
Raptor: Sketching Games with a Tabletop Computer

J. David Smith and T. C. Nicholas Graham
School of Computing
Queen’s University

Kingston, Ontario, Canada
{smith, graham} @cs.queensu.ca

ABSTRACT
Game sketching is used to identify enjoyable designs for digital
games without the expense of fully implementing them. We present
Raptor, a novel tool for sketching games. Raptor shows how table-
top interaction can effectively support the ideation phase of game
design by enabling collaboration in the design and testing process.
Raptor heavily relies on simple gesture-based interaction, mixed-
reality interaction involving physical props and digital artifacts,
Wizard-of-Oz demonstration gameplay sketching, and fluid change
of roles between designer and tester. An evaluation of Raptor using
seven groups of three people showed that a sketching tool based on
a tabletop computer indeed supports collaborative game sketching
better than a more traditional PC-based tool.

Keywords
End-User Development, Video Games, Sketching, Tabletop, Computer-
Supported Collaborative Work, Game Sketching

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Computer-supported
Cooperative Work.

1. INTRODUCTION
Sketching is an emerging concept in user interface development
that supports the early ideation phase of interaction design [4].
Collaboration and iterative design has been shown to be beneficial
when building interactive systems [6], and sketching is an impor-
tant component of the design process [12]. Sketches are not in-
tended to provide a reusable piece of software. Instead, they help
explore user experience without dwelling on the details of imple-
mentation. Sketching is an inherently collaborative process, where
designers, end-users, and developers can all work together to de-
velop and communicate design concepts.

We present Raptor, a novel sketching tool for video games. Raptor
addresses the problem of trying to identify entertaining gameplay
without having to build a working prototype. Games now cost tens
of millions of dollars to build and involve teams often in excess of

ACM FuturePlay 2010 May 6-10, 2010, Vancouver, Canada

Figure 1: Raptor is a game sketching tool based on a tabletop
surface. The tool helps groups of users to brainstorm early in
the game design process.

100 people [9]. Given these costs, it has become critically impor-
tant to assess early in the development process whether the game
will actually be fun to play. Sketching allows players to experience
game ideas without requiring fully functioning prototypes. Rather
than providing a full game development tool, the scope of Rap-
tor is limited to the early design process where sketching is most
beneficial. The tool is an improvement over existing game sketch-
ing tools [1] because it supports modern, tabletop-based interaction
techniques that enable rapid development by people without exten-
sive technical backgrounds.

The primary design goal of Raptor (figure 1) was to create a tool
that encourages rapid ideation. We demonstrate that a tabletop in-
terface improves over a desktop interface [1] by providing:

• Tool transparency, where sketches can be created using ges-
tures and physical props rather than pointing and clicking;

• Engaging collocated collaboration, where the physical lay-
out of a table allows intimate communication, and where the
table’s multi-touch input allows more than one person to in-
teract with the sketch at a time;

• Egalitarian design process, where non-programmers are not
disadvantaged, and where roles can be fluidly set and changed.



The paper is organized as follows. We first introduce the concept
of game sketching and motivate why it is a helpful part of the game
development process. We then present the design of Raptor, and
illustrate its features via two usage scenarios. We then report on an
experiment comparing the effectiveness of Raptor to a similar tool
based on a desktop PC. The paper concludes with a discussion of
what we have learned from our experiences with Raptor.

2. SKETCHING USER INTERFACES
The benefits of sketching in design activities have been widely in-
vestigated [4, 20]. As opposed to reusable prototype implemen-
tations, user interface sketches allow users to experience how the
system will work. They focus more on content and structural as-
pects than on look-and-feel and visual details of the final product.
Sketches often rely on Wizard-of-Oz techniques [7] where the pro-
gram’s behaviour is simulated by acting it out at runtime rather than
completely programmed. This allows much faster iteration than is
possible with programmed prototypes.

Tool support for interactive sketching has received increasing atten-
tion in the HCI community [12]. Interaction with digital sketches
has been shown to provide benefits to the user interface design pro-
cess over paper prototypes [17]: designers are able to go through
more iterations with digital sketches than with paper, because digi-
tal sketch components can be more easily reused.

2.1 Sketching Video Games
Existing industry processes rely on playable standalone game pro-
totypes, often based on previous games [19]. Producing these pro-
totypes requires a significant programming effort, which limits the
degree to which non-technical people such as end-users can par-
ticipate in the early design process. Additionally, working at the
level of code causes the designer to focus on implementation de-
tails early in the process, which can inhibit creativity. And creating
coded prototypes costs time and developer resources, limiting the
number of tests that can be performed.

Sketching is an ideal way of helping with this problem. Sketches
permit very rapid, low-fidelity testing of game ideas. Because
sketching is fast and inexpensive, there is little resistance to throw-
ing ideas away that don’t appear to be working. The most promis-
ing ideas generated from game sketching can then be carried for-
ward for higher-fidelity prototyping.

Recent work has tried to apply sketching concepts to video game
design. Agustin et al. introduced the term “game sketching” and
describe a tool for developing sketches of linear narrative games
[1]. This tool provides a simple scripting language for describ-
ing interactive 3D scenes, and behaviors are implemented through
“Wizard-of-Oz” control of non-playable characters. Wizards con-
nect to the game sketch via the local area network and control be-
haviors through an interface resembling common control mecha-
nisms of a first-person shooter game. The tool was designed to in-
clude non-programmers and testers throughout the design process.
The tool reduces the focus of design sessions on implementation
details and operation of complex tools such as game engines and
programming environments. However, collaboration on design is-
sues beyond playtests is done on a single PC with the design team
sharing a single desk.

Our own Raptor tool carries this work further, examining how
tabletop interaction can support game sketching better than tradi-
tional point-and-click desktop interfaces.

3. TABLETOP COMPUTERS
Raptor’s tabletop interface enables natural interaction based on fa-
miliar gestures, making it accessible to non-technical users. The
physical layout of a tabletop surface also permits more fluid and di-
rect same-place collaboration than available when using the mouse
and keyboard of a traditional PC.

Tabletop computers consist primarily of a large touch-screen dis-
play that covers the surface of a table, around which multiple users
can work at the same time (figure 1). They differ from desktop
computers by providing a gesture-based user interface that more
closely mimics the way people interact with everyday physical ob-
jects. The technology used to implement tabletop computer sys-
tems has recently become inexpensive enough to create commercial
tabletop computers [13, 22], and a need exists for identification and
understanding of potential application domains.

An advantage of tabletop computers is support for collaboration
among groups of co-located users [21]. A group can sit around a
table and work together face-to-face on a task rather than taking
turns using a desktop computer. Tabletops typically offer a touch-
based interface that allows users to interact with digital media using
simple gestures. Tabletop applications benefit from these interface
components because they provide tool transparency and afford use
by non-technical people.

4. RAPTOR
When designing Raptor, our principle goal was to demonstrate how
a tabletop computer could support collaborative game sketching.
Specifically, Raptor demonstrates that people find sketching using
gestures and physical props to be easier and more fun than tradi-
tional desktop-based tools, that collaboration is better supported by
the tabletop’s horizontal layout, and that Raptor’s natural interface
is accessible by non-programmers.

With Raptor, designers use simple gestures to create and manipu-
late interactive virtual worlds. Gestures are also used to connect
game controllers to virtual objects in the game world with a mixed-
reality “interaction graph” [10]. Raptor also provides support for
“Wizard of Oz” [7] style prototyping, allowing designers to rapidly
prototype and test new game ideas.

4.1 Creating virtual worlds
To begin creating a game prototype, users create a virtual world.
Designers are first presented with a flat, bare terrain on the table
surface. The terrain can be navigated using panning and zooming
gestures commonly found in multi-touch map applications, such
as found on the iPhone [2]. To contour the terrain, designers use
gestures that mimic manipulating sand in a sandbox. To create a
hill, designers use a “scooping” gesture (figure 2). Similarly, to
create a valley, a “spreading” gesture is used.

To add objects to the scene, designers perform a “stamping” gesture
with a physical object, somewhat similarly to Build-It [18]. For
example, figure 3 shows the addition of a car into a racing game
by “stamping” a physical car onto the tabletop. The virtual car is
added to the scene at the location where the physical car is stamped.
To remove objects, a rubber eraser is used. Players can also drag
items around in the scene with their fingers.

This use of common gestures to manipulate the virtual world sim-
plifies interaction over the pointing, clicking and dragging required
by a traditional mouse and keyboard-based interface.



Figure 2: Designers can manipulate the virtual terrain with
physical gestures, e.g., using a scooping motion to create a hill.

Figure 3: Stamping a physical car on the table adds a virtual
car into the game.

4.2 Adding Interactivity
Console games are normally played using a game controller, a
special-purpose hand-held input device providing buttons and joy-
sticks for manipulating play in a virtual world. The responsiveness
and intuitiveness of input mechanisms is crucial to the success of
games [16]. Raptor allows designers to easily prototype game input
via mixed-reality interaction with the tabletop. Figure 4 shows how
a designer places an Xbox controller input device onto the table.
A ring of “pins” surrounds the controller, representing the different
input and output channels the controller provides (e.g., the different
buttons and joysticks.) As the controller is moved around the table-
top surface, the ring of pins moves with it, creating a truly mixed
physical-virtual entity. The pins on the controller can be connected
to pins on other objects; the designer attaches the “A” and “B” but-
tons to the car’s gas pedal and brake pins, allowing these buttons
to be used to accelerate and decelerate. To connect two pins, the
designer touches the source pin, and then touches the target pin. A
line is drawn between them to show the connection. The designer
can pick up the controller to try out the interaction immediately,
and then return it to the tabletop to refine input/output connections.

The primitive behaviour of interactive objects, like the car, must be
programmed in advance. Pins are created by annotating attributes
of the classes implementing these objects.

4.3 Controlling Network Displays
To view the game world from an angle other than the table’s top-
down view, designers can connect a display via the local area net-
work. The viewing position and angle is controlled by placing a
small plastic camera on the table surface. To move the camera po-
sition, the designer simply positions the camera on the the table
surface and rotates it to the desired angle. Designers can also tap
an interactive object with the plastic camera to create a “chase”
view. When a camera is in “chase” mode, it will follow closely
behind the interactive object as it moves about the game world.

4.4 “Wizard-of-Oz” Prototyping
One of Raptor’s most powerful aspects in supporting game sketch-
ing is its support for a “Wizard of Oz” style of play testing. Rather
than having to program new game ideas, designers can act them
out, using the tabletop display to rapidly manipulate the game while
testers play the game while sitting at a traditional display. This
supports fluid and easy collaboration, allowing designers to rapidly
move between between design and playing roles, and supporting a
very rapid iterative design cycle.

Figure 5 shows a tester sitting at a PC playing a game as the de-
signers modify it. Here, the designers are creating a racing game.
Testers and designers have different viewpoints on the game. De-
signers have a top-down, two-dimensional view of the game world,
while testers see the game in a more traditional 3D form (figure 5).

The tester immediately sees changes such as adding a new car to
the game, repositioning an obstacle or modifying the terrain. Simi-
larly, changes in gameplay are reflected immediately in the tester’s
view of the game: for example, the controls used to manipulate a
car can be changed on the fly. Designers simulate game play by
manipulating objects on the table, either via gestures or manipula-
tion of physical props. This approach allows testers to experience
a game idea without the expense of fully implementing it.

4.5 Benefits and Limitations
As will be discussed in our evaluation section, Raptor provides
strong support for collaborative game sketching. Designers – in-
cluding programmers and non-programmers – are indeed able to
rapidly demonstrate gameplay; it is easy to fluidly transition be-
tween design and testing roles, and same-place collaboration is ef-
fectively supported. Raptor nevertheless has limitations.

One notable shortcoming is that the tabletop interface is useful only
when a set of interactive objects exists that is suitable for desired
type of game. For example, a car racing game can be prototyped
on the table only after someone has prepared a “Car” interactive
object. To create an interactive object, a programmer must create a
C# library with an accompanying directory of 3D models and tex-
tures and a configuration file tying them together. Our experience
to date leads us to believe that a relatively small number of such
interactive objects are necessary to sketch a wide range of games.
An interesting approach would be to create an online database of
object libraries that designers could use to share interactive objects
in a manner similar to the Google 3D Warehouse [8].

Additionally, the tabletop provides designers with only a top-down
view. While we have successfully applied this approach to gen-
res as diverse as racing games, role playing games and first-person
shooter games, this limitation precludes games with large amounts
of vertical motion or occlusion from above. For example, it would
be difficult to create a sketch of Nintendo’s Super Mario Galaxy
[15] because the game world consists primarily of movement around
a series of three-dimensional spheres.

4.6 Implementation
Raptor is implemented in C# with Microsoft XNA Game Studio
[14]. For the tabletop computer, we used Microsoft Surface [13],
a commercially available tabletop computer that supports multi-
touch sensitivity, object recognition through spatial tags called
“dominos”, and high-quality 3D graphics processing.

The system is built around a central scene graph data structure.



Figure 4: When an XBox 360 controller is placed on the table, a ring of “pins” surrounds the controller showing its various outputs.
These pins can be connected to inputs on interactive objects.

Figure 5: Designers and testers collaborate using Raptor. A tester can play a game as it is being created, creating a fluid testing
process and supporting Wizard of Oz prototyping.

Stamping a new object into the game adds it to the scene graph;
moving an object changes its properties in the scene graph. Adding
a camera object determines the viewport seen by testers. For ren-
dering speed, the scene graph is replicated to all tester computers,
and updates are propagated at runtime.

Interactive objects are built into XNA Game Libraries which are
registered with Raptor via a configuration file. At runtime, all reg-
istered assemblies are examined for objects extending a known base
type and marked with an “InteractiveObject” attribute. To mark a
particular object member as a “pin”, the programmer annotates the
member with a “Pin” attribute.

5. USAGE SCENARIOS
To illustrate Raptor, we have created two scenarios. These sce-
narios synthesize our observations of how people use Raptor to
sketch games, particularly illustrating collaborative development
and “Wizard of Oz” prototyping. The scenarios also show that Rap-
tor can be used to sketch a diverse range of game styles, including
fantasy role playing games and multiplayer shooter games, as well

as the racing game described in section 6. All screenshots in this
section show the results of enacting these scenarios with Raptor.

5.1 Building a Role-Playing Game
A fundamental element of many role-playing games is the game
narrative. In this scenario, a team of designers wishes to experi-
ment with simple story ideas. They are creating a fantasy game
including knights, dragons, monsters, and other common medieval
story elements.

The team decides to work on a scene in a forest. In this particu-
lar scene, the player must collect several hidden items. After all
the items have been collected, a large impediment will be removed
from the player’s path so (s)he can progress to the next scene.

The team begins by bringing out a box of plastic objects resem-
bling entities in the game. They use a series of “scooping” and
“spreading” gestures to contour the terrain and to create a smooth
path through the middle. To create the forest, the team uses a small
plastic tree in a “stamping” gesture. The team then hides the vari-



Figure 6: A role-playing game sketched with Raptor.

ous items throughout the forest by stamping the objects throughout
the scene. Similarly, they place a large boulder at the end of the
path to inhibit progression to the next scene.

To add the playable character, a designer stamps a small plastic
knight. To make the character playable, she place(s) an Xbox 360
controller on the table. A ring of “pins” appears around the con-
troller. The designer then taps the character and a ring of “pins”
appears around the character, including “walk”, “run”, and “attack”
pins. The designer then connects character pins to the desired con-
troller pins by tapping on the icons. The team wishes to view the
game with a chase camera on a nearby television, so they tap the
character with a small plastic camera. Immediately, a view of the
world from the perspective of the character is shown on the televi-
sion.

5.1.1 “Wizard-of-Oz” Behaviors
One of the designers then carries the XBox controller to the televi-
sion and assumes the role of “player”. The remainder of the team
stays by the table to act as wizards. As the “player” walks through
the environment, (s)he finds the various items hidden in the for-
est. When the player bumps into each hidden item, the wizards use
the eraser to remove the items from the scene, indicating that the
player has collected them. Once all the items have been collected,
a designer drags the large boulder from the path so the player can
continue to the next scene.

This scenario shows the ease of collaboratively creating a new
scene and animating it through Wizard-of-Oz techniques. The sce-
nario also shows the limitations of the sketching technique. The
sketch does not involve non-player characters with detailed dia-
logue trees, or combat with spectacularly animated special effects.
When the design has advanced to the point where such details need
to be pinned down, designers should consider moving to more tra-
ditional prototyping techniques.

5.2 Creating a First-Person Shooter
Our next scenario involves sketching elements of a first-person
shooter (FPS). FPS games, such as the Halo series [3], often place a
heavy emphasis on environment design and realistic physical sim-
ulation. They commonly are comprised of a series of “levels” that
consist of an interactive 3D environment and convey a part of the
game’s narrative. Additionally, some first-person shooters include
a multi-player component, where several players occupy the same

specialized level. Multi-player FPS games include “Deathmatch”,
where players score points by shooting other players, and “Capture
the Flag”, where players attempt to penetrate the opposing team’s
base, collect a flag, and return it to their own base. This scenario
examines how Raptor can be used to design the environment of a
multi-player first-person shooter and explore its gameplay rules.

5.2.1 Creating the Environment
A team of designers building a new World-War-II style first-person
shooter gather around the table. They decide to create a realistic ur-
ban battlefield experience for multiple players. To begin, they load
a rocky concrete terrain onto the table surface and contour it to in-
clude several craters, giving the terrain a battle-worn look. To add
interactive content, the designers open a box of plastic toy soldiers,
buildings, and various weapons. They begin by stamping several
buildings into the scene to create an urban environment. They then
stamp weapons and power-ups into the environment. The team then
adds in two avatars for the playable characters. Each character has
several input pins, including “walk”, “side-step”, “fire”, and “spe-
cial weapon”. To make the characters playable, the designers place
the controllers on the table and connect them to the avatars. To
create a playable view on the network display, the designers touch
one avatar with a small plastic camera. Immediately, a designer
can assume the role of that “player” by carrying the controller to
the network display, and can begin to explore the environment.

5.2.2 “Wizard-of-Oz” Multi-player Game Rules
To create a multi-player experience, a second designer connects
a controller and display to the other avatar and walks to a network
display. The designers wish to prototype a simple “capture the flag”
game in the new environment. The game “wizards” at the table
place “flags” at opposite ends of the environment and move the
avatars into their starting positions. When the game begins, the
wizards keep a careful watch on the table to keep track of how
many times each player is shot by the other. They decide that a
total of three shots constitutes a “kill”. To prototype picking up the
flags, when a wizard sees a character pass over a flag, (s)he erases
it from the environment to create the appearance of the flag being
picked up. The designers determine that when players are killed,
they immediately drop any flags they are carrying and return to their
starting position. To enforce this rule, when the wizards count that
a player has been shot three times, they use their hands to place the
dropped flag at the location of the kill and then drag the avatar back

Figure 7: A first-person shooter game sketched with Raptor.



Figure 8: The desktop condition provided a simple point-and-
click interface to the same functional components used in the
tabletop version of Raptor.

to the starting position. When a player brings the opposing teams’
flag back to its starting position, the player is deemed to have won
the game.

This scenario shows that complex game rules can be “acted out”
using Wizard of Oz techniques, and that Raptor can be used to
simulate interesting multi-player gameplay. The tabletop surface is
crucial to being able to do such scenarios, as the use of gestures and
physical props allows designers to rapidly manipulate the scene.

6. EVALUATION
We performed an empirical study to determine whether the physi-
cal, gesture-based interaction afforded by Raptor could indeed be
used by non-programmers to sketch a video game prototype, and
whether using a tabletop computer indeed provides a superior col-
laborative experience to a desktop PC. The study does not examine
the space of games that can be prototyped with Raptor, or compare
Raptor to existing game sketching toolsets.

6.1 Overview
The evaluation consisted of groups of end-users creating a game
sketch with Raptor in both a tabletop and desktop format. We did
not intend to compare Raptor to desktop-based sketching tools in
general, but rather to specifically examine the effect the tabletop
computer had on the sketching experience.

Participants were asked to to create a sketch of an off-road racing
game. We chose this style of game because its rules are simple
and commonly known, and because it makes effective use of all
of Raptor’s features. This allowed participants to create enough of
a sketch to form an opinion on both the tabletop and desktop ver-
sions. Participants answered a series of questions designed to deter-
mine which system they preferred and were were asked to provide
general feedback in a discussion format.

6.2 Conditions and Apparatus
Participants interacted with the tabletop version of Raptor as well
as with a comparable desktop interface (figure 8). The desktop in-

terface was functionally equivalent to the tabletop version of Rap-
tor, but used a mouse instead of multi-touch to interact with the
game world. In the desktop version, users maniplate the game by
choosing a tool from a palette and clicking on the scene. Addi-
tionally, the physical objects used in the tabletop interface (stamps,
controllers, etc.) were replaced with pictures of those objects. For
example, a toggle was used to show/hide a picture of a controller
on the scene.

6.3 Provided Content
The tabletop and desktop conditions used the same collection of
interactive objects. The objects were sufficient to create a simple
sketch of a 3D off-road racing game:

• A Car provided an interactive vehicle that could be driven
on the terrain. The car included three pins: gas, brake, and
steering. The car’s behavior was modeled with a physics sim-
ulator to resemble an off-road buggy.

• A Parking Cone provided a simple marker used to lay out a
desired track on the terrain. The cone had no input pins.

The objects were placed on a rocky terrain to give the feeling of
an off-road environment. In the remote display, a textured sky was
also provided to provide a more realistic look.

6.4 Procedure
Participants were placed in groups of three. All subject groups
performed both the tabletop and desktop conditions, rotated on a
Latin square to control for learning effects. For each condition, the
groups were given a tutorial on how to operate the interface. The
training session for each apparatus began with the experimenter
demonstrating usage of the system and ended when each partic-
ipant independently indicated that (s)he understood the system’s
operation and was able to demonstrate use of each feature.

Trials were untimed. Users were asked to create a sketch of an
off-road racing game with the following properties:

• Players should traverse an off-road track as quickly as possi-
ble.

• Each lap must contain an element not present in the previous
lap. For example, the game designers might introduce new
obstacles into a specific area while the player was driving on
a different portion of the track. This was done to encourage
subjects to use the “Wizard of Oz” technique to sketch an
in-game behavior.

• The terrain must contain multiple hills and valleys.

A trial ended when every participant had both performed the role
of designer on the table/desktop and player with the remote dis-
play. Trials lasted between 10 and 20 minutes. At the end of each
trial, each participant individually completed a questionnaire (table
1). When the participants had completed both trials, they filled out
another questionnaire that asked them to directly compare the two
conditions (figure 2). Finally, they were given a series of discussion
questions and asked to reply to those to which they wished to make
a comment.



6.5 Participants
21 people participated in the study, and were randomly divided into
seven groups of three. The participant group consisted of 14 males
and 7 females ranging in age from 21 to 61 (average age of 36).
33% of participants had used a tabletop computer before the study.

6.6 Collected Data
Data was collected using a series of Likert items and discussion
questions. The Likert items and their responses are shown in table
1. Also shown are the results of a Kruskal-Wallis [11] test com-
paring the two conditions and Cohen’s D value [5] indicating the
effect size. Participants were also asked to directly compare the
conditions on a variety of criteria. For each question, participants
were asked to circle either “tabletop”, “desktop”, or “same”. The
questions and their response totals are shown in table 2.

6.7 Summary of Results
For the Likert items, the results show significance for 5 questions.
The strongest results were seen in the two Likert items dealing with
collaboration with partners, indicating that the tabletop interface
does in fact support local, synchronous collaboration better than the
comparable desktop interface. Additionally, the results show that
participants found it easier to prototype game rules and produce a
more fun prototype with the table.

When asked to choose which condition they preferred, participants
showed a strong preference for the tabletop condition. The results
show that participants felt the table was easier to use, more fun,
supported collaboration better, and generally preferred to use it.
Interestingly, participants felt neither the tabletop or desktop con-
dition produced a better prototype, which conflicts with the result
from the Likert item comparison indicating the tabletop produced
a more fun prototype.

6.8 Analysis
The results of the empirical study support our hypothesis that the
novel physical, gesture-based interface built into Raptor is use-
ful for game sketching. In both cases, users were able to build a
playable game prototype. Given that participants were not at all fa-
miliar with the interface before participating in the study and had a
variety of experience programming computers, we feel that the de-
sign of the system proved simple enough to be operated effectively
by end-users. Given this result, we feel a particularly interesting
area for future work would be in educational environments where
Raptor could be used as a creative educational tool.

Additionally, the results clearly indicate a strong preference for the
tabletop version of Raptor. While this supports our hypothesis that
the tabletop computer would better support collaboration among
co-located groups, the results do not provide any indication about
other forms of collaboration or, in particular, single-user operation.

Table 2: Participants were asked to circle which condition they
felt best answered each question.

Question Table Desktop Same
Was Easier to Use? 15 3 3
Was More Fun to Use? 15 3 3
Produced a Better Prototype? 6 1 14
Supported Collaboration Better? 14 1 6
Did You Prefer to Use? 16 1 4

However, our finding that the tabletop interface was more fun to use
supports the hypothesis that designers would prefer to use Raptor’s
physical stamping gestures and touch-based interface even when
working alone.

6.8.1 Tabletop vs. Desktop Computers
While our results suggest the tabletop version was an improvement
over the desktop version of the Raptor interface, the study is not
sufficient to make any claim about tabletop versus desktop com-
puters in general. Still, our study highlights some key differences.
The tabletop computer provided a more collaborative experience
where multiple users could interact with the tool simultaneously
rather than following an explicit turn-taking mechanism as with the
desktop computer. One participant commented that with the table-
top, “instead of having observers and one manipulator interacting
with the environment, multiple users could stay active and inter-
ested at once.” Additionally, participants appeared to enjoy sitting
in a circle around the table rather than crowding together at a single
desk and facing the same direction towards a monitor. This made
for a more social experience with more conversation.

6.8.2 Noted Shortcomings
Participants regularly noted a frustrating aspect of the tabletop tool,
where one designer would interfere with another by manipulat-
ing the tabletop’s shared view of the world. For example, a de-
signer would stamp an interactive object in an unintended place
because, just before the stamp touched the table, another designer
panned/zoomed the table’s view of the world. Additionally, when
designers worked close together on the table surface, the gesture
recognition system could malfunction. For example, two designers
dragging interactive objects towards each other could be interpreted
as a “zoom out”. These observations illustrate a common problem
with tabletop computers, where application designers must care-
fully manage public and private spaces on the table surface.

7. DISCUSSION
In out experience with Raptor, we have been surprised at how much
functionality can be sketched with a relatively limited amount of in-
game objects. Still, we have encountered situations in almost all of
our sketches where programming would be required to complete a
game idea. For example, when building a first-person shooter, some
designers wished to add playable functionality to their in-game
characters, such as a “reload” action. However our FPS character
object did not support this, so adding it would require the FPS char-
acter’s behavior to be modified. In practice, this leads us to itera-
tively move between programming and sketching phases. A sketch-
ing phase lasts until it can no longer proceed without more complex
behaviors programmed into the in-game objects. A programming
phase then follows that accepts the findings of the sketching phase
as a set of requirements. When the necessary functionality has been
added, the design group again meets around the table and continues
sketching. We believe this iterative approach that includes both de-
sign and development phases to be beneficial, and a particularly in-
teresting area of future work will examine how this approach could
be used in a professional game development context.

Also, this iterative process suggests a need for end-user program-
ming features. For example, it could be helpful to create sim-
ple character behaviors by expressing them through programming-
by-example on the table surface. A user could express a path-
following behavior by dragging a character across the table with
his/her hands. This approach could eliminate the need to switch



Table 1: Comparison of means of responses to Likert items
Question Mean Kruskal-Wallis (p) Cohen’s D

Tabletop Desktop
I was able to build a playable game prototype. 4.52 3.95 0.003 0.96
The game I designed was fun. 4.33 3.52 0.001 1.09
I consider my design experience a success. 4.62 4.10 0.034 0.79
The environment was easy to use. 4.38 3.90 0.067 0.69
Creating my 3D scene was easy. 3.95 3.52 0.113 0.49
Adding input to my game was easy. 4.62 4.19 0.083 0.65
Prototyping game rules was easy. 4.00 2.71 0.001 1.53
I enjoyed building the game. 4.57 3.95 0.016 0.90
Having a partner to work with was useful. 3.62 2.00 0.001 2.15
I collaborated with my partners on the game. 4.43 2.00 0.001 3.61

to a programming phase when the sketch requires simple behav-
iors that are not programmed into the interactive objects and where
Wizard-of-Oz prototyping may be difficult or tediously repetitive.

Additionally, we have observed that the fidelity of sketches cre-
ated with Raptor is in most cases sufficient to evaluate game ideas.
For example, during the study many participants informally com-
mented that they were pleased to have created game sketches that
actually felt like a real racing game. However some participants
were also frustrated that Raptor does not include support for fine
details they were accustomed to having in racing games. We’ve
noticed that the most common request for new features is support
for rapid sketching of heads-up display elements on the remote dis-
play. For example, in a first-person shooter sketch, it is currently
difficult to show how much ammunition the player has left. We
think by adding a simple heads-up display system, many of these
problems can be addressed.

8. SUMMARY
We have presented Raptor: a novel end-user tool for game sketch-
ing based on a tabletop interaction. The system provides tool trans-
parency through physical, gesture-based interactions suitable for
end-users. Raptor’s “Wizard-of-Oz” style prototyping of game
rules and behaviors allows non-programmers to engage in the de-
sign process on an equal footing with programmers. The physical
layout of sketches on a tabletop surface helped provide engaging
collaboration with fluid movement between the roles of game de-
signer and play tester.

We performed a study to verify that end users could actually create
a game sketch with the tool and to examine the role played by the
tabletop computer in the user experience. Our results indicate that
Raptor is indeed usable by end-users, and that participants found
that the tabletop better supported local collaboration, and was gen-
erally preferred to a desktop interface.

9. REFERENCES
[1] M. Agustin, G. Chuang, A. Delgado, A. Ortega, J. Seaver,

and J.W. Buchanan. Game sketching. In DIMEA ’07, pages
36–43. ACM, 2007.

[2] Apple, Inc. iPhone, 2007.
[3] Bungie Studios, Inc. Halo, 2001.
[4] B. Buxton. Sketching User Experiences. Morgan Kaufmann,

2007.
[5] J. Cohen. Statistical Power Analysis for the Behavioral

Sciences. Lawrence Erlbaum Associates, 1969.

[6] M.A. Cusumano. Extreme programming compared with
Microsoft-style iterative development. CACM, 50(10):15–18,
2007.

[7] N. Dahlbäck, A. Jönsson, and L. Ahrenberg. Wizard of Oz
studies: why and how. In IUI ’93, pages 193–200. ACM,
1993.

[8] Google, Inc. 3D Warehouse, 2009.
[9] T.C.N. Graham and W. Roberts. Toward quality-driven

development of 3D computer games. In Proc. DSV-IS, pages
248–261. Springer LNCS, 2006.

[10] S. Huot, C. Dumas, P. Dragicevic, J. Fekete, and G. Hégron.
The MaggLite post-WIMP toolkit: draw it, connect it and
run it. In Proc. UIST ’04, pages 257–266. ACM, 2004.

[11] W.H. Kruskal and W.A. Wallis. Use of ranks in one-criterion
variance analysis. Journal of the American Statistical
Association, 47(260):583–621, 1952.

[12] J.A. Landay and B.A. Myers. Sketching interfaces: Toward
more human interface design. Computer, 34(3):56–64, 2001.

[13] Microsoft, Inc. Microsoft Surface.
www.microsoft.com/surface, 2008.

[14] Microsoft, Inc. XNA Game Studio, 2009.
[15] Nintendo of America, Inc. Super Mario Galaxy, 2007.
[16] D. Pinelle, N. Wong, and T. Stach. Heuristic evaluation for

games: usability principles for video game design. In Proc.
CHI ’08, pages 1453–1462. ACM, 2008.

[17] B. Plimmer and M. Apperley. Making paperless work. In
Proc. CHINZ ’07, pages 1–8. ACM, 2007.

[18] M. Rauterberg, M. Fjeld, H. Krueger, M. Bichsel,
U. Leonhardt, and M. Meier. BUILD-IT: a computer
vision-based interaction technique for a planning tool. In
HCI’97, pages 303–314, 1997.

[19] C. Remo. GDC: Molyneux demonstrates internal Lionhead
experiments, March 2009.

[20] D.A. Schon. The reflective practitioner: How professionals
think in action. Basic Books, 1983.

[21] S.D. Scott, K.D. Grant, and R.L. Mandryk. System
guidelines for co-located, collaborative work on a tabletop
display. In Proc. ECSCW 2003, pages 159–178. Kluwer
Academic Publishers, 2003.

[22] C. Wolfe, J.D. Smith, and T.C.N. Graham. A low-cost
infrastructure for tabletop games. In Proc. Future Play,
pages 145–151. ACM, 2008.


