
Classifying Input for Active Games
 Tadeusz Stach, T.C. Nicholas Graham, Matthew Brehmer, Andreas Hollatz

 School of Computing
 Queen’s University

{tstach, graham, 4mb14, andreas}@cs.queensu.ca

ABSTRACT

Active games are video games that involve physical activity.

Interaction in active games is captured via a variety of input

devices such as accelerometers, cameras, pressure sensors and

exercise equipment. Although active games have become highly

popular, the interaction styles they support are poorly understood,

and largely driven by the capabilities of individual hardware

devices. In order to allow for a standard development approach

for active games, a better understanding of the interaction found

in such games is required. We have investigated existing

commercial and academic games in order to classify input for

active games. Our classification abstracts input from hardware,

providing a better understanding of the interaction itself. Based on

our classification, we propose that active games can be developed

independently of underlying input hardware. We illustrate this

through our GAIM input framework for active games, and its

application to the implementation of a device-independent car

racing game.

Categories and Subject Descriptors

H.5.2 [User Interface]: Input devices and strategies, Interaction

styles;

General Terms

Active video games, exercise video games, exergaming.

Keywords

Keywords are your own designated keywords.

1. INTRODUCTION
Active games, video games that involve physical activity, have

become tremendously popular in recent years. Examples of active

games include Wii Tennis, where players swing an accelerometer

to control a tennis racquet [17]; Dance Dance Revolution, where

players perform dance steps to music [8], and Frozen Treasure

Hunter, where players pedal a bicycle while carrying out quests in

a virtual world [21]. Nintendo’s Wii, a console designed to

support active gaming, has sold over 45 million units to-date,

strongly illustrating the popularity of such games [16]. Recently

announced motion sensing technologies, such as Microsoft’s

Project Natal and Sony’s motion controller, have further increased

the interest in active gaming.

Despite their commercial success, understanding of the interaction

techniques underlying active games is immature. Most active

games are designed for a specific hardware platform: Wii games

are based on input from accelerometers and IR tracking; EyeToy

games are designed around camera input [10], and PCGamerBike

games are tied to pedal and steering input. This is analogous to the

early days of graphical user interfaces, where programmers

needed to deal directly with mouse input rather than using high

level widgets for scrolling, text input and menu handling.

We address this problem by presenting a classification of input

techniques in active games. The classification identifies six input

styles, abstracting the details of hardware from the interaction

itself. To develop the classification, we reviewed 107 active

games, drawing from commercial, academic and ―fantasy’’ game

designs, and extracted the common forms of interaction.

Each of the input techniques appears in several surveyed games.

While some hardware provides better support for particular kinds

of input, in general, the input styles crossed platform boundaries.

We found that most games combined multiple forms of input, and

that the interaction style of a game can often be captured by listing

the forms of interaction it supports.

This high-level classification of input for active games has several

benefits. It represents a starting point in standardizing the forms of

input that active games provide. We show how this in turn can

help in developing a toolkit that supports a wide range of devices,

aiding the development of portable active games. Better

understanding of active game inputs may help in the

standardization of input devices, allowing different technologies

(e.g., camera vs accelerometer) to provide the same programming

interface.

This paper is organized as follows. We first review existing

hardware used in active video games and the forms of input they

capture. We then present our classification of input for active

games, and provide illustrations of how the classification can be

used to describe existing games. We then show how the

classification can be used as the basis of a software framework for

implementing active games over a variety of hardware devices.

Finally, we summarize the implications our classification has for

designers.

2. EARLIER INPUT CLASSIFICATIONS
To our knowledge, this paper represents the first attempt to

categorize in a hardware-independent way the inputs used in

active games.

Several frameworks have been proposed for specifying the

capabilities of input devices in general. Notably, Card et al.

presented a general model for input devices and showed how it

could be used to analyze their effectiveness [3]. The development

of direct-manipulation interfaces, has led to various specifications

of abstract interactions afforded by a combination of mouse,

keyboard and bitmapped display. Duke et al. illustrate the need for

a framework to convey interaction in software applications, and

propose the interactors model [5]. At the toolkit-level, the Garnet

system encapsulates interactions into interactor objects [14]. This

system allows for the development of interactive desktop

application independently of input handling.

Attempts to provide abstract classifications of input techniques

have been performed for special domains such as multiuser

tabletop surfaces [21], multi-modal interfaces [1], and augmented

reality [4].

The concept of embodied interaction explores the intersection

between physical and social computing. Embodied interaction has

been used to distinguish between the low-level interactions

traditionally used in games (such as button presses and joystick

movements) versus physical movements more directly associated

with real-life activity (such as swinging a tennis racket) [6]. While

providing high-level motivation for understanding the differences

between these kinds of interactions, this framework does not give

a practical classification of the different kinds of input that might

occur in a real active game.

3. ACTIVE GAMING HARDWARE
Although a relatively new form of entertainment, active gaming is

supported by numerous special-purpose input devices. These

range over devices designed to support a specific game (such as

the Dance Dance Revolution game pad) through peripherals

supporting a range of games (such as the Wii Remote). We now

summarize the diverse ways in which physical movement is

captured in video games. This summary complements that of

Sinclair et al. [18].

3.1 Accelerometers and Gyroscopes
An accelerometer is a device capable of measuring changes in

speed. Accelerometers can sense physical motion by measuring

acceleration in multiple axes. A typical six degree of freedom

accelerometer reports acceleration in the three spatial axes and

rotation around those axes. Nintendo’s Wii Remote and Nunchuck

are popular examples of accelerometer-based gaming peripherals

(see figure 1A), and are used in hundreds of games.

Accelerometers suffer from drift resulting in cumulative

measurement error, and so may be complemented with other

technologies to improve their accuracy. The Gametrak Freedom is

a hand-held device developed for the Xbox 360 which combines

accelerometers with ultrasonic positioning. Similarly, Nintendo’s

Wii Motion Plus includes gyroscopes which more accurately

measure rates of rotation, and when combined with accelerometer

measurements provide more accurate motion control.

Accelerometers are used in games to detect and interpret many

kinds of motion. In Wii Tennis, players perform backhand and

forehand swings while holding the Wii Remote. Similarly, the Wii

Motion Plus is used to track a player’s golf swing in Tiger Woods

PGA Tour 10. In Posemania, players wear several accelerometers

that are used to detect when the player has achieved a dance pose

[20]. Buttussi et al. use accelerometers to detect knee bends and

jumping [2].

3.2 Vision
Computer vision systems typically use a camera to capture

movement. Basic vision systems include the Sony EyeToy (see

figure 1B) and the PlayStation Eye, which capture human motion

by finding differences in consecutively captured frames. For

example, in the EyeToy: Groove game, video of the player is

overlaid on the game display. The player attempts to use physical

punches to hit virtual targets shown around the edge of the screen.

When a player moves her arm over a target, a ―hit‖ is registered.

Similar techniques are used in Body-Driven games [9], Breakout

for Two [13] and Kick Ass Kung-Fu [7]. In all of these games,

one or more cameras track player movement with the use of

computer vision algorithms.

A related approach is to use a camera to track infra red (IR) tags.

For example, NaturalPoint’s TrackIR implements head tracking

by using a camera to detect the position of head-mounted IR light-

emitting diodes. A similar approach is used in the Dodge-It! game

to allow players to physically dodge incoming missiles [22].

Vision can be augmented with other technologies to improve its

accuracy. Sony’s newly announced motion controller captures

movement based on visual detection of a hand-held baton, using

ultrasound to improve accuracy. Depth cameras can be used to

provide 3D images of scenes, allowing tracking of the full body.

Microsoft’s Project Natal accomplishes this by shining pulses of

IR light into the scene, and measuring the reflections of this light.

3.3 Exercise Equipment
Active games (or ―exergames‖ [18]) are frequently designed to

promote physical activity. Some exergames are based on sports

club equipment, such as stationary bicycles or treadmills. This

equipment is designed to provide cardio and muscular exercise,

and to measure the work performed. Typically, active games

using exercise equipment measure the raw power delivered by the

player (e.g., based on the gear and pedaling speed of a bicycle)

and translate this information into a game mechanism (e.g., avatar

speed). For example, the PCGamerBike (see figure 1C) can be

attached to a computer and used as an input device to control the

speed and direction of the player’s avatar in World of Warcraft.

Other commercial systems include the Cateye GameBike, Fisher-

Price Smart Cycle, and the Gamercize products. Stationary

A B

D E C

Figure 1: Active gaming hardware examples. (A) Nintendo Wii Remote and Nunchuck, (B) Sony EyeToy,

(C) PCGamerBike Mini, (D) Konami Dance Dance Revolution, (E) Powergrid Fitness Kilowatt

bicycles have also been used in academic games such as Frozen

Treasure Hunter [23] and Heart Burn [19].

3.4 Pads and Mats
Several very popular games use large pads or mats, placed on the

floor or mounted on a wall, to capture user input. These

peripherals typically include touch sensors to capture contact (or

weight distribution) in a particular region of the device. For

example, Dance Dance Revolution uses a floor mat to determine

when a player steps on a particular square of the surface (see

figure 1D). Other commercial pads and mats include the Nintendo

Power Pad, the Wii Balance Board, and the XaviX J-Mat. The

Remote Impact game uses a wall mounted pad to capture players’

kicks and punches [12].

3.5 Special Purpose
Other active video game hardware has been created for unique

game interaction. For example, the Powergrid Kilowatt game

controller (see figure 1E) is a resistance training device which acts

as an exaggerated joystick and is used in the Push’N’Pull game

[13]. In Push’N’Pull, players capture virtual objects by pushing or

pulling on the Kilowatt controller; the onscreen objects are easier

to catch when more force is applied to the controller. The FlyGuy

game [13] requires a specially developed hang-gliding harness to

play. Specialized equipment is usually created for a single active

game and may not be able to support the diversity of games of a

more standard controller (e.g., Wii Remote or EyeToy).

In the following section, we describe our approach to classifying

input in active games in order to allow interaction to be

understood independently of the hardware used.

4. METHOD
We analyzed the input techniques used by 107 active games, and

from these abstracted a set of input styles. We examined a broad

spectrum of games drawn from three categories:

 Commercially available active games (including training

systems such as Wii Fit and EyeToy: Kinetic).

 Research prototype games reported in the academic literature.

 ―Fantasy‖ game designs elicited from students in a game

development lab.

These categories allowed us to consider proven game designs,

designs originating from research laboratories, as well as

imaginative blue-sky designs.

The commercial games included both popular and lesser known

games. Commercial games fell into three sub-categories: Wii,

EyeToy, and ―other.‖ The Wii games cover a broad set of titles

using the Wii Remote and Nunchuck, the Balance Board, and a

combination of both. The chosen Wii games were those requiring

active input as opposed to just the directional pad and buttons.

The EyeToy category contains an exhaustive list of games using

the EyeToy camera. The ―other‖ games category is made up of

active games tied to specific commercial equipment such as the

PCGamerBike and the XaviX J-Mat, as well as demonstration

games created for Microsoft’s Project Natal.

The academic games we examined cover those active games that

we were able to find in the literature. These include mixed-reality

games and games designed to promote physical activity. We

restricted this category to games that could be played in the living

room, and therefore did not include ubiquitous games.

Our set of ―fantasy‖ games was provided by five researchers

working in an academic video game lab. The researchers were

asked to provide three to five active game concepts with complete

descriptions of interaction and gameplay. The participants were

not told what the purpose of the game concepts was, and were not

instructed to consider specific input devices. Since the researchers

did not have to actually implement the games, they were limited

only by their imagination. These games were included in order to

explore interactions that may not exist in currently available

games.

In total we investigated 107 active games: 67 commercial

systems, 17 academic and 23 ―fantasy‖ games (see table 1). We

described the input for each game in a hardware-independent

fashion. From this raw data, we abstracted a set of general input

types. Most active games require multiple forms of input and were

therefore classified using a combination of several inputs types.

Three researchers evaluated the input of each game in the set of

active games. Whenever possible, one or more of the investigators

would play a game in order to explore the active input involved.

However, it was not feasible to play all of the games in the set due

to availability (e.g., access to all of the commercial games, and

research prototype games using specialized equipment). In

instances where it was not possible to play test a game, the

investigators reviewed descriptions of the game and when

available, examined videos of gameplay.

Our criteria for identifying input types were:

 The input type must be hardware-independent. We define this

by requiring that it must be possible to capture the input with at

least two existing input technologies.

 The input type must be seen in at least three games.

 The set of input types must be orthogonal, and must cover most

if not all inputs seen in the examined games.

Our final input classification is presented and discussed in the

next section.

5. INPUT CLASSIFICATION
After reviewing the input techniques found in the set of 107

games, six common forms of input emerged: gesture, stance,

point, power, continuous control, and tap. Here we define each of

the input types and describe their common usage.

5.1 Gesture
A gesture is a movement of the limbs, head, or body within a

defined pattern. The location and orientation of the body is

normally irrelevant to a gesture, but timing is important.

Table 1: Total number of game types investigated.

Game Type Total

Academic 17

Commercial

Wii 35

EyeToy 15

Other 17

―Fantasy‖ 23

Combined Total 107

Gesture input is used in Wii Tennis. Players must hit a tennis ball

using a forehand or backhand swing. A forehand gesture is

performed by swinging a Wii Remote forwards and to the left; a

backhand gesture involves swinging forward and to the right. The

force of the swing determines the speed of the returned ball.

Gestures specify commands, not real-time control. When a gesture

is complete (e.g., forehand/backhand swing), it is communicated

to the application, which executes an associated command (e.g.,

avatar performs forehand/backhand swing). The position and

orientation of the player have no effect on recognition of the

gesture. Gestures may be captured by technologies as diverse as

accelerometers and camera-based motion-capture devices.

5.2 Stance
Stance captures a player’s physical position at an instant of time.

A stance is not an action, but describes the placement of the

player’s feet, hands, and body.

Stance input is used in Wii Fit’s Yoga game. Players use a

Balance Board as an input device. Four pressure sensors monitor

the player’s center of mass, providing a coarse measure of the

player’s stance. In Wii Fit Yoga, players must complete a series of

poses. Players stand on the Balance Board and hold their bodies in

a required position, which is captured in approximate form based

on their distribution of mass. Similarly, in Posemania, players are

required to take on dance positions in time to music [20]. The

player’s position is determined from a set of accelerometers

attached to her wrists, elbows, knees and ankles.

5.3 Point
Pointing requires players to direct attention to an on-screen entity.

Players point by aiming a finger, hand, or hand-held device at a

region of interest.

Pointing is used as input for the Secret Agent game found in

EyeToy: Play 2. Players must point with their finger at a series of

on-screen icons in order to collect them. In Call of Duty: World at

War for the Wii, players aim their weapons by pointing the Wii

Remote at the screen.

5.4 Power
Power represents the raw physical energy exerted by the player.

Power is often tied to movement of the player’s in-game avatar;

for example, in Heart Burn, the more power that the player

provides, the faster her car moves around a track [19]. Power

input is typically captured continuously over a period of time.

A wide variety of input technologies can be used to provide

power. The PCGamerBike is a compact exercise device equipped

with a pair of foot pedals (see figure 1C). When a person is

pedaling, the device is able to capture both intensity and direction.

For example, the PCGamerBike can be mapped to a set of input

controls for the World of Warcraft game. Intensity (measured as

pedal speed in RPMs) translates into three possible speeds for a

player’s avatar: stationary, walking, or running. Conversely, in

Heart Burn, power is measured using a heart rate monitor, where

current heart rate (indicating how energetically the player is

exercising) regulates in-game speed.

5.5 Continuous Control
Continuous control input slaves body movement to an on-screen

entity. Typically, the whole or part of the body is used to guide an

in-game object. With continuous control, it is possible to capture

movement in two or three dimensions.

An example of continuous control is found in the Body-Driven

Bomberman game [9]. In Bomberman, a player’s character moves

around a two dimensional maze while attempting to bomb other

characters. A top-mounted camera monitor’s players’ positions as

they move around in a physical space, and maps them to a virtual

position in the maze. Thus, a player continuously guides her

avatar as she walks/runs in the physical world. Similarly, in

Microsoft’s Burnout Natal, players steer a car by turning an

invisible steering wheel with their hands.

5.6 Tap
A tap input requires a player to make contact with a particular

object or location in the physical world, and is captured at the

moment of contact.

For example, the Remote Impact game [12] uses a wall mounted

pad to capture players’ punches and kicks (i.e., taps). Two

distributed players face their own individual pad reflecting a

projection of their opponent. Each player uses her hands or feet to

strike the projected image of her opponent. The location and

intensity of each tap are captured. Location is used to determine if

a strike is a hit or miss, while intensity determines how many

points the player is awarded for a hit. Similarly, in Dance Dance

Revolution, players use their feet (and hands!) to tap locations on

the floor in time to music.

5.7 Summary
The six input types presented above describe all of the active

inputs found in the 107 active games we investigated. Many of

these games also use traditional (inactive) inputs, such as button

presses; these were not considered in our study.

Table 2 summarizes the distribution of inputs over our three game

categories. We see that in this particular set of games, gesture and

stance inputs are particularly prevalent. This is because of the

popularity of the Wii platform, whose hardware is particularly

adept at capturing gesture and stance. Nevertheless, with a few

exceptions, all identified input types occur in all three game

categories, and are represented numerous times over all. We are

confident that the classification will describe new games as they

are developed, due to the wide range of games and game types

that were consulted. For example, newly announced systems –

Game Type
Input Classification

Gesture Stance Point Power Continuous Control Tap

Academic 6 1 0 2 8 1

Commercial 42 19 5 8 8 12

―Fantasy‖ 21 15 4 1 0 0

Total 69 35 9 11 16 13

Table 2: Input classifications found for each game type examined.

such as the Wii Motion Plus, Microsoft’s Project Natal, and

Sony’s PlayStation motion controller – offer novel active input

controls. These new devices promise more accurate active control

and one-to-one mappings of motion. However, games developed

for these peripherals will simply allow for better continuous

control, point, and stance inputs – all of which are captured in our

proposed input classification.

In the following section, we use this input classification to

demonstrate how active games can be designed independently of

the peripherals used.

6. ILLUSTRATIONS
To illustrate its effectiveness, we use our input classification to

analyze two existing active games. This analysis shows that

typical games combine multiple input types, and that these types

can be considered independently of the hardware used to

implement them.

6.1 We Ski
We Ski uses the Wii Remote, Nunchuck and Balance Board for

input (see figure 2). In the game, players guide their skiing avatar

down a virtual slope. The player holds the Remote and Nunchuck

as if they are the handles of a set of ski poles, moving them up and

down to push the avatar forward, and rotating them to make the

avatar tuck into a crouching position. When standing on the

Balance Board a player is able to control the direction of her

avatar by leaning left or right.

These interactions fall into the gesture and stance input types. The

pushing motions and the wrist rotations performed with the

Remote and Nunchuck are gestures, while a player leaning side-

to-side on the Balance Board takes on a series of bodily poses

which translate into a set of stances.

Although the gestures in We Ski are captured via accelerometers

(i.e., Wii Remote and Nunchuck), and stances are delivered by

pressure sensors (i.e., Balance Board), the game could be

implemented using different hardware. For example, an EyeToy

camera could be used to capture a player’s stance based on the

position of her head and body. Similarly, arm gestures performed

by a player could also be interpreted using vision techniques such

as provided by the Sony motion controller.

6.2 Frozen Treasure Hunter
Yim and Graham created the Frozen Treasure Hunter game in

order to promote physical activity [21]. Two players share the

control of an avatar as they collect virtual items. One player

controls the forward momentum of the avatar by pedaling on a

recumbent bicycle, and steers using a gamepad. The other player

uses a Wii Remote and Nunchuck to swat away virtual projectiles

thrown at the avatar (see figure 3). The pedaling of the player on

the bike translates into power input, while the swatting motions

performed by the other player are classified as gesture inputs.

In the current version of the game power is delivered using

exercise equipment, and gestures are captured using Wii

peripherals. However, these inputs could be delivered using a

variety of other hardware devices. For example, heart rate

monitors have been proposed as effective devices for measuring a

person’s physical effort in active games (e.g., [15], [19]) and

therefore can deliver power input. The gestures used in Frozen

Treasure Hunter could alternatively be captured using a vision

based tracking system.

7. APPLICATION: THE GAIM

FRAMEWORK
The core contribution of our input classification is that it helps

identify the types of inputs that may be delivered to active games,

independently of the underlying hardware that may be used to

control the game. Beyond its contribution to the understanding of

active input, the classification can be beneficial in the

implementation of active games. We have illustrated this through

the ongoing development of the General Active Input Model

(GAIM) framework for handling input in active games. GAIM

allows developers to program active games based on the six input

types described in this paper. The framework then provides a

variety of implementations for each input type, allowing

transparent plug-replacement of input devices without requiring

modification to the program code.

The framework is divided into three layers. The input layer is

intended for use by application programmers, and provides access

to the six input types identified in our classification. The abstract

input layer provides interfaces to broad classes of devices (e.g.,

bicycles, heart rate monitors, accelerometers), while abstracting

their differences. The device layer provides access to concrete

devices. Classes at this layer interact with application programmer

interfaces provided by the device’s manufacturer or with

independently developed interfaces.

Figure 2: We Ski – player controls using Wii Remote,

Nunchuck, and Balance Board.

Figure 3: Frozen Treasure Hunter – players control using

recumbent bicycle, Wii Remote and Nunchuck.

For example, figure 4 shows the classes making up GAIM’s

IPower interface. The interface provides a single property, Power,

that reports the game player’s current power output. The

framework provides two implementations of power – one based

on stationary bicycles (BikePower), and the other based on heart

rate (TargetHRPower). As described in section 5.4, heart rate

input bases the player’s power on how close she is to her target

heart rate [19]. These classes rely on interfaces provided by the

abstract input layer. The IBike interface provides attributes

capturing the current power, tension, cadence and direction of the

bicycle device. The IHRMonitor interface reports the player’s

current heart rate.

The device layer provides access to the equipment itself. The

PCGamerBike class implements the IBike interface, while the

HRMI class implements the IHRMonitor interface. The Tunturi

E6R is a recumbent stationary bicycle supporting both cycling and

heart rate monitoring, and therefore the TunturiBike class

implements both interfaces.

The challenge in designing these interfaces is that not all devices

provide the same functionality. For example, as a full-featured

exercise bicycle, the Tunturi E6R provides full control over

tension and cadence, and reports power generated in Watts. As a

less expensive gaming peripheral, the PCGamerBike Mini

provides only cadence information. (Tension can be set manually,

but cannot be read programmatically.) The PCGamerBike mini,

therefore, cannot report true power values, since the tension value

is required to compute it. The PCGamerBike class therefore

estimates power from the current cadence and an average tension

value. Additionally, tension can be set manually by an application

programmer should it have better knowledge of the tension (e.g.,

via user input.)

7.1 GAIM Racing Game
To illustrate the effectiveness of the GAIM framework, we

modified Microsoft’s XNA Racing Game (available at

www.xnaracinggame.com) to become an active game. The 3D

racing game allows a player to race a selected car around several

different tracks. In the original game, the car’s speed is controlled

by the keyboard’s arrow keys or by the right trigger on an Xbox

360 gamepad controller; direction is controlled with the left

analog stick. In our modified game, speed is controlled by the

player’s physical activity, as measured by the speed at which she

is pedaling a bicycle, or how closely she is matching her target

exercise heart rate. Figure 5 shows the active racing game

controlled by three different input techniques: two types of

bicycle, and via heart rate (elevated by jogging on the spot.) To

steer the car, we continue to use the Xbox 360 controller’s analog

stick.

To modify the game, we removed 35 lines of code taking input

from the mouse/keyboard or game controller, and inserted 11 lines

of code to process power input. Since the game uses the IPower

interface, no changes in code are required to change from one

device to another. A simple text file is used to specify which

devices are available to the application, allowing the framework to

determine which class to use to implement IPower.

This example illustrates the practicality of basing input on high-

level input types such as those described in this paper. Not only

does the approach provide device independence, allowing

radically different input devices to control the same game, but it

Figure 4: Class diagram of the IPower interface from the GAIM framework.

(at least in this case) requires less code to process active input

than was required to use traditional input devices.

8. DISCUSSION
Our analysis of existing active games reveals six unique input

types: gesture, stance, point, power, continuous control, and tap.

We found this input classification sufficient to describe the active

inputs of the 107 games that we studied. Our survey is based on

existing games (and ―fantasy‖ designs), as well as technical

demonstrations of the recently announced next generation of

motion capture devices (i.e., Wii Motion Plus, Project Natal, and

the Sony motion controller). Although these new peripherals

promise a revolution in the design of active games, the input they

provide is described by our classification. For example,

demonstrations of Microsoft’s Project Natal show players

controlling a car with an invisible wheel and pedals or using their

full body to deflect virtual balls, while early prototypes of the

PlayStation motion controller allow players to directly control

hand-held weapons (e.g., swinging a mace). These actions map to

direct control, gesture, and stance inputs. Therefore, the next

generation of active input controllers does not change the types of

active input that are possible, but rather improves the accuracy of

their detection. For example, Project Natal’s recognition of the

position of a player’s body in space provides more accurate stance

input than is possible with the Wii Balance Board’s four pressure

sensors. The upcoming generation of devices does appear likely to

change the input styles that are most widely used. Our analysis of

existing commercial games showed a high occurrence of gesture

and stance inputs (due to the current capabilities of the Wii and

EyeToy); however, we expect future games to include more direct

control inputs as a result of improved motion capture technology.

Although we have illustrated the importance of abstracting input

for active gaming, playing with different input devices can

provide different gameplay experience. For example, the

PCGamerBike Mini and Tunturi E6R bicycle used in the GAIM

Racing Game provide similar styles of input, but subtly different

performance. The Tunturi is more comfortable to sit on and has

higher quality pedals. On the other hand, the PCGamerBike Mini

is highly responsive to changes in pedal cadence, whereas the

Tunturi bike takes upwards of a second to report changes in speed.

A toolkit can allow development of games for a diverse set of

devices, but ultimately cannot abstract all differences between

those devices. This is analogous to the performance difference

seen when playing a traditional computer game using a standard

mouse versus a track pad.

When compiling our input classification, we focused on active

forms of input and omitted traditional forms of input (e.g., analog

sticks and buttons). Many active games use both active and

standard input. The fusion of both types of input may involve

surprising subtleties. For example, in the GAIM Racing Game, an

analog stick is used to turn the car. However, the PCGamerBike

Mini also allows players to specify direction by pedaling forwards

or backwards. Therefore, when holding the stick to the right,

pedaling forwards should move the car forwards and to the right,

whereas pedaling backwards should move the car backwards and

to the left. To solve this problem in the GAIM framework, we

introduced a new IDirection interface that provides an abstract

treatment of direction information, allowing input to be fused

from different sources.

In determining the input classification, we explicitly excluded

pervasive games [11], in favour of games that could be played in

the living room. Given the advent of fast networks and portable

devices with global positioning systems and accelerometers (such

as the iPhone), it would be an interesting extension to the

classification to include this style of game. We speculate that the

main additional input would be locomotion, movement that takes

a player from one physical location to another.

As we have shown, our active game input classification allows the

development of portable games that are independent of specific

hardware configurations. Games built around our abstract inputs

can allow people with different hardware to play together. For

Figure 5: GAIM Racing Game (top-left). (A) PCGamerBike Mini input, (B) Tunturi E6R input, (C) Polar heart rate monitor input

example, in a two player version of our GAIM Racing Game, one

person could use a PCGamerBike while the other player uses a

heart rate monitor as an input device. This raises the possibility

that some input devices may confer an advantage in competitive

games, analogous to the advantages of using a keyboard and

mouse versus a game controller when playing a first-person

shooter. An interesting avenue for further research will be to

determine ways of detecting and compensating for such

advantages.

Additionally, our input classification presented in this paper opens

the possibility of developing active games for differently abled

users. Input mechanisms providing the six input types could be

custom-built for players with specific physical limitations.

In future work, we hope to extend the GAIM framework, by

supporting additional input and peripheral devices, to allow

programmers to express desired interactions independently of the

underlying hardware. This will enable developers to more quickly

create portable active games independent of particular hardware.

Over all, classifying input in active games opens the possibility of

developing games independently of the underlying hardware.

Designers should be able to create active games without having to

consider the manner in which input is captured, allowing them to

focus more on game content and story.

9. CONCLUSION
Currently, when designing an active game, developers must first

consider what input hardware the game will utilize. Therefore,

active game designers are limited to the capabilities of a specific

hardware device. This situation limits creativity and the

portability of active games. In order to address this problem we

developed a classification of active gaming input.

In our development of the active game input classification, we

examined interaction techniques in 107 active games. We were

able to extract six major inputs types used in active gaming:

gesture, stance, point, power, continuous control and tap. We

believe that our input classification is the first approach at

abstracting interaction in active games. With continued

development of our GAIM framework, we hope to make it easier

for developers to create active games without the need to

implement low-level input handling for game peripherals.

10. REFERENCES
[1] Bastide, R., Navarre, D., Palanque, P., Schyn, A., and

Dragicevic, P. A model-based approach for real-time

embedded multimodal systems in military aircrafts. In Proc.

ICMI 2004, 243-250.

[2] Buttussi, F., Chittaro, L., Ranon, R., and Verona, A.

Adaption of graphics and gameplay in fitness games by

exploiting motion and physiological sensors. In Proc. Smart

Graphics 2007, 85-96.

[3] Card, S. K., Mackinlay, J. D., and Robertson, G. G. The

design space of input devices. In Proc. CHI 1990, 117-124.

[4] Dubois, E. and Nigay, L. Augmented reality: which

augmentation for which reality? In Proc. DARE 2000, 165-

166.

[5] Duke, D., Faconti, G., Harrison, M., and Paternó, F.

Unifying views of interactors. In Proc. AVI 1994, 143-152.

[6] Gregersen, A., and Grodal, T. Embodiment and Interface.

The Video Game Theory Reader 2, ed. Perron, B., Wolf,

M., 2008, 65-83.

[7] Hämäläinen, P., Ilmonen, T., Höysniemi, J., Lindholm, M.,

and Nykänen, A. Martial arts in artificial reality. In Proc.

CHI 2005, 781-790.

[8] Hoysniemi, J. International survey on the Dance Dance

Revolution game. Comput. Entertain. 4(2), 2006, 8.

[9] Laakso, S., and Laakso, M. Design of a body-driven

multiplayer game system. In Comput. Entertain., 4(4),

2006, 7.

[10] Larssen, A., Loke, L., Robertson, T., and Edwards, J.

Understanding movement as input for interaction—a study

of two eyetoy™ games. In Proc. OzCHI 2004.

[11] Magerkurth, C., Cheok, A. D., Mandryk, R. L., and Nilsen,

T. Pervasive games: bringing computer entertainment back

to the real world. Comput. Entertain. 3(3), 2005, 4.

[12] Mueller, F.F., Agamanolis, S., Vetere, F., Gibbs, M.R.

Remote impact: shadowboxing over a distance. In Proc.

CHI 2008, 2291-2296.

[13] Mueller, F.F., Stevens, G., Thorogood, A., O’Brien, S., and

Wulf, V. Sports over a distance. In Personal and

Ubiquitous Computing, 11 (8), 2007, 633-645.

[14] Myers, B. A. A new model for handling input. ACM Trans.

Inf. Syst. 8(3), 1990, 289-320.

[15] Nenonen, V., Lindblad, A., Häkkinen, V., Laitinen, T.,

Jouhtio, M., and Hämäläinen, P. Using heart rate to control

an interactive game. In Proc. CHI 2007, 853-856.

[16] Nintendo. Consolidated Financial Highlights (PDF).

[17] Parker, J. R. Games for physical activity: A preliminary

examination of the Nintendo Wii. In Proc. 6th International

Symposium on Computer Science in Sport, 2007.

[18] Sinclair, J., Hingston, P., Masek, M. Considerations for the

design of exergames. In Proc. GRAPHITE 2007, 289-296.

[19] Stach, T., Graham, T.C.N., Yim, J., and Rhodes, R. Heart

rate control of exercise video games. To appear in Graphics

Interface 2009.

[20] Whitehead, V, Johnston, H., Crampton, N., and Fox, K.

Sensor networks as video game input devices. In Proc. of

Future Play 2007, 38-45.

[21] Wu, M., and Balakrishnan, R. Multi-finger and whole hand

gestural interaction techniques for multi-user tabletop

displays. In Proc. UIST 2003, 193-202.

[22] Yim, J., Qiu, E., and Graham, T.C.N. Experience in the

design and development of a game based on head-tracking

input. In Proc. Future Play 2008, 236-239.

[23] Yim, J., and Graham, T.C.N. Using games to increase

exercise motivation. In Proc. Future Play 2007, 166-173.

