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ABSTRACT 
Synchronous groupware depends on the assumption that 
people are fully connected to the others in the group, but 
there are many situations (network delay, network outage, 
or explicit departure) where users are disconnected for 
various periods. There is little research dealing with 
disconnection in synchronous groupware from a user and 
application perspective; as a result, most current groupware 
systems do not handle disconnection events well, and 
several user-level problems occur. To address this 
limitation, we developed the Disco framework, a model for 
handling several types of disconnection in synchronous 
groupware. The framework considers how disconnections 
are identified, what senders and receivers should do during 
an absence, and what should be done with accumulated data 
upon reconnection. We have implemented the framework in 
three applications that show the feasibility, generality, and 
functionality of our ideas. Our framework is the first to deal 
with a full range of disconnection issues for synchronous 
groupware, and shows how groupware can better support 
the realities of distributed collaboration. 
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INTRODUCTION 
A central assumption of synchronous groupware is that the 
members of the group are temporally present – that is, they 
are actively observing changes to the shared workspace and 
noticing new updates as they arrive. Many types of 
groupware have been successfully built on this model, such 
as shared editors, instant messaging systems, audio and 
video conferencing tools, and multi-player games. 

These applications work (as groupware) by sending real-
time communication messages, awareness events, and 

model updates. When the synchrony assumption holds, 
these systems only need to send the current state of the 
activity – they can assume that other participants will 
receive the new information soon after it is sent, and that 
no-one misses anything. However, there are many 
situations in group work where the synchrony assumption 
does not hold, and where people have become disconnected 
from synchronous interaction – because of network delay, 
network outages, or explicit departure. These episodes can 
cause several problems: 
• interruptions in real-time streams (audio, video, or 

telepointers) lead to interpretation difficulties; 
• network outages often force people into laborious re-

connection procedures, and often cause loss of current 
state information such as an avatar’s location; 

• temporal absences cause people to miss real-time 
communication and awareness events, leading to loss of 
context or confusion about how changes occurred; 

• if work continues on both sides of a disconnection, 
problems can occur when trying to merge different 
versions of the shared data upon reconnection. 

Although researchers have investigated many issues within 
these areas (e.g., visualizations for change awareness [21], 
smoothing network interruptions in streaming media [14], 
and data consistency algorithms [13,15,20]), there is little 
work on underlying design principles that will allow 
synchronous groupware to deal comprehensively and 
appropriately with periods of asynchrony. 

To address this shortcoming, we have designed an 
application-level framework for dealing with disconnection 
in synchronous groupware. The Disco framework is based 
on the three phases of the asynchronous period – detecting 
that a group member is disconnected, determining what to 
do during the absence, and dealing with accumulated data 
when synchronous interaction resumes. The framework 
divides the design space using three concepts: the endpoint 
role (sender or receiver), the receiver’s connection state 
(connected or disconnected), and a set of adaptation 
mechanisms based on the length of the disconnection or the 
volume of data accumulated during the absence. 

These divisions define categories of adaptive behaviour 
stating what senders and receivers should do during a 
disconnection. We have implemented the framework at the 
application level and have tested it on three different 
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systems (an instant messaging system, a shared graphical 
editor, and a real-time game). The example systems show 
that our framework allows a much larger range of responses 
to periods of asynchrony than what has been seen in 
previous groupware systems. The adaptive behavior 
specified in the framework can help to solve the problems 
of interpretation and missed information mentioned above. 

We make three main contributions. First, we expand on 
previous ideas about asynchronous periods within 
synchronous activity, and show that several types of 
disconnection (interruption, network outage, and explicit 
departures) can be brought together under a single 
conceptual umbrella. Second, we identify and categorize 
both new and previously-studied techniques for dealing 
with disconnection (including systems, interface, and 
interactional aspects). Third, we provide an application-
level reference implementation that demonstrates the 
functionality and feasibility of our design, and that shows 
the range of adaptive behaviours that are possible. 

RELATED WORK 
The Disco framework is based on previous work in several 
areas of CSCW, including three reviewed below: fault 
tolerance, asynchronous groupware, and change awareness. 

Fault tolerant groupware 
The process of returning a system to an operational state 
following partial failure is termed failover [14]. Returning 
the system to fully operational state is called restoral, while 
returning the system to an operational but degraded state is 
called recovery. In general, recovery is possible if the failed 
component of the system does not hold resources crucial to 
the system’s continued operation. 

Support for failover has been build into some groupware 
toolkits, such as Ensemble [22], which provides a fault-
tolerant component-based infrastructure, or the YCab 
system [3], which addresses partial failure in mobile 
environments through redundancy. These approaches 
support recovery, but not repair in the case where no 
service is available to take over a failed function. Corona 
[10] uses distributed publish-and-subscribe and reliable 
group multicast communication so that clients can handle 
temporary failures, but has no provision for re-sending 
missed messages. The group multicast provides reliable 
message delivery, but has no failover provision. 

Failover mechanisms have also been documented for a 
small number of groupware applications. Some systems, 
such as the WebArrow conferencing tool, support partial 
failover through off-the-shelf technology such as load 
balancers and redundant database clusters, combined with 
custom algorithms for attempting to recover from failures in 
clients or servers [14]. Navarre et al. have shown how user 
interfaces in airline cockpits can be reconfigured to adapt to 
hardware failure [16]. Other approaches are taken by games 
such as Age of Empires 2, which freeze gameplay when 
one peer becomes unresponsive; after a time threshold, the 
unresponsive player is removed, and the other players are 

permitted to continue [1]. In persistent-world games such as 
World of Warcraft, disconnected players remain in the 
world for a few minutes after disconnection before state 
information (such as location) is discarded.  

While all of these approaches provide support for restoring 
a groupware session to at least partial operation following 
failure, little is done to address the human factors of the 
reconnection process. For example, WebArrow notifies 
disconnected participants that reconnection is being 
attempted, but after the connection is repaired, only limited 
information (i.e., chat messages, but not voice) are resent. 

Handling reconnection is related to the latecomer problem, 
which deals with providing late entrants the correct session 
state [4, 12]. Late-entrant solutions archive activity so that 
it can be sent to newcomers. These approaches are 
restricted by the need to archive all session events, whereas 
in failure situations, only changes made since the 
disconnection need to be archived. Late-entrant solutions 
also provide no support for clients during a disconnection. 

Asynchronous groupware 
Canonical asynchronous work is activity where group 
members never expect to interact at the same time: e.g., 
emailing document revisions, or asynchronously editing a 
wiki. Systems to support this type of work can be designed 
very differently than synchronous groupware – with store-
and-forward communication, little concern for network 
delay, and no need to send real-time awareness information. 

One area where researchers have explicitly considered 
disconnection in the design of asynchronous groupware is 
in mobile systems, where unreliable networks and 
disconnections are common (e.g., [5,6,12]). A variety of 
techniques and architectures have been proposed to 
maintain data consistency through asynchronous interaction 
[20], detect and repair conflicts [5], and merge changes 
from multiple users. Many mobile systems employ simple 
push-based store-and-forward methods for sending data 
from a central server to mobile clients (e.g., [18]). 
Reconnection issues for these systems are often based on 
merging, difference calculation, conflict detection, and 
versioning. However, a few application-level strategies 
have also been proposed. For example, Dix [6] suggests 
that when data reflects an attribute of the world (e.g., a 
current temperature) “we may often assume that the most 
up-to-date information is correct” (p. 178), which is similar 
to our ‘freshest data’ strategy described below. 

Other types of asynchronous interaction have also been 
studied, such as ‘multi-synchronous’ work (where multiple 
people edit a document simultaneously but independently). 
Techniques specific to these types of asynchronous work 
have been proposed – for example, Dewan [5] discusses 
techniques for providing real-time awareness information 
during simultaneous but independent editing sessions, in 
order to try and prevent later merge conflicts.  
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Some of the closest systems to our interests are those that 
explicitly support both asynchronous and synchronous 
interaction. Three types of systems have been seen in 
previous literature. First, groupware based on spatial 
metaphors provides a persistent environment that equally 
supports synchronous and asynchronous work. For 
example, TeamRooms [8] provides virtual rooms that 
persist when users leave: synchronous work is supported 
when multiple users are in a room at the same time, and 
asynchronous work is supported because people can leave 
artifacts for others. Changes are tracked through versioning. 

Second, purely asynchronous systems (such as document 
repositories or wikis) can be adapted for occasional 
synchronous use. For example, the DOORS architecture 
[19] allows real-time work when two users happen to be 
logged into the system at the same time. This system 
recognizes that update requirements are different for 
synchronous and asynchronous work, and provides 
incremental updates during synchronous periods, and model 
updates when an asynchronous user connects. In addition, 
DOORS has a mechanism to convert the many small 
updates produced during synchronous work to a larger 
single update for asynchronous users. 

Third, some synchronous systems provide limited support 
for asynchronous use. Prior work in this area has focused 
mostly on the latecomer problem (as described above), and 
on change awareness, reviewed below. 

Change Awareness in Asynchronous Systems 
At the user level, a major concern for asynchronous 
groupware is change awareness – that is, mechanisms for 
informing users about what changes have occurred in a 
document or a workspace since that user was last in the 
system. Techniques exist for showing changes both to 
shared artifacts and documents, and for showing the past 
actions and locations of user embodiments (the following 
list is adapted from a review by Tam and Greenberg [21]). 
• Lists of changes. Command-based comparison tools such 

as ‘diff’ show a list of lines that are different, and how 
one version can be transformed into the other. 

• Parallel displays. Some systems for comparing text 
documents show the different versions side by side (e.g., 
some document comparers show the original, the new 
version, and the changes, in three columns). 

• Annotations. Some systems mark changes in margins or 
overviews, such as change bars and balloons in the 
document margin (e.g., Microsoft Word), or marks on an 
attribute-mapped scrollbar (e.g., in Eclipse). 

• Highlights. Objects that have changed can be indicated 
with a visual highlight; e.g., many word processors mark 
changes from different users in different colours. 

• Playback. Some visual workspaces show changes by 
allowing replay of the changes as they happened. 

• Overlay of intermediate states. The progress of a change 
can be shown by overlaying all intermediate states in a 
visual workspace. 

• Motion traces are visual representations of an 
embodiment’s recent past. For example, motion lines can 
be added to telepointers to show recent movement [9]. 

• Location histories are summary representations of where 
people have been working. For example, ‘heat maps’ or 
colour-coding can show where people have spent the 
most time working in a document [11].  

We now turn to the work that we have done to deal with 
disconnection in synchronous groupware, beginning with 
the types of disconnection handled by the framework. 

TYPES OF DISCONNECTION 
We identify three types of disconnection, differentiated by 
the intent of the user and by which network endpoints 
perceive the disconnection as having occurred. 

Delay-based Interruptions 
Interruptions (also called jitter) are short-term gaps in 
message delivery that are caused by a variety of problems 
that can occur between the creation and eventual delivery of 
a message (e.g., congestion in the wide-area network, a low 
send rate, or a high CPU load). In these situations, 
messages cannot be delivered and so they pile up, thus 
losing their intended temporal spacing (e.g., the regularly-
spaced updates in a telepointer stream). When the problem 
clears, the messages are delivered all at once.  

Although the underlying network connection is still valid 
during a delay-based interruption, the delivery pattern is 
exactly that of a short-term disconnection (i.e., no messages 
for a period of time, then delivery of all the messages as a 
group). However, interruptions are only noticed at the 
receiver, since the network connection is not affected. 

Variance in delivery time is unavoidable, but most 
interruptions are too small in duration to be noticed by 
users. Therefore, we are primarily interested in gaps that are 
larger than 50-100ms, depending on the application.  

Network Outages 
In a network outage, a groupware node loses its network 
link to another node. Outages can occur for several reasons 
– network failure, mobile devices moving between zones, 
laptops going to sleep, unplugged cables, or inadvertent 
closing of the application – but outages are always 
unintentional, which differentiates them from departures 
(see below). Outages can be of varying length (from less 
than a second to many hours), since re-establishment of the 
connection depends on the availability of the network.  

Outages are only reported back to the application when 
using connection-oriented protocols such as TCP/IP; 
although outages can also affect connectionless protocols, 
no exception will be raised when the outage occurs. 
However, many groupware applications (even many mobile 
applications such as IM systems) depend on the delivery 
guarantees of connection-oriented approaches. In our 
implementation of Disco, we ensure notification of outages 
even for connectionless protocols, by adding a connection-
oriented ‘heartbeat’ to every point-to-point channel. 
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Explicit Departures 
In a departure, the user explicitly logs out of the session or 
quits the application. Departures are different from outages 
in that they are intentional, and the other nodes in the 
groupware system receive notification that the user is 
leaving. Departures are also typically much longer than 
network outages, since the user is unlikely to log out if their 
intended absence is short.  

Last, we note that these three types of disconnection do not 
describe occasional packet loss – instead, they deal with 
complete packet loss for a specified period of time. 
Intermittent and infrequent packet loss can be viewed as 
more of a quality of service issue than a disconnection 
issue, and is therefore out of the scope of our framework. 

THE DISCO FRAMEWORK 
The Disco framework is organized into three parts, 
reflecting the three phases of a disconnection: identifying 
that a disconnection has occurred, adapting system 
behaviour to deal with the asynchronous state, and handling 
accumulated messages upon a return to synchronous 
interaction. We first introduce three basic concepts used to 
divide the design space: the endpoint role, the receiver’s 
connection state, and the adaptation mechanism. 

Endpoint role (sender or receiver) 
We model a groupware system as a collection of one-way 
point-to-point communication channels. The endpoint role 
indicates which end of the connection we are concerned 
with – the sender or the receiver. In any disconnection, we 
consider the receiver to be the absent node, and the sender 
to be the node that is still acting synchronously. This model 
can be used equally well with both client-server and peer-
to-peer architectures. 

Nodes are generally senders and receivers at the same time, 
and so may be acting in both roles during a disconnection. 
For example, if a node is disconnected but able to continue 
working on a local copy of the shared data, it can be both a 
sender (it wants to send its local changes to others but 
cannot), and a receiver (it cannot receive others’ changes). 
We allow dual roles to proceed independently. 

Connection state (connected or disconnected) 
Participant nodes can be in one of two states in terms of 
their temporal presence: connected (implying that they are 
interacting synchronously) or disconnected (they are not 
interacting synchronously from the perspective of a sender).  

Transition events indicate when nodes in the groupware 
system enter a new state. As described above, nodes will 
not be notified of the disconnection in all situations – in 
particular, senders are not notified of interruptions.  

Adaptation mechanism 
Disconnections are inherently variable (e.g., they are 
unpredictable in duration), so we need a way of changing 
behaviour to adapt to different situations. The two most 
obvious variables in a disconnection episode are the length 
of the absence, and the amount of accumulated data. 

Duration of the disconnection 
The amount of time that someone has been absent is a 
common-sense indicator for adapting behaviour for both 
senders and receivers. This mechanism is based on people’s 
real-world behaviour: for example, a person would 
summarize a situation differently for a period of ten 
minutes, ten hours, or ten days. Absence time could be used 
in several ways (e.g., as a single continuous variable), but 
we adopt the idea of the logarithmic time scale that has 
previously been used to describe several aspects of human 
action (e.g., perception of system feedback). 

Our time-scale mechanism is based on a loose ‘powers of 
ten’ principle (see example scenarios below). The divisions 
in the scale depend on the application’s temporal 
granularity of interaction. For example, an IM client is 
unlikely to worry about millisecond-scale gaps, but this 
scale might be important for systems that send streaming 
media. In addition, some categories are not feasible for 
some disconnections – e.g., it is unlikely that outages can 
be repaired quickly enough for a sender to make use of a 
millisecond (or even a tenth-of-a-second) time scale. 

Volume of the accumulated data 
The number of accumulated events or messages can be a 
second measure for adapting behaviour. In our framework, 
senders store messages in different ways based on how 
many messages have arrived for the receiver. Again, we 
propose a powers-of-ten scale: for example, fewer than 10 
messages, 10-100 messages, and so on. Message volume 
could be used separately or together with time (e.g., a new 
behaviour could be started if absence time is greater than 1 
minute OR more than 100 messages have been received). 

Maintaining immediacy with a rolling rejoin buffer 
As the timescale increases, systems may wish to provide 
rejoining users with the most recent synchronous events 
(i.e., as if the disconnection had been short). This can 
provide rejoiners with rich context as they move back into 
synchronous interaction. Therefore, systems may maintain 
two separate repositories of information (one for the full 
duration of the absence, one to provide recent actions). 

Framework Phase 1: identifying absence 
The first stage of an asynchronous period is the 
determination that asynchrony is occurring. Each of the 
causes introduced above is characterized in a different way: 
• Interruption. Interruptions are noticed at the receiver 

only, by comparing message timestamps with receipt 
times. Therefore, dealing with short network interruptions 
is a receiver-only behaviour (see Figure 1). The receiver 
only notices jitter after the disconnection is over – so the 
‘smoothing’ state in Figure 1 is transitory. 

• Outages. Network outages are noticed at both the sender 
and receiver for connection-oriented protocols (e.g., 
through the raising of a socket exception). Both roles will 
use these events to switch to different behaviours. 

• Departure. Since a departure is an intentional exit, there 
is notification of the departure through the application. 
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Phase 2: adaptive behaviour during disconnection 
For the sender, adaptive behaviour during the disconnection 
determines what to do with messages that accumulate for 
the receiver. The sender must store information that will be 
useful to the receiver, but not use too much memory for 
storing it. Based on the powers-of-ten mechanisms, the 
sender will re-process the stored messages at each time (or 
volume) boundary, using five general strategies: 
• Filtering or elimination of messages; 
• Transformation of messages to new representations; 
• Joining of individual messages into a group; 
• Summarization (joining and transforming to produce a 

summary representation); 
• Sending the current data model instead of updates. 

A second issue for the sender concerns how to represent the 
disconnected user in the interface, and what types of 
interactions to allow with the disconnected user. In most 
cases, a disconnection will result in a change to the visual 
representation of the user in the application interface (e.g., 
graying-out of the avatar as seen in some online games), 
and this representation may also change as the 
disconnection time increases. Disconnection also means 
that a user will not respond to interaction, and so the sender 
must determine how to inform other users about this state. 
For example, attempting to start a voice conversation with a 
disconnected user might result in a reminder that they are 
absent, and an option to send them a text message instead.  

New
Outgoing
Message

Receiver
Disconnects
or Departs

New
Outgoing
Message

2.
Store 

Outgoing

3. 
Send Stored 
Messages

Receiver Re-connects

(automatic)

1. 
Synchronous 
Interaction

Sender Behaviour:

 

Message
Arrives

Receiver Disconnects

2.
Continue if 

Possible

3. Process 
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from Sender

Receiver Reconnects

(automatic)

1. 
Synchronous 
Interaction

Receiver Behaviour:

4. 
Smoothing

Interruption

 
Figure 1. Logical behaviour of sender (top) and receiver 

(bottom) during different types of disconnection. 

The receiver must also consider how to behave during a 
disconnection (assuming that the application allows it to 
continue working). In the early stages of the disconnection, 
the receiver has the option of attempting to hide the 
asynchrony by simulating the actions of other entities in the 
distributed system – this is possible for avatars (e.g., games 
often predict avatar motion [16]), and also possible 
(although more difficult) for telepointers. For longer 
disconnections, applications could switch entities over to AI 

control (i.e., a player’s avatar becomes a robot); this would 
preserve continuity during the absence, but could lead to 
merge problems on reconnection. 

Phase 3: re-establishing synchronous interaction 
The sender’s job in this phase is relatively straightforward: 
when the receiver reconnects, the sender sends the 
accumulated data that has been stored during the 
disconnection. The receiver, in contrast, has more decisions 
to make at this stage – when synchrony is restored, the 
receiver must determine how to use and represent the 
information about the past that has been received.  

The receiver uses different strategies for model updates and 
awareness messages. Model updates are the simplest case: a 
full-model update involves replacing the receiver’s current 
model with the new one, and incremental updates can be 
processed as they are received. Note that the framework 
does not consider the problem of merging and concurrency 
control, which can present substantial difficulties; we 
assume that these are handled by a separate module as has 
been described by other researchers (e.g., [13,15,20]). 

Awareness messages require additional decisions. We 
identify six actions that can be taken with awareness data: 
• Playback. The receiver can play out stream-based 

awareness information (e.g., telepointer motion) if the 
delay is not too large.  

• Fast playback. For continuous streams, the receiver can 
play back the asynchronous events faster than normal, 
in order to catch up with the current information.  

• Freshest data. In situations where the receiver only 
needs the current state (e.g., of a telepointer or avatar), 
the system can discard all but the most recent update. 

• Smoothing. For short-term gaps, the receiver can use a 
jitter buffer to reorganize incoming data; at the cost of 
extra latency, streaming data is played out smoothly. 

• Short-term traces. Information about the recent past 
can be converted to a trace – a visual representation of 
the past that is presented on the current frame. 
Examples include motion lines or multiple cursors [9]. 

• Long-term traces. Past information can be added to the 
summary representations that are used for 
asynchronous awareness (e.g., activity maps). 

EXAMPLE APPLICATIONS 
Here we present three application scenarios that illustrate 
the Disco framework. We look at three different types of 
application – an instant message system, a shared editor, 
and a real-time game) that demonstrate different 
requirements for sender and receiver behaviour, and 
different sensitivities to time scale (see Figure 2 and video 
figure). In each example, we indicate how the sender and 
receiver should behave in various disconnection 
circumstances – these behaviours are fully built in the 
applications using our reference architecture (see below). 

Application 1: Real-time instant messaging 
In this system, synchronous behaviour means sending each 
key press and caret-move event as they occur. The system 
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contains a different composition panel for each person, and 
a summary transcript that merges the messages once they 
are completed (not shown). In this example, we use the 
term ‘IM message’ to refer to the user’s text, and ‘update 
message’ to refer to the groupware system’s messages. 

Sender: on receiver disconnect due to outage 
When the sender determines that the receiver has become 
disconnected, it carries out the different storage behaviours 
shown in Table 1. The rationale for these behaviours is that 
we want to send as much information as possible during 
synchronous interaction; at small gaps (1-10 seconds), 
ephemeral awareness information (caret movement and 
individual keypresses) cannot be used by the receiver, so 
these are pruned from the queue; at absences above 10 
seconds, the receiver will not need to see the temporal 
spacing of separate IM messages, and so we maintain only 
a single transcript; above 10 minutes, the receiver is 
unlikely to read all of the intervening IM messages, so we 
produce a summary of who has been talking; and above one 
hour, several conversations may have gone on, so we 
switch to a long-term summary of the discussion. 

Table 1. Message storage behaviour for sender 
At time: The sender switches to this storage behaviour: 

< 1 sec. Store individual keypresses and caret moves. 
Store individual session messages. 

1 – 10 
seconds 

Stop storing individual keypress messages. 
Discard caret-move messages. 
Join keypress updates into ‘current partial IM message’. 
Add new keypresses to partial IM message. 
Store completed individual IM messages. 
Store individual session messages. 

10 sec. – 
1 minute 

Join existing individual IM messages into transcript. 
Add keypress updates to current partial IM message. 
Add new IM messages to existing transcript. 
Store individual session messages. 

1 – 10 
minutes 

Stop storing session messages. 
Add new IM messages to existing transcript. 
If data volume large, compress transcript. 

10 min. – 
1 hour 

Continue data storage as above to maintain full record. 
Create new medium-term summary representation of 
existing transcript, every 10 minutes. 
Maintain most recent message in rolling-rejoin buffer. 

1 hour – 
1 day 

Continue data storage as above to maintain full record. 
Create new long-term summary representation of 
existing transcript, every hour.  

> 1 day Continue data storage as above to maintain full record. 
Stop maintaining separate recent-period record. 

Receiver: on network outage 
When the receiver disconnects due to a network outage, the 
only action is to enter an automatic reconnection loop.  

Receiver: on reconnection after outage 
When the receiver reconnects, it will immediately receive a 
set of data from the sender. This data has been processed by 
the sender, but there are still decisions for the receiver 
about how to use the information. Again, the receiver’s 
behaviour uses a powers-of-ten scale, as shown in Table 2.  

Table 2. Receiver behaviour after network outage ends. 
After time: The receiver does this: 

<1 sec. Catch up using fast playback 
1 sec. – 
10 min. 

Display transcript 
Display current partial message 

10 min. -  
1 hour 

Display medium-term expandable summary 
Display messages from rolling-rejoin buffer 

1 hour – 
10 hrs. 

Display long-term summary, expandable into transcript 
Display messages from rolling-rejoin buffer 

> 10 hrs. Display long-term summary, expandable into transcript 
Display messages from rolling-rejoin buffer 

Application 2: Drawing editor with telepointers 
This scenario involves a canonical shared drawing editor 
(Figure 2), where all lines are drawn in real time (i.e., each 
line segment is sent as a separate message), and each person 
is represented by a real-time telepointer. The application 
also shows a translucent ‘heat map’ representation of 
telepointer activity over the life of the document. As with 
the previous example, the tables below specify behaviour 
for the sender during and after the disconnection. 

Table 3. Behaviour for sender on network outage. 
At time: The sender switches to this storage behaviour: 

< 1 sec. Store individual telepointer moves. 
Store individual line-segment messages. 

1 – 10 
seconds 

Stop storing individual line-segment messages. 
Store individual completed-line messages. 
Join telepointer moves into aggregate position list. 
Join new line segments into ‘current line’ message. 

10 sec. – 
1 minute 

Stop storing individual telepointer moves. 
Create heat-map representation for telepointers. 
Add telepointer moves to heat-map representation. 

1 – 10 
minutes 

Stop storing individual line messages. 
Create multi-line collection. 
Add new completed line messages to line collection. 

10 min. – 
1 hour 

Discard multi-line collection (full model update will be 
sent). 

       
Figure 2. Example applications: Instant messaging (left), drawing editor (middle), multi-player tank game (right). 
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Unlike the chat system, the receiver in the drawing editor 
has the possibility of predicting during the disconnection 
period, although only for a short time since telepointer 
motion is not easy to simulate. Therefore, we determine two 
behaviours for this period, shown in Table 4. 

Table 4. How the receiver behaves during disconnection. 
After time:  The receiver does this: 
< 100ms Predict other telepointer positions. 
>100ms Mark other telepointers as “not updating.” 

Allow user to continue as if single user. 

When the receiver reconnects and receives the accumulated 
data, the following behaviours will be carried out. 

Table 5. Receiver behaviour after network outage ends. 
After time:  The receiver does this: 
< 100ms Add past telepointer locations to short-term trace 

Move telepointer to most recent location 
Play out line-segment updates normally 
Add telepointer data to heat map display. 

100ms –  
1 sec. 

Add past telepointer locations to short-term trace 
Fast playout of line-segment updates. 
Add telepointer data to heat map display. 

1 sec. –  
10 sec. 

Add last 500ms of telepointer positions to trace. 
Draw completed lines. 
Draw current partial line. 
Add telepointer data to heat map display. 

10 sec. –  
1 min. 

Add last 1000ms of telepointer positions to trace. 
Draw completed lines. 
Draw current partial line. 
Add telepointer heat map data to heat map display. 

1 min. –  
10 min. 

Draw completed lines. 
Draw current partial line. 
Add telepointer heat map data to heat map display. 

> 10 min. Replace current model and redraw all. 
Draw current partial line. 
Add telepointer heat map data to heat map display. 

 

Application 3: Real-time multi-player game 
Our third application is a simple 2D multi-player game. 
Each player controls a tank avatar in an overhead-view 
battleground, and can shoot at other players (Figure 2). 
There are a number of differences between the tank game 
and the other two applications. First, the tank game uses an 
explicit client-server model: the server maintains the 
current game state and determines critical events such as 
hits and misses. Second, since the tank avatars have inertia, 
the game uses prediction more extensively. Third, avatar 
position is a server-maintained value, so this location must 
be preserved for the receiver when it reconnects. 

Behaviour for the sender during the disconnection, and for 
the receiver during and after the disconnection, is shown in 
the following tables. 

Table 6. Sender behaviour during disconnection. 
At time: The sender (server) switches to this behaviour: 

< 1 sec. Store individual tank moves. 
Determine hits and misses as normal. 

1 sec. -  
10 sec. 

Stop storing tank movement messages (positions are 
held in server’s game-state structure) 
Predict receiver’s tank position for other players 

> 10 sec. Freeze receiver’s avatar 
Protect receiver’s tank from hits (disconnection shield) 

Table 7. Receiver behaviour during disconnection. 
After time: The receiver (client) does this: 
< 10 sec. Predict other tank positions. 
> 10 sec. Indicate disconnection to user 

Table 8. Receiver behaviour on reconnection. 
After time: The receiver (client) does this: 
< 1 sec. Process tank move messages. 
> 1 sec. Replace game state with new full model. 

IMPLEMENTATION ARCHITECTURE 
Figure 3 shows the conceptual architecture of our 
implementation of the Disco framework. For simplicity, the 
architecture shows a single sender, which is responsible for 
conveying application events to a single receiver. In 
practice, a given node may act as both sender (of its own 
events) and receiver (of other nodes’ events), and each 
sender may have multiple receivers. 

The architecture and our example applications are 
developed in C# using the Fiaa toolkit [23] for connectivity 
and network transport. 

Application

Event Queue

Network 
Endpoint

Compressor

Reconnection 
Manager

Compactor
Application

Network 
Endpoint

Reconnection 
Manager

Local Event 
Manager

CompressorReplayer

 
Figure 3. Architecture of Disco implementation. 

This architecture has been used to implement the three 
applications discussed above. The main advantages of the 
architecture are: 
• Flexibility: through the use of plug-ins, a wide range of 

behaviours can be implemented for sender and receiver; 
• Performance: disconnection handling is asynchronous to 

the application, so connected participants do not pay a 
performance penalty for others’ disconnection; 

• Reusability: the architecture is generic (and 
parameterized via plug-ins), allowing easy re-use of its 
core code across highly varied applications. 

In normal operation, the application generates a sequence of 
events which are processed locally and sent to the receiver. 
Events may affect the application state (e.g., adding new 
text into a chat session or adding a new line segment into a 
drawing), or may provide awareness (e.g., moving a 
telepointer.) The receiver interprets these events locally, 
updating its own application state and user interface. 

Event Queuing 
To prepare for the eventuality of disconnection, the sender 
queues all outbound events. Events are queued even when 
the receiver is connected. This means that if an outage 
occurs, no messages are lost before it is detected. This is 
particularly an issue with unreliable protocols, where 
message arrival is not acknowledged. 
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The event queue is a simple FIFO queue with no knowledge 
of event semantics. Application events are appended to the 
queue as well as being sent over the network to the receiver. 
Since the queue may rapidly grow to an unbounded size, it 
may be periodically purged or compacted. 

Purging. The receiver periodically sends heartbeat 
messages to the sender, including the sequence number of 
the last received event. When the sender receives a 
heartbeat, it knows that messages up to the given sequence 
number have been received, and can remove those 
messages from the event queue. Under normal (connected) 
operation, this bounds the data that the queue must hold. 

Compacting. The event queue may periodically employ 
application-specific techniques to reduce its size. These 
techniques implement behaviours such as those described in 
tables 1, 3, and 6. The system may select compaction 
techniques based on the size of the queue and the age of the 
data it contains. Different techniques may be used on 
different parts of the queue. For example, queue entries 
older than one second might be compacted differently from 
newer entries. Compaction can include arbitrary 
transformation of the contents of the event queue, for 
example, compressing the payload of an event, or replacing 
a sequence of incremental events with a single state update. 

Compactors are implemented as plug-ins, each capable of 
implementing a single technique. Plug-ins are typically 
application-specific, and may embody knowledge of the 
semantics of events. 

Disconnection 
When a network outage occurs, the sender’s and receiver’s 
reconnection managers attempt to re-establish the 
connection. Outages can often be resolved quickly, but if 
reconnection is not successful, other techniques (e.g., 
exponential back-off, manual reconnection) must be used. 
In the case of departure, no reconnection is attempted. 

During a disconnection, the event queue continues to 
maintain (and if necessary compact) the events that have 
been missed. Automatic event purging is not performed 
during disconnection, although compactor plug-ins may be 
able to purge events in some applications. 

During disconnection, a local event manager may use 
application-specific prediction techniques to continue 
sending events to the application. For example, in the tank 
game, the local event manager generates events that 
continue play of the tank of a player who is temporarily 
disconnected. These prediction techniques are encapsulated 
in replayer plug-ins, analogous to the sender’s compactors. 

In the case of interruption, the local event manager can deal 
with late-arriving messages by applying application-
specific replayers (e.g., to create a telepointer trace).  

Reconnection 
On reconnection, the sender transmits the contents of the 
event queue covering the missed events. Once these have 

been sent, the application is permitted to resume sending 
new events to the receiver. 

At the receiver, the local event manager may transform the 
incoming event stream as described in tables 2, 4, 5, 7 and 
8. For example, a replayer plug-in might speed up the 
playback of telepointer events, or might apply heat map 
data to the local heat map. Replayer plug-ins may 
communicate directly with the application. 

Latecomers 
The architecture can address issues not directly related to 
disconnection. For example, a latecomer joining a session 
can be treated as a receiver which has been disconnected 
since the beginning of the session. To accommodate 
latecomers, the event queue must contain enough 
information to recover the entire session state. 

ASSESSING THE DISCO FRAMEWORK 
Our three example applications – chat, draw, and tank game 
– have been implemented using the architecture described 
above. The applications all operate successfully both as 
ordinary groupware applications and as disconnection-
tolerant systems, which illustrates the feasibility and 
functionality of the framework. No major problems were 
encountered during the development or run-time testing of 
the examples (see video figure). 

Since this is the first instance of a comprehensive 
disconnection framework, our evaluation is primarily 
concerned with testing the functionality of the 
implementations and assessing the architecture at a 
conceptual level, rather than comparing to other existing 
systems. We recognize that previous work has developed 
individual techniques that may have functionality not seen 
in our framework; but we argue that ours is the only 
approach that deals with the full range of issues for 
disconnection in synchronous groupware. 

The example applications make it clear that the framework 
is capable of solving many of the user-level problems 
described at the start of the paper. By explicitly including 
interruption, outage, and departure in the framework, Disco 
covers a much wider range of disconnection durations than 
have been considered before, and explicitly addresses user 
concerns such as interrupted streams, missed changes, and 
laborious reconnection and state loss. (We do not, however, 
deal with merge problems; we assume this can be handled 
by an existing algorithm, as discussed below). In the next 
sections, we look more closely at the framework’s strengths 
and potential weaknesses in several areas – overhead, 
effort, generalizability, genericity, and extensibility. 

Runtime Overhead 
Our approach clearly imposes overhead on the operation of 
the sender. The sender must enqueue all events that it sends 
in case of disconnection, and to conserve space, the queue 
must be periodically compacted. There are two major 
features of the approach that mitigate this overhead. First, 
the operation of the event queue (and its compactors) is 
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asynchronous to the application itself; i.e., the application 
never needs to wait while the queue performs its tasks. 

Second, the compactor plug-in architecture allows 
developers complete control over the trade-off between 
runtime overhead and smoothness of reconnection. 
Developers control the amount of data to retain, the 
complexity of the compaction algorithms, and the time 
scales at which the algorithms are run. If they are unhappy 
with the mechanism’s default behaviour, developers can 
tune the approach to best suit their application’s needs. 

In addition to the overhead of storing data, our approach 
involves overhead in reconnection, which may lengthen the 
reconnection process. The architecture can help with this 
problem: since compaction is performed during the 
disconnection, the event data can be ready to send as soon 
as a network connection is reestablished. Additionally, if 
too much time is required to process events on the receiver, 
the developer can reduce or eliminate unnecessary events.  

Programmer Effort 
Providing more intuitive reconnection is a new task for 
groupware developers, increasing the complexity of their 
applications and the time required to produce them. We 
believe that to meet usability requirements of modern 
applications, this work is necessary. Much of the 
complexity of supporting better reconnection can be 
embedded into a toolkit. As shown in the architecture of 
Figure 3, the mechanisms for capturing and storing events, 
applying compaction algorithms, negotiating reconnection, 
replaying events, and detecting and responding to jitter are 
generic and can be re-used from one application to the next. 

Developers must provide custom compaction and replayer 
plug-ins, but even many of these can be reused between 
applications. For example, tasks such as discarding old 
telepointer messages or playing back events at double speed 
can be supported by a library of common plug-ins. To 
support the interface to these plug-ins, the event queue and 
local event manager components have generic mechanisms 
for selecting which plug-in to use, based on the age of the 
data and the size of the queue. 

Generality 
A significant strength of our approach is that the handling 
of disconnection and reconnection is treated orthogonally to 
the groupware application itself. As we have discussed, this 
reduces the need for developers to solve the same common 
problems of detecting disconnection, reestablishing the 
connection, queuing, compacting and transmitting events, 
and replaying events on the receiver. 

It is an open question whether this orthogonality leads to 
cases where desired behavior cannot be implemented. To 
address this question, we have implemented the three 
applications described above. These applications have 
different run-time characteristics and different approaches 
to dealing with reconnection. The approaches illustrate 
several examples of both application and awareness data 

that must be transmitted over the network, and several 
different kinds of compaction algorithms. This diversity 
lends confidence to the broad applicability of this 
architecture. 

Ease of Creating New Compactors and Replayers 
As discussed above, a library of compactors can handle 
many common cases; however, new compaction techniques 
will be required as new types of application arise, so it is 
important to determine the ease of building these plugins.  

Compactors are designed around a simple pattern. They 
have access to the queued events, and can perform whatever 
application-dependent algorithm they wish upon these 
events. Similarly, replayers receive a stream of events, and 
interact with the application to enact them. The complexity 
of compactors and replayers is therefore in their own 
algorithms, allowing developers to determine a tradeoff 
between functionality and ease of development. 

Limitations and Future Work 
The current version of the framework has several known 
limitations that we plan to address in future work. 

Interaction with Concurrency Control. If a disconnected 
node is permitted to modify the shared data, then the 
reconnection process must detect and resolve any conflicts 
between the operations performed while disconnected and 
those performed by other session participants. For example 
if a disconnected player is replaced by an AI player in the 
tank game, then on reconnection, the player’s tank position 
must be reconciled with the AI tank position. In some 
applications, therefore, compaction and replay algorithms 
must take account of the need to resolve conflicts. For 
example, a compactor may produce model updates only if 
an algorithm is available to merge models [15]. Since by 
their nature updates made on a disconnected node are 
optimistic, replayers may need to perform corrections (e.g., 
using operational transform [20], or rollbacks [13]). We 
assume that concurrency control will be handled by a 
separate module, and we plan to test this integration to 
ensure that the two systems work as expected. 

Streaming Media. We have discussed telepointers as an 
example of streaming media, but the more traditional sound 
and video have not been directly addressed in our research. 
However, both sound and video can be buffered in the 
event queue using standard techniques. An application may 
choose to limit the size of the buffer, based either on time 
or size cap, throwing away older data. On reconnection, the 
queue contents may be transmitted, and, for example, 
played back at double speed by the replayer. 

Quality of Service. Disconnection may make it impossible 
for an application to achieve its quality of service goals. For 
example, feedthrough times are worsened by even short 
outages. High bandwidth may be required to transmit large 
state updates following reconnection. Message storage must 
work together with the sender’s QoS system, an issue that 
we will consider in future work in this area. 
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Attention-based Disconnection. There are types of temporal 
absence that are not caused by disconnection – in particular, 
when a user’s attention is elsewhere than the application, 
they are just as unavailable as they would be in a network 
outage. In future, we are interested in adding attention-
based asynchrony to the framework – many of the 
mechanisms would remain the same, although identifying 
the start of an absence is more complicated than identifying 
network-based disconnection. 

CONCLUSION 
Disconnections are common in synchronous groupware, 
and can cause several problems for members of the group; 
however, few researchers have looked at disconnection 
issues from the perspective of applications and users. In this 
paper, we introduced a conceptual framework called Disco 
that deals with disconnection in synchronous groupware. 
The framework considers how disconnections are 
identified, what senders and receivers should do during the 
absent period, and what should be done with accumulated 
data upon a return to synchronous interaction. We 
demonstrated the framework by implementing its ideas in 
three different applications. Although there is future work 
to be done in order to extend the framework and integrate it 
with other systems-level functionality, Disco is the first 
approach to disconnection that deals comprehensively with 
interruption, outage, and departure as parts of the same 
phenomenon, and that considers data, interface, and 
interaction issues. The Disco framework is a further step 
towards groupware that support synchronous work without 
ignoring the realities of networked systems. 
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