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ABSTRACT
Consistency maintenance (CM) techniques are a crucial part of
many distributed systems, and are particularly important in net-
worked games. In this paper we describe a framework of the human
factors of CM, to help designers of networked games make better
decisions about its use. The framework shows that there is wide
variance in the CM requirements of different game situations, iden-
tifies the types of requirements that can be considered, and analy-
ses the effects of several consistency schemes on user experience
factors. To further explore these issues, we carried out a simu-
lation study that compared four CM algorithms. The experiment
confirms many of the predictions of the framework, and reveals ad-
ditional subtleties of the algorithms. Our work is the first to look
comprehensively at the tradeoffs and costs of CM, and our results
are a strong starting point that will help designers improve on the
user’s quality of experience in distributed shared environments.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces—Computer-supported cooperative work.

General Terms
Human factors, Algorithms

Keywords
Consistency maintenance, game development, game usability

1. INTRODUCTION
Consistency maintenance (CM) is the process of establishing and
preserving a shared and equivalent state across two or more nodes
in a distributed system [26]. Consistent representations of a shared
environment are a critical requirement for many situations in dis-
tributed groupware and networked games: in a shared editor, dis-
cussing a text document requires that people see the same repre-
sentation of the text; in a multi-player game, all nodes must agree
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on issues such as whether an enemy was hit by the player’s attack,
whether the player collided with an obstacle or not, and whether a
trade was successfully completed. For these and many other situa-
tions, CM is a necessary part of the software design for a distributed
environment.

The need for consistency in these and other situations, however,
does not mean that CM should be generically applied across all
aspects of a distributed application. The main reasons for being
selective are that not all situations in a distributed interaction have
the same consistency requirements as the examples above, and that
CM techniques are costly, both in terms of development complexity
and in terms of reducing the users’ quality of experience. The sec-
ond of these problems – the effects of CM on user experience – is
the more important of the two, since it is possible for CM to cause
as many new problems for user interaction as it solves. For exam-
ple, CM techniques may add latency to the visual representation of
another player’s actions, causing problems for communication and
coordination; they may incorporate correction actions which can
be visually jarring and difficult for people to understand; and they
can prevent access to objects in the environment, which can cause
frustration and confusion.

These costs imply that designers should apply CM judiciously,
carefully choosing CM techniques to match to the user experience
requirements of a particular situation. To do this, designers need to
know both the consistency requirements for the scenarios that will
occur in their applications, and the effects of different CM schemes
on different aspects of user experience. However, there is currently
very little information that can guide design decisions in this area.

In this paper, we provide this information: we present a three-
part framework that explores the human factors of CM for multi-
player games. The first part of the framework recognizes that dif-
ferent scenarios within a game can have very different consistency
requirements, and specifies the requirements for several canonical
game situations. Second, the framework discusses how the require-
ments can be met, details specific metrics for measuring user expe-
rience, and outlines the main characteristics of several different CM
approaches. Third, we identify four specific game CM algorithms
and test them in a simulation study. The study puts the relationship
between CM approaches and user experience on an empirical foot-
ing, and confirms the analyses made possible by the framework –
for example, that injecting local lag delay on processing user inputs
reduces a game’s responsiveness, and that using client-side predic-
tive algorithms improves animation smoothness. The study also
reveals interesting additional behaviours of the CM algorithms: for
example, that variance in latency has a bigger negative effect on
consistency than the latency itself, and that when using local lag



techniques, the reduction in responsiveness and propagation delay
can actually be smaller than the added lag.

Our framework and evaluation make three important contribu-
tions to the design of multi-user games and distributed collabora-
tive systems: first, we establish that CM schemes must be care-
fully matched both to the consistency requirements and the user-
experience requirements of particular interactive scenarios; second,
we provide a framework that specifies requirements, aspects of user
experience, and the characteristics of several main CM approaches;
and third, we provide the first empirical study comparing the effects
of different CM algorithms on user-experience metrics. The under-
standing and knowledge provided by this work can provide much-
needed guidance to designers who must satisfy both the needs of
the distributed system and the needs of the people who use it.

2. RELATED WORK
Although there has been relatively little research into the hu-
man factors of consistency management schemes, many other as-
pects of user experience in distributed groupware and multiplayer
games have been studied in previous literature. Researchers have
looked at issues such as helping people maintain awareness of oth-
ers (e.g., [18]), how multi-player game usability can be assessed
(e.g., [22]), determiners of social presence in distributed work
(e.g., [20]), and the effects of latency and other network problems
on communication and coordination (e.g., [2, 10]). In addition,
there has been a great deal of work on specific concurrency and
CM algorithms (e.g., [26, 19]); further details of some of these
techniques are reviewed later in the paper. Both streams of this
work are vital to groupware design, and form a foundation for our
investigation of experiential issues in the domain of consistency.

The intersection of these areas has not received a great deal of
attention from CSCW or the game research community, but prior
work in has considered three substantial issues in the human fac-
tors of CM. First, an early analysis by Greenberg and Marwood [9]
looked at consistency requirements for real-time distributed group-
ware, and introduced the idea that not all actions in a shared editor
necessarily need to be governed by CM. We build directly on this
idea, and expand on it in the framework described below. Second, a
few researchers have looked at how specific algorithms can be used
to deal with particular user experience problems: for example, pre-
venting the “dead men shooting” problem using Time Warp [15],
or using local lag to support situations that require tightly-coupled
coordination [6, 25]. Third, research has looked at the effects of
prediction on player interpretation and the costs of correcting erro-
neous predictions (e.g., [21]).

These few previous studies and analyses, however, do not pro-
vide a comprehensive understanding of when CM is needed in
groupware or networked games, how designers can determine re-
quirements for different interaction scenarios, what are the user-
experience factors that designers need to preserve, or how various
CM techniques can affect those factors. In the next sections, we
provide a framework that provides initial understanding in this area,
particularly for designers of multi-player games.

3. CONSISTENCY REQUIREMENTS
A consistency requirement for a particular situation implies that
there are non-deterministic changes being made to some state that
is both distributed and shared. To understand the consistency re-
quirements for a particular interactive scenario, therefore, it is im-
portant to understand three aspects of multi-player games: the types
of entities that can be in the shared environment, the types of inter-

actions that players can have with those entities, and the types of
consistency that could be required for an interaction.

3.1 Types of Shared Entities
At some level all entities in a multi-player game are equal – that is,
they are all just entries in a database or objects in a model. How-
ever, different types of entities often have different consistency re-
quirements, and so it is useful to group entities into broad cate-
gories. We have identified eight main groups that have proven to
be useful in thinking about consistency.

• Local avatar. The local player’s avatar is a special entity, since
it is the player’s embodiment in the world. Since the local avatar
is the agent through which the player acts in the game, require-
ments for consistency will often be tighter than for representa-
tions of others’ actions. For example, it is important to show fast
and accurate feedback as a player moves in the world.

• Other players’ avatars. The avatars belonging to other play-
ers may have different consistency requirements depending upon
their relationship with the local player. Opponents will typically
have stricter requirements than those of players cooperating with
the local player. For example, in a shooter game there would be
a low tolerance for inconsistencies in the target player’s position.

• Player variables. Variables such as lives, health, and money are
often critical to the objectives and outcome of the game, and so
have stricter consistency requirements than other entities. For
example, the simple understanding of whether a player is alive
or not is of critical importance; failure of CM in this regard can
have dramatic effects on the game [15].

• Inventory. There are often a large number of objects attached to
a particular player, such as weapons or treasure obtained from
previous interactions. These items are similar in many respects
to those existing in the game world, but may have different re-
quirements because their use is often restricted to a single player.

• Objects in the world. Games provide a wide variety of resources
in the shared environment, from game pieces in chess, to move-
able obstacles in a racing game, to treasure in an online RPG.
There are a wide variety of possible consistency requirements
for these entities, given their wide range of possible uses, and
requirements are determined by their intended use (see below).

• Terrain. The world itself is comprised of shared entities (trees,
rocks, ground, buildings, etc.) that can be modified in some
games, which may require that the changes be propagated to
other nodes. Examples include one player destroying a bridge
or digging a hole that others can fall into.

• Attack objects. Objects used in attacks – such as bullets, spells,
or punching fists – are generally different from other world ob-
jects, since they move (often quickly) and have important effects
on other entities. Consistency requirements are often different
(and stricter) for these objects. We note that in some games,
bullets and fists are purely cosmetic since the hit decision is
based on avatar positions at the start of the action; however, some
games are moving towards modeling these attack objects (e.g.,
using the Wii MotionPlus for real-time control), and some games
allow players to make use of ordinary objects in attacks (as with
Half-Life’s gravity gun).

• Chat. Written conversations are an important part of many
games, and these statements, while not part of the game world
itself, are also a set of data that must be shared across multiple
nodes. Since chat is typically not editable, it has reduced con-
sistency requirements compared with a traditional shared editor;
but there could be requirements related to ordering of messages
in the transcript.



3.2 Types of Interaction with Entities
The ways in which entities can interact is a main determiner of
consistency requirements – not in terms of the actual actions that
occur, but in terms of the dependencies and effects of these actions
on entities that are important to the game. We have identified five
factors that are common in many games; these allow designers to
reduce the number of situations where CM needs to be imposed.

• Is interaction possible with the entity. The most basic question
in determining consistency requirements is whether anything in
the game can affect or change the entity. If not, there is no need
to track or maintain the shared state of the object: for example,
objects such as clouds in the sky of the game world may be com-
pletely independent from any actions, and so inconsistencies are
unimportant.

• Is interaction possible by multiple people at once. It is also im-
portant to consider whether entities can be manipulated by just
one person (e.g., an item in a player’s inventory) or by multiple
players (e.g., an item lying on the ground); interactions that can
involve multiple people have stricter consistency requirements
(e.g., ensuring that only one person can pick up the object).

• Ability to affect critical game variables. The degree to which
interaction with an entity can affect important game variables
(such as health or life) determines the need and type of CM.
For example, the action of defusing a bomb can have a major
impact on player life and health, and so must be more consis-
tently represented across the nodes of those affected. This factor
makes important distinctions between situations that on the sur-
face look similar. For example, consistency requirements for
interactions with other players are not all equal, since interac-
tions with teammates have less effect on critical variables such
as health and life (assuming no friendly fire kills) compared to
interactions with (i.e., attacks on) enemies.

• Timescale of future interactions. The amount of time that will
elapse before another person or object could possibly interact
with the entity is a limiting factor on consistency requirements.
For example, if a player wants to pick up an object from the en-
vironment, and no other avatar is near enough to cause a conflict,
there is no requirement to impose CM on the interaction. Note
that this limitation is not the same as simple proximity, since
some types of interactions have effects at a distance (e.g., beam
weapons can shoot instantaneously across infinite distance).

• Probability of future interaction. Consistency requirements are
also affected by the likelihood that an interaction with an entity
will occur in a certain time period. In situations where interac-
tions are unlikely, the requirements for consistency are reduced.
For example, if a player modifies the game world’s terrain, but
does so in a location that is rarely travelled, there is less of a
need to guarantee that the modifications are copied immediately
to each node. Reducing consistency based on probabilities can
lead to problems – e.g., if another player does take the rare path,
a problem could result – but using likelihood as the basis for
applying CM techniques is reasonable when computational and
network resources are constrained.

3.3 Types of Consistency Requirements
Consistency between two versions of a model can diverge in three
main ways – in magnitude, in time, and in rate of change – and con-
sistency requirements for a particular situation essentially translate
to the allowable tolerance for each type of divergence. Specifically,
requirements can be stated in terms of:

• State divergence, which specifies, for a given instant in time,
how much two players’ view of a model differ. For example, a

situation where a group of player avatars moves from one place
to another can tolerate a higher degree of state divergence (i.e.,
players will not be affected by positional inaccuracies as the
group moves) than a first-person shooter game where players
target each other with sniper rifles (and where divergence in po-
sitions can lead to incorrect kills).

• Propagation delay, which indicates how long it takes the game
to bring all clients to a consistent state after a change on one
client. Requirements for propagation delay indicate the amount
of time that a situation can tolerate an inconsistency. In a first-
person shooter, high propagation delay can lead to “dead men
shooting” due to time to deliver a death decision. For game sit-
uations such as an avatar changing socks or transmitting a chat
message, players can accept longer propagation delay.

• Timeline divergence, which specifies the extent to which two
players’ experiences of a phenomenon differ. For example, one
player might view the casting of a “fireball” spell as three sec-
onds of casting animation, followed by an explosion effect, fol-
lowed by the deduction of hit points from the target. Another
player on a slower connection might see a compressed timeline,
where the casting animation lasts only one second. While both
players see the same final effect, the timeline has diverged. If the
length of the casting animation gives the player the opportunity
to take counter-measures (such as trying to interrupt the caster),
then such timeline divergence can have significant gameplay
consequences. Another example of timeline divergence could
be one player’s view of another player’s movement, where the
exact path may diverge, possibly involving jarring corrections.

Some CM algorithms may also result in “collateral damage”,
where meeting a requirement on one of the three attributes listed
above may degrade other aspects of player experience. For exam-
ple, the popular local lag algorithm [25] reduces a game’s respon-
siveness, while locking or serialization algorithms may reduce the
smoothness of animation. Consistency requirements must therefore
be considered in the context of broader player experience.

Poor choices about CM techniques can have significant impact
on game usability. For example, a study of problems reported in
108 game reviews showed that 29 were reported as being insuffi-
ciently responsive to user input, and 42 reported unpredictable re-
sponse to user’s actions (e.g., as a result of poor hit detection) [22].
While these did not necessarily result from consistency mainte-
nance problems, this data shows that the sorts of problems that arise
from poor CM are considered to be serious flaws in games.

Finally, we note that there are interface and game-design strate-
gies that can reduce these requirements, which we do not detail
here. For example, one technique that reduces consistency require-
ments is the idea of object pointing, in which a player selects an-
other player as the target of an action (e.g., a spell) rather than
moving a cross-hair target; this selection-based targeting dramati-
cally increases the tolerance for state divergence.

3.4 Consistency Requirements of Canonical
Game Situations

Here we characterize several canonical game situations in terms of
the concepts introduced above, in order to show how this part of the
framework can be used to analyze and discuss the requirements of
different game scenarios.

• FPS death decisions. First-person-shooter games have strong
consistency requirements for making decisions about whether
one player has killed another. This decision must be the same on
all clients, and has a low tolerance for propagation delay, since
the decision has important consequences for some players’ fu-



ture actions (i.e., games do not want situations where dead men
are allowed to keep shooting).

• Trade. Many games allow players to buy, sell, or barter items;
these transactions must be consistent across all clients, but in
most cases there is a larger tolerance for propagation delay (i.e.,
it is not a problem if the transaction is not propagated to all
clients for a few seconds).

• Feedback for a moving player. Responsiveness is a critical part
of a user’s experience in a networked game, and so providing
fast feedback about a local player’s movements in the world is
critical.

• Other players’ positions. As introduced above, there are sub-
stantial differences in consistency requirements for representing
others’ positions, depending on their relationship to the local
player. If the other player is an enemy in a shooter game, then
there is low tolerance for state divergence (so that aiming and
shooting can be carried out successfully). If the other player is
not likely to be targeted (e.g., is on the local player’s team) po-
sitional consistency is less important.

• Clothing choice. An avatar’s clothes are generally not objects
that other entities in the world can interact with, and so the
consistency requirements for showing a change of clothing are
low (but not non-existent, since the change should eventually be
propagated to all clients). There are nonetheless game situations
where these types of decorative changes could be important for
the game (e.g., waving a red glove could be the signal to start
a coordinated attack); in these special cases, the tighter consis-
tency requirements will have to be recognized by the designer.

• Physics effects. Many games have physics engines that create
realistic effects for in-game events (e.g., falling rocks, spinning
cars, shattering glass or explosions). However, the particles
and objects used in these visual effects generally do not inter-
act with players (i.e., a shard of glass from a shattering window
in F.E.A.R. will not harm or kill a player). As a result, the parti-
cles’ locations need not be consistent across different clients.

• Avatar animations. Avatar-based games provide standard an-
imations for actions such as walking, waving, or pointing. For
example, a walking animation may use a looping track that plays
the next frame every iteration of the frame loop. Since the posi-
tions of hands and feet often do not affect critical game variables
(e.g., the hit-box for an avatar might be a rectangular box that ig-
nores arms and legs, and so the position of limbs does not affect
gameplay), there is high tolerance for state divergence in these
models (e.g., one client might have an avatar in the middle of a
stride animation, whereas another client has it at the end, but the
location of the avatar is the same in both cases).

4. MEETING CM REQUIREMENTS
The previous sections have outlined the kinds of problems that arise
due to difficulties in maintaining consistency, and have illustrated
that different gameplay situations may have very different consis-
tency requirements. In this section, we first introduce the techni-
cal side of the CM problem, indicating why no single algorithm is
sufficient for balancing all CM requirements. We then introduce
operational metrics that can be used to characterize the effects of
specific CM algorithms on user experience, and finally introduce
the core elements of CM algorithms typically used in games.

4.1 The CM Problem: Game Architectures
The difficulty of achieving consistency in multiplayer games is in-
fluenced by how games are architected. Games are almost univer-
sally built as client-server applications with partial replication. The

problem is then to maintain consistency between the partial replicas
- in the terms introduced above, state divergence is a consequence
of inconsistent replicas, and propagation delay results from the time
required to send data over the network.

Games are typically based on a frame loop, consisting of the
three steps of polling input devices, updating game state, and ren-
dering the frame. This loop is executed as quickly as possible: for
example, to achieve a frame rate of 60 Hz, less than 17 ms is avail-
able for each iteration. This means that any complex calculations
(e.g., complex simulations of physics or artificial intelligence) can-
not be performed inside the frame loop.

In most games, the client implements the frame loop and the
server implements the game logic and maintains the canonical
game state. Since any network communication with the server
takes milliseconds to resolve, server requests cannot be performed
within the frame loop. Therefore, any shared data required to com-
pute the next frame must be available on the client (via partial repli-
cation) and any communication with the server must be carried out
asynchronously.

A primary reason why this architecture is widely used (over, for
example, peer-to-peer architectures) is security. Game players have
proven willing to devote extraordinary efforts to cheating [11], to
the point of cracking encrypted client-server protocols and hand-
modifying the compiled binary of the client. This means that clients
cannot make decisions that affect the game state. For example,
in a first-person shooter game, the client is not allowed to decide
whether a shot has hit an opponent. Similarly, the client is not al-
lowed to store “secret” information that the player should not have
access to, such as the location of objects or players behind a wall.
These restrictions naturally lead to an architecture where the client
implements the user interface and performs actions that do not af-
fect game state, while the server makes game-critical decisions (or
audits decisions made by the client).

There are three main ways in which this architecture affects con-
sistency maintenance:

• Execution speed: the required speed of execution of the frame
loop implies that some data must be replicated to the client. This
leads to state divergence when replicas fail to have the same
value.

• Update frequency: updates are transmitted between client and
server asynchronously, normally at a rate far slower than the
frame loop’s frequency. In general, this leads to higher propa-
gation delay. For game objects changing their state in real time,
this may lead to stuttering animation. Game architectures fre-
quently use predictive algorithms to attempt to guess the current
state of remote game objects (described further below).

• Security: Clients may not store any “secret” game-affecting
data. This restricts the use of potentially helpful CM algorithms;
e.g., the client cannot pre-fetch “secret” data that might be useful
in the near future, and cannot reduce propagation delay by simu-
lating the server’s AI algorithms or carrying out game-affecting
physics calculations.

4.2 Metrics
The architecture described above both causes consistency problems
and constrains the space of solutions. Consistency problems can
be addressed through CM algorithms (as will be discussed in sec-
tion 4.3), and through game design decisions that reduce the need
for consistency.

Algorithms necessarily trade off qualities of the player’s experi-
ence. For example, the local lag algorithm [25] reduces state di-
vergence at the cost of reduced local responsiveness. Predictive
algorithms such as dead reckoning [21] improve smoothness of an-



imation and may reduce state divergence, but at the cost of timeline
divergence when the predictive algorithm fails (e.g., exhibited as
jarring warps of player positions.) It is important to note that to fix
one set of usability problems due to poor consistency, we frequently
need to make other aspects of the player’s experience worse.

To allow us to more precisely assess how the choice of CM al-
gorithm can affect user experience, we identify five performance
metrics. The metrics are based on two factors: they correspond
to commonly-seen measures of the performance of groupware sys-
tems and games, and they can be observed and computed in real
games as they execute. Underlying the choice of these metrics is
the hypothesis that each value, if allowed to become large, will in
some circumstances negatively affect the player’s quality of expe-
rience in the game. These metrics allow us (and others) to develop
clear guidelines about the consequences of a particular CM choice.
The metrics are:

• Magnitude of state divergence captures the degree of consistency
between two players’ views of part of the game state at a given
time. For example, the state divergence of two players’ views
of a single avatar could be measured as the distance between the
avatar’s position on each client. An appropriate distance metric
is required to measure how far the states diverge; for example,
Euclidean distance might be used for positional information.

• Magnitude of propagation delay is the time from a player per-
forming an action to other players’ seeing the propagation of
that action. In a first-person shooter, this could be the time be-
tween one player pushing “W” and others seeing that player’s
avatar move.

• Corrections counts the number and magnitude of modifications
required to repair an incorrectly divergent state. This metric is
associated with the timeline divergence requirement, as it mea-
sures the work needed to regain consistency in divergent time-
lines. For example, when dead reckoning [21] is used to estimate
the position of moving objects, a correction (or warp) may be re-
quired to move the object to its correct location. As with state
divergence, a distance metric is required to measure the magni-
tude of a correction.

• Response time represents the delay from a player performing an
action to his seeing the result of that action. In a first-person
shooter game, this might be the time between pushing the “W”
button to seeing the avatar move forward.

• Animation delay measures the delay between on-screen updates
of a particular game object’s state. E.g., this might represent the
time between positional updates of another player’s avatar.

These measures are not independent of one another. For ex-
ample, high animation delay increases response time [27], poor
feedthrough time may lead to increased state divergence, and high
state divergence may in turn lead to more severe corrections. Our
simulation experiment (reported below) helps tease out the nature
of these subtle relationships.

Ideally, each of these metrics has small values. The question of
how small they have to be depends on the requirements of that in-
teractive scenario, but there are general results that indicate when
problems may arise. According to Schneiderman, in highly inter-
active tasks, response times become noticeable once they exceed
50–150 ms, while with less interactive tasks, delays of up to one
second are tolerable [23]. According to Jay et al., propagation de-
lay is noticeable starting at 50 ms, and differences in propagation
delay become evident in 50 ms increments [12]. Based on analysis
with the model human processor, Card et al. suggest that animation
rates must be in the range of 10–20 frames per second (or 50–100

ms animation delay) for animation to be smooth [5]. Far higher ani-
mation rates are required for fast-moving images, unless additional
effects are used (e.g., motion blur). Requirements for magnitude
of state divergence and corrections are specific to the task being
performed, as motivated by our examples from section 3.

4.3 Conceptual CM Approaches
Consistency maintenance in games draws on concepts from dis-
tributed databases and groupware, but also introduces several new
ideas. Consistency approaches used in traditional groupware fall
into four broad categories: locking, optimistic locking and trans-
formation, serialization, and “social protocols”.

• Locking. Locking and transaction-based approaches require a
node to obtain a “lock” before carrying out changes to shared
context. To obtain transaction-level serializability, algorithms
such as two-phase locking are required [8]. Locking is used in
game situations where transactional atomicity is required, for
example, in a player trade consisting of a withdrawal and deposit
operation pair.

• Optimistic locking. Optimistic approaches allow operations to
be enacted locally on the assumption that conflicts between con-
current operations are rare. Optimistic algorithms are widely
used in games to reduce response time: for example, player
movement in first-person shooter games is generally performed
optimistically. Optimistic algorithms differ in how they re-
spond to conflicts: rollback schemes (such as TimeWarp [16]
and ORESTE [13]) undo conflicting operations to an earlier cor-
rect state and then reapply operations in a canonical order; op-
erational transform avoids rollbacks by transforming incoming
operations so that the state converges [26]. Both approaches
can lead to jarring corrections, and are inappropriate in some
cases (e.g., where a death decision might be reversed retroac-
tively.) Operational transform is rarely (if ever) used in games,
as it favours fully-replicated architectures, and because the situ-
ations where optimistic algorithms are used in games rarely re-
quire OT’s complex generality.

• Message-level serialization. A third approach commonly used
in groupware is serialization [1, 7], in which messages are sent
to a centralized serializer which broadcasts the messages to all
clients in a consistent order. Serialization results in poor re-
sponse time, as operations cannot be enacted locally until they
have travelled to the server and back again. Serialization is also
a poor choice in cases where the timing of messages is as impor-
tant as the order [3, 28]. Serialization is widely used in online
games, however, to determine a canonical order of actions for
example, to determine which player shot first in a gunfight.

• Social protocols. The final traditional approach is to use no al-
gorithm at all, relying instead on people’s awareness of each oth-
ers’ activities and their willingness to avoid conflicts [9]. Social
protocols are rarely (if ever) used for CM in games, however,
because games are often competitive, and because the risk of
cheating is ubiquitous [11].

In addition to these approaches, games have developed addi-
tional techniques that are less commonly found in traditional group-
ware: prediction, local lag, and remote lag.

• Prediction. Predictive strategies attempt to determine the posi-
tion of an object in the game world, based on a model of the
object’s movement. A commonly-used method for prediction is
dead-reckoning, where the recent locations of the object are used
to determine the likely next location. Dead-reckoning assumes
that objects will continue to move in their previous heading and
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Figure 1: The four CM algorithms: CS=Centralized Serializa-
tion; EQ=EverQuest; LL=Local Lag; HL=Half-Life. Assum-
ing that player position is a 1D value changing over time, la-
tency is a constant 50 ms, LL adds 100 ms of lag time, and the
HL algorithm adds 150 ms of lag on the remote client, shows
how each algorithm would represent a given positional trace
on the player’s computer and on a remote player’s computer.

velocity, which is often true for objects with inertia. Predic-
tive algorithms can reduce state divergence (when predictions
are correct), or increase it when incorrect. In addition, predic-
tion can improve animation smoothness, but can lead to jarring
corrections when errors are made.

• Local lag. State divergence is caused by the time it takes for
updates to be sent across the network. This delay cannot be re-
duced, but the divergence can be eliminated by adding delay to
the local input. For example, if a user presses the “W” key to
move forward, they will not see their avatar move until after the
delay period. Local lag makes it possible to synchronize the
local and remote views of the world. When using local lag, de-
velopers must choose between a lag constant that balances the
penalty to responsiveness versus the possibility of messages ar-
riving late (i.e., after the lag period has expired.) A variant on
local lag is bucket synchronization [3], which is used in games
such as the popular Age of Empires series. In bucket synchro-
nization, inputs performed in a given frame are collected and
applied at the beginning of a subsequent frame.

• Remote lag. This strategy is a buffering approach designed to
allow more updates to arrive at the remote client before they are
used. This approach is widely used in streaming-media appli-
cations such as voice over IP, but is also used in a few multi-
player games. By allowing two positional updates to arrive be-
fore the first position is displayed, the client can accurately cal-
culate a smooth animation (using interpolation between the two
updates). This reduces jarring corrections, but at the cost of in-
creasing state divergence.

5. SPECIFIC CM ALGORITHMS
The specific algorithms used in games are often a combination of
the conceptual approaches introduced above. Here we identify four
typical algorithms that we will use in the study described below.
Three of the algorithms are derived from actual games, and one is

a simple baseline approach. Figure 1 gives a simplified view of the
operation of each of the algorithms.

In section 6, we evaluate these algorithms in the context of player
movement, a canonical game situation that was described earlier in
the framework. In this scenario, the CM problem is that of ensuring
that the positions of different players’ avatars are consistent on all
clients. This is a central problem, since player position is crucial
to navigation, aiming, and coordination of player actions. It is also
a technically demanding problem – the designers of the game Lin-
eage 2 claim that player movement accounts for upwards of 70%
of all network traffic in online role playing games [14]. Player
movement is a strong example of a situation where traditional CM
algorithms are not applicable.

5.1 Centralized Serialization
Our first algorithm follows the serialization approach described
above. By itself, this approach is rarely used in production games,
but we include it here to provide a baseline comparison. In this
algorithm, movement updates are sent to the server, where they
are validated and then broadcast to all clients. On each client, the
player’s position is reported as the last positional update received
from the server. As can be seen in Figure 1, this algorithm ex-
hibits a low update rate, due to the step function representing the
last value received from the server. Centralized serialization might
work reasonably over a local-area network, but gives unacceptable
responsiveness and animation delay in a wide-area context.

5.2 Centralized Serialization + Optimistic Up-
dates + Prediction: EverQuest Algorithm

This algorithm, used by the popular massively-multiplayer online
game EverQuest (as well as many other games), introduces opti-
mistic local updates and prediction using dead reckoning [21]. The
EverQuest algorithm has not been published, but has been reverse-
engineered by the open-source ShowEQ project [24].

In this algorithm, updates to the player’s own position are op-
timistically committed locally, allowing smooth and timely local
feedback (see Figure 1); these optimistic updates can be overruled
through post-hoc server validation. On the remote client, position
updates are received from the server, and therefore appear later than
on the local client (i.e., increased state divergence). To avoid the
step-function effect of centralized serialization, dead-reckoning is
used to predict the position of remote avatars by assuming that they
will continue to move in their previous heading and velocity. Fig-
ure 1 shows that although dead-reckoning provides smoother an-
imation updates, it can lead to jarring corrections when an avatar
abruptly changes direction (i.e., the spikes in the figure).

5.3 Local Lag + Prediction
This algorithm is one of a family of variants of local lag, and ad-
dresses the large state divergence and corrections of the EverQuest
algorithm. Local input is delayed so that, despite delay from net-
work latency, the local and remote clients see the same action at
the same time. In addition, the remote client uses prediction to
smooth avatar movement between updates. Figure 1 shows how
local and remote movement are synchronized, lagging behind ac-
tual movement. Due to variance in packet delivery times, messages
will sometimes fail to arrive within the bound of message delivery
times. In such cases, standard repairs can be applied; for example,
Mauve shows how TimeWarp can be combined with local lag [16].

Local lag (and its bucket synchronization variant) are a good
choice for real-time strategy games where a delay in applying in-
puts is not easily noticed; it is a poor choice for first-person shooters
where poor response time is more visible.



Figure 2: In Snagger, two players each control a ship, and co-
operatively drag a net to catch aliens. Snagger was used to gen-
erate example input data used to compare the four CM algo-
rithms of section 5.

5.4 Remote Lag + Interpolation: Half-Life
Algorithm

The algorithm used in the Half-Life series of first-person shooter
games addresses the problem of timeline divergence of predictive
algorithms, at the cost of state divergence [2]. The key elements of
this approach are remote lag and interpolation.

Local inputs are applied immediately to optimize responsive-
ness. Remote inputs are delayed long enough for two positional
updates to arrive. Prediction is not required, since the algorithm
interpolates between the two pending updates. Players thus view
remote avatar movement exactly as it occurred (within the limits of
interpolation), but offset in time.

To avoid the problems of increased state divergence, the server
resolves hit decisions based on the shooting player’s view of the
remote avatar. This means that a player may be killed despite hav-
ing just moved behind cover (if another player saw them clearly on
their local machine).

We now turn to the study that we carried out to test these four
CM algorithms in actual game situations, and how they affected
our five metrics of user experience.

6. SIMULATION EXPERIMENT
In order to test these different CM approaches in terms of the user-
experience metrics defined in the framework (section 4.2), we car-
ried out a simulation experiment. The experiment helps illustrate
that user experience tradeoffs between CM algorithms can be mea-
sured empirically through our metrics, and it serves as a first step
towards our goal of cataloguing such tradeoffs to help game design-
ers. As we shall see, our experiment confirmed expected properties
of the algorithms, as well as revealing some surprising properties.

6.1 Experimental Design and Methods
The experiment consisted of ten simulation trials of each of the four
algorithms under three different latency conditions. The algorithms
introduced above were fully implemented, and were tested using
recorded game traces and recorded latency values. The five metrics
of section 4.2 were measured under each condition.

6.1.1 Apparatus: Snagger Game
To collect game data for the simulations, we used Snagger, a sim-
ple network game shown in figure 2. Snagger is an example of
a game requiring close coordination between two players. The
game consists of two clients and a server which passes messages
between the two clients. Each player has a spaceship avatar, which
is moved forward using the up arrow key and rotated using the left
and right arrow keys. The objective of the game is for the players to
move their ships around the screen and capture aliens in a net that is
strung between the two ships. To capture an alien, the players must
manoeuvre their ships so that an alien is inside the loop formed by

the net and then press the space bar. Snagger was developed using
C# and XNA Studio 3.1.

To provide consistency between trials with the four algorithms,
we instrumented Snagger to run using user input read from a data
file. The data file contains a sequence of keyboard states, which
Snagger reads as if the inputs were coming from a real keyboard.
Prior to the experiment, input data was collected from live play of
the game (by players unassociated with this paper), over a local
area network. During the game play, their inputs were captured by
recording which keys were being pressed each time the input was
polled. Ten sets of data were collected, each consisting of 1,500
inputs. Each data set corresponded to approximately 25 seconds of
play.

6.1.2 Apparatus: Simulated Network Latency
The experiment simulated three network conditions: zero latency,
low latency and high latency. The latency conditions attempted to
approximate the conditions one might experience when playing a
game on real game servers, where zero latency is similar to LAN
play, low latency is similar to a server on one’s own continent, and
high latency corresponds to a server on another continent. (Al-
though the same input was played back for all simulated network
latencies, it is quite likely that players would adjust their behaviour
as the latency increases, and that the inputs may not correspond
exactly to what one would experience in a high-delay situation).

The protocol used by most network games (including Age of
Empires, EverQuest and Half-Life) is UDP [17]. In the experiment,
we simulated UDP’s latency and packet loss rate. CAIDA, the Co-
operative Association for Internet Data Analysis, has reported that
“ping” round trip time data matches well with the round trip time
for UDP [4]. Based on this, we used “ping” round trip time data
to approximate UDP latency. The servers yahoo.com and yahoo.cn
were selected as representative of a server on the same continent
and of a server on another continent (based on our North American
location.) “Ping” data was recorded for a three hour period for each
server. Analysis of the data for round trip times showed that it was
distributed according to a Poisson distribution with median values
of 33 ms and 323 ms for yahoo.com and yahoo.cn respectively.

The “ping” file was split into 10 parts, each long enough to be
usable for one simulation trial. In each trial, the system loaded
files for the game data and network latency; as each message was
sent from the client to the server and back to the other client, the
message was delayed by a time equal to the next round trip time
from the file.

6.1.3 The Algorithms
The four algorithms were implemented as described in section 5.
In the Half-Life game, a message containing the player’s position
is sent to the server every 50 ms [2]. For consistency, we adopted
the same frequency for the other algorithms.

The local lag and Half-Life algorithms required us to choose val-
ues for their remote and local lag parameters.

The choice of a local lag constant should strike a balance be-
tween the negative effects of the lag itself on responsiveness of the
user interface versus the state divergence and corrections resulting
from late messages [16]. We chose a lag constant of 100 ms, based
on Stuckel and Gutwin’s findings that this is the largest tolerable
lag in highly interactive tasks [25].

For Half-Life, the remote lag value should ensure that at least
one future position is available at all times, allowing the position
of the remote avatar to always be interpolated. In practice, it is
impossible to set an upper bound on the time it may take for a
message to arrive. We therefore set remote lag equal to twice the



Test Case Results

Alg.
Lag

(Local/
Remote)

Median
Network
Latency

State
Diverg.
(%)

Prop.
Delay

Corr./
sec.
(%)

Resp.
Time

Anim.
Delay

CS 0/0 0 0.14 29 6.4 18 49
EQ 0/0 0 0.08 29 0.4 1.5 17
LL 100/100 0 0.04 78 0.0 90 17
HL 0/100 0 0.68 78 0.0 1.5 17
CS 0/0 33 0.33 63 6.5 58 50
EQ 0/0 33 0.10 64 0.7 1.5 17
LL 100/100 33 0.06 80 0.1 88 17
HL 0/166 33 1.09 145 0.0 1.5 17
CS 0/0 323 2.10 346 8.3 342 66
EQ 0/0 323 0.50 345 3.8 1.5 17
LL 100/100 323 0.30 343 2.7 94 17
HL 0/746 323 4.55 725 0.0 1.5 17

Figure 3: Results summary. CS=Centralized Serialization;
EQ=EverQuest; LL=Local Lag; HL=Half-Life. Times in ms.
Within each latency condition, all differences in the table are
significant at the α = 0.05 level, except propagation delay for
the CS and EQ algorithms under the medium and high latency
conditions.

median network latency (as described above), plus (to allow for
occasional lost messages) twice the time between message sends (2
* 50 ms in our case). The remote player lags used in the experiment
were therefore set at 100, 166 and 746 ms for zero, low and high
latency respectively.

For the EverQuest and Centralized Serialization algorithms, no
additional lag was used.

6.1.4 Metrics
The five metrics were calculated as follows:

Response time is calculated by storing the time each input is
polled and then determining the first time at which that input has
an impact on the displayed position of the local avatar. Our mea-
sure does not include operating system time (the time that elapses
between when a key is pressed and when the input is polled) or
the time between invocation of screen update operations and the
appearance of new information on the physical display.

Propagation delay is calculated by storing the time associated
with each input by the remote player and then determining the first
time each input has an impact on the displayed position of the re-
mote avatar on the local computer. As with response time, it does
not include operating system time.

Corrections are calculated each time the local player receives
a message containing an updated position for the remote player’s
avatar. The estimated position of the remote player’s avatar is cal-
culated just before the new position message is processed. A sec-
ond position is then calculated just after the new position message
has been processed. The distance warped is calculated as the dis-
tance between these two positions and is expressed as a percentage
of the screen size.

State divergence is calculated as the difference between the po-
sitions of the remote avatar on the local and remote client. State
divergence is also expressed as a percentage of the screen size.

Animation delay is the time between changes in the position of
the remote avatar. Whenever a screen update is invoked, if the po-
sition of the remote avatar has changed, then the elapsed time since
the last position update is recorded.

6.1.5 Experimental Procedure
Each of the four algorithms was tested under each of the three la-
tency conditions, for a total of 12 conditions. Each condition was
tested ten times, and each condition used the same ten input game-
data files and latency files, as described above.

For each trial, two instances of the Snagger client and the Snag-
ger server were run on a single computer (2.66 GHz Intel i5 proces-
sor, 3 GB RAM). Each trial used different input and latency files.
The computer was rebooted between each trial. Values for the met-
rics over each trial were determined and their values recorded.

6.2 Results
The results from the experimental runs are summarized in figure 3.
All the metrics have been designed such that a small value is good
and a larger value indicates poorer performance.

As shown in Figure 3, centralized serialization has the highest
animation delay, since it does not extrapolate or interpolate avatar
positions between updates coming from the network. The Ev-
erQuest and Half-Life algorithms had the lowest response times,
since they perform immediate optimistic updates. Local lag has the
highest response times (because of the injected local lag), and the
lowest state divergence (as updates are synchronized on all clients.)
Half-Life has the lowest corrections value (as it uses interpolation
rather than predictive extrapolation); it also has the highest state di-
vergence, due to the injection of remote lag without corresponding
local lag.

The results allow us to summarize the strengths and weakness of
the four algorithms as applied to the avatar movement problem:

• Centralized serialization has, as expected, no obvious benefits,
performing poorly under all metrics. The performance of this
algorithm clearly shows the hazards of applying generic CM
strategies for specific game situations.

• The EverQuest algorithm provides a balance between all of the
metrics - one of the main advantages of this algorithm is that
it has no significant weaknesses. It is an appropriate choice for
games (such as EverQuest itself) where modest state divergence
and occasional corrections are considered acceptable. It would
not be appropriate, however, for first-person shooter games.

• Local lag is a good choice in situations where it is important to
have low state divergence and few corrections, and where a com-
mensurate penalty in response time is acceptable. For example,
local lag is a good match with the indirect control of real-time
strategy games (where target positions of game entities are spec-
ified via “click to move” input).

• The Half-Life algorithm sacrifices state divergence for correc-
tions. This algorithm is a good choice in cases where fast re-
sponse time is required, and where it is important that all players
see the same thing (although displaced in time.)

6.3 Observations and Analysis
The experiment provides several lessons for developers of consis-
tency maintenance algorithms.

Combining different approaches can improve user experience.
The example of the centralized serialized algorithm shows that us-
ing a single CM strategy can lead to flaws in the representation of
motion (e.g., a very low update rate for avatar animation). How-
ever, these weaknesses can be reduced by adding prediction to the
scheme (as is done in the EverQuest algorithm). Prediction is po-
tentially a valuable adjunct to several other types of CM techniques,
but we note that prediction approaches only work well when play-
ers move in a predictable fashion – for example, prediction is used
for EverQuest, in which player movement is primarily used to



travel from one location to another. Prediction is not used in most
shooter games, however, because players generally try to move in
ways that make them difficult to hit, which is also much less pre-
dictable – the result would be large corrections in player locations,
something that would not be acceptable in this type of game.

All approaches break down at a certain level of latency. The
experiment shows that all the algorithms have at least one major
weakness when round-trip latency grows above about a third of a
second. These results reinforce that CM techniques do not com-
pensate for latency, they only try to protect certain user or system
requirements from latency’s effects. However, game design can
make up for some of these limitations, such as by increasing the
time scale of interaction, by reducing the precision of the weapons
(no sniper rifles, only shotguns), or by slowing down movement.

Variance in latency can be worse than latency itself. As latency
increases, so does the variance in message delivery times. This
results in negative consequences for each of the algorithms. Un-
der centralized serialization, all clients are sent the same updates
at the same time; however, messages arrive at the clients at differ-
ent times, causing significant state divergence. Variance in latency
increases the difficulty of setting local and remote lag parameters
(these tradeoffs are discussed below.) A further effect is that ani-
mation delay under centralized serialization increases with latency.
This is surprising, as messages are sent at a constant 50 ms rate,
and so one might expect (as seen in the zero latency case) that an-
imation delay would be close to 50 ms. However, due to variance
in latency, it is possible for two position updates to arrive within
the same interval between frame loop updates, causing the first up-
date to be effectively lost. As the variance in latency increases, this
occurs more frequently, leading to increased animation delay.

Propagation delay comes from more sources than network la-
tency. When building games as distributed systems, it is easy to
focus on network latency as the primary source of propagation de-
lay. However, as seen from the results for centralized serialization
and EverQuest in the zero latency case, other sources can result
in significant delay. These include (1) message send delay: since
positions are sent periodically (e.g., every 50 ms) and not as they
occur, there can be a delay between a change being made and a
change message being sent; (2) frame-loop delay: if the frame loop
executes once per 17 ms, there is a delay of up to 17 ms from a
message’s arrival to its being processed by the game; and (3) oper-
ating system delay: such as the time for messages to be processed
through the TCP/IP stack, and time for the network reading thread
to be scheduled.

Adjusting algorithm parameters can enable helpful tradeoffs.
Our experiment used particular fixed values for each algorithm’s
parameters, but adjustments to these parameters can change the
tradeoffs inherent in each approach. For example, the local lag
algorithm in our experiment added a constant 100 ms lag. How-
ever, any amount of lag can be used in this scheme, which gives the
designer a tradeoff between state divergence and local responsive-
ness. More local lag reduces divergence, and less improves respon-
siveness. It is therefore possible to use local lag to reduce some of
the divergence, without sacrificing all of the local player’s ability to
control their character. The appropriate settings for each algorithm
depend (once again) on the human factors of the interaction: for
example, adding 50ms of local lag might not be noticed by play-
ers, but might bring the state divergence within the tolerance that
is needed for a game situation. It is interesting to note than when
interpolation is used, response time and propagation delay can ac-
tually be less than the injected lag. This is because the effect of a
queued positional update influences interpolation.

7. DISCUSSION
Consistency maintenance is a filter through which all player-to-
player interactions are mediated. The framework we have pre-
sented in this paper helps to capture the costs that different CM
choices impose on the player’s experience. We now reflect on
lessons for game developers from these results, and present avenues
for future research.

7.1 Lessons for Game Designers
Although this work only provides a small part of a comprehensive
treatment of how CM can affect user experience in games, there
are still a number of lessons that we can suggest to game designers.
The specific strengths and weaknesses of the four algorithms that
we tested have already been summarized, and designers can use
these guidelines when designing for avatar movement. The con-
ceptual framework and our experiences using it also suggest four
general lessons for game designers:

• First, game designers must recognize that CM techniques have
real effects on a user’s quality of experience, that different
game situations have different consistency requirements, and
that analysing these requirements is a critical part of designing
the game experience, not just part of designing the distributed
system.

• Second, game designers should understand that there are a wide
variety of CM techniques and approaches, and that the require-
ments of many situations can often be satisfied with lightweight
techniques or small changes to the design of the game. The
key principle is that the choice of CM technique (or techniques)
should be appropriately matched to both the consistency require-
ments and the user-experience requirements of the situation.

• Third, games can be designed around the limitations of CM al-
gorithms. The disadvantages of a CM algorithm can in many
cases be minimized through careful design of the interaction in
the game. For example, the Half-Life algorithm is tuned for
realistic and smooth movement of remote avatars, rather than
for minimizing spatial divergence: this means that other players
will move naturally with few corrections, but will appear behind
their true position. This strategy can cause severe problems for
hit detection, but the game designers avoid the problems by cal-
culating hits based on what the shooter can see, not on the target
avatars’ true positions This game-design strategy preserves the
shooter’s user experience, but allows targets to be killed even
when they were not really in the line of fire. One reason for
favouring shooters over targets is that shooters have unequivocal
feedback about aiming (i.e., the crosshair), and there is therefore
much more frustration for shots that should hit but don’t, than
there is for shots that do hit but shouldn’t have.

• Fourth, designers should be aware that there is still much to
know in this area, and that there are still few guidelines for sce-
narios other than avatar movement. For these situations, design-
ers must still carry out their own investigations (and adaptations)
based on their understanding of the different CM approaches,
and test the effects in their own iterative playtesting.

7.2 Future Work
There are a number of areas where further work is needed in un-
derstanding the human factors of consistency maintenance. First,
our work here has examined four CM algorithms in one typical
game situation - but much more is needed before designers will
have a full set of guidelines that they can draw on when devel-
oping games. Therefore, we plan to expand our investigation to
cover additional game scenarios, different CM approaches derived



from other existing games and whether a single game could take
advantage of multiple CM strategies based on different observable
network properties or the intensity of interaction at a given point in
time.

Second, we plan to replicate the results seen here with other
games, to deepen our understanding of the material that is already
in the framework, and to help determine if the guidelines are gen-
eral across different genres.

Third, we plan to refine and expand the conceptual understand-
ing of CM requirements and user experience metrics, through addi-
tional studies and surveys of game players, and additional analysis
of game mechanics, types, and genres. We believe that there is
room in the framework for additional kinds of requirements (e.g.,
synchronization between action and speech) and additional metrics
for assessing algorithms.

Fourth, we will continue experiments in the style of Stuckel [25]
to help quantify metric values which represent tipping points in user
experience.

8. CONCLUSION
Designers have had little guidance in choosing appropriate consis-
tency maintenance techniques for distributed multi-player games.
To help address this problem, we presented a framework of the hu-
man factors of CM: we identified requirements for distributed in-
teraction, established metrics that can be used to quantify user ex-
perience effects, and analysed the effects of several CM approaches
on these metrics. We conducted a study to test the predictions made
by the framework, and gathered empirical evidence about the trade-
offs inherent in four real-world CM techniques. The framework
and the empirical evidence for the tradeoffs is a strong start to-
wards the goal of providing a comprehensive understanding of dif-
ferent CM techniques for a wide variety of game situations. Much
more remains to be done, but our work shows that CM schemes
can be successfully analysed and tested, and shows that we can es-
tablish guidelines that will help designers make informed decisions
when consistency requirements and user-experience requirements
collide.
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