
Fiia: User-Centered Development of Adaptive Groupware
Systems

Christopher Wolfe1, T.C. Nicholas Graham1, W. Greg Phillips2, Banani Roy1

1School of Computing 2Electrical and Computer Engineering
Queen’s University Royal Military College of Canada

Kingston, Canada K7L 3N6 Kingston, Canada K7K 7B4

{wolfe | graham | broy}@cs.queensu.ca greg.phillips@rmc.ca

ABSTRACT
Adaptive groupware systems support changes in users’ locations,
devices, roles and collaborative structure. Developing such systems
is difficult due to the complex distributed systems programming in-
volved. In this paper, we introduce Fiia, a novel architectural style
for groupware. Fiia is user-centered, in that it allows easy specifi-
cation of groupware structured around users’ settings, devices and
applications, and where adaptations are specified at a high level
similar to scenarios. The Fiia.Net toolkit automatically maps Fiia
architectures to a wide range of possible distributed systems, under
control of an annotation language. Together, these allow develop-
ers to work at a high level, while retaining control over distribution
choices.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces—Computer-supported cooperative work.

General Terms
Human factors, Languages

Keywords
Groupware development toolkit, groupware architecture

1. INTRODUCTION
Recent years have seen exciting advances in the design of group-

ware systems. One emerging trend is groupware that adapts over
time to changes in participants’ physical settings, hardware, roles
and collaboration structure. We term this kind of system adaptive
groupware.

Examples of adaptive groupware include RAMSES, a tool for or-
ganizing archaeological digs that allows users to move from their
office PC to a PDA at the dig site [1]; Mohoc, a tool allowing health
care workers to coordinate their activities with changing location
and degrees of connectivity [23]; OnStar, a commercial product

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’09, July 15–17, 2009, Pittsburgh, Pennsylvania, USA.
Copyright 2009 ACM 978-1-60558-600-7/09/07 ...$5.00.

where drivers in a car are automatically connected to emergency
operators in case of an accident [4]; Age Invaders, where “young”
people play a game on a physical platform while their “aged” rel-
atives join in from a web client [19]; and Software Design Board,
which allows people to migrate between synchronous/asynchronous
interaction, colocated/distributed location, and PC/electronic white-
board devices [29].

In these examples, people interact with each other, but from very
different settings (game platform vs web browser vs automobile),
using very different user interfaces, and fulfilling different roles.
Furthermore, these applications provide examples of adaptation to
changes in users’ settings, clients and roles over time.

Developing adaptive groupware involves enormous technical chal-
lenges. Implementing adaptations may require moving data and
code between computers, dynamically connecting devices with rad-
ically different capabilities, and resolving partial failure at runtime,
all while choosing and configuring consistency maintenance, con-
currency control, caching and network transport strategies appro-
priate to the newly adapted application. Adaptive groupware is still,
for the most part, developed using low-level networking and hand-
coded distribution algorithms. This lack of high-level tools for
runtime adaptation is impeding groupware developers from fully
exploring the design possibilities of the wide range of interactive
devices now available.

To address this problem, we introduce Fiia, a notation for de-
scribing the structure of groupware systems, and Fiia.Net, a de-
velopment tool that helps render these designs into code. Fiia
helps bridge the gap between design and implementation, allow-
ing groupware developers to model their systems using a notation
evocative of user-centered scenarios. The Fiia.Net toolkit provides
code constructs directly implementing the features of these models,
making it an easy step to translate Fiia diagrams into code. This re-
moves much of the conceptual gap between architectural model and
running system. We refer to Fiia as providing user-centered design
of groupware systems, as it encourages developers to think of users
in the context of their roles, physical settings and available devices.
Fiia has the following main properties:

• Fiia designs are user-centred, allowing collaborative applica-
tions to be modeled from the point of view of the people who
will be using them.

• Fiia is application-level, abstracting low-level details of dis-
tributed systems such as data replication, networking proto-
cols and failure handling.

• Fiia provides high-level support for runtime adaptation: de-
velopers specify changes in participants’ collaboration struc-

Sally's settingClive's setting

(a) (b) (c)

Figure 1: Scenes in the scenario: (a) Sally and Clive collaborate, (b) quotation viewer moved to PDA, and (c) in Bill’s office.

ture, devices and location at a conceptual level, and the toolkit
automatically enacts the changes on the distributed system.

The paper is structured as follows. We first introduce a scenario
motivating the need for better development support for adaptive
groupware systems. We discuss related approaches, and then in-
troduce the Fiia notation, illustrating how it simplifies the develop-
ment of adaptive groupware applications. Finally, we discuss the
implementation of the Fiia.Net toolkit, and conclude with an eval-
uation of its performance.

2. MOTIVATING SCENARIO
Figure 1 shows an adaptive groupware system supporting a col-

laborative furniture purchasing task. The application has been im-
plemented using the Fiia.Net toolkit.

2.1 Scene 1: Multi-Role, Multi-Platform Fur-
niture Layout

“Clive” is moving to a new office, and is interested in purchas-
ing furniture. He contacts “Sally”, a sales agent for a furniture
company. Sally starts a furniture layout program on her tabletop
surface. The program shows a top-down view of Clive’s office. Us-
ing gestures, Sally can drag furniture pieces onto the floor plan
and orient them to fit. Meanwhile, Clive, who is sitting at a PC,
sees a first-person view of the furniture layout, updated in real time
in response to Sally’s actions. He can use his program to “walk”
through the virtual space representing his office. Clive and Sally
communicate via a voice over IP link.

The first scene in our scenario illustrates considerable hetero-
geneity in the two participants’ settings: Roles: Sally is guiding
the furniture placement, while Clive views the results; Hardware:
Sally is using an electronic tabletop, a horizontal, touch-sensitive
surface with which she interacts using gestures, while Clive is using
a traditional PC with mouse and keyboard; Software: Sally is using
a top-down client that allows editing of the layout, while Clive is
using a 3D, first-person virtual world view of the layout.

2.2 Scene 2: Adding a Quotation Viewer
The second scene introduces a simple form of runtime adapta-

tion: Sally wants to show Clive a quotation for the furniture picked
so far. She initiates a quotation viewer, which appears on Clive’s
display. As new furniture is added, the quotation viewer updates

automatically. Clive prefers not to have to flip windows, so moves
the quotation viewer from his PC display to his PDA.

Figure 1(b) shows how progress with the collaborative task has
led to changes in the tools Clive and Sally are using to collaborate.
There are two forms of runtime change: Application: A new appli-
cation is started and used to share data; Device: An application is
moved from one device to another.

2.3 Scene 3: Moving Location
The final stage of the scenario shows two further forms of run-

time change: Clive wants to show the price list to Bill, his boss,
to discuss pricing. He ends the session with Sally, picks up the
PDA, and walks to Bill’s office. Clive and Bill look at the price list
together.

First, there is change in participant location, as Clive moves to
Bill’s office. Second, there is a change in participants, as Clive
moves from collaborating with Sally to collaborating with Bill. Fi-
nally, there is a change in collaboration style, as Clive moves from
distributed interaction with Sally to colocated interaction with Bill.

This scenario motivates the many challenges to developing adap-
tive groupware systems. We have seen that heterogeneity in par-
ticipants’ settings, roles and devices impacts their collaboration.
We have addressed this heterogeneity by giving different user inter-
faces (with very different capabilities) to each of the participants.
We have seen that the progression of the collaboration requires sig-
nificant runtime change. This involves change in tools (as the quo-
tation viewer was added) and change in device (as the quotation
viewer was moved from PC to PDA.) Finally, change in participants
and location was solved by migrating to a mobile device which was
used in a colocated setting.

These changes impact not only the user interface, but also the
distributed system on which the groupware tool runs. As Clive
leaves the collaborative session with Sally, it is important that any
shared data be made available on on his own computer and PDA
once the session is complete. It is important that the migration of
the quotation viewer interface be smooth, without any loss of data.
Finally, it is important that partial failure of the distributed system
be automatically resolved, leaving the application in a consistent
state. Current groupware architectures and toolkits provide little
support for these forms of adaptation, leaving developers to resolve
them using low-level tools such as raw sockets and manual config-
uration of the distributed system.

LL

fiia
component

A

store : passive, shareable

reactor : passive

actor : independently active
adaptor : physical to virtualuser

one of :

call : blocking, one to one, can return values

stream : non-blocking, many to many, send only

synchronize : observational equivalence of stores

low-latency request : applied to call or stream

setting

fiia conceptual-level notation distribution-level notation

message broadcaster

cacheconcurrency control and
consistency maintenance (cccm)

mirror cache

network receiver

network transmitter

communications
channel

n

node-local

inter-node (remote)

node

Figure 2: The Fiia notation. Developers use the conceptual notation. The Fiia.Net toolkit generates implementations using the
distribution notation.

Following a discussion of related work, we introduce the Fiia
notation and its associated toolkit. Fiia helps developers by allow-
ing direct implementation of scenarios involving adaptation, such
as those used to illustrate the furniture layout application presented
here.

3. RELATED WORK
Several conceptual architectural styles have been proposed for

reducing the complexity of groupware implementation by provid-
ing developers with a high-level view of their system. The Clover
Model [20] and PAC* [5] describe the design of a groupware ap-
plication based on layers of sharing, communication, and coordi-
nation. Some styles, like ALV [17] and Clock [15], are tied to
toolkits, and so can be used to directly implement groupware. The
use of conceptual architectural styles encourages iterative develop-
ment, as the result of architectural changes can be tested without
reimplementing the distributed system. Neither ALV nor Clock
provides support for runtime adaptation.

Groupware tools reduce development complexity, but tradition-
ally support only simple adaptations. For example, GroupKit [25]
allows users to create, join, and leave collaborative sessions with
shared applications. More complex adaptations, such as presented
in our scenario, need to be implemented manually.

Traditional middleware provides surprisingly little support for
building adaptive groupware applications. Many of these infras-
tructures do not support runtime adaptation at all [9, 27]. Those
that do are often limited to load-balancing [8, 24], or plug-replacing
specific policies [2]. There are a few middleware infrastructures
that support general runtime configuration, but do so purely at the
distribution level [7, 21]. These approaches require developers to
work at a low-level, rather using a conceptual architectural style.

Newer techniques have been developed that help with dynamic
adaptation of specific aspects of applications. Plastic user inter-
faces can adjust their appearance based on changes in the runtime
environment [6], or information from user behavior [26]. Simi-
larly, MATCH [22] evaluates and chooses a configuration suitable
for users’ interaction tasks. Chung and Dewan [10] describe a sys-
tem which dynamically allocates replicated servers across the com-
puters in a groupware system. Genie [3] adapts the implementation
of a distributed system by generating configurations, and automat-
ically migrating between then. One.world [16] supports the kind
of adaptation described in our scenario, requiring programmers to
work at the level of the distributed system, explicitly determining
when to replicate and migrate data. Recent work in modeling per-

formance of groupware applications promises to guide tradeoffs be-
tween different distribution configurations [18].

While these techniques help specify or implement limited adap-
tations, they provide little support for the drastic conceptual changes
found in adaptive groupware scenarios. In the following sections,
we will show how Fiia helps address this need.

4. MODELING ADAPTIVE GROUPWARE
WITH FIIA

Fiia helps developers model adaptive groupware systems. De-
velopers map scenarios (such as those from our furniture layout ex-
ample) onto Fiia diagrams, and then use the Fiia.Net development
toolkit to map those diagrams to running code. The key benefits of
Fiia are its high-level support for adaptation and its easy mapping
to executable code. In this section, we introduce the Fiia notation
(figure 2) through examples drawn from the furniture layout sce-
nario. In section 4.4, we show how these diagrams can be mapped
into code within the Fiia.Net toolkit. Fiia’s core features are:

• Designs are structured around settings, each capturing a par-
ticipant in context of his or her hardware, software, and on-
going collaborations.

• The contents of settings can be synchronized, allowing them
to be shared by multiple participants.

• Settings can easily be modified at runtime. Changes can en-
compass application, collaboration structure, devices used
and participant locations.

• Settings capture the components and devices with which par-
ticipants interact, but abstract details of their implementation
as a distributed system.

4.1 Scene 1: Fiia and Heterogeneous Settings
Fiia’s core construct is the setting, a representation of a user to-

gether with his or her resources. Resources include computers, dis-
play and input devices, and applications currently in-use. Users can
collaborate even when they have radically different settings. Fig-
ure 3 shows the settings for Sally and Clive in scene 1 of our furni-
ture layout example. Clive can interact with the digital world via a
mouse and keyboard and a monitor. Following the terminology of
ASUR, these interaction devices are termed adapters [11].

Clive uses a 3D Layout Viewer to display the contents of the
furniture layout from a first-person perspective. This viewer takes

Clive's setting Sally's setting

3D layout
viewer

furniture
layout

mouse &
keyboard

monitor

headset
voice client

2D layout
editor

furniture
layout

surface projector

headset
voice client

Clive Sally

Figure 3: Fiia diagram for scene 1

its data from a Furniture Layout component, which describes the
current set of furniture, and its position and orientation. Together,
these describe Clive’s setting, which comprises his interaction de-
vices and the software components that he is using to carry out the
collaboration.

Sally’s setting differs from Clive’s. She uses a tabletop Surface
and Display to interact with the furniture layout. She uses a differ-
ent client application, a 2D Layout Editor that allows her to view
and modify the layout from a top-down perspective. Unlike the
mouse and keyboard that Clive uses, Sally uses gestures on the
tabletop surface to place and orient furniture. Sally’s client also
obtains data from a Furniture Layout component.

Sally and Clive communicate via a voice over IP link. A voice
client streams data between their Headset adapters.

From this example, we can see that Sally and Clive’s settings dif-
fer in terms of their interaction devices and the client software they
use to interact with the furniture layout application. The point of
commonality between their settings is the Furniture Layout compo-
nent. For Sally and Clive to interact, the Furniture Layout compo-
nents in each of their settings are synchronized, as indicated by the
parallel bars symbol (). Synchronizing two components guar-
antees that they are observationally equivalent, that is, that they
appear to their clients to behave in the same way. When the sys-
tem is in a quiescent state, synchronized components provide the
same responses to queries and produce equivalent event streams.
Components may communicate via calls (), and asynchronous
data streaming () connectors. Calls represent traditional method
calls, while streaming is used to represent events (such as input
events) and continuous data (such as voice over IP traffic.)

The Fiia notation presents users in their settings similarly to how
scenarios describe participants’ contexts. Fiia diagrams capture the
interaction modalities the participant has at her disposal, and the
software and data with which she is interacting. A single diagram
represents a “scene”, or a snapshot in time. As the collaboration
changes over time, new Fiia diagrams are used to describe the re-
sulting new scenes.

Fiia abstracts all issues of distributed implementation. Figure 3
does not specify how components are to be allocated to computa-
tional nodes, what networking protocols are to be used, or what
caching or replication strategies are to be employed. The synchro-
nization between the two Furniture Layout components specifies
only that each setting has an instance of this component available,
and that the instances are observationally equivalent. As we will
see, the Fiia.Net toolkit is free to implement this using two repli-

Clive's setting Sally's setting

3D layout
viewer

mouse &
keyboard

A

monitor

A

headset

A

2D layout
editor

surface

A

projector

A

headset

A

furniture
layout

voice client

furniture
layout

voice client

quotation

quotation

quotation
viewer

polling
main
frame
loop

model-
view-
controller

Clive Sally

Figure 4: In scene 2, Clive’s user interface is extended to in-
clude a quotation viewer

cated instances of Furniture Layout, a single instance shared by the
two clients, or some hybrid scheme. This abstraction of distributed
systems issues allows designers to concentrate on the structure of
collaboration (at the level of scenarios) rather than becoming mired
in low-level implementation issues.

4.2 Scene 2: Fiia and Adaptation
Figure 4 shows the effect of adding a quotation viewer to the

collaboration. A new Quotation component is created containing a
price list for the furniture currently in the layout. In Fiia, this form
of runtime adaptation is specified simply by adding components to
the two participants’ settings, attaching the components to adapters,
and synchronizing the Quotation components.

Figure 4 also gives a sense of the expressiveness of the Fiia no-
tation. The 2D Layout Editor is implemented using a main-frame-
loop architecture, polling the tabletop input device, and updating its
Furniture Layout state. Meanwhile, the Quotation Viewer follows
a traditional Model-View- Controller design, where the Furniture
Layout reacts to events from the input device and the Furniture
Layout store.

Fiia’s powerful support for adapation is illustrated by Clive’s
move of the quotation viewer to his PDA (figure 5). In the Fiia

Clive's setting

3D layout
viewer

mouse &
keyboard

A

monitor

A

quotation
viewer

quotation

furniture
layout

PDA
screen

A

Clive changes
association of

quotation viewer
from main monitor
to PDA screen, which
implicitly moves the

quotation viewer
implementation onto

the PDA

Clive

Figure 5: The quotation viewer is moved to the PDA

model, the Quotation Viewer component is attached to the PDA’s
adapter (screen and keypad). This automatically invokes a migra-
tion of the quotation viewer interface to the PDA. Issues of mi-
grating components and their state between devices are left to the
Fiia.Net toolkit to resolve. This simple change (accomplished by
four lines of code in Fiia.Net – two disconnect and two connect
calls) is all that is required to initiate the migration of the user in-
terface to the PDA. All of the distributed systems issues of moving
the component over the network and restarting it in the same state
on the PDA are performed automatically by the toolkit.

4.3 Expressiveness of Fiia notation
Despite its simplicity, the Fiia notation can express most con-

ceptual architectural styles for synchronous groupware. Figure 4
is annotated to show how Fiia conveys rich information about the
architectural style. The 2D Layout Editor is based on the standard
main-frame-loop architectural style, where it repeatedly polls for
input, updates its state (in Furniture Layout), and renders to the
projector. The same main-frame-loop architecture is used to imple-
ment the 3D Layout Viewer. Conversely, the quotation viewer is
implemented using the traditional model-view-controller architec-
ture. The Quotation Viewer component reacts to events delivered
either from the mouse and keyboard or (via synchronization with
Sally’s setting) from the Quotation component.

As this scenario has shown, Fiia is a simple notation allowing ar-
chitectures to be expressed at a conceptual level, close to the struc-
ture of the scenarios. Fiia diagrams can be written at different levels
of detail, ranging through the simple view of figure 3 to the more
detailed view of figure 4. Despite the simplicity of the notation, it
can be used to encode a wide range of architectural styles typically
used to develop groupware.

4.4 Mapping Fiia Diagrams to Code
As we have seen, Fiia diagrams follow naturally from scenarios,

where each diagram corresponds to a scene. Similarly, it is straight-
forward to map diagrams to code; the concepts from Fiia diagrams
map one-to-one to C# code using the Fiia.Net toolkit. The toolkit’s
API allows developers to create runtime models implementing Fiia
diagrams. The toolkit them automatically implements these mod-
els as distributed systems. Programmers carry out adaptations at
the level of the Fiia diagram, while Fiia.Net automatically main-
tains the distributed implementation.

As an example, the following code creates the Furniture Layout
component in Sally’s setting, and synchronizes it to the equivalent
component in Clive’s setting:

Fiia.Setting = "Sally";

Store furnitureStore =
Fiia.NewStore<

FurnitureLayout>();

SyncConnector sync =
Fiia.SyncConnect(

"shd-furniture", furnitureStore);

The FurnitureLayout class is a standard C# class, providing oper-
ations for manipulating the positions and orientations of furniture
objects. The following code creates the the 2D Layout Editor and
adds the call connector between it and the Furniture Layout store:

Actor editor =
Fiia.NewActor<TwoDLayoutEditor>();

Fiia.CallConnect(
editor.Property("Layout"),
furnitureStore.Type("IFurniture"));

f1 f2

d1 d2

r1

ad

r2

fiia conceptual
level

distribution
level

af

refinement

adaptation

Figure 6: Fiia Framework

The 2D Layout Editor is implemented by the C# TwoDLayoutEdi-
tor class. The call connection establishes the editor’s Layout prop-
erty as a reference in the editor component; this reference enables
inter-component calls using standard C# syntax, such as

furnitureStore.AddFurniture(...);

We see from these examples that mapping from Fiia diagrams to
code is straightforward, as each element of the Fiia diagram has a
corresponding concept in the Fiia.Net API. The toolkit builds nat-
urally on the features C# programmers are used to using, and has
been integrated with Windows forms (for traditional graphical user
interfaces) and XNA Studio (for 2D and 3D games and simula-
tions.) Fiia.Net runs on a wide variety of platforms, including PCs
and Windows Mobile PDAs.

5. FIIA PROGRAMS AS DISTRIBUTED SYS-
TEMS

As the previous section illustrated, Fiia diagrams abstract the
details of distributed systems programming, allowing developers to
concentrate on the functionality of their application rather than its
implementation over a distributed network. Distribution issues in
groupware applications are, however, challenging to address. Dis-
tributed groupware applications must provide excellent feedback
and feedthrough times, must be secure, and must smoothly resolve
partial failure of the underlying distributed system. Achieving these
goals requires efficient handling of different distribution topolo-
gies, including centralized and replicated data distribution, consis-
tency maintenance and concurrency control algorithms, data mi-
gration and caching. The Fiia approach helps with these problems
by allowing developers to design their systems using the high-level
Fiia notation, and then use the Fiia.Net toolkit to map the resulting
code to an efficient distributed system.

Fiia.Net’s mapping of the Fiia architecture to a distributed sys-
tem is highly flexible. For example, two synchronized components
might be mapped to a a single copy of the component accessed over
the network by remote procedure call, or to two copies of the com-
ponent whose replicated state is managed by any of a collection
of consistency maintenance algorithms. As the Fiia conceptual ar-
chitecture evolves at runtime, the distributed system is kept up to
date. If parts of the distributed system fail, the Fiia architecture
is automatically updated to reflect the new system state, allowing
developers to react to failure without having to deal with the dis-
tributed system itself.

Developers may accept the distributed implementation that Fiia.Net
provides by default, or may insert annotations into the architecture
that guide the process of refining it to a distributed system.

Clive's PDA

Sally's PC

Clive's PC

3D layout
viewer

furniture
layout

quotation
viewer

voice client

monitor
mouse &
keyboard

headset

1

PDA
screen

2D layout
editor

furniture
layoutvoice client

projectorsurfaceheadset

1
quotation

Clive Sally

2

2

3

3

Figure 7: Distribution architecture for the Fiia diagram of figure 4

In this section, we show how Fiia.Net maps architectures to dis-
tributed systems. In the next section, we provide performance eval-
uation demonstrating the practicality of the Fiia approach.

5.1 Fiia.Net Framework
Figure 6 shows Fiia.Net’s conceptual organization. Program-

mers create a Fiia diagram (f1) representing a scene. This diagram
is automatically refined by Fiia.Net to a distribution architecture
(d1).

Runtime adaptations may occur at both the Fiia level (change
application, device, location, etc.) or at the distribution level (net-
work or component failure.) This leads to a new Fiia or distribution
architecture (f2 or d2.) The toolkit then carries out necessary op-
erations to reestablish consistency between the two levels. To our
knowledge, Fiia.Net is unique in maintaining this two-level view
of the system at runtime, and in automatically maintaining con-
sistency between the two views. This allows developers to enact
runtime change using high-level Fiia scenes. It also gives develop-
ers the means to deal with partial failure at a high level. Rather than
dealing with repair of broken sockets, programmers view failure as
the disappearance of components and connectors, making it easier
to respond to a failure in its broader context.

5.2 Distribution Architecture
Figure 7 shows the distribution architecture for Scene 3 of the

scenario. Distribution architectures are expressed in terms of in-
frastructure components, as enumerated in figure 2. These include
implementations of the components specified in the Fiia design,
as well as built-in components that handle issues such as caching,
concurrency control and communication. In effect, these compo-
nents make up a machine language for distribution architectures, to
which the Fiia.Net refinery compiles Fiia designs.

The distribution architecture differs from the Fiia design in sev-
eral ways, including:

• Components are allocated to computational nodes. For ex-
ample, the 2D Layout Editor is represented on Sally’s PC,
while the 3D Layout Viewer is allocated to Clive’s PC.

• It is determined how components communicate over the net-
work. For example, the two instances of the Furniture Lay-
out component use a multicast channel to communicate, while

the Quotation Viewer communicates with a remote Quota-
tion component via remote procedure call.

• Support for replica consistency is added in the form of spe-
cial infrastructure components that provide a choice of con-
currency control and consistency maintenance algorithms.

The Fiia.Net toolkit has a great deal of flexibility in how it chooses
to produce a distribution architecture from a given Fiia design. Ap-
plication programmers can choose to accept Fiia.Net’s choice of
architecture, or, as we shall see, can influence these choices via
high-level hints attached to the Fiia design itself.

We will now examine the specifics of this architecture in order to
illustrate the range of issues that Fiia designs hide from the appli-
cation programmer. We emphasize that figure 7 shows one of many
possible distribution architectures for the Fiia design of figure 4.

The 2D Layout Editor and the 3D Layout Viewer both require
access to data in the Furniture Layout component, which is repli-
cated to both Sally and Clive’s PCs. Each instance of the Furniture
Layout can be updated by both the local and remote user inter-
faces (in response to Sally and Clive’s inputs). Therefore, Consis-
tency Maintenance/Concurrency Control (CCCM) components are
required to ensure consistent execution of operations on the two
replicas. CCCM’s are shown visually as: . The CCCM com-
ponents use an internal protocol based on message broadcasting to
maintain the consistency of the replicas. The CCCMs communicate
via a channel (n), which provides multicast messaging.

The Quotation Viewer and Furniture Layout both require access
to the Quotation component. In figure 7, the Quotation Viewer
is represented on Sally’s computer (a centralized implementation).
The Quotation Viewer accesses the Quotation via remote procedure
call. This is implemented via a pair of transmitter ()/receiver ()
infrastructure components.

In summary, the distribution architecture is a rich language al-
lowing the expression of a wide range of distributed implemen-
tations. This example has shown some of this flexibility through
the choice of centralized versus replicated data representation, re-
mote procedure call versus multicast channel communication. Not
shown here is the choice of implementations of the infrastructure
components, which encapsulate, for example, choice of concur-
rency control algorithm or networking protocol.

 Clive's setting Sally's setting

3D layout
viewer

furniture
layout

mouse &
keyboard

A

monitor

A

headset

A

voice client

2D layout
editor

furniture
layout

surface

A

projector

A

headset

A

voice client

LL LL

“low-latency”
annotations on

connectors require
components at either
end to be implemented

on same node

connectors
to and from

adapters are
implicitly low

latency

both ends require
low latency, so a

replicated
implementation of

the furniture
layout (one copy in

each setting) is
forced

Clive Sally

Figure 8: Annotated Fiia diagram for scene 1

5.3 Architectural Annotations
As discussed in the last section the Fiia.Net toolkit has consider-

able freedom in what distribution architecture is chosen for a given
Fiia model. Developers can leave the choice of distribution archi-
tecture to the toolkit, or can use annotations to guide the toolkit’s
choices.

Annotations can be used to specify any of a wide range of im-
plementation choices including: how components are anchored to
nodes, whether to use replicated vs centralized data distribution,
what channel topology to employ (multicast, centralized broadcast,
multicast trees), caching strategy, CCCM algorithm, and network-
ing protocol (lossless, lossy).

Annotations are attached to Fiia components. For example, in
figure 8, the connector between the 3D Layout Viewer and the Fur-
niture Layout components is given a “low latency” (LL) annota-
tion. This specifies that communication between the two compo-
nents must be as fast as possible. When the refinery views this hint,
it chooses (if possible) to anchor the two components on the same
node. Similarly, Sally’s 2D Layout Editor is anchored to the same
node as her Furniture Layout component. When combined, the ef-
fect of these two hints is to force the replication of the Furniture
Layout component so that both the editor and viewer have imme-
diate access to it. The consequences of this replication were shown
in figure 7.

Annotations constrain the Fiia.Net runtime’s choices. Whereever
the runtime has discretion (e.g., on what node to locate a com-
ponent, what concurrency control algorithm to use, or whether to
replicate data), an annotation can be used to guide the runtime sys-
tem in its choice. Annotations are an important part of the Fiia
development process. If provided with no direction, the Fiia.Net
toolkit is capable of deriving an implementation, but not necessar-
ily a highly performant one. Annotations provide a very high-level
way of guiding the refinement to distribution architecture. Annota-
tions allow the developer to specify desirable performance qualities
without having to specify the distributed systems details of how to
achieve them.

5.4 Distribution Aspects of Adaptation
Simple runtime changes in a Fiia design may have significant

effects at the distribution level. The real power of Fiia’s adapation
is that developers are able to express changes easily, while Fiia.Net
takes care of the potentially complex ramifications of these changes
on the distribution-level.

As we saw in figure 5, migrating the Quotation Viewer to a

PDA platform was easily specifed by rewiring the component’s in-
put/output connectors. This simple rewiring causes the following
steps at the distribution level, roughly following the Memento de-
sign pattern [14]:

• The component’s state is serialized

• The state is transmitted to the new platform, and deserialized,
effectively relocating the component to the new platform

• The old component’s connectors are redirected to the new
component, and the old component is destroyed

• If any of these operations fail, the component is considered
lost, and all connections to it are cleaned up.

Fiia’s strength is that it allows access to such complex functionality
through simple mechanisms.

Figure 9 reinforces this. In our scenario, Clive disconnects from
Sally’s session. All that is required to disconnect is to remove
the synchronization between Clive’s and Sally’s Quotation stores.
Both Clive and Sally are then free to continue to using the applica-
tion in their own settings, but their actions are no longer communi-
cated to the other. As was shown in figure 7, the synchronization
was implemented using a single copy of the data on Sally’s com-
puter. For the disconnection to be implemented correctly, the data

Clive's Sally's setting

2D layout
editor

surface

A
projector

A

furniture
layout

quotation

LL

LL

quotation
viewer

quotation

PDA
screen

A

as long as quotations
are synchronized,

latency annotations
permit centralized
implementation in

Sally's setting

when synchronization
is removed, a copy of

the quotation must be
implemented in Clive's

setting

Clive Sally

Figure 9: Effect of disconnecting from the session

Every nodeEvery nodeevery node one node

node
manager

fiia
architecture

refinery

application
objects

distribution
architecture

fiia
conceptual
adaptations

distribution
adaptations

Figure 10: Implementation of the Fiia.Net runtime system

must be copied to Clive’s computer, allowing him to retain access to
it following the disconnection. Once again, this behaviour is easy
to specify at the conceptual level (requiring a one-line command
in Fiia.Net to remove the synchronization), saving the programmer
from considerable complexity at the distributed systems level.

Figure 10 shows the runtime architecture of the Fiia.Net system.
Every node has a Node Manager component responsible for con-
figuring local objects as directed by the Refinery. One “master”
node has the special status of being responsible for storing the con-
ceptual and distribution architectures (the Architecture component),
and manging the consistency between them. The Architect carries
out conceptual-level changes to the architecture (e.g. create a new
workspace and adding components), and notifies the Refinery. The
Refinery is a rule-based system responsible for mapping the Fiia ar-
chitecture to a distributed implementation, taking into account any
specified annotations.

The heart of the Fiia.Net runtime is its rule-based refinery. The
refinery treats maintenance of the conceptual and distribution mod-
els as a bi-directional graph rewriting problem. 34 graph rewrite
rules, written in Story Diagram notation [12], embody the choice
points in the implementation of conceptual architectures. At a given
point during the refinement, some number of rules may be applica-
ble. The choices of which rules are applied determines the ultimate
distribution model. These choices include:

• How to allocate a component to a computational node

• How to implement a synchronization connector (centralized
with proxies; replicated, or hybrid)

• How to implement event stream communication (peer-to-peer;
routed via server, or group-casting)

• How to implement inter-node calls (RPC; firewall-friendly
RPC via supernode; with or without cache).

At runtime, a trace data structure represents the choices that were
made in refining the current conceptual model to the current distri-
bution model. When changes occur at the distribution level (e.g.,
due to partial failure), this trace is unwound to the point that it cor-
rectly describes the current distribution (i.e., the failed components
have been removed), and then re-refined to a valid distribution.
When changes occur at the conceptual level, the conceptual archi-
tecture is re-refined, re-using the previous refinement where possi-
ble. This provides stability in refinement, so that small changes in
the conceptual level do not lead to unnecessarily large changes at
the distribution level.

6. EVALUATION
We have applied Fiia.Net to the development of a range of adap-

tive groupware applications. These include the tabletop-based fur-
niture layout application described in this paper, the Raptor tool for
collaborative video game sketching [28], a mobile, distributed pre-
sentation tool, a simple video conferencing system, and a frame-
work for experimenting with concurrency control in games [13].
We have found that with appropriate training, designers are able
to effectively specify scenarios using the Fiia notation, and to then
map the scenarios to code. The Fiia.Net toolkit is usable within the
context of our research group, and following further polishing and
documentation will be made available to the broader community.

Fiia.Net allows developers to specify adaptation at a very high
level. In order to illustrate that the approach is practical, we have
measured the performance of the furniture layout application. In
these experiments, Fiia.Net gives excellent runtime performance,
and the time required to carry out runtime adaptations is insignifi-
cant.

We measured the runtime performance of one user manipulat-
ing furniture on the tabletop while another user views the furniture
on a PC (scene 1 of the scenario.) Measurements were taken with
20 pieces of furniture in the layout. Three metrics were used to
assess performance: frame rate (the number of frames per second
that the 3D Layout Viewer is able to generate); feedback time (the
time it takes a user to see the results of moving a piece of furniture
on the 2D Layout Editor), and feedthrough time (the time it takes
a furniture move performed with the 2D Layout Editor to appear
in the 3D Layout Viewer.) We did not directly measure feedback
time, but instead exploited the property of the frame loop architec-
ture that feedback time can be estimated from frame rate; i.e., an
input will be processed in the next iteration of the main frame loop,
allowing feedback time to be bounded by 1000/frame_rate.

We measured two conditions: (1) over a 100 Mbps local area
network, with the 2D Layout Editor on an Intel Core 2 at 2.4 GHz,
2 GB RAM and an NVIDIA 6600 GPU, and the 3D Layout Viewer
on an AMD TL-50 1.6 GHz dual core processor, 2 GB RAM, with
ATI X1300 GPU; and (2) over a low-bandwidth wide area network
with the 3D Layout Viewer on an AMD TL-60 2.0 GHz dual core
processor, 3 GB RAM, with NVIDIA 7000M GPU. We measured
frame rate of the 3D Layout Viewer, feedthrough time from the 2D
Layout Editor to the 3D Layout Viewer, and calculated feedback
time on the 2D Layout Editor.

We used three versions of the application. As a control, we mod-
ified the application to replace Fiia with .Net Remoting, the remote
procedure call facility built into Microsoft’s .Net framework. We
used two Fiia versions of the application, one where the Furniture
Layout component is centralized on the tabletop PC, and one where
it is replicated to both PCs.

 LOCAL AREA WIDE AREA

Frame
Rate
(fps)

Feedbk
Time
(ms)

Feedthru
Time
(ms)

Frame
Rate
(fps)

Feedbk
Time
(ms)

Feedthru
Time
(ms)

.Net
Remoting

57 21 18 7 17 136

Fiia
Centralized

58 17 17 8 17 125

Fiia
Replicated

58 17 18 52 17 25

Figure 11: Fiia runtime performance. Times rounded to near-
est ms.

These results are summarized in figure 11. Not surprisingly,
Fiia’s replicated case gives the best performance, as the 3D Lay-
out Viewer has a local copy of all data necessary to execute its
main frame loop. This allows it to run close to XNA Studio’s max-
imum frame rate of 60 fps. This version also provides the best
feedthrough times.

On the local area network, the performance of the .Net Remoting
case is similar to the Fiia centralized case, indicating that Fiia’s
runtime system has minimal overhead; both give performance that
from the user’s perspective is instantaneous. Over the wide area,
their performance was virtually the same, and both unusably slow.
This was because the network communication required to render
the scene took in excess of 100 ms, allowing the frame loop to
execute at only 7-8 fps.

In all cases, feedback time on the 2D Layout Editor was less than
20 ms, instantaneous from the point of view of a user.

These results show that Fiia.Net’s runtime performance com-
pares well with Microsoft’s integrated remote procedure calls, while
granting much more flexibility. Tuning the system using annota-
tions gave far superior performance to standard .Net Remoting.

Next, we measured the time it took Fiia.Net to carry out two
adaptations drawn from scene 2 of the scenario. Over a local area
network, and using the computers listed in condition (1) above, the
average time to perform each adaptation five times was:

• Creating the quotation viewer: 897 ms

• Moving the quotation viewer from PC to PDA: 344 ms.

In both cases, the adaptations were carried out with a delay of less
than one second. This shows that Fiia.Net performs adaptations
quickly enough to easily support groupware systems of this size.

7. CONCLUSION
This paper has introduced the Fiia notation for modeling adap-

tive groupware, and its associated Fiia.Net toolkit. We have seen
that Fiia allows developers to model their systems at a level simi-
lar to scenarios, providing snapshots of the system state at different
points in its execution. Fiia’s conceptual, user-centered modeling
allows developers to easily specify complex adaptations without
being bogged down by the details of the distributed system. An
annotation concept allows developers to specify, again at a high
level, desired distribution properties such as choice of networking,
caching or consistency maintenance strategy. Finally, we have re-
ported that Fiia.Net’s performance is more than acceptable for the
development of groupware applications.

There are considerable opportunities for future work. While it is
straightforward to encode Fiia architectures using C# commands in
Fiia.Net, we plan to experiment with the development of a graphi-
cal editor that will allow the diagrams to be executed directly. The
toolkit opens up the possibility for experimentation with distribu-
tion algorithms, allowing us to easily compare the effectiveness of
different strategies simply be modifying annotation. Finally, more
work is required to assess the effectiveness of the toolkit with a
broader user community.

8. ACKNOWLEDGMENTS
We gratefully acknowledge the funding of the Natural Science

and Engineering Research Council of Canada and the NECTAR
CSCW research network.

9. REFERENCES
[1] M. Ancona, G. Dodero, and V. Gianuzzi. RAMSES: A

mobile computing system for field archaeology. In Handheld
and Ubiquitous Computing, pages 222–233. Springer-Verlag,
1999.

[2] G.E. Anderson, T.C.N. Graham, and T.N. Wright. Dragonfly:
Linking conceptual and implementation architectures of
multiuser interactive systems. In Proc. ICSE 2000, pages
252–261, 2000.

[3] N. Bencomo, G. Blair, and P. Grace. Models, reflective
mechanisms and family-based systems to support dynamic
configuration. In MODDM ’06, pages 1–6. ACM Press,
2006.

[4] E.A. Bretz. The car: Just a web browser with tires. Spectrum,
38(1):92–94, January 2001.

[5] G. Calvary, J. Coutaz, and L. Nigay. From single-user
architectural design to PAC*: A generic software
architecture model for CSCW. In Proc. CHI ’97, pages
242–249. ACM Press, 1997.

[6] G. Calvary, J. Coutaz, and D. Thevenin. A unifying reference
framework for the development of plastic user interfaces. In
Proc. EHCI ’01, pages 173–192, 2001.

[7] L. Cardelli. Obliq: A language with distributed scope.
Technical Report 122, Digital Equipment Corporation,
System Research Center, Palo Alto, CA, March 1994.

[8] R. Chandra, A. Gupta, and J.L. Hennessy. Data locality and
load balancing in COOL. In Proc. PPOPP, pages 249–259,
1993.

[9] R.S. Chin and S.T. Chanson. Distributed object-based
programming systems. ACM Comput. Surv., 23(1):91–124,
1991.

[10] G. Chung and P. Dewan. Towards dynamic collaboration
architectures. In Proc. CSCW ’04, pages 1–10. ACM Press,
2004.

[11] E. Dubois, L. Nigay, and J. Troccaz. Consistency in
augmented reality systems. In Proc. EHCI ’01, LNCS 2254,
pages 117–130. Springer-Verlag, 2001.

[12] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
diagrams: A new graph rewrite language based on the
Unified Modeling Language and Java. In Proc. TAGT’98,
pages 296–309. Springer-Verlag, 2000.

[13] R.D.S. Fletcher, T.C.N. Graham, and C. Wolfe.
Plug-replaceable consistency maintenance for multiplayer
games. In Proc. NetGames, pages 34–37, 2006.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

[15] T.C.N. Graham and T. Urnes. Linguistic support for the
evolutionary design of software architectures. In Proc. ICSE
18, pages 418–427. IEEE Computer Society Press, 1996.

[16] R. Grimm. One.world: Experiences with a pervasive
computing architecture. IEEE Pervasive Computing,
3(3):22–30, 2004.

[17] R.D. Hill, T. Brinck, S.L. Rohall, J.F. Patterson, and W.
Wilner. The Rendezvous language and architecture for
constructing multi-user applications. ACM TOCHI,
1(2):81–125, June 1994.

[18] S. Junuzovic, G. Chung, and P. Dewan. Formally analyzing
two-user centralized and replicated architectures. In Proc.
ECSCW ’05, pages 83–102. Springer-Verlag, 2005.

[19] E.T. Khoo, S.P. Lee, A.D. Cheok, S. Kodagoda, Y. Zhou, and

G.S. Toh. Age Invaders: Social and physical
inter-generational family entertainment. In Proc. CHI ’06,
pages 243–247. ACM Press, 2006.

[20] Y. Laurillau and L. Nigay. Clover architecture for groupware.
In Proc. CSCW ’02, pages 236–245. ACM Press, 2002.

[21] R. Litiu and A. Prakash. Developing adaptive groupware
applications using a mobile component framework. In Proc.
CSCW 2000, pages 107–116. ACM Press, 2000.

[22] T. McBryan and P.D. Gray. A model-based approach to
supporting configuration in ubiquitous systems. In Proc.
DSV-IS ’08, pages 167–180, 2008.

[23] D. Pinelle and C. Gutwin. Loose coupling and healthcare
organizations: adoption issues for groupware deployments.
Computer Supported Cooperative Work, 15(5–6):537–572,
2006.

[24] C.G. Plaxton, R. Rajaraman, and A.W. Richa. Accessing
nearby copies of replicated objects in a distributed
environment. In Proc. SPAA ’97, pages 311–320. ACM
Press, 1997.

[25] M. Roseman and S. Greenberg. Building real time
groupware with GroupKit, a groupware toolkit. TOCHI,
3(1):66–106, March 1996.

[26] J.-S. Sottet, V. Ganneau, G. Calvary, J. Coutaz, A. Demeure,
J.-M. Favre, and R. Demumieux. Model-driven adaptation
for plastic user interfaces. In Proc. INTERACT ’07, pages
397–410, 2007.

[27] C. Wolfe. Conceptual programming models of distributed
systems. Technical Report 2006-525, School of Computing,
Queen’s University, 2006.

[28] C. Wolfe, J.D. Smith, T.C.N. Graham, and W.G. Phillips. A
model-based approach to engineering collaborative
augmented reality. In E. Dubois, P. Gray, and L. Nigay,
editors, Engineering of Mixed Reality. Springer Verlag, 2009.

[29] J. Wu and T.C.N. Graham. The Software Design Board: A
tool supporting workstyle transitions in collaborative
software design. In Proc. EHCI/DSVIS ’04, pages 363–382.
LNCS, 2004.

