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ABSTRACT
Distributed interactive systems often rely on platform information,
used for example when migrating a user interface to a small-screen
device, or when opportunistically recruiting available peripherals.
There has been to-date little work in platform modeling for dis-
tributed applications. In this paper, we demonstrate that distributed
platform models are well supported by a publish and subscribe ar-
chitecture accompanied by a rich filtering language. This approach
allows organic construction of networks with no centralized locus
of control, high scalability and fault-tolerance, and flexible cus-
tomization to the needs of heterogeneous device types.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces—Computer-supported cooperative work.

General Terms
Human factors, performance, design

Keywords
Distributed interactive applications, platform model, groupware
toolkits

1. INTRODUCTION
Modern interactive applications increasingly run in a networked

setting where knowledge is required of what distributed resources
are available to support the application’s execution. For example,
to dynamically connect a camera to a printer, the camera needs to
know what printers are available in the vicinity. A user of a table-
top surface may wish to grab and use a keyboard from a nearby
PC, requiring the tabletop to be able to discover the keyboard’s
existence. A PDA-based application might allow a user to take
a photograph, and then search for a powerful computer where fa-
cial recognition can be performed. Or an application running on a
Smartphone might discover that its battery is about to expire, and
look for another device onto which it can migrate while offering
minimal interruption to its user.
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In each of these examples, the interactive application uses re-
sources available over a network, and needs to be able to locate
and evaluate these resources dynamically. This form of resource
discovery can be characterized by three properties: the systems in-
volve heterogeneous platforms, with fixed and mobile devices of
very different capabilities; the connection of devices is ad hoc and
based on current availability of resources; and the platform is dis-
tributed, with no central locus of control.

Most existing approaches to this problem are based on a flat net-
work hierarchy characterized by direct communication between the
user of a resource and all possible providers of that resource. This
approach provides poor scalability, poor fault-tolerance, and slow
network-based queries. In this paper, we present an alternative ap-
proach, combining a distributed publish and subscribe architecture
with a powerful and flexible subscription filtering language. The
approach has four key advantages over earlier techniques:

• It requires no centralized locus of control. Nodes can enter
and leave the system at any time. The network can dynami-
cally grow and contract, and can provide efficient service at
arbitrarily large sizes.

• The system is adaptable to the capabilities of its heteroge-
neous nodes, allowing powerful, well-connected nodes to
retain detailed platform information, while less powerful,
poorly-connected nodes can restrict the information they re-
tain.

• Platform queries are fast, as they are resolved locally to the
node.

• The architecture provides inherent redundancy, allowing for
fault-tolerant operation.

We have implemented and tested this approach in the Fiia Platform
Model, part of a toolkit for developing adaptive groupware applica-
tions.

The paper is organized as follows. We first review other tech-
niques used to model and represent platform information. We then
present the Fiia Platform Model, and discuss its architecture and
implementation. Finally, we present the results of performance
evaluation showing how the system can adapt to the differing capa-
bilities of heterogeneous devices.

2. RELATED WORK
Platform models are increasingly considered to be a key compo-

nent of model-based development of interactive systems. For ex-
ample, Calvary et al. explain how a platform model is a key part of
a framework for automatic generation of user interfaces for diverse
devices [2].
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Figure 1: High-level FPM architecture

Platform models typically contain information about the device’s
capabilities. For example, ArtStudio describes devices in terms of
their screen dimensions and resolution [14]. TERESA classifies
platforms by category, annotating them in a task model as “desk-
top”, “cellphone” or “PDA” [12]. More generally, Coutaz et al.
propose that a platform model should capture resources, ranging
over capabilities as diverse as processors, memory, I/O devices and
sensors [2]. They distinguish between elementary platforms (a sin-
gle device such as a laptop or Smartphone) and clusters (a set of
elementary platforms).

Platforms are typically modeled as sets of attribute-value pairs.
For example, Florins [6] uses UsiXML [11] to encode properties
such as the platform’s hardware, software and network connec-
tivity. Similarly, the W3C’s User Agent Profile (UAProf) proto-
col uses RDF to encode detailed descriptions about devices such
as mobile phones, e.g., capturing voice capability, pixel resolution
and text input capabilities [7]. A higher-level approach is embod-
ied by the recombinant computing approach, where a small set of
high-level interfaces is used to characterize mobile services such as
projecting, printing or storing files [4].

Considerably less research has been performed in distributed
platform modeling. SNMP (Simple Network Management Proto-
col) is a technology for making platform information available over
a network [3]. SNMP is intended for system monitoring, and so
concentrates on providing information such as current CPU load
and memory availability. Each node provides an SNMP agent,
which can be queried for platform information. SNMP’s network
topology is effectively flat, in that a node requiring platform infor-
mation must individually query all other nodes of interest.

UPnP (Universal Plug and Play) is Microsoft’s technology sup-
porting dynamic connection of networked devices [10]. UPnP re-
quires each device to provide a description of itself, thereby imple-
menting a distributed platform model. UPnP is implemented via
distributed publish and subscribe [5], where devices use subscrip-
tion to express their interest in the state of other devices (e.g., in the
length of the printer’s queue), and updates are sent when this state
changes. Similarly to SNMP, UPnP has a flat network architecture.
UPnP is restricted to local area networks.

Moratus uses distributed shared memory to implement a global
context for distributed interactive systems (which includes platform
information) [9]. Similarly, Gaia supports interactive systems run-
ning within active spaces [13]. Gaia provides a CORBA-based set
of distributed services, allowing transparent access to context and
platform information.

Another interesting approach is passive service discovery [1],
where local area networks are passively monitored for traffic that
indicates the presence of services. Passive discovery can help dis-
cover, for example the presence of a printer on the network when
another node accesses it. It would not help, for example, in deter-
mining the battery level of a PDA.

All of these approaches to implementing distributed platform
models work well in their intended domain, but fail to address the
requirements specified in the introduction. The flat network struc-
ture of SMTP and UPnP, the distributed shared memory model of
Moratus and the distributed object model of Gaia do not scale to
large groups. None of the approaches provide explicit mechanisms
for dealing with the varying capabilities of heterogeneous devices.

3. FIIA PLATFORM MODEL
The Fiia Platform Model is based on a distributed publish and

subscribe architecture [5]. In publish and subscribe, a subscriber
specifies interest in data from a publisher; the publisher then sends
data to the subscriber whenever it has news to report. In distributed
publish and subscribe, these subscription relationships may cross
network boundaries. As shown in figure 1, heterogeneous nodes
with very different capabilities can use this architecture to share
resource information.

Each node retains its own copy of platform information. Nodes
may subscribe to data from arbitrary other nodes. Subscriptions
may be filtered, allowing subscribers to control the quantity and
frequency of information flow. This allows nodes with limited ca-
pabilities or poor (or expensive) network connections to trade off
bandwidth used versus quantity and timeliness of updates.

The use of distributed publish and subscribe means that there is
no requirement for a centralized locus of control. This allows new
nodes to enter and leave the system without requiring access to a



Figure 2: The Fiia Platform Model resource model

central server, or requiring knowledge beyond the address at least
one neighbour.

All nodes can act as both publisher and subscriber. Platform
information flows through the network, possibly arriving at a sub-
scriber through multiple paths. This differs from the flat network
hierarchies of SMTP and UPnP.

This architecture has built-in support for fault-tolerance. Each
node can choose to subscribe to a single neighbour (low bandwidth
use but also poor fault-tolerance), or to multiple nodes. In the lat-
ter case, if one publisher becomes unavailable, a subscriber will
still receive data from its other publishers. In this way, when pub-
lishers leave the network (for failure or other reasons), no action is
required to continue correct operation of its subscribers.

3.1 Resource Model
As shown in figure 2, the Fiia Platform Model structures re-

sources in a tree format. As we shall see, this allows resource
information to be recorded at fine granularity, while permitting
coarse-grained filtering. Resource information is split into three
broad groups specifying performance, input/output capabilities,
and physical properties of the device. These allow users of the
platform model to answer questions like: where is a server with
sufficient available CPU to provide a user with a voice to text ser-
vice, or where is the nearest keyboard that can be used to speed up
interaction with a PDA.

Resource information may be static or dynamic. Static resources
(e.g., number of keys on a keyboard, amount of memory on a
server) do not change, and therefore require infrequent updates.
Dynamic resources (e.g., CPU load on a server, remaining battery
charge on a Smartphone) do change, and therefore require ongoing
updates.

Our distributed approach to maintaining platform information
makes it important to maintain the provenance of platform infor-
mation. We therefore record for all resource knowledge the time
at which the data was recorded and the number of hops through
the distributed system that this data travelled before reaching the
current node.

4. FILTERING
In a distributed publish and subscribe system, the data being

transferred between nodes can become overwhelming. As each
node passes on data not only describing itself, but also its neigh-
bours and its neighbours’ neighbours, the quantity of data becomes
unbounded. The need to limit data transfer becomes particularly
important for devices with limited bandwidth, or (as with some cell
phone plans) where bandwidth is charged per kilobyte. We have
investigated several filtering mechanisms for restricting bandwidth
by allowing users of the Fiia Platform Model to trade off bandwidth
for completeness and accuracy of information.

4.1 Interest-Based Filtering
Depending on their requirements, nodes are interested in dif-

ferent kinds of platform information. A tabletop computer might
be interested in the availability of local devices that can help im-
prove interaction (e.g., nearby keyboard for rapid text entry, nearby
PDA to establish a second viewport). Alternatively, a PDA may
be interested in nearby projectors and nearby nodes where high-
performance computation can be performed. In general, low-
powered devices with low-bandwidth connections need to limit the
information to which they subscribe, and restricting information
based on interest is an obvious place to start.

Name filtering provides a simple way of restricting data sent to
subscribers. As seen in figure 2, the Fiia Platform Model orga-
nizes platform information hierarchically, allowing subscription to
whatever part of the hierarchy is of interest. A node might sub-
scribe to PM.IO.Keyboard to receive information on available key-
boards, PM.IO.Keyboard.* to receive detailed information about
keyboards, or PM.IO.* to receive information about all I/O devices.

4.2 Filtering Dynamic Data
Dynamic data, such as a device’s current battery level, the num-

ber of items in a printer queue, or a node’s current CPU load,
can consume significant bandwidth. The Fiia Platform Model
provides several mechanisms for filtering dynamic data. The
most simple is publishing interval filtering, where the subscriber
can specify the rate at which the publisher sends updates to dy-
namic information. Different rates can be requested for differ-
ent resource types; for example, a node might subscribe to up-
dates of PM.IO.Printer.Status every 5 seconds, and updates to
PM.Performance.Battery.CurrentLife every 5 minutes.

Value-change filtering provides updates only when the change in
the underlying value exceeds a specified threshold. For example,
a subscriber may request reports on battery life be reported only
following a 10% change from the last report. A variant on value-
change filtering is threshold filtering, where a subscriber can spec-
ify that data should be sent only when some threshold is surpassed,
for example, when battery life drops below 20%.
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Figure 3: Architecture of a single Fiia Platform Model node

4.3 Filtering for Large Networks
One of Fiia Platform Model’s strengths is its support for dynami-

cally created networks of nodes, without the requirement for a cen-
tralized locus of control. New nodes simply need to subscribe to
another node in order to receive the network’s platform informa-
tion. This approach can lead, however, to unbounded data trans-
ferred via subscriptions as networks organically grow.

In practice, a given node is interested only in data in reason-
able proximity. Number of hops filtering can be used to restrict the
distance that information travels. As data is transferred from one
node to another, its “number of hops” attribute is incremented. A
subscriber can filter data that has traversed more than a specified
number of hops, thereby controlling the locality of data in which it
is interested.

5. IMPLEMENTATION
Each Fiia Platform Model node maintains its own knowledge of

platform information, and acts as both a publisher and a subscriber.
Figure 3 shows the internal architecture of a Fiia Platform Model
node.

A Refresher updates information about this node to the Platform
Data store. The refresher gathers resource information using three
techniques. Performance information (CPU speed, battery life, cur-
rent memory usage, etc.), is collected via Windows’ WPM library.
This library is available on both PC and mobile platforms. In-
formation on bandwidth is estimated using the algorithm of He et
al. [8]. Remaining platform information (such as the device’s size
and weight) is hand-coded in a file that is read on start-up. The Re-
fresher is configured to update local information periodically, e.g.,
once per second.

A Subscriber component reads resource information sent by
publishers on other nodes. If the information is newer than infor-
mation already known, it is recorded in the Platform Data.

A Publisher component is responsible for periodically publish-
ing information to this node’s subscribers. The publisher period-
ically awakes, determines what new information is available in
the Platform Data, and uses each subscriber’s filter to determine
whether to pass the data on to that subscriber.

6. EVALUATION
Two of our requirements for distributed platform modeling are

support for heterogeneous devices and arbitrary scalability. The
Fiia Platform Model meets these requirements through its dis-
tributed publish and subscribe architecture and powerful filtering
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Figure 4: The CPU usage data used to experimentally validate
the Fiia Platform Model architecture
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Figure 5: Effect of value-change filtering on bandwidth and
mean error

language. Interest-based and dynamic data filtering allow nodes to
reduce bandwidth (at the expense of error), while number of hops
filtering enables tractability of very large networks. To illustrate
these properties, we present two examples of the Fiia Platform
Model in use. First, we illustrate how value-change filtering pro-
vides a tradeoff between bandwidth usage and correctness of plat-
form information. Then, we show how number of hops filtering can
be used to support large networks by trading off error, bandwidth
use and coverage.

6.1 Effect of Value-Change Filtering
Value-change filtering allows Fiia Platform Model users to bal-

ance bandwidth consumption versus error. For dynamic data such
as the current load of a node’s CPU, accuracy will increase the more
often messages are sent, at the cost of additional bandwidth. As we
have discussed, value-change filtering sends messages only when
the change in the underlying data exceeds some threshold. With
our CPU load example, a value-change threshold of 20% would
mean that a new message will be sent only when the actual CPU
load differs by at least 20% from the last message sent.

To illustrate the effectiveness of value-change filtering, we per-
formed an experiment with two nodes, one publisher and one sub-
scriber. The publisher provided CPU load information to the sub-
scriber with value-change thresholds ranging from 0% to 100% in
increments of 10%. To provide consistency between the conditions,
the same CPU load data was used in each (read from a file.) The
CPU load data, shown in figure 4, represents load over a 600 sec-
ond (10 minute) interval. This data was captured by sampling the
CPU of a PC at one second intervals, while a user performed typi-
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Figure 7: Effect of number of hops filtering on coverage and
bandwidth

cal actions such as starting and stopping programs and performing
computational tasks such as compiling and playing video. Mes-
sages were sent when the value threshold was exceeded, up to a
maximum rate of 1 per second. Error was measured as the absolute
value of the difference between the “correct” CPU load value (on
the publisher), and that held in the platform manager of the sub-
scriber, and therefore ranges from 0 to 100. The mean error is the
average of errors sampled at 1 second intervals over the 600 second
run-time of the experiment.

Figure 5 shows the impact on mean error and bandwidth of vary-
ing the value-change threshold. Not surprisingly, as the thresh-
old increases, bandwidth use decreases while mean error increases.
The relationship is not linear, however. Load values tend not to
swing dramatically, meaning that a relatively low threshold dra-
matically reduces the number of messages. When a threshold of
70 or higher is used, no messages at all are required, since no CPU
load value differs from the first value by more than 70. This leads
to a plateau in error rates at an average of 30.

6.2 Effect of Number of Hops Filtering
As we have discussed, the core concept of Fiia Platform Model

that allows ad-hoc connection of nodes with no central locus of
control is the provision of number of hops filtering. This allows a
subscriber to specify that it is interested only in data that has trav-
elled a maximum of some n network hops. The following experi-
ment illustrates that number of hops filtering allows subscribers to
balance bandwidth use, coverage and average error.

Using a simulator, we established 10 nodes, each running an in-
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Figure 8: Effect of number of hops filtering on mean error

stance of the platform model, and connected with the subscription
relationships shown in figure 6. Each node reported a CPU Load
value, using the data shown in figure 4. The experiment ran for 600
seconds. Each node refreshed its CPU Load value once per second,
and published its known data every 5 seconds.

The graph in figure 7 shows the tradeoff between coverage and
bandwidth consumed. We define coverage as the average number
of nodes each other node has information about (including itself.)
As the number of hops increases, so does coverage, and not surpris-
ingly, bandwidth required. Both coverage and bandwidth increase
sharply and then plateau; the existence of multiple routes between
nodes sometimes allows data from distant nodes to be transferred
in fewer hops.

Mean error also increases with the number of hops (figure 8), as
the average age of platform data increases with the distance (hops)
travelled. Error plateaus as coverage increases, and even at the
maximum of 9 hops, is below 11 on a scale of 0 to 100.

From this example, it is possible to extrapolate how number of
hops filtering supports very large networks. As each node main-
tains platform awareness of only those nodes close to it, addition
of new nodes only affects nodes within a bounded number of hops.
Networks can grow to arbitrary size due to this locality of informa-
tion.

7. DISCUSSION
In the introduction, we identified four desirable properties of

platform managers for distributed, interactive systems. In this pa-
per, we have shown that these properties can be met with a design
based on distributed publish and subscribe combined with a pow-
erful filtering language.

The Fiia Platform Model’s implementation of distributed pub-
lish and subscribe does not require a centralized locus of control.
Nodes may enter a network simply by subscribing to data from one
or more neighbouring nodes. This approach provides high scalabil-
ity. Despite the fact that an arbitrary number of nodes can enter the
same network, most nodes will restrict the flow of incoming data
using a number of hops filter. This means that networks organi-
cally pool into localities, where nodes have information about their
neighbours, but not about the network as a whole. This gives the
scalability benefits of systems with restricted size (e.g., UPnP, with
its restriction to local area networks [10]), while allowing arbitrary
node connection.

This approach is very powerful in mobile contexts. As a mobile
node enters a new physical context, it need only connect to a local
node to gain information about that context. For example, if a tour
group enters a museum, one of the group member’s Smartphones



might connect to a museum computer, automatically propagating
information about the museum to the other group members.

The use of distributed publish and subscribe gives the additional
benefit of fault-tolerant operation. If a publisher leaves the network
(due to failure or other reasons), subscribers can rely on other paths
through the network to obtain their data. Additionally, the fact that
platform data is available on each node allows queries to be per-
formed quickly, without the need for network communication.

The filtering constructs allow the flow of platform information
to be flexibly matched to the capabilities of heterogeneous nodes.
Within a network, powerful nodes should be capable of provid-
ing rich and detailed platform information. Nodes such as Smart-
phones or PDAs typically should subscribe only to the information
that they require themselves. We have shown that several types of
filtering can be useful, based on name, publishing interval, value-
change, threshold and number of hops. As shown in our perfor-
mance evaluations, the use of filtering allows users of the Fiia Plat-
form Model to trade off completeness and correctness of platform
information versus bandwidth consumed to collect it.

8. CONCLUSIONS
In this paper, we have presented mechanisms supporting plat-

form management for distributed interactive systems. We have
shown that an architecture based on distributed publish and sub-
scribe combined with a rich and flexible filtering language sup-
ports heterogeneous device types, organic entry to and exit from
the network, scalability and fault-tolerance. The viability of such
an architecture has been demonstrated through its implementation
within the Fiia groupware development toolkit.
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