
Gone But Not Forgotten:
Designing for Disconnection in Synchronous Groupware

Carl Gutwin1, T. C. Nicholas Graham2, Chris Wolfe2, Nelson Wong1, and Brian de Alwis1
Computer Science, University of Saskatchewan

110 Science Place, Saskatoon, SK, S7N 5C9
[carl.gutwin, nelson.wong, brian.de.alwis]@usask.ca

School of Computing, Queen’s University
Kingston, ON, K7L 3N6

[graham, wolfe]@cs.queensu.ca

ABSTRACT
Synchronous groupware depends on the assumption that
people are fully connected to the others in the group, but
there are many situations (network delay, network outage,
or explicit departure) where users are disconnected for
various periods. There is little research dealing with
disconnection in synchronous groupware from a user and
application perspective; as a result, most current groupware
systems do not handle disconnection events well, and
several user-level problems occur. To address this
limitation, we developed the Disco framework, a model for
handling several types of disconnection in synchronous
groupware. The framework considers how disconnections
are identified, what senders and receivers should do during
an absence, and what should be done with accumulated data
upon reconnection. We have implemented the framework in
three applications that show the feasibility, generality, and
functionality of our ideas. Our framework is the first to deal
with a full range of disconnection issues for synchronous
groupware, and shows how groupware can better support
the realities of distributed collaboration.

Author Keywords
Groupware design, disconnection, network connectivity.

ACM Classification Keywords
H.5.3 [Information Interfaces and Presentation]: CSCW

General Terms
Design, Human Factors, Reliability

INTRODUCTION
A central assumption of synchronous groupware is that the
members of the group are temporally present – that is, they
are actively observing changes to the shared workspace and
noticing new updates as they arrive. Many types of
groupware have been successfully built on this model, such
as shared editors, instant messaging systems, audio and
video conferencing tools, and multi-player games.

These applications work (as groupware) by sending real-
time communication messages, awareness events, and

model updates. When the synchrony assumption holds,
these systems only need to send the current state of the
activity – they can assume that other participants will
receive the new information soon after it is sent, and that
no-one misses anything. However, there are many
situations in group work where the synchrony assumption
does not hold, and where people have become disconnected
from synchronous interaction – because of network delay,
network outages, or explicit departure. These episodes can
cause several problems:
• interruptions in real-time streams (audio, video, or

telepointers) lead to interpretation difficulties;
• network outages often force people into laborious re-

connection procedures, and often cause loss of current
state information such as an avatar’s location;

• temporal absences cause people to miss real-time
communication and awareness events, leading to loss of
context or confusion about how changes occurred;

• if work continues on both sides of a disconnection,
problems can occur when trying to merge different
versions of the shared data upon reconnection.

Although researchers have investigated many issues within
these areas (e.g., visualizations for change awareness [21],
smoothing network interruptions in streaming media [14],
and data consistency algorithms [13,15,20]), there is little
work on underlying design principles that will allow
synchronous groupware to deal comprehensively and
appropriately with periods of asynchrony.

To address this shortcoming, we have designed an
application-level framework for dealing with disconnection
in synchronous groupware. The Disco framework is based
on the three phases of the asynchronous period – detecting
that a group member is disconnected, determining what to
do during the absence, and dealing with accumulated data
when synchronous interaction resumes. The framework
divides the design space using three concepts: the endpoint
role (sender or receiver), the receiver’s connection state
(connected or disconnected), and a set of adaptation
mechanisms based on the length of the disconnection or the
volume of data accumulated during the absence.

These divisions define categories of adaptive behaviour
stating what senders and receivers should do during a
disconnection. We have implemented the framework at the
application level and have tested it on three different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW 2010, February 6–10, 2010, Savannah, Georgia, USA.
Copyright 2010 ACM 978-1-60558-795-0/10/02...$10.00.

179

systems (an instant messaging system, a shared graphical
editor, and a real-time game). The example systems show
that our framework allows a much larger range of responses
to periods of asynchrony than what has been seen in
previous groupware systems. The adaptive behavior
specified in the framework can help to solve the problems
of interpretation and missed information mentioned above.

We make three main contributions. First, we expand on
previous ideas about asynchronous periods within
synchronous activity, and show that several types of
disconnection (interruption, network outage, and explicit
departures) can be brought together under a single
conceptual umbrella. Second, we identify and categorize
both new and previously-studied techniques for dealing
with disconnection (including systems, interface, and
interactional aspects). Third, we provide an application-
level reference implementation that demonstrates the
functionality and feasibility of our design, and that shows
the range of adaptive behaviours that are possible.

RELATED WORK
The Disco framework is based on previous work in several
areas of CSCW, including three reviewed below: fault
tolerance, asynchronous groupware, and change awareness.

Fault tolerant groupware
The process of returning a system to an operational state
following partial failure is termed failover [14]. Returning
the system to fully operational state is called restoral, while
returning the system to an operational but degraded state is
called recovery. In general, recovery is possible if the failed
component of the system does not hold resources crucial to
the system’s continued operation.

Support for failover has been build into some groupware
toolkits, such as Ensemble [22], which provides a fault-
tolerant component-based infrastructure, or the YCab
system [3], which addresses partial failure in mobile
environments through redundancy. These approaches
support recovery, but not repair in the case where no
service is available to take over a failed function. Corona
[10] uses distributed publish-and-subscribe and reliable
group multicast communication so that clients can handle
temporary failures, but has no provision for re-sending
missed messages. The group multicast provides reliable
message delivery, but has no failover provision.

Failover mechanisms have also been documented for a
small number of groupware applications. Some systems,
such as the WebArrow conferencing tool, support partial
failover through off-the-shelf technology such as load
balancers and redundant database clusters, combined with
custom algorithms for attempting to recover from failures in
clients or servers [14]. Navarre et al. have shown how user
interfaces in airline cockpits can be reconfigured to adapt to
hardware failure [16]. Other approaches are taken by games
such as Age of Empires 2, which freeze gameplay when
one peer becomes unresponsive; after a time threshold, the
unresponsive player is removed, and the other players are

permitted to continue [1]. In persistent-world games such as
World of Warcraft, disconnected players remain in the
world for a few minutes after disconnection before state
information (such as location) is discarded.

While all of these approaches provide support for restoring
a groupware session to at least partial operation following
failure, little is done to address the human factors of the
reconnection process. For example, WebArrow notifies
disconnected participants that reconnection is being
attempted, but after the connection is repaired, only limited
information (i.e., chat messages, but not voice) are resent.

Handling reconnection is related to the latecomer problem,
which deals with providing late entrants the correct session
state [4, 12]. Late-entrant solutions archive activity so that
it can be sent to newcomers. These approaches are
restricted by the need to archive all session events, whereas
in failure situations, only changes made since the
disconnection need to be archived. Late-entrant solutions
also provide no support for clients during a disconnection.

Asynchronous groupware
Canonical asynchronous work is activity where group
members never expect to interact at the same time: e.g.,
emailing document revisions, or asynchronously editing a
wiki. Systems to support this type of work can be designed
very differently than synchronous groupware – with store-
and-forward communication, little concern for network
delay, and no need to send real-time awareness information.

One area where researchers have explicitly considered
disconnection in the design of asynchronous groupware is
in mobile systems, where unreliable networks and
disconnections are common (e.g., [5,6,12]). A variety of
techniques and architectures have been proposed to
maintain data consistency through asynchronous interaction
[20], detect and repair conflicts [5], and merge changes
from multiple users. Many mobile systems employ simple
push-based store-and-forward methods for sending data
from a central server to mobile clients (e.g., [18]).
Reconnection issues for these systems are often based on
merging, difference calculation, conflict detection, and
versioning. However, a few application-level strategies
have also been proposed. For example, Dix [6] suggests
that when data reflects an attribute of the world (e.g., a
current temperature) “we may often assume that the most
up-to-date information is correct” (p. 178), which is similar
to our ‘freshest data’ strategy described below.

Other types of asynchronous interaction have also been
studied, such as ‘multi-synchronous’ work (where multiple
people edit a document simultaneously but independently).
Techniques specific to these types of asynchronous work
have been proposed – for example, Dewan [5] discusses
techniques for providing real-time awareness information
during simultaneous but independent editing sessions, in
order to try and prevent later merge conflicts.

180

Some of the closest systems to our interests are those that
explicitly support both asynchronous and synchronous
interaction. Three types of systems have been seen in
previous literature. First, groupware based on spatial
metaphors provides a persistent environment that equally
supports synchronous and asynchronous work. For
example, TeamRooms [8] provides virtual rooms that
persist when users leave: synchronous work is supported
when multiple users are in a room at the same time, and
asynchronous work is supported because people can leave
artifacts for others. Changes are tracked through versioning.

Second, purely asynchronous systems (such as document
repositories or wikis) can be adapted for occasional
synchronous use. For example, the DOORS architecture
[19] allows real-time work when two users happen to be
logged into the system at the same time. This system
recognizes that update requirements are different for
synchronous and asynchronous work, and provides
incremental updates during synchronous periods, and model
updates when an asynchronous user connects. In addition,
DOORS has a mechanism to convert the many small
updates produced during synchronous work to a larger
single update for asynchronous users.

Third, some synchronous systems provide limited support
for asynchronous use. Prior work in this area has focused
mostly on the latecomer problem (as described above), and
on change awareness, reviewed below.

Change Awareness in Asynchronous Systems
At the user level, a major concern for asynchronous
groupware is change awareness – that is, mechanisms for
informing users about what changes have occurred in a
document or a workspace since that user was last in the
system. Techniques exist for showing changes both to
shared artifacts and documents, and for showing the past
actions and locations of user embodiments (the following
list is adapted from a review by Tam and Greenberg [21]).
• Lists of changes. Command-based comparison tools such

as ‘diff’ show a list of lines that are different, and how
one version can be transformed into the other.

• Parallel displays. Some systems for comparing text
documents show the different versions side by side (e.g.,
some document comparers show the original, the new
version, and the changes, in three columns).

• Annotations. Some systems mark changes in margins or
overviews, such as change bars and balloons in the
document margin (e.g., Microsoft Word), or marks on an
attribute-mapped scrollbar (e.g., in Eclipse).

• Highlights. Objects that have changed can be indicated
with a visual highlight; e.g., many word processors mark
changes from different users in different colours.

• Playback. Some visual workspaces show changes by
allowing replay of the changes as they happened.

• Overlay of intermediate states. The progress of a change
can be shown by overlaying all intermediate states in a
visual workspace.

• Motion traces are visual representations of an
embodiment’s recent past. For example, motion lines can
be added to telepointers to show recent movement [9].

• Location histories are summary representations of where
people have been working. For example, ‘heat maps’ or
colour-coding can show where people have spent the
most time working in a document [11].

We now turn to the work that we have done to deal with
disconnection in synchronous groupware, beginning with
the types of disconnection handled by the framework.

TYPES OF DISCONNECTION
We identify three types of disconnection, differentiated by
the intent of the user and by which network endpoints
perceive the disconnection as having occurred.

Delay-based Interruptions
Interruptions (also called jitter) are short-term gaps in
message delivery that are caused by a variety of problems
that can occur between the creation and eventual delivery of
a message (e.g., congestion in the wide-area network, a low
send rate, or a high CPU load). In these situations,
messages cannot be delivered and so they pile up, thus
losing their intended temporal spacing (e.g., the regularly-
spaced updates in a telepointer stream). When the problem
clears, the messages are delivered all at once.

Although the underlying network connection is still valid
during a delay-based interruption, the delivery pattern is
exactly that of a short-term disconnection (i.e., no messages
for a period of time, then delivery of all the messages as a
group). However, interruptions are only noticed at the
receiver, since the network connection is not affected.

Variance in delivery time is unavoidable, but most
interruptions are too small in duration to be noticed by
users. Therefore, we are primarily interested in gaps that are
larger than 50-100ms, depending on the application.

Network Outages
In a network outage, a groupware node loses its network
link to another node. Outages can occur for several reasons
– network failure, mobile devices moving between zones,
laptops going to sleep, unplugged cables, or inadvertent
closing of the application – but outages are always
unintentional, which differentiates them from departures
(see below). Outages can be of varying length (from less
than a second to many hours), since re-establishment of the
connection depends on the availability of the network.

Outages are only reported back to the application when
using connection-oriented protocols such as TCP/IP;
although outages can also affect connectionless protocols,
no exception will be raised when the outage occurs.
However, many groupware applications (even many mobile
applications such as IM systems) depend on the delivery
guarantees of connection-oriented approaches. In our
implementation of Disco, we ensure notification of outages
even for connectionless protocols, by adding a connection-
oriented ‘heartbeat’ to every point-to-point channel.

181

Explicit Departures
In a departure, the user explicitly logs out of the session or
quits the application. Departures are different from outages
in that they are intentional, and the other nodes in the
groupware system receive notification that the user is
leaving. Departures are also typically much longer than
network outages, since the user is unlikely to log out if their
intended absence is short.

Last, we note that these three types of disconnection do not
describe occasional packet loss – instead, they deal with
complete packet loss for a specified period of time.
Intermittent and infrequent packet loss can be viewed as
more of a quality of service issue than a disconnection
issue, and is therefore out of the scope of our framework.

THE DISCO FRAMEWORK
The Disco framework is organized into three parts,
reflecting the three phases of a disconnection: identifying
that a disconnection has occurred, adapting system
behaviour to deal with the asynchronous state, and handling
accumulated messages upon a return to synchronous
interaction. We first introduce three basic concepts used to
divide the design space: the endpoint role, the receiver’s
connection state, and the adaptation mechanism.

Endpoint role (sender or receiver)
We model a groupware system as a collection of one-way
point-to-point communication channels. The endpoint role
indicates which end of the connection we are concerned
with – the sender or the receiver. In any disconnection, we
consider the receiver to be the absent node, and the sender
to be the node that is still acting synchronously. This model
can be used equally well with both client-server and peer-
to-peer architectures.

Nodes are generally senders and receivers at the same time,
and so may be acting in both roles during a disconnection.
For example, if a node is disconnected but able to continue
working on a local copy of the shared data, it can be both a
sender (it wants to send its local changes to others but
cannot), and a receiver (it cannot receive others’ changes).
We allow dual roles to proceed independently.

Connection state (connected or disconnected)
Participant nodes can be in one of two states in terms of
their temporal presence: connected (implying that they are
interacting synchronously) or disconnected (they are not
interacting synchronously from the perspective of a sender).

Transition events indicate when nodes in the groupware
system enter a new state. As described above, nodes will
not be notified of the disconnection in all situations – in
particular, senders are not notified of interruptions.

Adaptation mechanism
Disconnections are inherently variable (e.g., they are
unpredictable in duration), so we need a way of changing
behaviour to adapt to different situations. The two most
obvious variables in a disconnection episode are the length
of the absence, and the amount of accumulated data.

Duration of the disconnection
The amount of time that someone has been absent is a
common-sense indicator for adapting behaviour for both
senders and receivers. This mechanism is based on people’s
real-world behaviour: for example, a person would
summarize a situation differently for a period of ten
minutes, ten hours, or ten days. Absence time could be used
in several ways (e.g., as a single continuous variable), but
we adopt the idea of the logarithmic time scale that has
previously been used to describe several aspects of human
action (e.g., perception of system feedback).

Our time-scale mechanism is based on a loose ‘powers of
ten’ principle (see example scenarios below). The divisions
in the scale depend on the application’s temporal
granularity of interaction. For example, an IM client is
unlikely to worry about millisecond-scale gaps, but this
scale might be important for systems that send streaming
media. In addition, some categories are not feasible for
some disconnections – e.g., it is unlikely that outages can
be repaired quickly enough for a sender to make use of a
millisecond (or even a tenth-of-a-second) time scale.

Volume of the accumulated data
The number of accumulated events or messages can be a
second measure for adapting behaviour. In our framework,
senders store messages in different ways based on how
many messages have arrived for the receiver. Again, we
propose a powers-of-ten scale: for example, fewer than 10
messages, 10-100 messages, and so on. Message volume
could be used separately or together with time (e.g., a new
behaviour could be started if absence time is greater than 1
minute OR more than 100 messages have been received).

Maintaining immediacy with a rolling rejoin buffer
As the timescale increases, systems may wish to provide
rejoining users with the most recent synchronous events
(i.e., as if the disconnection had been short). This can
provide rejoiners with rich context as they move back into
synchronous interaction. Therefore, systems may maintain
two separate repositories of information (one for the full
duration of the absence, one to provide recent actions).

Framework Phase 1: identifying absence
The first stage of an asynchronous period is the
determination that asynchrony is occurring. Each of the
causes introduced above is characterized in a different way:
• Interruption. Interruptions are noticed at the receiver

only, by comparing message timestamps with receipt
times. Therefore, dealing with short network interruptions
is a receiver-only behaviour (see Figure 1). The receiver
only notices jitter after the disconnection is over – so the
‘smoothing’ state in Figure 1 is transitory.

• Outages. Network outages are noticed at both the sender
and receiver for connection-oriented protocols (e.g.,
through the raising of a socket exception). Both roles will
use these events to switch to different behaviours.

• Departure. Since a departure is an intentional exit, there
is notification of the departure through the application.

182

Phase 2: adaptive behaviour during disconnection
For the sender, adaptive behaviour during the disconnection
determines what to do with messages that accumulate for
the receiver. The sender must store information that will be
useful to the receiver, but not use too much memory for
storing it. Based on the powers-of-ten mechanisms, the
sender will re-process the stored messages at each time (or
volume) boundary, using five general strategies:
• Filtering or elimination of messages;
• Transformation of messages to new representations;
• Joining of individual messages into a group;
• Summarization (joining and transforming to produce a

summary representation);
• Sending the current data model instead of updates.

A second issue for the sender concerns how to represent the
disconnected user in the interface, and what types of
interactions to allow with the disconnected user. In most
cases, a disconnection will result in a change to the visual
representation of the user in the application interface (e.g.,
graying-out of the avatar as seen in some online games),
and this representation may also change as the
disconnection time increases. Disconnection also means
that a user will not respond to interaction, and so the sender
must determine how to inform other users about this state.
For example, attempting to start a voice conversation with a
disconnected user might result in a reminder that they are
absent, and an option to send them a text message instead.

New
Outgoing
Message

Receiver
Disconnects
or Departs

New
Outgoing
Message

2.
Store

Outgoing

3.
Send Stored
Messages

Receiver Re-connects

(automatic)

1.
Synchronous
Interaction

Sender Behaviour:

Message
Arrives

Receiver Disconnects

2.
Continue if

Possible

3. Process
Messages

from Sender

Receiver Reconnects

(automatic)

1.
Synchronous
Interaction

Receiver Behaviour:

4.
Smoothing

Interruption

Figure 1. Logical behaviour of sender (top) and receiver

(bottom) during different types of disconnection.

The receiver must also consider how to behave during a
disconnection (assuming that the application allows it to
continue working). In the early stages of the disconnection,
the receiver has the option of attempting to hide the
asynchrony by simulating the actions of other entities in the
distributed system – this is possible for avatars (e.g., games
often predict avatar motion [16]), and also possible
(although more difficult) for telepointers. For longer
disconnections, applications could switch entities over to AI

control (i.e., a player’s avatar becomes a robot); this would
preserve continuity during the absence, but could lead to
merge problems on reconnection.

Phase 3: re-establishing synchronous interaction
The sender’s job in this phase is relatively straightforward:
when the receiver reconnects, the sender sends the
accumulated data that has been stored during the
disconnection. The receiver, in contrast, has more decisions
to make at this stage – when synchrony is restored, the
receiver must determine how to use and represent the
information about the past that has been received.

The receiver uses different strategies for model updates and
awareness messages. Model updates are the simplest case: a
full-model update involves replacing the receiver’s current
model with the new one, and incremental updates can be
processed as they are received. Note that the framework
does not consider the problem of merging and concurrency
control, which can present substantial difficulties; we
assume that these are handled by a separate module as has
been described by other researchers (e.g., [13,15,20]).

Awareness messages require additional decisions. We
identify six actions that can be taken with awareness data:
• Playback. The receiver can play out stream-based

awareness information (e.g., telepointer motion) if the
delay is not too large.

• Fast playback. For continuous streams, the receiver can
play back the asynchronous events faster than normal,
in order to catch up with the current information.

• Freshest data. In situations where the receiver only
needs the current state (e.g., of a telepointer or avatar),
the system can discard all but the most recent update.

• Smoothing. For short-term gaps, the receiver can use a
jitter buffer to reorganize incoming data; at the cost of
extra latency, streaming data is played out smoothly.

• Short-term traces. Information about the recent past
can be converted to a trace – a visual representation of
the past that is presented on the current frame.
Examples include motion lines or multiple cursors [9].

• Long-term traces. Past information can be added to the
summary representations that are used for
asynchronous awareness (e.g., activity maps).

EXAMPLE APPLICATIONS
Here we present three application scenarios that illustrate
the Disco framework. We look at three different types of
application – an instant message system, a shared editor,
and a real-time game) that demonstrate different
requirements for sender and receiver behaviour, and
different sensitivities to time scale (see Figure 2 and video
figure). In each example, we indicate how the sender and
receiver should behave in various disconnection
circumstances – these behaviours are fully built in the
applications using our reference architecture (see below).

Application 1: Real-time instant messaging
In this system, synchronous behaviour means sending each
key press and caret-move event as they occur. The system

183

contains a different composition panel for each person, and
a summary transcript that merges the messages once they
are completed (not shown). In this example, we use the
term ‘IM message’ to refer to the user’s text, and ‘update
message’ to refer to the groupware system’s messages.

Sender: on receiver disconnect due to outage
When the sender determines that the receiver has become
disconnected, it carries out the different storage behaviours
shown in Table 1. The rationale for these behaviours is that
we want to send as much information as possible during
synchronous interaction; at small gaps (1-10 seconds),
ephemeral awareness information (caret movement and
individual keypresses) cannot be used by the receiver, so
these are pruned from the queue; at absences above 10
seconds, the receiver will not need to see the temporal
spacing of separate IM messages, and so we maintain only
a single transcript; above 10 minutes, the receiver is
unlikely to read all of the intervening IM messages, so we
produce a summary of who has been talking; and above one
hour, several conversations may have gone on, so we
switch to a long-term summary of the discussion.

Table 1. Message storage behaviour for sender
At time: The sender switches to this storage behaviour:

< 1 sec. Store individual keypresses and caret moves.
Store individual session messages.

1 – 10
seconds

Stop storing individual keypress messages.
Discard caret-move messages.
Join keypress updates into ‘current partial IM message’.
Add new keypresses to partial IM message.
Store completed individual IM messages.
Store individual session messages.

10 sec. –
1 minute

Join existing individual IM messages into transcript.
Add keypress updates to current partial IM message.
Add new IM messages to existing transcript.
Store individual session messages.

1 – 10
minutes

Stop storing session messages.
Add new IM messages to existing transcript.
If data volume large, compress transcript.

10 min. –
1 hour

Continue data storage as above to maintain full record.
Create new medium-term summary representation of
existing transcript, every 10 minutes.
Maintain most recent message in rolling-rejoin buffer.

1 hour –
1 day

Continue data storage as above to maintain full record.
Create new long-term summary representation of
existing transcript, every hour.

> 1 day Continue data storage as above to maintain full record.
Stop maintaining separate recent-period record.

Receiver: on network outage
When the receiver disconnects due to a network outage, the
only action is to enter an automatic reconnection loop.

Receiver: on reconnection after outage
When the receiver reconnects, it will immediately receive a
set of data from the sender. This data has been processed by
the sender, but there are still decisions for the receiver
about how to use the information. Again, the receiver’s
behaviour uses a powers-of-ten scale, as shown in Table 2.

Table 2. Receiver behaviour after network outage ends.
After time: The receiver does this:

<1 sec. Catch up using fast playback
1 sec. –
10 min.

Display transcript
Display current partial message

10 min. -
1 hour

Display medium-term expandable summary
Display messages from rolling-rejoin buffer

1 hour –
10 hrs.

Display long-term summary, expandable into transcript
Display messages from rolling-rejoin buffer

> 10 hrs. Display long-term summary, expandable into transcript
Display messages from rolling-rejoin buffer

Application 2: Drawing editor with telepointers
This scenario involves a canonical shared drawing editor
(Figure 2), where all lines are drawn in real time (i.e., each
line segment is sent as a separate message), and each person
is represented by a real-time telepointer. The application
also shows a translucent ‘heat map’ representation of
telepointer activity over the life of the document. As with
the previous example, the tables below specify behaviour
for the sender during and after the disconnection.

Table 3. Behaviour for sender on network outage.
At time: The sender switches to this storage behaviour:

< 1 sec. Store individual telepointer moves.
Store individual line-segment messages.

1 – 10
seconds

Stop storing individual line-segment messages.
Store individual completed-line messages.
Join telepointer moves into aggregate position list.
Join new line segments into ‘current line’ message.

10 sec. –
1 minute

Stop storing individual telepointer moves.
Create heat-map representation for telepointers.
Add telepointer moves to heat-map representation.

1 – 10
minutes

Stop storing individual line messages.
Create multi-line collection.
Add new completed line messages to line collection.

10 min. –
1 hour

Discard multi-line collection (full model update will be
sent).

Figure 2. Example applications: Instant messaging (left), drawing editor (middle), multi-player tank game (right).

184

Unlike the chat system, the receiver in the drawing editor
has the possibility of predicting during the disconnection
period, although only for a short time since telepointer
motion is not easy to simulate. Therefore, we determine two
behaviours for this period, shown in Table 4.

Table 4. How the receiver behaves during disconnection.
After time: The receiver does this:
< 100ms Predict other telepointer positions.
>100ms Mark other telepointers as “not updating.”

Allow user to continue as if single user.

When the receiver reconnects and receives the accumulated
data, the following behaviours will be carried out.

Table 5. Receiver behaviour after network outage ends.
After time: The receiver does this:
< 100ms Add past telepointer locations to short-term trace

Move telepointer to most recent location
Play out line-segment updates normally
Add telepointer data to heat map display.

100ms –
1 sec.

Add past telepointer locations to short-term trace
Fast playout of line-segment updates.
Add telepointer data to heat map display.

1 sec. –
10 sec.

Add last 500ms of telepointer positions to trace.
Draw completed lines.
Draw current partial line.
Add telepointer data to heat map display.

10 sec. –
1 min.

Add last 1000ms of telepointer positions to trace.
Draw completed lines.
Draw current partial line.
Add telepointer heat map data to heat map display.

1 min. –
10 min.

Draw completed lines.
Draw current partial line.
Add telepointer heat map data to heat map display.

> 10 min. Replace current model and redraw all.
Draw current partial line.
Add telepointer heat map data to heat map display.

Application 3: Real-time multi-player game
Our third application is a simple 2D multi-player game.
Each player controls a tank avatar in an overhead-view
battleground, and can shoot at other players (Figure 2).
There are a number of differences between the tank game
and the other two applications. First, the tank game uses an
explicit client-server model: the server maintains the
current game state and determines critical events such as
hits and misses. Second, since the tank avatars have inertia,
the game uses prediction more extensively. Third, avatar
position is a server-maintained value, so this location must
be preserved for the receiver when it reconnects.

Behaviour for the sender during the disconnection, and for
the receiver during and after the disconnection, is shown in
the following tables.

Table 6. Sender behaviour during disconnection.
At time: The sender (server) switches to this behaviour:

< 1 sec. Store individual tank moves.
Determine hits and misses as normal.

1 sec. -
10 sec.

Stop storing tank movement messages (positions are
held in server’s game-state structure)
Predict receiver’s tank position for other players

> 10 sec. Freeze receiver’s avatar
Protect receiver’s tank from hits (disconnection shield)

Table 7. Receiver behaviour during disconnection.
After time: The receiver (client) does this:
< 10 sec. Predict other tank positions.
> 10 sec. Indicate disconnection to user

Table 8. Receiver behaviour on reconnection.
After time: The receiver (client) does this:
< 1 sec. Process tank move messages.
> 1 sec. Replace game state with new full model.

IMPLEMENTATION ARCHITECTURE
Figure 3 shows the conceptual architecture of our
implementation of the Disco framework. For simplicity, the
architecture shows a single sender, which is responsible for
conveying application events to a single receiver. In
practice, a given node may act as both sender (of its own
events) and receiver (of other nodes’ events), and each
sender may have multiple receivers.

The architecture and our example applications are
developed in C# using the Fiaa toolkit [23] for connectivity
and network transport.

Application

Event Queue

Network
Endpoint

Compressor

Reconnection
Manager

Compactor
Application

Network
Endpoint

Reconnection
Manager

Local Event
Manager

CompressorReplayer

Figure 3. Architecture of Disco implementation.

This architecture has been used to implement the three
applications discussed above. The main advantages of the
architecture are:
• Flexibility: through the use of plug-ins, a wide range of

behaviours can be implemented for sender and receiver;
• Performance: disconnection handling is asynchronous to

the application, so connected participants do not pay a
performance penalty for others’ disconnection;

• Reusability: the architecture is generic (and
parameterized via plug-ins), allowing easy re-use of its
core code across highly varied applications.

In normal operation, the application generates a sequence of
events which are processed locally and sent to the receiver.
Events may affect the application state (e.g., adding new
text into a chat session or adding a new line segment into a
drawing), or may provide awareness (e.g., moving a
telepointer.) The receiver interprets these events locally,
updating its own application state and user interface.

Event Queuing
To prepare for the eventuality of disconnection, the sender
queues all outbound events. Events are queued even when
the receiver is connected. This means that if an outage
occurs, no messages are lost before it is detected. This is
particularly an issue with unreliable protocols, where
message arrival is not acknowledged.

185

The event queue is a simple FIFO queue with no knowledge
of event semantics. Application events are appended to the
queue as well as being sent over the network to the receiver.
Since the queue may rapidly grow to an unbounded size, it
may be periodically purged or compacted.

Purging. The receiver periodically sends heartbeat
messages to the sender, including the sequence number of
the last received event. When the sender receives a
heartbeat, it knows that messages up to the given sequence
number have been received, and can remove those
messages from the event queue. Under normal (connected)
operation, this bounds the data that the queue must hold.

Compacting. The event queue may periodically employ
application-specific techniques to reduce its size. These
techniques implement behaviours such as those described in
tables 1, 3, and 6. The system may select compaction
techniques based on the size of the queue and the age of the
data it contains. Different techniques may be used on
different parts of the queue. For example, queue entries
older than one second might be compacted differently from
newer entries. Compaction can include arbitrary
transformation of the contents of the event queue, for
example, compressing the payload of an event, or replacing
a sequence of incremental events with a single state update.

Compactors are implemented as plug-ins, each capable of
implementing a single technique. Plug-ins are typically
application-specific, and may embody knowledge of the
semantics of events.

Disconnection
When a network outage occurs, the sender’s and receiver’s
reconnection managers attempt to re-establish the
connection. Outages can often be resolved quickly, but if
reconnection is not successful, other techniques (e.g.,
exponential back-off, manual reconnection) must be used.
In the case of departure, no reconnection is attempted.

During a disconnection, the event queue continues to
maintain (and if necessary compact) the events that have
been missed. Automatic event purging is not performed
during disconnection, although compactor plug-ins may be
able to purge events in some applications.

During disconnection, a local event manager may use
application-specific prediction techniques to continue
sending events to the application. For example, in the tank
game, the local event manager generates events that
continue play of the tank of a player who is temporarily
disconnected. These prediction techniques are encapsulated
in replayer plug-ins, analogous to the sender’s compactors.

In the case of interruption, the local event manager can deal
with late-arriving messages by applying application-
specific replayers (e.g., to create a telepointer trace).

Reconnection
On reconnection, the sender transmits the contents of the
event queue covering the missed events. Once these have

been sent, the application is permitted to resume sending
new events to the receiver.

At the receiver, the local event manager may transform the
incoming event stream as described in tables 2, 4, 5, 7 and
8. For example, a replayer plug-in might speed up the
playback of telepointer events, or might apply heat map
data to the local heat map. Replayer plug-ins may
communicate directly with the application.

Latecomers
The architecture can address issues not directly related to
disconnection. For example, a latecomer joining a session
can be treated as a receiver which has been disconnected
since the beginning of the session. To accommodate
latecomers, the event queue must contain enough
information to recover the entire session state.

ASSESSING THE DISCO FRAMEWORK
Our three example applications – chat, draw, and tank game
– have been implemented using the architecture described
above. The applications all operate successfully both as
ordinary groupware applications and as disconnection-
tolerant systems, which illustrates the feasibility and
functionality of the framework. No major problems were
encountered during the development or run-time testing of
the examples (see video figure).

Since this is the first instance of a comprehensive
disconnection framework, our evaluation is primarily
concerned with testing the functionality of the
implementations and assessing the architecture at a
conceptual level, rather than comparing to other existing
systems. We recognize that previous work has developed
individual techniques that may have functionality not seen
in our framework; but we argue that ours is the only
approach that deals with the full range of issues for
disconnection in synchronous groupware.

The example applications make it clear that the framework
is capable of solving many of the user-level problems
described at the start of the paper. By explicitly including
interruption, outage, and departure in the framework, Disco
covers a much wider range of disconnection durations than
have been considered before, and explicitly addresses user
concerns such as interrupted streams, missed changes, and
laborious reconnection and state loss. (We do not, however,
deal with merge problems; we assume this can be handled
by an existing algorithm, as discussed below). In the next
sections, we look more closely at the framework’s strengths
and potential weaknesses in several areas – overhead,
effort, generalizability, genericity, and extensibility.

Runtime Overhead
Our approach clearly imposes overhead on the operation of
the sender. The sender must enqueue all events that it sends
in case of disconnection, and to conserve space, the queue
must be periodically compacted. There are two major
features of the approach that mitigate this overhead. First,
the operation of the event queue (and its compactors) is

186

asynchronous to the application itself; i.e., the application
never needs to wait while the queue performs its tasks.

Second, the compactor plug-in architecture allows
developers complete control over the trade-off between
runtime overhead and smoothness of reconnection.
Developers control the amount of data to retain, the
complexity of the compaction algorithms, and the time
scales at which the algorithms are run. If they are unhappy
with the mechanism’s default behaviour, developers can
tune the approach to best suit their application’s needs.

In addition to the overhead of storing data, our approach
involves overhead in reconnection, which may lengthen the
reconnection process. The architecture can help with this
problem: since compaction is performed during the
disconnection, the event data can be ready to send as soon
as a network connection is reestablished. Additionally, if
too much time is required to process events on the receiver,
the developer can reduce or eliminate unnecessary events.

Programmer Effort
Providing more intuitive reconnection is a new task for
groupware developers, increasing the complexity of their
applications and the time required to produce them. We
believe that to meet usability requirements of modern
applications, this work is necessary. Much of the
complexity of supporting better reconnection can be
embedded into a toolkit. As shown in the architecture of
Figure 3, the mechanisms for capturing and storing events,
applying compaction algorithms, negotiating reconnection,
replaying events, and detecting and responding to jitter are
generic and can be re-used from one application to the next.

Developers must provide custom compaction and replayer
plug-ins, but even many of these can be reused between
applications. For example, tasks such as discarding old
telepointer messages or playing back events at double speed
can be supported by a library of common plug-ins. To
support the interface to these plug-ins, the event queue and
local event manager components have generic mechanisms
for selecting which plug-in to use, based on the age of the
data and the size of the queue.

Generality
A significant strength of our approach is that the handling
of disconnection and reconnection is treated orthogonally to
the groupware application itself. As we have discussed, this
reduces the need for developers to solve the same common
problems of detecting disconnection, reestablishing the
connection, queuing, compacting and transmitting events,
and replaying events on the receiver.

It is an open question whether this orthogonality leads to
cases where desired behavior cannot be implemented. To
address this question, we have implemented the three
applications described above. These applications have
different run-time characteristics and different approaches
to dealing with reconnection. The approaches illustrate
several examples of both application and awareness data

that must be transmitted over the network, and several
different kinds of compaction algorithms. This diversity
lends confidence to the broad applicability of this
architecture.

Ease of Creating New Compactors and Replayers
As discussed above, a library of compactors can handle
many common cases; however, new compaction techniques
will be required as new types of application arise, so it is
important to determine the ease of building these plugins.

Compactors are designed around a simple pattern. They
have access to the queued events, and can perform whatever
application-dependent algorithm they wish upon these
events. Similarly, replayers receive a stream of events, and
interact with the application to enact them. The complexity
of compactors and replayers is therefore in their own
algorithms, allowing developers to determine a tradeoff
between functionality and ease of development.

Limitations and Future Work
The current version of the framework has several known
limitations that we plan to address in future work.

Interaction with Concurrency Control. If a disconnected
node is permitted to modify the shared data, then the
reconnection process must detect and resolve any conflicts
between the operations performed while disconnected and
those performed by other session participants. For example
if a disconnected player is replaced by an AI player in the
tank game, then on reconnection, the player’s tank position
must be reconciled with the AI tank position. In some
applications, therefore, compaction and replay algorithms
must take account of the need to resolve conflicts. For
example, a compactor may produce model updates only if
an algorithm is available to merge models [15]. Since by
their nature updates made on a disconnected node are
optimistic, replayers may need to perform corrections (e.g.,
using operational transform [20], or rollbacks [13]). We
assume that concurrency control will be handled by a
separate module, and we plan to test this integration to
ensure that the two systems work as expected.

Streaming Media. We have discussed telepointers as an
example of streaming media, but the more traditional sound
and video have not been directly addressed in our research.
However, both sound and video can be buffered in the
event queue using standard techniques. An application may
choose to limit the size of the buffer, based either on time
or size cap, throwing away older data. On reconnection, the
queue contents may be transmitted, and, for example,
played back at double speed by the replayer.

Quality of Service. Disconnection may make it impossible
for an application to achieve its quality of service goals. For
example, feedthrough times are worsened by even short
outages. High bandwidth may be required to transmit large
state updates following reconnection. Message storage must
work together with the sender’s QoS system, an issue that
we will consider in future work in this area.

187

Attention-based Disconnection. There are types of temporal
absence that are not caused by disconnection – in particular,
when a user’s attention is elsewhere than the application,
they are just as unavailable as they would be in a network
outage. In future, we are interested in adding attention-
based asynchrony to the framework – many of the
mechanisms would remain the same, although identifying
the start of an absence is more complicated than identifying
network-based disconnection.

CONCLUSION
Disconnections are common in synchronous groupware,
and can cause several problems for members of the group;
however, few researchers have looked at disconnection
issues from the perspective of applications and users. In this
paper, we introduced a conceptual framework called Disco
that deals with disconnection in synchronous groupware.
The framework considers how disconnections are
identified, what senders and receivers should do during the
absent period, and what should be done with accumulated
data upon a return to synchronous interaction. We
demonstrated the framework by implementing its ideas in
three different applications. Although there is future work
to be done in order to extend the framework and integrate it
with other systems-level functionality, Disco is the first
approach to disconnection that deals comprehensively with
interruption, outage, and departure as parts of the same
phenomenon, and that considers data, interface, and
interaction issues. The Disco framework is a further step
towards groupware that support synchronous work without
ignoring the realities of networked systems.

REFERENCES
1. Bettner, P., and Terrano, M. 1500 archers on a 28.8:

Network programming in Age of Empires and beyond.
Proc. GDC 2001 (www.gamasutra.com/view/feature/
3094/1500_archers_on_a_288_network_.php).

2. Bezerianos, A., Dragicevic, P., Balakrishnan, R.
Mnemonic rendering: An image-based approach for
exposing hidden changes in dynamic displays. Proc.
UIST 2006, 159-168.

3. Buszko, D., Lee, W., and Helal, A. Decentralized ad-
hoc groupware API and framework for mobile
collaboration. Proc. Group 2001, 5-14.

4. Chung, G., Dewan, P., and Rajaram, S. Generic and
composable latecomer accommodation service for
centralized shared systems. Proc. EHCI 1998, 129-148.

5. Dewan, P., and Hegde, R. Semi-Synchronous Conflict
Detection and Resolution in Asynchronous Software
Development, Proc. ECSCW 2007, 159-178.

6. Dix, A. Cooperation without (reliable) communication:
Interfaces for mobile applications. Dist. Sys. Eng., 2,
1994, 171-181.

7. Edwards, K. Flexible conflict detection and
management in collaborative applications. Proc. UIST
2007, 139-148.

8. Greenberg S. and Roseman, M. Using a Room Metaphor
to Ease Transitions in Groupware. In Sharing Expertise:
Beyond Knowledge Management. (M. Ackerman et al,
eds). Cambridge, MA, MIT Press, 2003, 203-256.

9. Gutwin, C. and Penner, R. Improving interpretation of
remote gestures with telepointer traces. Proc. CSCW
2002, 49-57.

10. Hall, R., Mathur, A., Jahanian, F., Prakash, A., and
Rassmussen, C. Corona: a communication service for
scalable, reliable group collaboration systems. Proc.
CSCW 1996, 140-149.

11. Hill, W., Hollan, J.., Wroblewski, D., and McCandless,
T. Edit wear and read wear. Proc. CHI 1992, 3-9.

12. Ionescu, M., and I. Marsic. Latecomer and Crash
Recovery Support in Fault Tolerant Groupware. IEEE
Distributed Systems Online, 2, 7, 2001.

13. Karsenty, A. and Beaudouin-Lafon, M., An algorithm
for distributed groupware applications, Proc.
Distributed Computing Systems, 195-202, 1993.

14. Long, B., Dingel, J., and Graham, T.C.N. Experience
applying the SPIN model checker to an industrial
telecommunications system. Proc. ICSE 2008, 693-702.

15. Munson, J. P. and Dewan, P. A flexible object merging
framework. Proc. CSCW 1994, 231-242.

16. Navarre, D., Palanque, P., Basnyat, S., Usability Service
Continuation through Reconfiguration of Input and
Output Devices in Safety Critical Interactive Systems,
Proc. SAFECOMP 2008, LNCS 5219, 373-386.

17. Pantel, L. and Wolf, L.C., On the suitability of dead
reckoning schemes for games, Proc. NetGames, 79-84,
2002.

18. Pinelle, D., Dyck, J., and Gutwin, C. Aligning Work
Practices and Mobile Technologies: Design for Loosely-
Coupled Mobile Groups, Proc. Mobile HCI 2003.

19. Preguica, N., Martins, L., Domingos, H., and Duarte, S.
Integrating Synchronous and Asynchronous Interactions
in Groupware Applications, Proc. CRIWG’05, 809-104.

20. C. Sun and C. Ellis. Operational transformation in real-
time group editors: issues, algorithms, and
achievements. Proc. CSCW 1998, 59–68.

21. Tam, J., Greenberg, S. A Framework for Asynchronous
Change Awareness in Collaborative Documents and
Workspaces. IJHCS, 64, 7, 2006, 583-598.

22. Vogel, W. Object Oriented GroupWare using the
Ensemble System, Proc. OOGP, 1997.

23. Wolfe, C., Graham, T.C.N., Phillips, W.G., and Roy, B.,
Fiia: User-Centered Development of Adaptive
Groupware Systems, Proc. EICS 2009, 275-284.

188

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

