University of Calgary, Calgary, Alberta, Canada, November 1996.

[96] P. Oreizy, N. Medvidovic, and R.N. Taylor. Architecture-based runtime soft-
ware evolution. In Proceedings of the 20th International Conference on Soft-
ware Engineering (ICSE ’98, Kyoto, Japan), pages 177–186. IEEE Computer
Society, 1998.

[97] J.F. Patterson. A taxonomy of architectures for synchronous groupware appli-
cations. ACM SIGOIS Bulletin Special Issue: Papers of the CSCW’94 Work-
shops, 15(3):27–29, April 1995.

[98] J.F. Patterson, M. Day, and J. Kucan. Notification servers for synchronous
groupware. In Proceedings of the ACM Conference on Computer-Supported
Cooperative Work (CSCW ’96, Boston, MA, USA, Nov. 16–20), pages 122–129.
ACM Press, 1996.

[99] D.E. Perry and A.L. Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40–52, October 1992.

[100] G.E. Pfaff et al. User Interface Management Systems. Eurographics Seminars.
Springer Verlag, 1985.

[101] W.G. Phillips. Architectures for synchronous groupware. Technical Report
1999-425, Queen’s University, Kingston, Ontario, Canada, May 1999. Avail-
able from www.cs.queensu.ca and symbiosis.rmc.ca.

[102] W.G. Phillips and T.C.N. Graham. Workspaces: A multi-level architectural style
for synchronous groupware. In Proceedings of the Tenth International Work-
shop on Design, Specification and Verification of Interactive Systems (DSV-IS
’03), number 2844 in LNCS, pages 92–106. Springer-Verlag, 2003. ISBN 3-
540-20159-9.

[103] W.G. Phillips and T.C.N. Graham. Workspace model specification, version 1.0.
Technical Report 2005-493, Queen’s University, Kingston, Ontario, Canada,
March 2005. Available from www.cs.queensu.ca and symbiosis.rmc.ca.

[104] W.G. Phillips, T.C.N. Graham, and C. Wolfe. A calculus for the refinement and
evolution of multi-user mobile applications. In Proceedings of the Twelfth In-
ternational Workshop on Design, Specification and Verification of Interactive
Systems (DSV-IS ’05), LNCS, pages 137–148. Springer-Verlag, 2005.

212

[105] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF.
World Wide Web Constorium, w3.org, candidate recommendation, 6 April
2006.

[106] J. Randall. Scaling multiplayer servers. In D. Treglia, editor, Game Program-
ming Gems 3, pages 520–533. Charles River Media, 2002.

[107] N. Rappin and R. Dunn. wxPython in Action. Manning, 2006. ISBN 1-932394-
62-1.

[108] J. Richter. Applied Microsoft .NET Framework Programming. Microsoft Press,
2002. ISBN 0-735-61422-9.

[109] M. Roseman. GroupKit 5.0 Documentation. University of Calgary GroupLab,
June 1998. Available from http://www.cpsc.ucalgary.ca.

[110] M. Roseman and S. Greenberg. GroupKit: A groupware toolkit for building
real-time conferencing applications. In J. Turner and R. Kraut, editors, Pro-
ceedings of the ACM Conference on Computer-Supported Cooperative Work
(CSCW ’92, Toronto, Canada, Oct. 31–Nov. 4), pages 43–50. ACM Press, 1992.

[111] M. Roseman and S. Greenberg. Building flexible groupware through open
protocols. In Proceedings of the Conference on Organizational Computing
Systems (ACM COOCS ’93, Milpitas, CA, USA, November). ACM Press, 1993.

[112] M. Roseman and S. Greenberg. Building real time groupware with Group-
Kit, a groupware toolkit. ACM Transactions on Computer-Human Interaction,
3(1):66–106, March 1996.

[113] M.B. Rosson and J.M. Carroll. Usability Engineering: Scenario-based Devel-
opment of Human Computer Interaction. Morgan-Kauffmann, 2002. ISBN
1-55860-712-9.

[114] J. Roth and C. Unger:. DreamTeam - a platform for synchronous collabora-
tive applications. In Th. Herrmann and K. Just-Hahn, editors, Groupware
und organisatorische Innovation (D-CSCW’98), pages 153–165. B.G. Teubner
Stuttgart, Leipzig, 1998.

[115] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Object Technology Series. Addison-Wesley, 1998. ISBN
0-201-30998-X.

[116] C. Schuckmann. Private electronic mail message, June 15, 1998.

[117] C. Schuckmann, L. Kirchner, J. Schummer, and J.M. Haake. Designing object-
oriented synchronous groupware with COAST. In Proceedings of the ACM
Conference on Computer-Supported Cooperative Work (CSCW ’96, Boston,
MA, USA, Nov. 16–20). ACM Press, 1996.

213

[118] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996. ISBN 0-13-182957-2.

[119] ShowEQ open-source project. /www.showeq.net.

[120] J. Smart, K. Hock, and S. Csomor. Cross-Platform GUI Programming with
wxWidgets. Bruce Perens’ Open Source. Prentice Hall, 2005. ISBN 0-131-
47381-6.

[121] J.M. Spivey. The Z Notation: A Reference Manual. Internation Series in
Computer Science. Prentice Hall, second edition, 1992. Also available from
spivey.oriel.ox.ac.uk.

[122] M. Stefik, D.G. Bobrow, G. Foster, S. Lanning, and D. Tatar. WYSIWIS revised:
Early experiences with multiuser interfaces. ACM Transactions on Office In-
formation Systems (also in [6]), 5(2):147–167, 1987.

[123] N. Stephenson. Snow Crash. Bantam Spectra, 1993. ISBN 0-553-56261-4.

[124] N.A. Streitz, J. Geißler, J.M. Haake, and J. Hol. DOLPHIN: Integrated meet-
ing support across liveboards, local and remote desktop environments. In
Proceedings of the ACM Conference on Computer-Supported Cooperative
Work (CSCW ’94, Chapel Hill, NC, USA, Oct. 22–26), pages 345–358. ACM
Press/Addison-Wesley, 1994.

[125] SubEthaEdit. Available from www.codingmonkeys.de.

[126] C. Sun and C. Ellis. Operational transformation in real-time group editors:
Issues, algorithms, and achievments. In Proceedings of the ACM Conference
on Computer-Supported Cooperative Work (CSCW ’98, Seattle, WA, USA),
pages 59–68. ACM Press, 1998.

[127] F. Tarpin-Bernard, B. David, and P. Primet. Frameworks and patterns for syn-
chronous groupware: AMF-C approach. In Proceedings of the IFIP 2.7 Work-
ing Conference on Engineering for Human-Computer Interaction (EHCI ’98,
Herkalion, Crete, September 14–18), September 1998.

[128] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. Whitehead Jr., J.E. Robbins,
K.A. Nies, P. Oreizy, and D.L. Dubrow. A component- and message-based archi-
tectural style for GUI software. IEEE Transactions on Software Engineering,
22(6):390–406, June 1996.

[129] L.J. Terpstra. A security model for the Workspace groupware architecture.
Master’s thesis, Royal Military College of Canada, Kingston, Ontario, May
2002.

[130] UIMS Tool Developers’ Workshop. A metamodel for the runtime architecture
of an interactive system. ACM SIGCHI Bulletin, 24(1):32–37, 1992.

214

[131] T. Urnes. Efficiently Implementing Synchronous Groupware. PhD thesis, York
University, Toronto, Ontario, Canada, 1998.

[132] T. Urnes and T.C.N. Graham. Flexibly mapping synchronous groupware ar-
chitectures to distributed implementations. In Proceedings of the Sixth Eu-
rographics Workshop on Design, Specification and Verification of Interactive
Systems (DSV-IS ’99), pages 133–148, 1999.

[133] R. van Renesse, K.P. Birman, and S. Maffeis. Horus, a flexible group commu-
nication system. Communications of the ACM, April 1996.

[134] G. van Rossum et al. The Python programming language. python.org.

[135] G. van Rossum and B. Warsaw. Python Enhancement Proposal 8: Style Guide
for Python Code, version 43264, 23 March 2006. Available from python.org.

[136] B.T. Vander Zanden, R. Halterman, B.A. Myers, R. McDaniel, R. Miller, P.
Szekely, D.A. Giuse, and D. Kosbie. Lessons learned about one-way, dataflow
constraints in the garnet and amulet graphical toolkits. ACM Transactions on
Programming Languages and Systems, 23(6):776–796, 2001.

[137] F.B. Viegas and J.S. Donath. Chat circles. In Human Factors in Computing
Systems: CHI ’99 Conference Proceedings (Pittsburgh, PA, USA, May 15–20),
pages 9–16, 1999.

[138] D. Waitzman. A standard for the transmission of IP datagrams on avian car-
riers. Internet Engineering Task Force Request for Comments 1149, April
1990. Available from ietf.org.

[139] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed comput-
ing. Technical Report TR-94-29, Sun Microsystems Laboratories, Inc., Novem-
ber 1994. Available from research.sun.com.

[140] K. Walrath and M. Campione. The JFC Swing Components: A Tutorial Guide
to Constructing GUIs. The Java Series. Addison-Wesley, 1999. ISBN 0-201-
32577-2.

[141] Webarrow. webarrow.com.

[142] Webex. webex.com.

[143] M. Wermelinger and J.L. Fiadeiro. Algebraic software architecture reconfigu-
ration. In ESEC/FSE-7: Proceedings of the 7th European Software Engineer-
ing Conference held jointly with the 7th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 393–409, London, UK,
1999. Springer-Verlag.

[144] World of Warcraft. worldofwarcraft.com.

215

[145] J. Wu, T.C.N. Graham, and P. Smith. A study of collaboration in software de-
sign. In 2003 International Symposium on Empirical Software Engineering
(ISESE 2003) Rome, Italy. IEEE Computer Society, 2003.

[146] Xbox Live. www.xbox.com.

[147] Steven Xia, David Sun, Chengzheng Sun, David Chen, and Haifeng Shen.
Leveraging single-user applications for multi-user collaboration: the coword
approach. In CSCW ’04: Proceedings of the 2004 ACM conference on Com-
puter supported cooperative work, pages 162–171, New York, NY, USA, 2004.
ACM Press.

[148] M. Yokoo and K. Hirayama. Algorithms for distributed constraint satisfaction:
A review. Autonomous Agents and Multi-Agent Systems, 3(2):185–207, 2000.

[149] D.A. Young. X Window System: Programming and Applications with Xt,
OSF/Motif Edition. Prentice Hall, 1990. ISBN 0-13-49704-8.

216

Appendix A

Notation Summary for the Workspace Model

nodeperson

Components

Connectors

Portsreactor

actor

store

call
subscription
synchronization

call

subscription

synchronization

workspace

Connectors
component

local
remotelocal port

core notation

conceptual level

implementation level

message
broadcaster

concurrency control/
consistency
maintenance

cache mirror cache

channel
endpoint

transmitter receiver

nn channel

infrastructure components

217

n unique identifier

0 exactly zero

?

*
zero or one

zero or more

Cardinality

Identifiers

operation(A)A
Evolution Specification

Refinement Specification

infrastructure
component

meta-notation

+ one or more

Generic Elements

connector

port

component or
port

component

218

Appendix B

Definitions

Side-effect free. A call or message a on a component C is side-effect free iff for

any parameters p∗, request d, parameters q∗ and deterministic component D,

C.a(p); y=D.d(q) and y=D.d(q) result in y taking on the same value (assuming

the system is otherwise quiescent). The intuition is that C.a(p) only returns

values; it does not change any state in the system either directly or indirectly.

Side-effect free calls are referred to as requests. Side-effect bearing calls

with no return value are referred to as updates. Other calls are referred to

as request-updates. Side-effect free calls are by definition also referentially

transparent.

Passive/active. A component C is passive iff whenever the system is otherwise qui-

escent, C does not initiate communication; i.e., C does not make any calls

(section 4.2.3.2) and C does not send any messages. The intuition is that C

only reacts to communication performed by others; C does not initiate com-

munication; C does not have its own thread of control. Components that are

not passive are called active.

Deterministic/non-deterministic. A component C is deterministic iff whenever C is

in state s, and some call or message a(p∗) is applied to C, there is some unique

r returned by a and the component enters some unique state s ′. The intuition is

that the component does not consult any external sources of information, such

as random number generators, files whose values are non-deterministically

determined, the system clock, etc. Components that are not deterministic are

called non-deterministic. Active components are always non-deterministic.

Consistent. Two components are consistent at some time t if they meet some application-

specific definition of consistency. The strongest form of consistency (called

219

strong consistency) is observational equivalence, meaning that any method

called on either component would give the same result. (Consistency is there-

fore a notion that can be sensibly applied to deterministic components only.)

Weaker notions of consistency can be applied; e.g., weakly FIFO queues may

be considered to be consistent even if they do not contain the same contents.

Some definitions of consistency may therefore require knowledge of the past.

Two message streams are consistent if they meet some application-specific

definition of consistency. Strong consistency over message streams means

that the message stream traces contain identical messages in the same order.

Weaker forms of consistency may involve (for example) one message stream

collapsing messages into a shorter, semantically equivalent sequence, or mes-

sage streams differing in the order in which messages are announced.

