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Abstract. Both architecture recovery and architecture evaluation play
an important role in the area of software reverse-engineering. In this pa-
per, we propose and evaluate a framework for incremental and iterative
application of automated architecture recovery (using SWAG Kit) and
architecture analysis (using SAAM.) We conclude that SWAG Kit helps
in generating a low-level architecture that forms the basis of analysis,
while SAAM helps in deriving from this a deeply understood concep-
tual architecture. The process is iterative, where SAAM analysis helps
refine the parameters fed to SWAG Kit, in turn leading to a superior
architecture for further analysis. We have applied this process to the
extraction of the architectures of three open source compression tools,
and we report on the strengths and weaknesses of the approach that this
case study exposed. Over all, we conclude that the framework allowed us
to understand the software architectures more deeply than would have
been possible with the software architecture recovery process alone.

Keywords: Software Architecture Recovery, SAAM, SWAG Kit, Iter-
ative Framework, Evaluation.

1 Introduction

Legacy software systems often lack adequate architectural documentation. When
present at all, architectural documentation is often inconsistent with the current
state of the system [22,6]. Lack of architectural documentation can make it dif-
ficult to bring new developers into the project or to methodically analyze the
effect of proposed architectural changes. To address this problem, numerous re-
searchers have proposed the use of automated tools to recover the architecture
of a system from its source code [6,19,14]. Architecture recovery tools such as
Rigi [27], Shrimp [29], SWAG Kit [30] and Dali [17] automate parts of the pro-
cess, requiring human guidance to create documentation of the architecture of
software systems.

Despite decades of research and considerable progress in the development of
such tools, they have yet to obtain wide-spread industrial adoption. In this pa-
per, we argue that the quality of software architectural recovery can be improved
by applying systematic analysis to the architectures generated by recovery tools.
Architectural analysis helps identify the questions that we wish our description of
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an architecture to answer, in terms of non-functional requirements such as mod-
ifiability, security, usability and availability [1,3,7]. In this paper, we present a
framework for iteratively applying architectural recovery and architectural anal-
ysis. We present our experience in applying this method to the recovery of the
architectures of three open-source compression toolkits. To our knowledge, this
is the first experience report directly reporting on the benefits and limitations
of combining these two techniques.

In our study, we examine whether value is added to the process of archi-
tectural recovery by using an architecture evaluation method in addition to a
recovery tool. I.e., we address the question of wheher an architectural analysis
helps provide a deeper understanding of the architecture in the recovery process,
and whether it helps obtain a more accurate view of the architecture.

To help evaluate these questions, we have developed a framework that itera-
tively combines the SWAG Kit architecture recovery tool [30] with the SAAM
architecture evaluation method SAAM [7,16]. In this framework, a recovery tool
is first used to obtain a low-level architectural representation from the system’s
source. An architecture evaluation method is then applied to the extracted sys-
tem representation. The automated recovery and analysis steps are iteratively
applied until an acceptable architectural description is obtained.

We have applied this method to three open source compression applications/
libraries: ZLib [32], ZDelta [31] and GZip [15]. We applied SWAG Kit and SAAM
to each application using the iterative framework. Through this, we are able to
evaluate the benefits and weaknesses of the approach.

From the case study, we have learned several interesting lessons. We found
that software architecture recovery is weak at identifying subsystem structures.
In our experience, automatic decomposition of an architecture into subsystems
did not contain the information a programmer needs to answer maintenance
questions. E.g., the subsystem structure generated using SWAG Kit for ZDelta
failed to identify its encryption/decryption units. SAAM helps in refining sub-
system structure by helping to identify the questions that the architecture must
answer. For example, maintenance scenarios quickly identified the importance of
encryption/decryption in ZDelta, identifying the need to refactor the subsystem
decomposition.

We found that SWAG Kit is limited to producing a static architectural view
comprising components and connectors. SAAM evaluation requires a deeper un-
derstanding of how architectural components collaborate to accomplish a spe-
cific task suggested by SAAM’s scenarios. Both of these approaches benefited
from the iterative application of SWAG Kit and SAAM; as understanding of the
architecture increased via analysis, it was possible to improve the architecture
generated by SWAG Kit, which in turn resulted in improvements in the analysis.

Our experience shows that this iterative method is tractable for modestly sized
systems. The three compression applications to which we applied the method
were each approximately 10,000 lines of code in length. It took about one person-
week per application to apply the method and extract an architecture. When
scaling the approach to larger systems, we believe that the required time will vary
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based on the architecture recovery tool and its browsing facilities, the domain
of the target application, the source code structure, the quality of comments in
the source code and the availability of good documentation.

Our experience shows that the architecture recovery team and the architecture
evaluation team should work closely together (or even be the same team), since
there is a tight and iterative interaction between the architecture recovery tool
and the evaluation process.

There are some limitations to this combined approach. For example, it was
difficult to define a terminating point for the iterative process. Also, it was
challenging to define appropriate scenarios for the evaluation process; if wrong
scenarios are chosen, the final architecture may remain unsuitable for future
analysis tasks. On balance, we conclude that despite these limitations, by itera-
tively applying architectural recovery and analysis, it is possible to gain a strong
understanding of a software architecture with modest time investment.

The organization of the paper is as follows. In section 2, we review other
techniques combining architectural recovery and evaluation. Section 3 explains
how SWAG Kit and SAAM can be combined to extract a software architecture.
In section 4, we illustrate the lessons that we learned from our case study, in
which we applied our method to extract the architectures of ZLib, ZDelta and
GZip. Section 5 concludes the paper.

2 Related Work

While there is significant literature on software architectural evaluation [16,10,8]
(for a comprehensive summary of all architectural evaluation methods see our
technical report [28]), little attention has been paid to its methodical application
to architecture recovery. Some methods propose the combination of architecture
recovery and architectural evaluation, but these approaches are purely sequential.

Lutz and Gannod [19], for example, have discussed the architectural anal-
ysis of a software product-line using a three-phase approach. The phases are
software architecture recovery, scenario-based assessment of the extracted ar-
chitecture and model checking of safety-critical behaviors. In contrast to our
iterative approach, Lutz and Gannod use a purely forward approach. The soft-
ware architecture is manually recovered from the available information and code
base, and is compared to an existing software architecture using a scenario-based
method. In this approach, the evaluation method plays no role in the recovery
process.

A similar approach has been proposed by Bowman et al. [6]. This technique is
based on dividing the software into subsystems based on its ownership architec-
ture. The ownership architectures are then compared with existing conceptual
architectures. Their study shows that ownership architecture is a good predictor
of concrete architecture and is closely correlated to the conceptual architecture.

In addition to scenario-based approaches, some metrics-based evaluation meth-
ods have been applied to evaluating extracted software architectures. Again, in
contrast to our iterative approach, these approaches are incremental. For example,
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Medvidovic et al. [21] have quantitatively and qualitatively evaluated the Focus
architectural recovery approach by extracting and validating the two middleware
intensive systems: OODT [18] and the Globus Toolkit [12].

Guo et al. [14] have proposed a semi-automated architecture reconstruction
method. This method uses patterns to guide users in achitectural recovery. This
work is similar to ours in that it iteratively applies an architecture recovery
tool (the Dali Workbench [17]) and an architecture evaluation technique. Little
feedback is provided on the success of this iterative approach; the focus of Guo
et al.’s approach is on evaluating the pattern matching approach.

We conclude, therefore, that there is room for study of the effectiveness of iter-
ative application of automated architectural extraction and architecture analysis
to the task of software architectural recovery.

3 Framework

In this section, we describe our framework for recovering the software architec-
ture of legacy systems. We first explain how SWAG Kit supports automated
extraction of software architectures from source code, and then describe how
SAAM is used to evaluate the resulting software architecture. We then explain
how these two can be applied together to recover meaningful architecture of
legacy systems. In section 4, we report on our experience applying this framework
to the recovery of the architectures of three open-source compression libraries.

3.1 Automated Software Architecture Extraction

Two types of software architectures are useful for understanding a complex soft-
ware system: conceptual and concrete. A conceptual architecture provides an
abstract view of the system by hiding its implementation details [3]. A concrete
architecture shows the system as implemented. In this paper, we focus on re-
covering the conceptual architecture, as it serves our purpose of understanding
the components and their relationships of the implemented system. In order to
obtain a conceptual architecture, we use an architecture recovery tool to obtain
a concrete architecture. This concrete architecture is then evaluated, abstracted
and further refined into a conceptual architecture.

Architecture Recovery Steps: The general approach of recovering a software
architecture consists of the following steps [26]:

1. Determine the low-level system representation (concrete architecture) by
applying the architecture recovery tool on the source code of the target
applications.

2. Identify the architectural elements/components by combining domain knowl-
edge, design documents and the extracted low-level system representation.

3. Identify the relationships between the architectural elements to obtain a high
level architectural representation of the system.
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In the first step of the architectural recovery, we use SWAG Kit [30] to auto-
matically extract the low-level system representation from the source code. We
chose SWAG Kit because it is a mature toolkit which can be used for extract-
ing, abstracting and exploring software architectures. This tool automatically
extracts architectures from calls information in C or C++ source. SWAG Kit
provides the LSEdit editor for visualizing and refining the architecture.

3.2 Software Architecture Analysis

The second major part of our framework is software architectural analysis. We
use the Software Architecture Analysis Method (SAAM), as it is a widely-studied
scenario-based method, and has been applied to numerous industrial problems.

Users of SAAM first identify the quality attributes of most importance to
their application domain. They then elicit scenarios identifying plausible tasks
involving the architecture (e.g., modification scenarios, or security attack sce-
narios.) After that, SAAM analysts determine the degree to which the software
architecture has support for those scenarios. Analysts identify a list of changes
that the scenarios require and provide necessary guidelines for addressing those
changes in the software architecture.

3.3 The Combined Approach

Our combination of automated software architecture extraction and architectural
analysis is incremental and iterative. The output of the architecture recovery tool
is used as the input to the analysis method, and the analysis results are used to
improve the extracted software architecture. Our combined framework is shown
in Fig. 1. In the following, we discuss how SWAG Kit can be combined with
SAAM using an incremental and iterative approach.

We automatically obtain a low-level system representation using SWAG Kit.
The identification of architectural elements and derivation of a conceptual archi-
tecture is done manually. This manual analysis draws from domain knowledge,
design documents, source code and source code comments; together, these form
architecturally significant concepts. The overhead of this manual analysis can be
significantly reduced if a reference architecture is readily available for the domain
of interest [26,13,9].

Architecturally significant concepts, low-level system representation (from the
recovery tool), and the reference architecture (if available) are then analyzed to
obtain the subsystem structure and eventually, an initial version of the extracted
architecture.

We use SAAM to identify shortcomings in the extracted architecture by ex-
amining the impact of scenarios on the architecture. SAAM helps find solutions
to these shortcomings. This information is fed back to the recovery process.
Concretely with SWAG Kit, this means manually modifying the inputs to the
LSEdit tool that is used to view and refine archtictures.

Since the initial version of the software architecture is extracted using a tool,
the architecture extraction team might focus too heavily on the tool output
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Fig. 1. The framework for combining architecture recovery tool and SAAM

when deriving a high level system representation. For example, the extraction
team may fail to correctly identify the attributes that are most important to the
application domain, the mechanisms by which these quality attributes are sat-
isfied, and what protocols are used for the components’ interaction. As a result,
the initially extracted architecture might fail to capture important information
required by maintenance programmers. SAAM can help improve this initial ar-
chitecture by identifying scenarios that address relevant quality attributes.

On the other hand, the tool-supported analysis and visualization facilities of
the recovery process can help SAAM analysts. SWAG Kit provides utilities to
view the software architecture at a finer granularity, which SAAM can use to
fine tune the analysis. For example, the LSEdit editor in SWAG Kit provides
facilities for browsing internal elements of components/subsystems and their
interfaces. These can help the evaluation team understand the functionality of
abstract components.
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Table 1. Some Relevant Information of ZLib, ZDelta and GZip

Application
Name

Version Number
of lines

Number
of files

Nature and
language

Conceptual SA
exists?

ZLib [32] 1.2.3 8.5KLOC 22 Library (C) No
ZDelta [31] 2.0 7.0KLOC 27 Library(C) No
GZip [15] 1.2.4 7.3KLOC 16 Application(C) No

In this way, the architecture recovery process and evaluation method can be
combined to enhance the correctness and suitability of an extracted software
architecture.

4 Case Study and Lessons Learned

Our study had two aims. First, we wanted to investigate the practicality of us-
ing automatically recovered architectures as the basis for analysis of legacy sys-
tems for which no architectural documentation is available. Second, we wanted
to examine whether architectural analysis plays a helpful role in the architec-
ture recovery process. In particular, we wanted to see whether the use of an
architectural analysis method (such as SAAM) can improve the quality of the
architecture recovered by a tool (such as SWAG Kit).

In order to study these issues, we used our framework to recover the archi-
tectures of three open source compression/decompression systems: ZLib, Zdleta
and GZip. ZLib is a general purpose lossless data-compression library. ZDelta
is based on ZLib, but has been significantly modified; it provides new interfaces
for streaming the target data and extensive runtime parameterizations. GZip
is a compression utility that uses the same compression algorithm as ZLib and
ZDelta. Information on these systems is listed in table 1.

With the case study we learned several interesting lessons as listed and ex-
plained below.

1. SWAG Kit is weak at identifying subsystem structure. On the other hand,
architecture analysis is effective in identifying subsystem structure once the
recovery process identifies low-level components and connectors.

2. The iterative application of SWAG Kit and SAAM helps to identify and
resolve errors in the architecture, and leads to a deeper understanding of the
architecture than that obtained with SWAG Kit alone.

3. SWAG Kit emphasizes architectural structure (components + connectors,
and eventually subsystems). To get a dynamic view of a system (protocols
used by components to collaborate; how specific tasks are carried out; data
and control flow), the architecture analysis step is helpful.

4. Our approach can help evaluate which of a set of candidate libraries best
suit a project’s needs.

5. When applied to moderate applications (∼10KLOC), onlymodest time invest-
ment (about one person week) was required to perform a complete analysis.
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6. The iteration between architectural extraction and architecture analysis re-
quires close collaboration between the people performing the tasks.

4.1 Improved Subsystem Structure

In order to aggregate low-level source code information into a higher level of
abstraction, we were required to derive the subsystem structure. SWAG Kit is
unable to provide subsystem structures automatically. Therefore, as a part of the
recovery process, we manually analyzed the source code, the comments of the
source code, and used domain knowledge to obtain an initial subsystem structure.
However, we were unsure how well this substructure decomposition matched the
system’s true conceptual architecture. To verify the subsystem structures and to
understand their dynamics, we evaluated them using SAAM.

First, we used SWAG Kit to derive a low-level architecture. Then, we derived
the subsystem structures for each of the three applications; these are shown
in Figs. 2(a), 2(b) and 2(c). A brief description of each subsystem or module
follows:

– The Input Module is used to specify the compression/decompression algo-
rithm and to specify compression levels. Runtime parametrization of the li-
brary is required to dynamically select between multiple compression/decom-
pression algorithms and different files sizes. Separation of the Input Module
from the Main Module localizes the changes that are necessary to adapt to
a new compression algorithm.

– The Main Module coordinates the rest of the components. It consists of
functions required to invoke and terminate the application, manage the ses-
sion, specify the input file (to be compressed/ decompressed), output the
result, and deal with errors.

– The Compression Module carries out the actual compression. The sepa-
ration of the Input Module ensures that this module does not depend on any
hard-coded compression or input algorithms.

– The Decompression Module provides the function of decompressing data
streams.

– The Utilities Module provides useful functions to the rest of the applica-
tion, such as memory management and graphical display.

However, this recovery process did not provide conceptual architecture ad-
equate for answering maintenance questions. Therefore, we proceeded through
the remaining steps of SAAM. At this stage, we first identified three quality at-
tributes: modifiability, integrability and security. Scenarios illustrate the impor-
tance of these important quality attributes in the compression/decompression
domain.

– Modifiability of compression libraries is important. Two examples of changes
that might be required are: 1) add a new compression algorithm to the toolkit
and 2) modify the toolkit to run under a different operating system.
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Fig. 2. Initial subsystem structures of ZLib, ZDelta and GZip

– Library applications such as ZLib and ZDelta should be easy to integrate with
other applications. Two plausible scenarios are 1) add compression function-
ality to a file transfer program and 2) provide a graphical user interface for
a standalone file compression program.

– Maintaining confidentiality in electronic documents is vitally important. Ex-
ample scenarios might be 1) encrypt a document before saving it on a USB
key and 2) encrypt a document before emailing it.

While analyzing the architectures with respect to the scenarios, we found that
the subsystem structures obtained from SWAG Kit were insufficient to analyze
how easily the scenarios could be enacted.
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We successfully used SAAM to improve the subsystem structures. For ex-
ample, we considered the following integrability scenario: Rather than using the
standard Bluetooth Device Discovery model to detect nearby mobile services, de-
velopers wish to implement a system that relies on machine-readable visual tags
for out of band device and service selection. While implementing the visual tag
application, the developers want to use an easily adaptable built-in compression
library to store the image of the visual tag in order to save memory space. The
automatically extracted subsystem structures for ZLib and ZDelta lacked the
information necessary to analyze how well their architectures could support this
task. We were unable to find a component/subsystem specification that illus-
trated how to use the library application. Both architectures provide separate
Main and Utility modules. This indicates that if a developer wants to adapt the
entire compression/decompression library to another environment, changes can
be localized to the Main Module only.

However, the separation between these two modules is far from sufficient to
determine how easily this scenario could be enacted. We therefore further ana-
lyzed the architecture using the LSEdit visualization facilities. We browsed the
tool output and searched for files and interfaces that might be related to this
task. We found that both ZDelta and ZLib have files illustrating the use of the
library applications. So we modified the subsystem structures of ZLib and ZDelta
and displayed the improved structural views using LSEdit. These versions of the
architectures are shown in Figs. 3(a) and 3(b).

In our experience, the automatically extracted architectures did not support
analysis of the system with respect to our scenario. SAAM analysis can help
identify and fix the shortcomings of the automatically extracted architecture,
and can help improve the subsystem decomposition. However, the use of the
recovery tool can significantly help in carrying out the SAAM analysis.

4.2 Better Understanding of the Architecture

In the remaining SAAM evaluation process, we again used the updated archi-
tectural views to execute the remaining scenarios. To analyze the architecture
for the security quality attribute, we used the scenario: “a developer wishes to
incorporate encryption in the compression feature”. To map the scenario onto
the architectures, we looked for the components in the architectures that sup-
port encryption/decryption. As we had not considered security issues during the
recovery process, none of the extracted architectures contained the information
that was required to address the security scenario.

To explore the scenario, we investigated the libraries’ source code and com-
ments and browsed the tool output to find interfaces that handle data streaming
and security issues. Interestingly, we found that ZDelta handles data streaming
in the target file and has a provision for incorporating data encryption in a
modularized manner.

Therefore, we again refined the architectural view of ZDelta and introduced a
new Security Module subsystem in ZDelta’s architecture (see Fig. 3(b)) in order
to explicitly address the security quality attribute.
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Fig. 3. Refined subsystem structures of ZLib and ZDelta

The investigation of the security scenario helped us learn more about what
kinds of quality attributes a compression application can support and what kind
of mechanisms it provides to address these quality attributes. Additionally, the
repeated iterations of the LSEdit browser with further SAAM analysis guided
our understanding in the compression area.

In summary, SAAM analysis using scenarios helped refine the conceptual ar-
chitecture, while the SWAG LSEdit tool helped carry out this analysis on an
imperfect view of the architecture. Incremental and iterative analysis helped
move to a superior system decomposition.

4.3 Understanding the Dynamics of the Architecture

Architecture recovery using SWAG Kit helped us extract the applications’ static
architectures in terms of components and connectors. However, these static ar-
chitectures did not help us understand the architectural dynamics, and did not
support analysis of the strengths and weaknesses of the three software architec-
tures. SAAM evaluation helped us in this regard by guiding us in understanding
how components collaborate to perform a task. The browsing facility of SWAG
Kit helped us find the appropriate component interfaces, which were used to
accomplish the tasks quickly and easily.
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As discussed in section 4.1, we determined two tasks to assess the modifia-
bility quality attribute in this compression/decompression domain: add a new
compression algorithm to the toolkit and modify the toolkit to run under a dif-
ferent operating system. A plausible scenario for the first task is: A developer
wants to add a new lossy compression algorithm for use with media files.

When we analyzed how well the architectures support this scenario, we found
that both ZLib and GZip use the Deflating algorithm along with Huffman
coding, both directly encoded in the Compression Module. So, if the developers
were to add a new compression algorithm, they would have to modify both the
Main and Compression modules.

ZDelta provides better support for this task, as the Input Module is separated.
The developers would only have to substitute the old algorithm with the new
one, without making further modifications. The change is localized and does not
affect other components.

For the second task, we found that as ZLib, ZDelta and GZip all have separate
Utility Modules. They can be easily adapted to a new operating system, since
the changes are localized to this one module only.

Scenario mapping helped us understand the interaction among components
for executing the two tasks. By means of the interactions, we came to know
that ZDelta has a more cohesive modular structure than that of ZLib and GZip.
Thus, the combined approach helped us in understanding the dynamics of the
extracted architectures.

4.4 Provision for Comparing Architectures

When architectural analysis is used during architecture recovery, developers
can use the evaluation results to compare different candidate architectures.
In our case, as all the applications/libraries are in the domain of compres-
sion/decompression, we used the result of the SAAM evaluation to compare
them with respect to the identified quality attributes.

Based on the evaluation results of SAAM, we determined that they match up
to different levels of conformance to the quality attributes, such as modifiability,
integrability and security. The comparison results are summarized in Table 2.

Out of the three applications, ZDelta is the best in terms of modifiability,
since the compression algorithm can be explicitly specified and the application
can easily be adapted to a new operating system. The architectures of ZLib and
GZip do not satisfy the modifiability requirement properly, since they do not
have an explicitly defined Input Module. Both ZLib and GZip provide support
for deploying the application on different platforms.

ZLib and ZDelta provide ease of adaptation, addressing the integrability qual-
ity attribute.

ZDelta provides better support for Security by separating the Decompression
and Security modules. Both ZLib and GZip fail to handle data encryption in a
modularized manner.

These examples show that combining architectural analysis with architectural
extraction can help analyze which set of possible systems best meet a project’s
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Table 2. Comparison between Three Compression/ Decompression Applications

Application/
Quality Attribute

Modifiability Integrability Security

Different
Techniques

Different
Platforms

Ease of Adaptation

ZLib X
√ √

X
ZDelta

√ √ √ √

GZip X
√

X X√
=Supports the task or QA; X=Does not support the task or QA

needs. This ability is interesting, for example, for open source projects evaluating
choices of what third party code to reuse.

4.5 Reasonable Tractability

Using our iterative approach, it took us about seven days to extract a conceptual
architecture for each of the three applications (or a total of three staff weeks.)
The applications were of modest size, each consisting of about 10KLOC.

This time benefited from SWAG Kit’s detailed initial architecture and power-
ful browsing facilities. Extraction time also varies depending on the availability
of the proper source code documentation, the quality of comments in the source
code, and the structure of the source code. Further study is required to see
how this time scales to large architectures. However, at least for a system of
about 10KLOC, seven days seems a modest effort for the considerable payback
in architectural knowledge.

4.6 Team Interactions

Our iterative approach requires considerable interaction between the architecture
extractors and evaluators. In our case, the extractors and the evaluators were in
the same group. While extracting the architectures using SWAG Kit and SAAM
iteratively, we found that the close interaction between extractors and evaluators
saved collaboration time and effort. We believe that this might be beneficial for
larger systems.

4.7 Feedback

We contacted the authors of the three libraries to ask them how well the re-
sulting architectures represented their system. Two of the three responded. The
first respondent reported that the conceptual architecture seemed correct. The
second reported that the architecture was incorrect, as it grouped the underlying
source files differently from his understanding of the system. The latter result is
interesting, as it shows that factoring the architecture around quality-driven sce-
narios can lead to different decompositions than intended by the original author.
It is not clear whether the new decompositions are superior to the author’s intu-
ition of what belongs together for analysis and maintenance tasks. Considerable
further research is required to address this question.
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5 Conclusion

In this paper, we have detailed our experience applying a framework for ex-
tracting and evaluating architectures of legacy systems. Our case study applied
SWAG Kit for architectural extraction and SAAM for architecture analysis.
To our knowledge, no one has reported such a case study combining these ap-
proaches in an iterative and incremental manner.

In our case study, we extracted the architectures of three open source compres-
sion applications. We found that the combined approach was tractable (at least
for modestly-sized applications). The use of SAAM can significantly improve the
subsystem structures obtained using SWAG Kit. The combined approach helped
us understand the dynamics of a software architecture in a better way than the
architecture recovery process alone.

The primary limitation of our approach is that our data is largely subjective. A
next step would be to perform a study in the combined approach with third party
developers. Nonetheless, this study allowed us to demonstrate clear benefits and
weaknesses of the incremental and iterative framework.
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