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ABSTRACT
Model checking has for years been advertised as a way of
ensuring the correctness of complex software systems. How-
ever, there exist surprisingly few critical studies of the appli-
cation of model checking to industrial-scale software systems
by people other than the model checker’s own authors. In
this paper we report our experience in applying the Spin
model checker to the validation of the failover protocols of a
commercial telecommunications system. While we conclude
that model checking is not yet ready for such applications,
we find that current research in the model checking commu-
nity is working to address the difficulties we encountered.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Check-
ing, Formal Methods; F.3.1 [Specifying and Verifying
and Reasoning about Programs]: Mechanical Verifica-
tion, Specification Techniques

General Terms
Verification

Keywords
Experience report, model checking, formal methods

1. INTRODUCTION
Ensuring the correctness of telecommunication applica-

tions can be challenging, due to their complexity and inher-
ent distribution and concurrency. In addition to traditional
techniques such as testing, model checking has been viewed
as a promising technique for validating the correctness of
complex telecommunications software. The model check-
ing approach involves creation of a mathematical model of
the application, specifying desirable properties of the sys-
tem using a temporal logic, and running a model checker to
automatically verify that the properties hold of the model.
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Model checking promises several advantages over other ap-
proaches. Unlike testing, it is comprehensive, covering all
possible execution sequences. Unlike traditional verification,
it is automatic, as the model checker requires no human in-
put. These features are particularly attractive for telecom-
munications applications in which problems of concurrency
and distribution make traditional testing challenging.

Over the last decades, model checking has made impres-
sive strides: it is now part of many undergraduate curricula
around the world; it is explained in many text books written
by experts in the field; it is implemented by many publically
available tools, some of which are even open source; it is em-
ployed not only in many research groups, but also in many
industrial settings, typically with the help of model checking
experts; and it is the topic of hundreds of research papers.
Despite these signs of increasing maturity, we note that:

• To the best of our knowledge, only a handful of studies
have been published providing third-party evaluation
of model checking on industrial scale systems. (Most
evaluation of model checkers has been performed by
the model checker’s authors, and is usually restricted
to toy applications.)

• Although it is difficult to assess the importance of
model checking for industrial software development in
general, it seems fair to say that large-scale industrial
use of model checking is still elusive. The reason ap-
pears to be that many techniques work under restric-
tive assumptions which are invalidated by modern, in-
dustrial software.

This paper intends to improve this situation. First, we ad-
dress the gap in the literature by providing a third-party
evaluation of the application of a popular model checker to
the analysis of the failover properties of a commercial web
conferencing system. Second, we list the main problems that
we encountered during our evaluation and give concrete sug-
gestions to the model checking research community. More
precisely, this paper reports on our work applying the SPIN
model checker [13] to the analysis of the failover algorithms
of WebArrow [11], a commercial web conferencing system.
Like all telecommunications systems, WebArrow has high
availability requirements, and therefore requires fast and re-
liable automatic repair when software, hardware and net-
work failures occur. WebArrow’s failover is implemented
via complex distributed algorithms, and therefore is a good
candidate for analysis via model checking.

The key results of this study were:
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Figure 1: The WebArrow electronic conferencing system

• We found there to be a significant gap between the
promises of model checking and the reality. Rather
than enjoying fully automated checking of properties
versus declarative system models, we battled problems
of tractability in the checker. Overcoming these prob-
lems required iterative removal of detail from the sys-
tem model and detailed knowledge of the algorithms
used by the model checker. Ultimately, we were not
sure that the version of the model that was checked
corresponded closely enough to the real system to al-
low us to be confident in its correctness.

• The time to create and check the models was incom-
patible with realities of time-to-market demands.

• The level of documentation produced by developers,
while sufficient for implementation, was not sufficient
for creation of formal models. This greatly added to
the effort of creating the models.

• In the end, only a handful of non-serious errors in the
failover algorithms were found by the model checking
technique.

The scarcity of independent evaluations in the software en-
gineering research community has been lamented before [22].
Moreover, the need for more careful empirical evaluation of
research results in formal analysis has also been identified
recently [6]. Apart from sharing our experiences, a goal of
this paper is to contribute to this trend by highlighting the
importance of evaluating tools on industrial code.

The paper is organized as follows. We first introduce the
WebArrow system and explain its failover protocols. We
then detail our method for applying model checking to the
analysis of failover in WebArrow. Finally, we present our re-
sults, and discuss how model checking might better support
the validation of telecommunications systems.

2. THE PROBLEM
WebArrow [11] is a modern web-based telecommunica-

tions tool, allowing remote participants to meet using voice

over IP, real-time collaborative document editing and tex-
tual chat. WebArrow operates as a standalone system, and
has also been integrated into conference calling systems based
on standard telephony. The WebArrow service is currently
deployed across North America, Japan and India.

Customers treat WebArrow like a telephone, and demand
similarly high availability of service. Therefore, a critical
part of WebArrow’s infrastructure is its support for detec-
tion and recovery from failure in computer hardware, soft-
ware and network infrastructure.

Figure 1 shows an example of a WebArrow meeting from
the point of view of one of its participants. In the main
window, the participant can view and interact with a CAD
application running on one of the other participant’s com-
puters. In a meeting control panel, the user sees an overview
of the activities of other participants in the meeting, such
as who is currently talking.

WebArrow meetings are scheduled via a web-based inter-
face. Participants receive an invitation by email, and can
join meetings by clicking on a link in that email without the
need to install any software in advance.

2.1 WebArrow Architecture
WebArrow is deployed as a distributed system (figure 2).

The system consists of two major components, with consid-
erable redundancy. A Meeting Management Server (MMS)
is responsible for scheduling meetings and arbitrating user
entry to meetings. A Conference Server is used to host run-
ning meetings.

When participants receive a meeting invitation, they click
on the included meeting URL to join the meeting. The URL
is processed by the Meeting Management Server, itself run-
ning as an application under Apache. The Meeting Manage-
ment Server selects a Conference Server to host the meeting,
and directs the participant’s client to connect to that server.

MMS servers are responsible for authentication of par-
ticipants, downloading the WebArrow client to the partici-
pant’s computer (via an ActiveX control), maintaining a list
of available conference servers, allocating meetings to con-
ference servers, and relocating meetings following failure of



Figure 2: WebArrow deployment architecture

conference servers.
Conference servers host meetings. Screen, voice and chat

data are sent from participants’ clients to the conference
server, where the data is mixed and sent to the participants.
Conference servers periodically send load information to the
MMS servers to support balanced allocation of meetings to
conference servers.

WebArrow is implemented using a collection of languages,
including C, C++, Perl, Java and JavaScript, running under
Windows clients with Windows and Linux servers.

2.2 Failover in WebArrow
The architecture shown in figure 2 is prone to several kinds

of failure. Any of the following components of the architec-
ture may fail:

• An MMS server

• A conference server (possibly hosting a set of meetings)

• A client (or the client’s network connection)

• A server in the database cluster

• The network connection between the conference server
and MMS servers.

WebArrow combines a number of facilities for detecting and
recovering from failures. Some of this technology is stan-
dard, available from third parties. The web-based MMS
servers are organized in a standard sever farm, using a third-
party load balancer to detect and decommission failed servers.
A third-party MySQL database cluster is inherently fault
tolerant.

Providing failover in clients and conference servers, how-
ever, requires complex, custom algorithms. Due to the dis-
tributed nature of WebArrow, each node has only partial
information about the state of the system, increasing the
difficulty of failure diagnosis and recovery. Each node in
the system (client, MMS server, conference server) requires
its own failover mechanisms, introducing the possibility of
unintended interactions between them.
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Figure 3: Activities of WebArrow client
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Figure 4: Activities of WebArrow conference server

For example, if a client loses its connection to the confer-
ence server, the problem may be that the conference server
has failed, or that there is a network outage between the
client and the conference server. Either kind of failure may
be short-lived or persistent. Figure 3 shows the operation of
the client, including how it handles failure. The client con-
nects to a MMS server, validates itself, and is directed to a
conference server. Once connected, the client enters a main
loop of reading/writing data from/to the conference server.
If the connection is lost, the client attempts to reestablish
it. If reconnection is unsuccessful, the client falls back to
requesting information from the MMS server, in hope that a
new conference server has been assigned to this meeting. In
this scenario, the client has no way of knowing whether the
network or the conference server is at fault, and therefore
must decide how to attempt to restore correct operation in
the absence of complete information.

Figure 4 shows the operation of the conference server.
Conference servers await connections from clients, validate
those connections with the MMS server, and enter a main
loop of reading/writing data from/to their clients. A sin-
gle conference server may host multiple meetings and sev-
eral hundred clients. Meanwhile, the conference server sends
load information to the MMS server. These load polls help
the MMS server in load-balancing a set of conference servers,
and also act as“alive”messages. If two load polls in a row are
missed, the MMS server assumes that the conference server
has failed, and re-allocates its meetings to other conference
servers. If a conference server is running but fails to send
two load polls in a row (due to network error), it knows that
the MMS server will consider it to have failed. To main-
tain consistency over the system, the conference server must
then act as if it has indeed failed, and direct its clients to
reconnect to the MMS server.

It took approximately 12 staff-months at Namzak Labs to
design and implement the conference server’s failover mech-
anisms. Despite the fact that the failover code had been
deployed in production and was apparently working, its au-

thors were not completely convinced of its correctness, largely
because it is difficult to use traditional testing to fully exer-
cise all possible paths through a distributed system of this
complexity. We therefore deemed it an interesting experi-
ment to use formal modeling and model-checking to verify
the correctness of WebArrow’s failover mechanisms.

The use of formal methods could not be considered a great
success. More time was required to carry out the formal
analysis than had been invested in developing the failover
mechanisms themselves, and no serious errors were found.
Such a negative result would be a success if we could have
strongly concluded that WebArrow’s algorithms were cor-
rect. However, to make make model checking tractable, our
models were so simplified that we remain unsure whether
serious errors remain in WebArrow’s failover algorithms.

As we will see in section 4, we are able to draw several
conclusions about the root causes of our difficulties, which
we hope will provide useful direction to those carrying out
research in model checking techniques. Happily, many of our
conclusions validate the current directions in model checking
research.

We now present the method used in formally analyzing
WebArrow’s failover mechanisms, following which we present
our results and analysis.

3. METHOD
In this section, we summarize our experimental metho-

dology, sketching the sequence of steps followed during the
experiment. We outline some of the properties we checked
during our analysis. Finally, we describe the experimental
platform.

3.1 Experimental Methodology
We used the Spin model checker for our work, because it

is known as a mature, well-documented tool and as one of
the most heavily optimized model checkers available. The
Promela language seemed to be a good fit with our intent to
model WebArrow mainly at the level of inter-process mes-
sages. Finally, more recent and “modern” approaches sup-
porting, e.g., model extraction or model checking of C or
Java code did not appear to be as well documented [14],
or required the entire system to be implemented in a single
language or run on a single node.

We broke our modeling and analysis effort into the follow-
ing eight steps:

1. Summarize failover protocol with UML activity dia-
grams: With the help of technical documents and in-
terviews with the developers of WebArrow, the failover
protocols were summarized using UML activity dia-
grams. Drafts of the diagrams were refined based on
discussions with developers until the developers as-
sured us of their correctness and adequateness. The
activity diagrams for WebArrow clients and conference
servers are shown in figures 3 and 4, respectively.

2. Build Promela model: We built a Promela model from
the activity diagrams. The behaviour of the model
was checked using Spin’s random and interactive sim-
ulation capabilities. Whenever the simulation revealed
a modeling error, the Promela model was corrected.
Whenever the simulation revealed a misunderstanding
of the failover protocol, we returned to Step 1 and
modified the activity diagrams. It is also possible for



the simulation step to reveal a defect in the original
system; however, this did not happen in our experi-
ments.

3. Check for deadlock: The Promela model was checked
for deadlock using Spin. If a deadlock was found, the
trace was inspected to locate the defect in the Promela
code. Then, a change to fix the defect was made either
to the activity diagram or the Promela model.

4. Express properties in LTL: Desirable properties of the
failover protocol were collected and expressed in Linear
Temporal Logic (LTL). Quite often, the introduction
of auxiliary variables was necessary to make certain
aspects of the execution observable.

5. Verify LTL properties: We used the Spin model checker
to determine whether the Promela model satisfied the
LTL properties.

6. Optimize and simplify the model: Often, the verifica-
tion of our most detailed model could not be completed
due to state space explosion. To address this problem,
we applied optimizations to the Promela code (e.g., re-
stricting variable types and using auxiliary variables)
and to simplify the model in various ways (e.g., by re-
stricting number of clients, or the types of failures).
We thus ended up with a sequence of four models in
which the first model was the most simplified and the
last model was the most detailed. The simplifications
were chosen to ensure that an analysis of the simplified
model was sound with respect to property violations:
if a simplified model violates a property, then the un-
simplified model does, too. Note, however, that we did
not prove this relationship formally. Verification of a
given LTL property would start with the most simpli-
fied model; if an exhaustive analysis of that model was
possible, we attempted to analyse the next model in
the sequence.

7. Debug model using counter-examples: If Spin found a
property to be violated, we inspected the counter ex-
ample. If the property was expected to hold, or the
counter example revealed an additional, unexpected
violation, we had to correct the Promela code, forc-
ing us to return to Step 2. On occasion, the counter
examples turned out to be “spurious” due to, for in-
stance, the incorrect update of auxiliary variables or
“unexpected” features of Promela such as the fact that
no fairness constraint is imposed on the selection of
guards in do-loops.

8. Record results: The analysis result was recorded.

3.2 Properties
In cooperation with WebArrow’s developers, we first col-

lected system requirements informally. We then attempted
to formalize as many of these requirements as possible in
Linear Temporal Logic (LTL). This formalization was sub-
stantially complicated by the fact that components in a dis-
tributed system typically only have partial knowledge of the
global state, and that the transmission of a message may
fail or be delayed arbitrarily. Consequently, in the absence
of a global clock, even formally specifying what it means for
the global state to be consistent is difficult. Moreover, the

reestablishment of a consistent global state may be delayed
arbitrarily and possibly indefinitely. As mentioned before,
the formalization often required the introduction of auxil-
iary variables, for example, to indicate that a specific line of
code is about to be executed.

Our formalization resulted in 12 formal properties, loosely
grouped into three categories: (1) properties formulated from
the perspective of a client, (2) properties formulated from
the perspective of the MMS, and (3) properties formulated
from a global perspective. Sample properties for each cate-
gory follow:

1. Sample properties from perspective of client:

• “Once a client receives an authorization, it always
eventually enters meeting” (Property 2)

• “Every client is always connected to at most one
conference server” (Property 10)

2. Sample property from perspective of MMS:

• “Every client is in at most one meeting at a time”
(Property 4)

3. Sample property from global perspective:

• “The system never deadlocks” (Property 0)

• “When a client leaves a meeting, the MMS will
eventually update its records accordingly” (Prop-
erty 5)

• “If a client has left a meeting, the MMS server
will eventually believe that the client is not in the
meeting” (Property 6)

Not all properties are applicable to all models; for instance,
Property 10 is vacuous in models with fewer than two con-
ference servers. Moreover, not all properties were expected
to be always satisfied; that is, for some properties the anal-
ysis was expected to produce specific counter examples. In
these cases, the purpose of the analysis was to ensure that
the system exhibited exactly the expected counter examples
and not any others. Consider, for instance, Property 2. In
models allowing client failure, this property will be violated
in executions during which a client fails after it has received
an authorization, but before it enters a meeting.

3.3 Model Simplifications and Promela Opti-
mizations

The judicious use of optimizations is often critical to the
successful use of model checking. A balance between detail
and tractability must be found, typically through a lengthy,
tedious, and unscientific process of trial-and-error. And de-
spite all efforts, significant resources may still be required.
Our experiment supports this observation: we tried many,
many approaches to abstracting our model and optimizing
our analyses. Despite this, our most comprehensive model
still is relatively small and substantially simplified, and its
analysis required over 2.5GB of memory and about 25 hours
to run.

3.4 Model simplifications
To establish a base line, we started by considering a sys-

tem without failure. This led to models that we named M1,
M2, and M3. Besides the MMS, M1 had one client and one
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Figure 5: Model M4 of the WebArrow client

conference server. M2 had 1 client and 2 conference servers
and M3 had 2 clients and 2 conference servers. Our ini-
tial attempts to include failure into model M3 quickly led
to intractable execution. After many attempts to balance
detail and tractability, we arrived at model M4. The con-
ference server part of M4 is shown in figure 5. As can be
seen, the steps of establishing sockets (Step 4 in figure 3)
and authorization (Steps 5 to 7 in figure 3) not only are
kept failure-free, but have been removed entirely. After dis-
cussions with WebArrow developers, we decided that these
steps are less relevant to the failover protocol than those
steps which are critical to interactions between nodes and
removed them to reduce the state space. Additionally, the
corresponding steps in the conference server, such as Steps 2
to 6 in Figure 4, were also removed. Model M4 comprised
approximately 700 lines of Promela code (including com-
ments).

3.5 Spin optimizations
Apart from the built-in optimizations offered by Spin (e.g.,

collapse compression, POR, minimization, bitstate hashing),
we had to apply the following “custom” optimizations:

• Implementation of channels: Our initial decision to
implement communication in WebArrow through sep-
arate processes which encapsulate the implementation
of failure, quickly led to intractable models. Instead,
standard Promela channels of capacity 1 were used and
failure was indicated through a distinguished value.

• Manual statement merging: Whenever the intermedi-
ate states passed through the execution of a sequence
of statements in a process was unobservable by its en-
vironment, it is safe to execute that sequence in one
atomic step. This applies, for instance, to updates to
process-local variables (an optimization which Spin al-
ready performs automatically), but in some situations
also to global variables.

• Minimize variable types: To allow for a maximally
compact state representation, it was often necessary

to minimize the types of variables (e.g., use “bool” in-
stead of “byte”).

3.6 Experimental Platform
The verification was performed using version 4.2.6 of the

Spin model checker. We used a Sun Fire V65X Linux ma-
chine with four 3.06GHz Xeon CPUs and 5GB memory, and
a Windows XP Pentium 4 machine with a 3.2 GHz CPU and
2.5GB memory. The small machine was used to execute pre-
liminary tests while full verifications were attempted on the
large machine.

4. RESULTS AND ANALYSIS
The analysis only produced three previously unknown is-

sues. All of these give rise to temporarily degraded usabil-
ity rather than malfunction, and we thus consider them
“non-serious”. In two cases, the root cause was an “oscil-
lating” network connection, that is, a network connection
that rapidly and repeatedly changes between being up and
down. In the other case, a race condition led to temporary
inconsistency.

4.1 Oscillating network connections
Our Spin analysis found a counter example to Property 5.

In this counter example, there is an oscillating network con-
nection between a client and the conference server which is
hosting a meeting. First, the client loses the connection to
the conference server. After trying to connect to the confer-
ence server for a fixed number of times, the client assumes
that the conference server has failed. The client then con-
nects to the MMS server to ask for connection information.
However, since the connection between the conference server
and the MMS server works well, the MMS server sends a
message to the client and confirms that the meeting is still
running on that conference server. Meanwhile, the connec-
tion between the client and the conference server recovers
and the client successfully connects to the conference server.
However, as the connection oscillates, the sequence above
repeats. This counter example is depicted in figure 6. The
counter example found for Property 6 is similar. Here, the
network connection between the conference server and the
MMS oscillates.

We find that in case of these kinds of oscillating network
connections, WebArrow’s behavior is correct, but may lead
to poor usability. While these oscillating connections are
certainly possible, they are unlikely in practise, particularly
because the conference and MMS servers are typically co-
located.

4.2 Temporary inconsistency
A third scenario our analysis discovered results in a state

inconsistency between the client and the MMS. First, a client
leaves a meeting and sends a quit message to the conference
server. However, the conference server’s load poll does not
arrive at the MMS. Consequently, the MMS server still be-
lieves the client is in the meeting. If the client decides to join
the meeting again, it will receive an error indicating that it
is in the meeting now. However, this state inconsistency
is temporary, because as soon as the poll arrives from the
conference server, the MMS becomes up to date. Moreover,
the conditions under which this problem arises are rare, and
since the failover protocols resolve the problem in time, it is
also not considered serious.



Figure 6: Sequence diagram of the counter example
for Property 5 found by Spin

4.3 What the analysis told us about the use of
model checking

Our use of Spin to model and check WebArrow’s failover
protocols reveals several issues in the state of the art in
model checking.

4.3.1 Big mismatch between development and anal-
ysis models

While the WebArrow developers did use some models dur-
ing development, the level of detail required for our Spin
analysis vastly exceeded that of the available models. This
was particularly true when we attempted to determine sys-
tem properties (as described in section 3.2): WebArrow’s
developers clearly understood what it meant for the system
to behave correctly, but had never attempted to encode this
behaviour in terms of declarative properties.

4.3.2 Big gap between promise of model checking
and reality

Model checking is sometimes described as a“push-button”
technology that in cases where an exhaustive analysis is pos-
sible, provides“complete certainty”. Others have already ob-
served that this is hardly an adequate description of model
checking [9]. Our experience supports that observation.

• “push-button”: The successful use of model checking
on medium- to large-sized systems requires substan-
tial expertise about the system to be analyzed and
about the model checker. In our case, many face-to-
face interactions were necessary to “extract” the rele-
vant expertise from the WebArrow developers. More-
over, knowledge about, e.g., the algorithms and opti-
mizations underlying Spin was necessary to be able to
use Spin properly and to be able to develop the nec-
essary intuition about which aspects of a model cause
state explosion and to find ways to avoid them without
simplifying the model unnecessarily.

• “certainty”: As described in section 3, we were forced
to significantly simplify the model. As a result, the ex-

act relationship between the model and the real code
became increasingly unclear. Arguments for the sound-
ness of a certain simplification often were very infor-
mal. In the end, we felt we did not know exactly any-
more what an analysis result meant for the original
WebArrow system and that we had thus lost one of the
central characteristics of a sound, formal analysis [6].
For instance, we cannot rule out that a positive analy-
sis result (i.e., one that is exhaustive, but does not find
any property violations), was a “false positive” (i.e.,
the original system does violate the property, while
the analyzed model does not). Examples of some of
our simplifications that may lead to these false posi-
tives include: restricting the number of clients, limit-
ing the channel capacity to one, and removing certain
kinds of failure in model M4. Moreover, false negatives
can always be introduced through bugs in the model
(e.g., the incorrect update of an auxiliary variable).
While the potential for false negatives can be reduced
by thoroughly analyzing the counter examples with the
help of the developers, they also cannot be completely
ruled out.

4.3.3 Resources exceed tolerance of average indus-
trial software developers

The work was carried out by an MSc student under close
supervision of two faculty members, one of whom has de-
voted his career to formal methods. Overall, the time to
learn Promela and Spin, to extract the knowledge neces-
sary knowledge from WebArrow developers, and to create,
simplify and analyze the models exceeded one person-year.
Since according to the WebArrow developers, the realization
of WebArrow’s failover mechanisms only required about one
person-year, attempting to incorporate our analyses into the
development cycle would have resulted in an unacceptable
delay.

The most time-intensive activities in our experiment in-
cluded the construction of the models due to the many face-
to-face meetings with the developers that proved necessary,
and the trial and error process necessary to find a detailed,
yet tractable model. Moreover, the verification runs were
very resource-intensive. For instance, the analyses for model
M4 required about 2.7GB RAM and approximately 25 hours.

Shorter activities that nonetheless contributed substan-
tially to the overall time required include: setting up the
analysis of certain properties by manually adding necessary
auxiliary variables to the model and removing unnecessary
ones; the use of user-guided simulation, because input of
user choices in XSpin must be performed manually which
is tedious and error-prone; and the analysis of counter ex-
amples, because the generated counter-examples were often
extremely long.

4.4 Lessons learned for model checking com-
munity

The lessons identified in the previous section present a
sobering view of the practicality of using model checking for
telecommunications applications such as WebArrow, that
is, applications involving distribution, multiple implemen-
tation languages, and complex algorithmic interaction be-
tween nodes. It is important to note that this experiment
was in a sense modest: we restricted our analysis to WebAr-
row’s failover algorithms only, a small part of its complete



functionality.
We are able, however, to draw useful directions from this

experiment that we hope will be helpful to researchers in
the model checking community. Several of our conclusions
in fact validate current research directions in the field.

4.4.1 Work on independent evaluations critical
One of the main things that we learned during this work

is that, to the best of our knowledge, not very many studies
have been published in which model checking was used for
the analysis of industrial-strength software systems and in
which none of the authors of the study was intimately fa-
miliar with the model checker used (e.g., because they have
contributed to its development). There are some notable ex-
ceptions [21, 2, 16, 15], which we will discuss in section 5. In
other words, there is severe a lack of independent evaluation
of the use of model checking on industrial software. While
this lack appears to be part of a more general phenomenon
affecting much of software engineering research [22], it needs
attention nonetheless, because independent evaluations can
contribute substantially to the successful transfer of research
into practice, by helping to identify new research issues wor-
thy of attention. For instance, we find that more research
needs to be done to facilitate and streamline the use of model
checking and to allow non-experts to use it effectively and
within reasonable resource limits. Moreover, as discussed in
more detail below, model checking currently does not seem
equipped to handle the heterogeneity of modern software
applications.

4.4.2 Work on tools critical
Efforts should be made to increase usability of checking

tools. For instance, more of the complexity of model check-
ing should be hidden behind an interface. Spin already
offers many useful features (e.g., both GUI-operation and
command-line operation are possible allowing for, e.g., the
graphical display of counter examples and batch job process-
ing), but more could be done.

For instance, verification tool builders might learn from
the current trend to “adaptive” and “autonomic” comput-
ing in DBMSs, and devise ways to automatically determine
optimal choices for model checker settings.

Furthermore, it might help to allow a model checker to
be used in different modes according to the expertise of its
user (e.g., a “novice mode” with simplified interaction using
default or heuristic values, a “superuser mode” in which the
user can see and customize every aspect of the behaviour of
the tool, and an “intermediate mode” which strikes a bal-
ance).

Finally, better support for repeated, large-scale experi-
mentation would be useful. For instance, the execution of
many analyses in which only a few parameters change each
time could be simplified through the use of “session files”
which package all parameter and user settings. Also, pro-
viding the input required for user-guided simulation could
be facilitated through, e.g., the graphical animation and se-
lection of choices.

4.4.3 Reduce “semantic gap” between program and
model

As mentioned in section 4.3, the gap between the original
WebArrow system and the model M4 is large, to the point
that we fear that errors in WebArrow’s protocols may have

been abstracted way. Our inability to achieve comprehensive
analyses of our larger models made this necessary.

As a response, at least two research directions seem impor-
tant: first, the capabilities for automatic model extraction,
optimization, and traceability could be improved. Research
work that is pursuing this direction include the Bandera
tool [5] which aims at model checking Java code through
an automatic translation to finite state machines and the
FeaVer tool [14] which allows for an automatic translation
of C code to Promela via a user-supplied translation table.
FeaVer allows counter examples to be presented in terms of
the original, untranslated model and thus supports trace-
ability; Bandera currently does not. Both approaches also
feature automatic optimization techniques. However, as we
have seen during our work, there clearly is the need for more.
It should be noted, though, that automatically extracted
models will typically be larger than those created by hand,
exacerbating issues of tractability.

Second, if more incomplete analyses are acceptable, more
detailed models could be used. Recent work on software
model checking [8, 20, 17] pursues this direction by attempt-
ing to interpret the code as the model. Here, the checker
turns into a sophisticated testing tool able to show incorrect-
ness by finding bugs, but often unable to show correctness
since searches remain incomplete. Maximizing the coverage
of incomplete searches and their ability to find bugs are im-
portant research goals. Recent work on, e.g., improving ran-
dom testing by combining it with static analysis, symbolic
execution, and constraint solving appears promising [10, 18].

4.4.4 Deal with heterogeneity of modern applications
WebArrow is typical of telecommunications applications

in that it runs as a distributed system and is composed of
components written in a variety of programming languages.
While the research we described above is using automated
model extraction to help close the “semantic gap” between
code and model, none of the existing tools can deal with
these realities of multi-platform, multi-node environments.
Considerable research is required to address this problem.

4.4.5 Address mismatch between models used during
development those required for model check-
ing

As we discussed in section 3, the documentation and mod-
els of WebArrow available to us at the outset of the project
were inadequate for building formal models in Spin. Devel-
opers document their systems to a level that allows imple-
mentation and testing. In our experience, this documenta-
tion did not have sufficient detail to allow a formal model to
be constructed.

This was particularly the case when expressing properties
of the system, where developers were not used to thinking of
properties in terms of global invariants. If model checking is
going to be practically integrated into the software life cycles
of telecommunications applications, considerable thought is
required as to what documentation should be created, at
what point in the process, and by whom.

We conclude that our experiment has shown useful direc-
tions for further research in the model checking community.
We are happy that our experience validates some ongoing
research directions, particularly the automated extraction
of models from code. Our experience highlights other areas
that are receiving less attention, such as the ability to deal



with distribution (and its inherent partial knowledge) and
systems built using multiple languages.

5. RELATED WORK
The research literature contains many papers document-

ing the successful use of model checking in general (includ-
ing, e.g. [4, 12, 3]). However, it is considerably harder to find
studies in which model checking was applied to industrial-
strength software systems and where none of the authors
of the study was a developer of the model checker being
used. We have been able to find only four exceptions [21,
2, 16, 15]. In all these cases, quite detailed knowledge of
the system was required to be able to extract sufficiently
detailed, yet tractable models. All papers report that pre-
viously unknown bugs were found and are quite positive
about the use of model checking as an analysis technique
for industrial-strength software. Although the papers do not
contain enough information about, e.g., the resources used
and the background of the participants, it appears quite
likely that the total effort required would have overwhelmed
any average industrial software development project. In
other words, while these papers do provide evidence for the
usefulness of model checking for industrial software devel-
opment, they do not, in our opinion, show that large-scale
adoption of model checking in industry is currently feasible.

To see how far removed software model checking is from
that goal, it is instructive to look at some of the more recent
successful uses of model checking on industrial-size code such
as the PathStar project [14], the DEOS project [19], the
SLAM project [1], and the TCP/IP project [7]. For each
project, we will attempt to convey the effort involved by
briefly sketching how two of the most critical tasks in model
checking were dealt with: model extraction and state space
explosion. For details on the projects themselves, the reader
is referred to the cited papers.

PathStar: In the PathStar project, Lucent’s PathStar
access server was analyzed with respect to feature require-
ments. The tool built for this purpose consisted of an edi-
tor for the graphical input of temporal properties, a user-
supplied mapping table for the translation of C code to
PROMELA code, a dedicated multi-server infrastructure for
concurrent analysis, and a web-based interface for moni-
toring and controlling of the verification runs which were
performed by Spin. “Proof approximation techniques” were
used to generate verification runs of varying thoroughness.
The table-driven translation was complemented by the man-
ual replacement of expressions by, e.g., non-deterministic
choice among a set of values guided by the “relevance” of
the data. Counter examples were analyzed manually and
the verification was monitored for anomalous behaviour to
detect vacuous and thus buggy properties.

DEOS: The goal of the DEOS project was to analyze the
DEOS real-time scheduling kernel developed by Honeywell
in C++. Initially, the Spin model checker was used on a
manually constructed Promela model, but later a source-
level model checker for Java called Java Pathfinder [20] was
built and applied to a manual reimplementation of DEOS in
Java, because the manual C++-to-Promela translation was
deemed “not practical”. Abstractions of the real-time and
object-oriented aspects of the system were developed and
applied manually. Moreover, both manual and automatic
environment generation processes using LTL properties were

developed. Due to overapproximation, the actual verifica-
tion process required the manual analysis of any counter ex-
amples and a corresponding manual refinement of the model
when the counter example was found to be spurious.

SLAM: The goal of the Slam project was to analyze Win-
dows driver code written in C with respect to a limited set
of “interface usage rules”. Slam managed to automate the
abstract-check-refine loop also used in the DEOS and the
PathStar projects completely. A model was extracted from
the code using predicate abstraction. After a model check-
ing run, counter examples were analyzed for feasibility. New
predicates for the refinement of the model were then “dis-
covered” from infeasible counter examples using a heuristic
process. All these steps were carried out automatically. The
Slam technology is now offered to Windows device driver
developers as SDV (Static Driver Verifier).

TCP/IP: In the TCP/IP project, the Linux TCP/IP
protocol implementation was analyzed. A new source-level
model checker CMC was built alleviating the model extrac-
tion problem [17]. However, the standard attempt to sep-
arate the system from its environment by discovering the
interface and “stubbing” out calls to the environment appro-
priately failed “after spending months”. Instead, an abstrac-
tion of the entire Linux kernel was fed through the model
checker. Among the search optimizations developed by the
team to make this feasible were heuristics to steer the search
towards more interesting behaviours. More precisely, tran-
sitions that led to states that were very different from the
previous state were deemed more interesting and examined
first.

All four projects are impressive in their goals and ac-
complishments. However, we must also conclude that all
consumed large amounts of resources, required detailed do-
main knowledge of the system to be analyzed (often includ-
ing access to the system’s developers), and enough exper-
tise in model checking and program analysis to be able to
solve open research problems such as the development of
new search heuristics and abstractions and understanding
their sometimes extremely subtle impact on, e.g., perfor-
mance and soundness. In light of this, we do not share the
optimism expressed by members of the SLAM team at the
beginning of 2004 [1]:

“Beyond SLAM and SDV, we predict that in the
next five years we will see partial specifications
and associated checking tools widely used within
the software industry.”

Much more work is needed, e.g., to bring the ideas devel-
oped above into the mainstream and to encapsulate them in
usable tools of sufficient generality, before analyses such as
these can become routine industrial practise.

6. CONCLUSION
This paper has reported on our experience in using the

Spin model checker to validate the correctness of the failover
mechanisms in the WebArrow electronic conferencing sys-
tem. Our conclusion is that model checking technology is
not yet sufficiently mature for use in the development of
telecommunications systems such as WebArrow. The cen-
tral problems were the difficulty of creating models which
could be validated with a tractable set of resources, the se-
mantic gap between the models we were able to validate



and the code implementing those models, the difficulty of
creating models of systems involving distribution and multi-
ple implementation technologies, and the time and expertise
required to perform model checking.

These issues have to some extent already been identified
within the model checking community, and ongoing research
is attempting to address them. Our experience therefore
helps confirm the direction of current research, while em-
phasizing areas that are currently not receiving attention in
the research community.
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