
An Incremental Algorithm for
High-Performance Runtime Model Consistency

Christopher Wolfe1, T.C. Nicholas Graham1, and W. Greg Phillips2

1 School of Computing, Queen’s University, Kingston, Ontario, Canada
(wolfe|graham)@cs.queensu.ca

2 Department of Electrical and Computer Engineering, Royal Military College of
Canada, Kingston, Ontario, Canada

greg.phillips@rmc.ca

Abstract. We present a novel technique for applying two-level runtime
models to distributed systems. Our approach uses graph rewriting rules
to transform a high-level source model into one of many possible target
models. When either model is changed at runtime, the transformation is
incrementally updated. We describe the theory underlying our approach,
and show restrictions sufficient for a simple and efficient implementation.

We demonstrate this implementation in Fiia.Net, our model-based toolkit
for developing adaptive groupware. Developers using Fiia.Net control
components and connections through a high-level conceptual runtime
model. Meanwhile, the toolkit transparently maintains the underlying
distributed system, and propagates failures back into the conceptual
model. This approach provides high stability, and performance that is
sufficiently fast for interactive applications.

1 Introduction

Recent years have seen a proliferation of computing devices, ranging from smart
telephones and PDAs, to netbooks and tablet PCs. When connected over a net-
work, these devices enable new styles of communication and collaboration in
mobile settings. Applications include meetings at a distance [1], tele-health [2]
and online games [3]. Such adaptive groupware is fundamentally a distributed
system which undergoes significant runtime adaptation: as users move between
tasks, roles, devices and locations; and as network conditions and connections
change. An example application might allow two software developers to brain-
storm using a large shared touch-screen. They send a snapshot to a colleague’s
smartphone, who then migrates it to a laptop and joins the live collaboration.
These systems are difficult to build, because they must provide intuitive user
interfaces, while maintaining high performance through varying user demands
and partial failure.

Model-based techniques have great potential for aiding the development of
adaptive groupware. High-level conceptual models [4–7] can describe the system’s
structure, abstracting low-level issues like data sharing and caching policies,



concurrency control algorithms, and network protocols. Distribution models can
help reason about architecture trade-offs [8] or configure an implementation [9].

To address the challenges of adaptive groupware, we have developed a model-
based system which supports runtime adaptation in both conceptual and distri-
bution models:

– The runtime system automatically refines the conceptual model into a distri-
bution model. This mechanism supports multiple possible implementations
of each conceptual model.

– Developers specify high-level changes as runtime adaptations to the concep-
tual model (e.g., a user changes device, or new data is shared between users).
The runtime system propagates these adaptations through refinement to the
distribution model.

– The underlying distributed system takes its configuration from the distribu-
tion model, and reports failures as distribution adaptations (e.g., a smart-
phone’s battery dies, or a network becomes unavailable). Following failure,
the runtime system restores the models to a consistent state, allowing the
application to detect and manage failures via the conceptual model.

This approach requires us to maintain consistency between the two models
at runtime. Existing model transformation techniques, outlined in Sec. 2, do not
support bidirectionality, limit the flexibility of the transformation, or are too
slow for use in a running groupware system.

Underpinning our solution is a novel algorithm for maintaining bidirectional
model consistency. Using this algorithm, refinement from a conceptual model
to a distribution model is specified using unordered graph rewriting rules. Both
models are maintained at runtime. Arbitrary changes in the conceptual model
and removals from the distribution model are rapidly propagated through the
transformation. The algorithm performs adaptations incrementally, and with
minimal change to the models.

Our algorithm is possible due to restrictions in the scope of distribution
adaptations. Changes in the distribution level result from failure, so are always
reported via removals. This avoids the need to reverse-engineer new distribution
model elements, so permits extremely general rules and high performance. Our
algorithm does not otherwise depend on the behavior of distributed systems,
and is independent of our particular metamodels and rewriting rules.

We have used this algorithm in the Fiia.Net groupware development toolkit [10].
Fiia.Net has been used to develop a range of applications, distributed across
desktop PCs, smartphones, and tabletop computers. Significant examples in-
clude a game sketching tool [11] and a furniture layout application [10].

This paper is organized as follows. After reviewing related work, we describe
the framework underlying our algorithm, building from abstract examples to the
underlying theory and pseudocode. Finally, we provide a short evaluation of the
algorithm as implemented in Fiia.Net.



2 Related Work

Model transformations are often applied to link two-level models of software ar-
chitecture, as popularized by the OMG MDA [12] initiative. As software evolves,
designers and developers make changes to both levels. Incremental bidirectional
transformations allow these changes to be propagated through to the opposite
model [13]. Unlike our runtime approach, however, these traditional techniques
focus on static design and source code.

Most model transformations represent models as graphs. Triple Graph Gram-
mars (TGGs) [14] are a common basis for incremental bidirectional transforma-
tions (e.g. [15–17]). TGGs are difficult to apply to graphs which have dissimilar
structure [17], primarily because TGG rules map directly from source to tar-
get models without performing intermediate steps. This presents problems for
our application to distributed systems: high-level behaviors are typically built
from lower-level behaviors, and our rules naturally follow this structure using
intermediate elements and non-determinism.

Other approaches for bidirectional model transformation impose a wide vari-
ety of restrictions [18]. QVT [19] defines two user languages: QVT Relational is
similar to TGGs [20], and similarly does not support intermediate steps. QVT
Operational, meanwhile, is an imperative language that would require hand-
coded inverse rules to support bidirectionality. This relational versus operational
split is typical of the remaining literature.

The Atlas Transformation Language (ATL) is a notable exception. It is an
imperative model rewriting system, which has been extended to support con-
ceptual adaptations and distribution removals [21]. The ATL-based technique is
not stable with respect to local adaptations, so would cause unnecessary recon-
figuration in live interactive systems.

Without supporting bidirectionality, Hearnden at al. [22] present a technique
for incrementally updating a model transformation. Their formulation is based
on maintaining the tree of possible derivations in a logic language.

Model transformations are also used in the area of distributed systems to
specify adaptation between different configurations [23, 9]. These systems sup-
port high level specification of changes in a single-level model. We believe that
similar techniques will be useful extensions to the Fiia.Net conceptual model
API.

To the best of our knowledge, none of these systems satisfy our joint require-
ments of speed, generality, stability and limited bidirectionality.

3 Framework

The core of our approach is the use of two runtime models representing snapshots
of the conceptual and distribution-level configuration of the distributed interac-
tive system. These models are related via a refinement model transformation,
while adaptations result in runtime changes to these models.



C1

s1

s2

D1

Fig. 1. One refinement in a
tree of possibilities.

C1 C2

D1 D2

s1; s2 = T1 T2

∆C

∆D

Fig. 2. Commuting of refinements over
adaptations.

The high-level conceptual model is exposed to applications via reflection,
events, and an editing API. Applications call into the API to specify runtime
adaptations, and use events and reflection to gauge the effects of partial failure.

The low-level distribution model describes the underlying distributed sys-
tem. It is modified automatically through refinement, as a result of conceptual
adaptations. Partial failures are first reported as distribution adaptations, and
then propagated up through the refinement to the developer’s conceptual view.

Figure 1 shows the relationship between the models. A conceptual model C1

corresponds to a distribution model D1 through a sequence of transformation
steps (such as s1, s2). Many different sequences of steps are possible, often lead-
ing to different distribution models. Figure 2 combines the steps into a single
transformation T1. The transformation steps are generated by non-deterministic
application of a set of refinement rules.

At runtime, either model may be modified, as shown in Fig. 2. If a modifica-
tion ∆C is applied to C1, the resulting conceptual model C2 may not correspond
with D1. The runtime system must find a new transformation T2 and distribu-
tion model D2 which are compatible with C2. Likewise, if a modification ∆D is
applied to D1, the runtime system must find T2 and a new conceptual model C2.

The fact that updates are applied to both models excludes many transforma-
tion techniques. As we shall see in the following sections, limiting distribution
adaptations to deletion allows our algorithm to support both general rules and
fast, incremental updates. In summary, the main features of our approach are:

– Unordered graph rewriting rules are used to refine from conceptual to dis-
tribution models.

– Arbitrary changes may be applied to the conceptual model.
– Removals may be applied to the distribution model.
– Updates are applied stably, and at speeds suitable for interactive systems.

In the next sections, we expand on our algorithm and the underlying the-
ory. We first describe how the model transformation is recorded into a trace of



g ← the graph to refine;

while any rules match g do
r ← any matching rule;

append step s to trace where:
s.consumes = edges consumed by the rule;
s.requires = edges required by the rule, but not modified;
s.produces = edges produced by the rule;

g ← g − s.consumes; /* Delete edges */

g ← g ∪ s.produces; /* Add edges */

end

the resulting distribution graph ← g;

Algorithm 1: refine: apply rewriting rules to a graph

steps. From there, we show how the trace and distribution are updated following
changes in the conceptual model. Finally, we expand the algorithm to deal with
removals from the distribution model.

4 Refinement and Trace

Refining the conceptual model into a distribution requires a very general refine-
ment algorithm. Because there are multiple implementations of each conceptual
model, the refinement must deal with non-determinism. Because the refinement
involves a set of nested choices, the algorithm must permit the generation and
consumption of intermediate elements to capture each refinement stage. Further-
more, adaptation must be permitted at either level. To the best of our knowledge,
this combination is not addressed by existing techniques. Our algorithm solves
a significant subset of this problem by supporting arbitrary adaptations at the
conceptual level and removals at the distribution level. This section defines how
we perform refinements and establish a trace. This information is then used to
perform conceptual (Sect. 5) and distribution (Sect. 6) adaptations.

The relationship between conceptual and distribution models is specified via
a set of graph rewriting rules. These rules are applied in arbitrary order until
no more rules match, and their effects are recorded in a trace. This process is
outlined in Alg. 1. As in other unordered graph rewrite systems, the rules can be
very general: they need not be bidirectional, and can include non-determinism,
intermediate elements, and multiplicities.

Rather than limit the behavior of individual rules, we enact adaptations by
manipulating the trace. This section describes our formalization of the graphs,
rules and trace.

The conceptual and distribution models are stored as graphs, each repre-
sented as a set of directed edges. Edges have a source vertex, a target vertex,
and a label. Vertices are implicit, existing only as unique identifiers associated
with an edge. All modifications to a graph can therefore be expressed via the
removal and addition of edges.



Rewriting rules are represented as three sets of edges, plus subrules and
executable code for advanced features. The three sets of edges describe most of
the rule’s behavior, so are where we focus this discussion. Each set describes a
sub-graph, with the following meanings:

consumes: must exist for the rule to match, will be deleted;
requires: must exist for the rule to match, will not be modified;
produces: must not exist for the rule to match, will be added.

These sets describe both the prerequisites of a rule, and its effects when applied.
This design is similar to many others, including the well-known double-pushout
approach [24]. We now present an example of a Fiia.Net rule, and continue with
the details of the trace.

In Fiia.Net, the conceptual model specifies a component-oriented distributed
system. Components interact via explicit connectors, which express patterns of
communication. For example, a synchronization connector between two compo-
nents establishes them as copies of the same shared data, while a stream con-
nector conveys realtime data such as sound or video. There are many possible
ways to implement these connectors, expressed via a choice of refinement rules.

A much simpler connector is the call connector, which enables blocking
method calls. In Fiia.Net ’s rule set, a call connector can be implemented as
a local pointer or remote procedure call (RPC). The remote procedure call can
be direct, cached, or routed via a server.

The Fiia.Net rule for rewriting a call connector into a direct RPC is sketched
in Fig. 3(a). This rule deletes a call connector (k) between two endpoints (caller
and callee) on different physical nodes (n1 and n2). It replaces the call connector
with a network RPC link (t to r), as shown in Fig. 3(b). Call connectors appear
in the Fiia.Net conceptual model, and are produced by many other rules. Even
the caller and callee are often the product of earlier rules.

Matching a rule against a target graph consists of finding an embedding. An
embedding is a mapping from a rule’s precondition vertices (those consumed or
required) to vertices in the target. As in other systems, the mapping must be
injective, and applying it to the rule must produce a subgraph of the target.
Vertices in the rule are either variables (e.g. k and caller), which could map to
any one of many graph vertices, or exact values (e.g. “Call Connector”).

If an embedding exists, the rule can be applied to the target graph. Rule
application consists of deleting consumed edges and adding produced edges.
Produced variables which do not appear in the embedding (e.g. t and r) are
mapped to unique new vertices.

Each trace step records the effect and dependencies of a single rule appli-
cation, i.e., the sets of edges consumed, required, and produced. The trace of a
refinement is a sequence of trace steps recording all its rule applications.

A trace can sometimes be applied to graphs other than its original conceptual
model. This process is shown in Alg. 2. If the graph is missing edges consumed
or required by the trace, the apply will fail. In this case, the graph and trace
are incompatible.



k : Call Connector

caller callee

n1 : Node n2 : Node

t : Transmitter r : Receiver

source-of target-of

in in

in in

connected-to connected-to

remote-connected-to

(a) Rule definition. Dashed elements
are consumed, while underlined ones
are produced.

caller k callee

caller t r callee

step

(b) Rule application. This step re-
places k with a network RPC link via
t and r.

Fig. 3. Example Fiia.Net rule: Implement a synchronous call connector as an RPC
link.

t← the trace to apply;
g ← the original graph;

for each s in t do
/* Ensure the preconditions are met. */

if s.consumes 6⊆ g ∨ s.requires 6⊆ g ∨ s.produces ∩ g 6= ∅ then
raise the graph and trace are incompatible;

end

g ← g − s.consumes; /* Removed consumed edges. */

g ← g ∪ s.produces; /* Add produced edges. */

end

the resulting graph ← g;

Algorithm 2: apply: apply a trace to a graph

We handle negative and repeated patterns as subrules. If a negative pat-
tern matches, it prevents the containing rule from matching. Repeated patterns
match greedily, zero or more times, and contribute to steps produced from their
containing rule.

The rules are applied in an unordered fashion. When multiple rules match, or
multiple embeddings are possible, one is chosen arbitrarily3. The transformation
continues applying rules until none match. This approach requires that the rule
set be terminating and complete: all sequences of rule applications must be finite,
and the final graph must be a distribution model.

3 A steering algorithm can be attached to the rule refinery in order to guide these non-
deterministic choices based on application-specific criteria, e.g. to minimize latency
between components.



C1 C2

H

D1 D2

T1

∆C

∆D

T−1
prune(∆C)

TH

T2

Fig. 4. Steps used in performing a
conceptual adaptation.

∆+ ← edges added by the change;
∆− ← edges deleted by the change;
g ← the graph to adapt;

g ← g − ∆−; /* Delete edges */

g ← g ∪ ∆+; /* Add edges */

g → the resulting graph;

Algorithm 3: adapt: apply a change
to a graph.

In the next sections, we build from these properties to the complete theory
of our algorithm.

5 Conceptual Adaptations

Conceptual adaptations typically represent local changes within a larger model.
Because the changes reconfigure a live system, they need to be propagated
through the refinement quickly and incrementally. Existing techniques for such
incremental updates greatly restrict the space of supported rules. Our algorithm
solves this problem for unordered rewrite rules. This section describes how we
apply conceptual adaptations to an existing refinement, using the explicit trace
defined in Sec. 4.

Conceptual adaptations are defined using the graph representation of the
conceptual model. An adaptation is a set of edges which are removed from the
graph, and a set of edges which are added. Figure 4 shows the operations used to
resolve a conceptual adaptation. From initial models C1 and D1, corresponding
via trace T1, and a conceptual adaptation ∆C , our algorithm proceeds as follows:

1. Using ∆C , adapt C1 to C2 (Alg. 3).
2. Using ∆C , prune T1 to a partial refinement of C2, producing T−1 (Alg. 4).
3. apply T−1 to C2, producing H (Alg. 2).
4. refine H, producing a trace TH and model D2 (Alg. 1).
5. Concatenate the steps of T−1 and TH , producing a new trace T2.

The prune operation converts T1 into a trace which represents a partial
refinement of C2. It does this by discarding steps which would not have been
generated by a refine of C2. Determining which steps to discard depends on
the consumes, requires, and produces sets saved in each step. We now give an
example of this pruning, and then present the complete algorithm.

Consider the abstract initial state shown in Fig. 5(a). Edges ea and eb exist
in the conceptual model C1. The first refinement step (s1) consumes eb and



ea eb

s1

ec

s2

ed

C1

D1

consumes

produces

consumes

produces

consumes

(a) Initial models and
trace T1 = s1; s2

ee eb

s1

ee ec

C2

H

consumes

produces

(b) Pruned trace
T−1 = s1

ee eb

s1

ec

s3

eg

C2

D2

consumes

produces

consumes

consumes

produces

(c) Final models and
trace T2 = s1; s3

Fig. 5. Example conceptual adaptation ∆C = { del: ea, add: ee }.

produces ec. After the first step, the intermediate model consists of ea and ec.
The second step (s2) consumes both ea and ec, producing ed. After the second
step, no more rules match, so the distribution model consists of only ed.

Now suppose that we apply a conceptual adaptation ∆C that removes ea

and adds the new ee. This causes the trace to be pruned to the T−1 shown in
Fig. 5(b). T−1 is the same at T1, except that steps that no longer apply in C2

have been removed. Specifically, s2 consumes ea, so must be discarded. With the
loss of s2, ed is no longer available. As neither ec nor ee are consumed in the
trace, they appear in the intermediate model H.

Applying rewriting rules to H and concatenating the traces yields the T2

shown in Fig. 5(c). s1 remains unchanged from the initial state, but s2 has been
replaced by s3.

The operational definition of prune is show in Alg. 4. It performs the depen-
dency search outlined above based on the ordering of steps in the trace. Each
step is defined from a graph rewrite operation in the transformation. As a re-
sult, all edges consumed or required by a step si in T1 must appear in C1, or be
produced by a previous step (sp where p < i). The iteration will always consider
sp before si, so can show dependency using a simple set intersection check.

For simplicity, this definition ignores negative and repeated patterns. In the
complete algorithm, these are handled during the iteration. Negative patterns are
checked against an intermediate graph when Alg. 4 considers the step compatible.
Repeated patterns may expand or contract the step if their number of matches
has changed. Both cases add to the complexity of the operation, but their use
in Fiia.Net does not significantly impact runtime speed.



t← T1;
r ← edges removed by ∆C ;

/* Propagate ∆C down through the trace. */

for each s in t do
if removed ∩ s.consumes 6= ∅ or removed ∩ s.requires 6= ∅ then

/* A prerequisite is unavailable, so delete this step. */

delete s from t;
removed ← removed ∪ s.produces;

end

end

T−1 ← t;

Algorithm 4: prune: update the trace for a conceptual adaptation.

This technique allows us to quickly update an existing transformation with
arbitrary conceptual changes. The resulting trace T2 will always correspond to
a possible sequence of rule applications on C2, and so can be used in further
adaptations. Unlike other approaches to live model transformation, our approach
maintains general graph rewriting semantics throughout.

6 Distribution Adaptations

Partial failures in distributed systems are notoriously hard to resolve. A two-level
runtime model provides a natural way of capturing this behavior: failures are
removals in the distribution model, and are propagated back to the conceptual
model. This allows the developer to work exclusively with the conceptual model,
rather than delving into implementation details to diagnose and repair problems.

Our requirement for general rewriting rules excludes existing techniques for
bidirectional adaptation. Restricting distribution adaptations to removals allows
us to apply them quickly and incrementally. We are not aware of any other
algorithm for unordered rewrite rules that offers this capability. This section
defines how we handle distribution adaptations, building on operations defined
earlier.

Like conceptual adaptations, distribution adaptations are specified as graph
edits; however, they are restricted to removals. Figure 6 shows the operations
used to resolve a distribution-level adaptation. Initial models C1 and D1 corre-
spond via trace T1. The distribution adaptation ∆D produces a new distribution
Di from D1. The unrestricted rule set implies that Di might not correspond to
any conceptual model. Our algorithm resolves this conflict by removing addi-
tional distribution edges to restore consistency (∆D2). This whole operation is
performed as follows:

1. findSourceDelta with ∆D and T1 to generate ∆C (Alg. 5).
2. Using ∆C , adapt C1 to C2 (Alg. 3).
3. Using ∆C , prune T1 to its parts compatible with C2, producing T−1 (Alg. 4).



C1 C2

H

D1 Di D2

T1

∆C

∆D ∆D2

T−1

fi
n
d
S
o
u
rc
e
D
e
lt
a
(∆

D
)

pru
ne(

∆C
)

TH

T2

Fig. 6. Steps used in performing a distribution adaptation.

4. apply T−1 to C2, producing H (Alg. 2).
5. refine H, producing a trace TH and model D2 (Alg. 1).
6. Concatenate the steps of T−1 and TH , producing a new trace T2.

The findSourceDelta operation finds conceptual removals ∆C sufficient to
cause ∆D. The derived ∆C is then applied like a normal conceptual update, fol-
lowing the algorithm described in Sect. 5. This conceptual update often removes
more distribution elements than ∆D, causing the additional ∆D2.

Consider the abstract example shown in Fig. 7(a). We apply a distribution
update ∆D which removes ed. The task of findSourceDelta is then to identify
the conceptual edges which led to ed, so they can be removed. ed was produced
by s2, which, in turn, consumes ea. As a result, ∆C will remove ea.

Applying prune with ∆C = { del: ea } produces the T−1 trace shown in
Fig. 7(b). Without ea, pruning discards both s2 and s3. This leaves only ec, no
longer consumed by s3, to appear in the intermediate model H.

To refine H to a valid distribution model, we rely on the earlier property of
completeness. The trace T−1 describes a sequence of rule applications from the
conceptual model C2 to H. In our example, ec happens to be an intermediate
element, which can not appear in the distribution model. For the completeness
property to hold, applying the refinement rules must eventually refine H into a
distribution model. In this example, s4 is sufficient, and yields the final T2 shown
in Fig. 7(c).

The operational definition of findSourceDelta is shown in Alg. 5. It per-
forms the inference described above by walking backward through the trace. As
for prune, all edges consumed by a step must appear in C1 or be produced by a
previous step. This iteration always considers the consume before the produce,
so can accumulate the banned edges in “removed”.

This technique quickly updates an existing transformation to apply distribu-
tion removals. Our approach is particularly unique, because it does not require
bidirectional rules. Indeed, the transformation used in our Fiia.Net system is
neither bijective nor surjective, and is massively non-deterministic.



ea eb

s1

ec

s2 s3

ed ee

C1

D1

consumes

produces
consumes

produces

consumes

produces

requires

(a) Initial models and
trace T1 = s1; s2; s3

eb

s1

ec

C2

H

consumes

produces

(b) Pruned trace
T−1 = s1

eb

s1

ec

s4

ef

C2

D2

consumes

produces

consumes

produces

(c) Final models and
trace T2 = s1; s4

Fig. 7. Example distribution adaptation ∆D = { del: ed }.

7 Experience

The algorithm presented in this paper is used by our Fiia.Net toolkit. Fiia.Net
represents a distributed interactive system using a high-level conceptual model
which is visible to the application, and a low-level distribution model which
configures the actual implementation [10]. An application enacts adaptations
by modifying the conceptual model, while the underlying implementation re-
moves any failed elements from the distribution model. Our algorithm efficiently
propagates both types of updates through the transformation. Fiia.Net ’s rule
set consists of 34 graph rewrite rules, each of which is simple, but which in
combination express a rich set of possible implementations for each conceptual
model.

We have used Fiia.Net to implement several applications within our lab.
These include a shared presentation program; a multimodal furniture layout [10]
involving participants using an electronic tabletop surface, a standard PC, and
a smartphone; a textual chat application; and a collaborative game prototyping
tool [11]. These examples have shown the effectiveness of the two-level model for
groupware, and the practicality of using Fiia.Net toolkit for rapid application
development.

To evaluate the performance impact of our model transformation algorithm,
we have recorded the time it requires for various adaptations based on the Raptor
game prototyping tool [11]. Raptor allows designers to add and control in-game
entities while a tester plays. Each in-game entity is a single Fiia.Net component.
Adding, removing, and connecting entities causes Raptor to make changes in the



T ← T1;
∆− ← edges removed by ∆D;

/* Propagate ∆D up to the conceptual model. */

for each s in reverse T do
/* Check whether this step is compatible with the change. */

if ∆− ∩ s.produces 6= ∅ or ∆− ∩ s.requires 6= ∅ then
delete s from T ; /* Discard the incompatible step. */

/* Discarding this step means more edges should not exist. */

∆− ← ∆− ∪ s.consumes;
end

end

∆C ← { del: ∆− ∩ ∆C } ; /* Compute the conceptual adaptation. */

Algorithm 5: findSourceDelta: find a sufficient conceptual removal for a
distribution removal

conceptual model. Similarly, partial failures will cause changes to the distribution
model.

Figure 8(a) compares the incremental algorithm, described in this paper, to
a straight-forward full refinement. In both cases, the experiment gradually in-
troduces 1000 new entities into a game world via conceptual adaptations. All
transformation is performed in one thread, on an Acer Aspire 5110 (AMD TL-
50 1.6GHz with 2GB RAM, running Windows XP and Microsoft .Net 3.5). The
size of the trace and models grows linearly with the number of entities. At 1000
entities, it reaches 8022 steps, with 16054 and 19076 edges in the conceptual and
distribution graphs, respectively. Applying a full refinement after each adapta-
tion rapidly becomes too expensive for interactive applications, peaking at nearly
4 seconds. Our incremental algorithm performs much better, remaining below
500 ms. This gap appears because prune preserves almost all of the previous
steps, so the ensuing refine requires few graph searches.

Figure 8(b) shows the same system, removing entities from the game world
via conceptual and distribution adaptations. Applying the adaptations in the
conceptual model behaves similarly to the incremental additions. The distribu-
tion adaptations are slightly different, because removing components from the
distribution model indicates their failure. To ease application recovery, Fiia.Net
preserves some information about connections to failed components. This be-
havior is responsible for both the slightly higher performance of, and the 10076
distribution edges remaining after the distribution case. Again, performance is
adequate for interactive use.

Our current graph rewriting engine is relatively crude. It stores all interme-
diate models as untyped graphs, and dynamically matches rules using recursive
search. In spite of these shortcuts, our current implementation works well with
a few thousand components and connections.

While our approach is motivated by the difficulties of developing distributed
systems, the algorithm is independent of Fiia.Net ’s models and rules.



0 10K 20K
0

1/4

1/2

A
da

pt
at

io
n

T
im

e
(s

ec
on

ds
)

Distribution Graph Edges

Fu
ll

R
efi

ne
m

en
t.
..

In
cre

men
ta
l

(a) Conceptual adaptations to add game en-
tities.

0 10K 20K
0

1/4

1/2

Con
cep

tu
al

D
ist

rib
ut

io
n

A
da

pt
at

io
n

T
im

e
(s

ec
on

ds
)

Distribution Graph Edges

(b) Conceptual and distribution adaptations
to remove game entities.

Fig. 8. Adaptation times for varying model sizes.

8 Conclusion

In this paper, we have presented an efficient algorithm for maintaining consis-
tency in two-level runtime models. This allows systems like Fiia.Net to maintain
all the flexibility of model-driven architecture, in a highly-adaptive and fault-
tolerant runtime.

Because our algorithm is built on graph rewriting and tracing, it should also
permit many optimizations and heuristics that we have not explored. We believe
that this approach will prove useful for similar two-level runtime models, whether
specialized for groupware or other fields.

References

1. Graham, T.C.N., Kazman, R., Walmsley, C.: Agility and experimentation: Prac-
tical techniques for resolving architectural tradeoffs. In: ICSE, IEEE Computer
Society (2007) 519–528

2. Pinelle, D., Dyck, J., Gutwin, C.: Aligning work practices and mobile technologies:
Groupware design for loosely coupled mobile groups. In Chittaro, L., ed.: Mobile
HCI. Volume 2795 of Lecture Notes in Computer Science., Springer (2003) 177–192

3. Achterbosch, L., Pierce, R., Simmons, G.: Massively multiplayer online role-playing
games: the past, present, and future. Computers in Entertainment 5(4) (2007)

4. Graham, T., Urnes, T.: Linguistic support for the evolutionary design of software
architectures. In: ICSE 18, IEEE Computer Society (1996) 418–427

5. Calvary, G., Coutaz, J., Nigay, L.: From single-user architectural design to PAC*:
A generic software architecture model for CSCW. In: CHI ’97, ACM Press (1997)
242–249



6. Hill, R., Brinck, T., Rohall, S., Patterson, J., Wilner, W.: The Rendezvous language
and architecture for constructing multi-user applications. ACM TOCHI 1(2) (June
1994) 81–125

7. Laurillau, Y., Nigay, L.: Clover architecture for groupware. In: CSCW ’02, ACM
Press (2002) 236–245

8. Graham, T., Phillips, W., Wolfe, C.: Quality analysis of distribution architectures
for synchronous groupware. In: CollaborateCom. (2006)

9. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.M., Solberg, A., Dehlen, V., Blair,
G.S.: An aspect-oriented and model-driven approach for managing dynamic vari-
ability. In: MoDELS. (2008) 782–796

10. Wolfe, C., Graham, T.N., Phillips, W.G., Roy, B.: Fiia: User-centered development
of adaptive groupware systems. In: EICS (to appear). (2009)

11. Wolfe, C., Smith, J.D., Phillips, W.G., Graham, T.N.: Fiia: A Model-Based Ap-
proach to Engineering Collaborative Augmented Reality. In: The Engineering of
Mixed Reality Systems (to appear). Springer (2009)

12. OMG: MDA guide version 1.0.1. Technical Report omg/03-06-01, OMG (2003)
13. Kurtev, I.: State of the art of QVT: A model transformation language standard. In

Schürr, A., Nagl, M., Zündorf, A., eds.: AGTIVE. Volume 5088 of Lecture Notes
in Computer Science., Springer (2007) 377–393

14. Schürr, A.: Specification of graph translators with triple graph grammars. In
Mayr, E.W., Schmidt, G., Tinhofer, G., eds.: WG. Volume 903 of Lecture Notes
in Computer Science., Springer (1994) 151–163

15. Becker, S.M., Westfechtel, B.: Incremental integration tools for chemical engineer-
ing: An industrial application of triple graph grammars. In Bodlaender, H.L., ed.:
WG. Volume 2880 of Lecture Notes in Computer Science., Springer (2003) 46–57

16. Giese, H., Wagner, R.: Incremental model synchronization with triple graph gram-
mars. In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: MoDELS. Volume
4199 of Lecture Notes in Computer Science., Springer (2006) 543–557

17. Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, implemen-
tations, and application scenarios. Technical Report tr-ri-07-284, Department of
Computer Science, University of Paderborn (June 2007)

18. Stevens, P.: A landscape of bidirectional model transformations. In Lämmel, R.,
Visser, J., Saraiva, J., eds.: GTTSE. Volume 5235 of Lecture Notes in Computer
Science., Springer (2007) 408–424

19. OMG: Meta object facility (MOF) 2.0 query/view/transformation specification.
Technical Report formal/2008-04-03, OMG (2008)

20. Greenyer, J., Kindler, E.: Reconciling TGGs with QVT. In: MoDELS. (2007)
16–30

21. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In Stirewalt, R.E.K., Egyed,
A., Fischer, B., eds.: ASE, ACM (2007) 164–173

22. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for
the evolution of model-driven systems. In: MoDELS. (2006) 321–335

23. Bencomo, N., Blair, G.S., France, R.B.: Summary of the workshop mod-
els@run.time at models 2006. In: MoDELS Workshops. (2006) 227–231

24. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - Part I: Basic concepts and double pushout
approach. In Rozenberg, G., ed.: Handbook of Graph Grammars, World Scientific
(1997) 163–246


