
Seeing through the Fog: An Algorithm for Fast and
Accurate Touch Detection in Optical Tabletop Surfaces

Christopher Wolfe, T.C. Nicholas Graham, and Joseph A. Pape
School of Computing, Queen’s University, Kingston, Ontario, Canada

{wolfe, graham, pape}@cs.queensu.ca

ABSTRACT
Fast and accurate touch detection is critical to the usability
of multi-touch tabletops. In optical tabletops, such as those
using the popular FTIR and DI technologies, this requires ef-
ficient and effective noise reduction to enhance touches in
the camera’s input. Common approaches to noise reduc-
tion do not scale to larger tables, leaving designers with a
choice between accuracy problems and expensive hardware.
In this paper, we present a novel noise reduction algorithm
that provides better touch recognition than current alterna-
tives, particularly in noisy environments, without imposing
higher computational cost. We empirically compare our al-
gorithm to other noise reduction approaches using data col-
lected from tabletops at research labs in Canada and Europe.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Input devices and strategies.

General terms: Human Factors, Algorithms, Measurement

Keywords: Optical tabletop input, frustrated total internal
reflection, FTIR, diffuse illumination, DI

INTRODUCTION
Optical multi-touch tabletops, such as those based on frus-
trated total internal reflection (FTIR) or diffuse illumination
(DI), use an infrared-filtered camera to track touches. Sig-
nificant image processing is required to detect touches and
objects in the raw camera input. This detection needs to be
extremely accurate: spurious touches will cause the user in-
terface to misbehave, while missed touches will annoyingly
interrupt gestures. The processing must also minimize la-
tency, or users will perceive lag when manipulating objects.

The current generation of input processing libraries provides
good support for fairly small surfaces with powerful comput-
ers. A modern desktop computer with either CCV [2] or re-
acTIVision [7] processes input from a typical 640x480 cam-
era at 30-50 frames per second, while still executing inter-
esting applications. This is adequate for small non-portable
surfaces, similar in size to the existing SMART Table and
Microsoft Surface.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITS’10, November 7–10, 2010, Saarbrücken, Germany.
Copyright 2010 ACM 978-1-4503-0399-6/10/11...$10.00.

Emerging applications stretch the limits of these approaches.
Bringing optical tabletops to large-scale simulation, design,
and command and control requires larger and vastly higher-
resolution tables [14]. Our experiments show that such sce-
narios exceed the capabilities of commodity processors. The
resulting slow input processing leads to sluggish response
times. Moreover, requiring extensive CPU resources for
touch detection leaves less processing power for the user’s
applications. Clearly, faster input processing is required.

The largest computational task in input processing is noise
reduction, where the camera image is transformed to make
touches more visible. Ideal camera input would consist of a
black background with a white blob corresponding to each
touch. In practice, the infrared light detected by tabletop
cameras can also come from other sources, such as overhead
lights and sunlight. This extraneous light is termed noise, and
must be distinguished from useful signal in the input images.

In this paper, we present and evaluate the Dual Quad (DQ)
noise reduction filter. This filter is applied using a novel
fast algorithm for piecewise-quadratic image filters. Our
approach offers a combination of speed and accuracy un-
matched by current techniques.

We have evaluated the DQ filter using input videos from
tables at five laboratories in Canada and Europe. Specifi-
cally, we have extended EquisFtir to compare our approach
to common filters from the image processing literature, and
also tested the popular CCV [2], Touchlib [11] and reacTIVi-
sion [7] libraries. As such, this is the first paper to com-
prehensively evaluate the accuracy and performance of input
processing libraries for digital tabletops. Our experiments
show that the DQ filter provides improved accuracy without
sacrificing speed. The DQ filter is detailed in this paper, im-
plemented as part of our open-source EquisFtir [16] library,
and could easily be added to other libraries.

To summarize the contributions of this paper:
• We introduce a novel algorithm for noise reduction, which

offers a unique combination of speed and increased touch
detection accuracy.

• We describe a method, based on signal detection theory [9],
for comparing the accuracy of image processing algorithms
underlying tabletop input libraries.

• We have performed the first comprehensive empirical com-
parison of input processing libraries for optical tabletop
surfaces.

Greyscale
Conversion

Noise
Reduction

Blob
Detection

Blob
Tracking

Figure 1: Software pipeline for detecting touches on
camera-based tabletops.

The paper is organized as follows. First, as background,
we examine the image processing performed by current in-
put libraries for optical tabletop surfaces, including their
approaches to the noise reduction. We then introduce the
DQ filter, our novel noise reduction algorithm. Finally, we
present the results of our experimental assessment of various
noise reduction algorithms.

BACKGROUND: TABLETOP INPUT LIBRARIES
Many multi-touch tabletops, include commercial systems,
are based on optical technologies. The dominant approaches
are frustrated total internal reflection (FTIR) and diffuse illu-
mination (DI). Some commercial examples are the SMART
Table, which uses FTIR, and the Microsoft Surface, using
DI. Both approaches flood the translucent table surface with
near-infrared (IR) light. This light illuminates fingers or
objects touching the surface, producing a bright spot when
viewed in the IR spectrum. An IR-filtered camera is used
to observe the surface, generating a sequence of images over
time. The task of an input library is to find bright regions in
these images, and use them to reconstruct the user’s actions.

Numerous input libraries have been developed. The most
popular are CCV [2], Touchlib (CCV’s predecessor) [11],
and reacTIVision [7].

These input libraries typically provide an event stream de-
scribing the user’s interactions with the table. With sim-
ple touches, these events consist of: presses, when the user
places a finger on the table; moves, when the user drags their
finger over the surface; and releases, when the user lifts their
finger. Some systems, like reacTIVision, can identify objects
placed on the table, and extract their orientations. Applica-
tions or higher-level libraries then recognize gestures (e.g.
for zooming and rotation) based on these low-level events.

Accurately detecting touches is critical to the usability of
these tables. Even small error rates can be annoying to users:
reporting touches when no touch was present (called “false
alarms”) can lead to unexpected application behavior, while
missed touches can lead to interrupted gestures.

Reliable tabletop libraries are difficult to construct, because
they must ensure low latencies while dealing with noisy in-
put. Sources of noise include:

• Ambient IR light: IR light is produced by many external
sources, most noticeably the sun and incandescent lights.
If not removed, this extraneous light can obscure actual
touches and generate false touches.

• Camera noise: Commodity cameras modified for IR sens-
ing introduce significant random variation in pixel val-
ues. Many cameras, particularly those communicating
over USB, perform lossy compression of the video, adding
artifacts that further obscure actual touches.

Figure 2: Example of raw camera input. Two touches
show as bright white spots, with nearby shadows.

• Shadows: As users move their hands and objects over the
table surface, they can produce shadows in the ambient IR
light. These rapid changes in the background are more dif-
ficult to exclude than stable environmental light.

These sources of noise can be reduced with more expensive
equipment (particularly the camera), and professional man-
ufacturing processes. For example, the FTIR surface of the
SMART Table contains a layer which blocks most ambient
IR light. This absolute block is not possible with tables that
use DI, so they may use pulsed light sources or additional
cameras (like the Microsoft Surface). All of these modifica-
tions increase the price and complexity of the table, often far
above that of commodity components. As a result, both com-
mercial and lower-cost non-commercial tables benefit from a
improved noise reduction algorithms.

By examining the source code of CCV, EquisFtir, Touchlib
and reacTIVision, we have extracted a general description of
their image processing pipelines. As shown in Figure 1, this
consists of four image processing steps: greyscale conver-
sion, noise reduction, blob detection and blob tracking. The
following represents the first comprehensive description of
how this pipeline is implemented in current input libraries.

Phase 1: Greyscale Conversion
Many commodity cameras produce a color image, with IR
light appearing as white. Because these cameras sense each
color separately [10], combining color channels when IR-
filtered reduces the effective camera noise. All of the exam-
ined libraries use a standard luminance conversion based on
human perception of color. When the camera is greyscale, or
provides a greyscale format, this phase can be omitted.

Phase 2: Noise Reduction
The greyscale image typically contains far more than light
produced by user touches. Figure 2 shows an example image
captured on an FTIR table, with two touches. In addition, the
image contains lighter-colored speckles and smudges, as well
as bright and dark regions. Everything in the image other
than the touches is termed noise. The presence of noise in-
creases the difficulty of accurately detecting user touches.

The goal of noise removal is to simplify the image so that
areas where the user is touching the table are close to white,
and the rest of the image is close to black. Two steps are
commonly used for noise reduction: background subtraction
and image filtering.

− =

Figure 3: A Gaussian mid-pass filter (Mid Gauss) is constructed by subtracting a filter for low-frequency noise from a filter
for high-frequency noise.

Background Subtraction This step provides a simple way
to remove unchanging noise. Simple background subtrac-
tion, as used in reacTIVision, acquires a single image from
the camera and subtracts it from all ensuing images. Equis-
Ftir builds this image from the minimum of multiple frames
to reduce the effects of camera noise. CCV gradually ad-
justs the subtracted image to account for slow changes in the
background noise.

Background subtraction eliminates some forms of noise, but
is not a complete solution. In particular, it deals poorly with
rapid changes in background noise, such as the room lights
turning on or a cloud blocking the sun.

Image Filtering After background subtraction, most remain-
ing noise consists of random camera noise and changed am-
bient lighting. The camera noise is either single pixels from
its sensor, or distorted blocks introduced by its lossy com-
pression. Both affect small areas and have sharp edges, so
can be reduced by blurring the image. Changes to ambient
lighting, such as the sun coming out from behind a cloud, are
only visible through the table’s semi-opaque top surface, so
affect large areas and have much softer edges.

Image processing theory regards this random camera noise as
high frequency, and the ambient lighting as low frequency [1].
Touches lie in the intermediate frequencies: they are larger
and smoother than camera noise, but smaller and sharper than
ambient lighting. Discarding the high and low frequencies,
therefore, will remove much of the remaining noise. The
standard approach to this problem uses a mid-pass filter (also
called “band-pass”), which discards data outside a selected
range of frequencies. A mid-pass filter can be constructed
by subtracting the results of two low-pass filters (often called
“blurs” in image processing). Figure 3 shows a common 1-
D mid-pass filter based on the difference of two Gaussian
filters. The narrower (first) filter discards high frequencies,
while the wider (second) removes remaining low frequen-
cies. We later refer to its 2-D analogue as Mid Gauss.

The low-pass filters we focus on replace each pixel with a
weighted average of its surroundings. The size of this sur-
rounding region is the diameter of the filter. The Gaussian
function used above provides a common weighting, because
it removes high frequencies with minimal artifacts. Naively
computing the weighted average for each pixel would require
O(p×d2) time, where p is the number of pixels in the image,
and d is the diameter of the filter. Fortunately, the Gaussian
function is separable, meaning it can be applied as a 1-D
function to rows and columns in turn. This reduces the com-
plexity to O(p × d), but remains (as we shall demonstrate)
expensive for runtime use.

To improve runtime performance, CCV uses an approxima-
tion of the Gaussian mid-pass filter. CCV replaces the Gaus-
sian with a box filter1, which takes the mean of pixels within
a square region. The box filter can be applied in O(p) time,
using only a few additions and multiplications per pixel. Un-
fortunately the box filter is prone to introducing artifacts
around sharp corners [13].

Mid-pass filtering by its nature favors fixed-sized touches.
This means that it will discard large signals, such as a palm
press and many forms of fiducial markers. reacTIVision
avoids this problem by not filtering the image, supporting
fiducial markers at the expense of some noise tolerance. A
development version of CCV adds an entirely separate image
processing pipeline for recognizing fiducial markers on ob-
jects, at significant runtime cost. The evaluated versions of
CCV and EquisFtir do not support fiducial markers.

Touchlib uses a median filter to remove noise. This filter
replaces each pixel by the median value of its neighborhood;
in the case of Touchlib, over a 5 × 5 square centered on the
pixel. The median filter is useful to remove speckles, such as
camera noise, without blurring larger features in the image.
However, it can not remove lower-frequency noise.

These different approaches strike different compromises be-
tween accuracy, runtime performance, and generality. As we
shall see, the core contribution of this paper is the introduc-
tion of a novel approximation to the difference-of-Gaussian
filter that provides a superior balance between accuracy and
runtime performance.

Phase 3: Blob Detection
Once the noise has been removed from the image, blob de-
tection algorithms are used to identify bright regions. These
blobs, hopefully, correspond to where users are touching the
surface. The blob detection algorithms used in the evaluated
libraries first threshold the image, then extract connected re-
gions, and cull some blobs.

Thresholding This step determines whether each pixel of
the image is part of the foreground (in a blob), or part of the
background. CCV and EquisFtir both use a simple thresh-
old: every pixel with a value greater than that configured by
the user is considered part of a blob. reacTIVision divides
the image into tiles and uses an adaptive thresholdbased on
each pixel’s neighborhood. Adaptive thresholding reduces
the need for manual configuration, and can eliminate some
low-frequency noise.

1CCV uses a slight variant of the mid-pass filtering described above. They
subtract the wider blur from the original image and then apply the narrower
blur to the result. This slightly changes the diameters of the filters, but has
no other significant effect.

1
4γ3 (2γ + x)2 1

4γ3 (2γ
2 − x2) 1

4γ3 (2γ − x)2

−2γ −γ 0 +γ +2γ

Figure 4: We use the piecewise quadratic function qγ
as a fast approximation of the Gaussian.

Connected Regions Once the image is separated into fore-
ground and background pixels, any connected group of fore-
ground pixels is considered a single blob. The simplest al-
gorithm searches the image from top to bottom, left to right.
Upon encountering a foreground pixel it uses a flood-fill to
label the blob, and stores its statistics. Because this flood-fill
must backtrack to deal with irregular shapes, it is relatively
slow.Merge trees, as applied by EquisFtir and reacTIVision,
can avoid backtracking by combining partial blobs during the
top-to-bottom scan [4, 5]. While extracting connected re-
gions, reacTIVision also builds the tree of nested bright and
dark blobs that encode its fiducials. CCV uses the contour
finder provided by OpenCV [12]. Whenever it encounters
a blob during the top-down scan, it traces the blob’s entire
border and saves a representation of the contour. Many vari-
ations of this technique exist, some of which are quite effi-
cient [3].

Culling After blobs are detected, the library has a chance
to discard those which are not touches. reacTIVision keeps
blobs with dimensions within approximately 60% of the con-
figured finger size, unless they fall within a recognized fidu-
cial. CCV keeps blobs with total area within user-specified
bounds. EquisFtir keeps blobs if the sum of the contributing
pixels exceeds the configured threshold.

Each approach discards small bright regions which happen
to slip through the noise filters. Screening on the sum of
the pixels allows EquisFtir to discard faint finger-sized blobs
that barely exceeded the per-pixel threshold. An upper bound
on blob size, as used in reacTIVision and CCV, prevents the
library from reporting huge spurious touches in some ex-
tremely noisy inputs.

Phase 4: Blob Tracking
To report presses, releases and moves, the library must find
blobs in the current frame that correspond to previous touches.
The libraries make the reasonable assumption that touches
can move only short distances between frames, so associate
the closest pairs within a threshold distance. The number of
blobs in typical images is small enough that the efficiency
of this algorithm is not crucial, so the libraries use a simple
O(b2) search, where b is the maximum number of detected
blobs.

THE DUAL-QUAD NOISE REDUCTION FILTER
Having reviewed the image processing pipelines of existing
toolkits, we now introduce this paper’s core contribution, a
novel algorithm for noise reduction. Our Dual Quad (DQ)
filter is similar in effect to the mid-pass filters discussed ear-
lier. However, rather than being defined by the difference

(a) Original input (b) After Dual Quad filter

Figure 5: Results of filtering a synthetic image.

of two 2-D filters, it is a 1-D filter applied to both rows and
columns. As will be shown in the evaluation section, when
implemented within EquisFtir it provides improved touch de-
tection accuracy and excellent performance.

Approximating the Gaussian with a Piecewise Quadratic
The foundation of our DQ filter is a piecewise quadratic func-
tion that provides a smooth 1-D blur. Figure 4 shows the
shape of this function given a positive integer size γ, which
is one quarter of the filter diameter. The three quadratic func-
tions define different regions of the overall function, and it
remains zero outside the diameter. More precisely, qγ is a
family of functions parameterized by size γ:

qγ(x) =
1

4γ3


(2γ + x)2 if −2γ ≤ x ≤ −γ
2γ2 − x2 if −γ < x < +γ

(2γ − x)2 if +γ ≤ x ≤ +2γ

0 otherwise

The division by 4γ3 keeps the total area of the function equal
to one as the size changes. Note that the non-zero domain of
the function is actually [−2γ,+2γ], so the filter diameter is
4γ. In practice we keep γ to a power of two, which allows
scaling to be performed via a bit shift rather than division.

Initially this function appears to be a poor replacement for the
Gaussian, because traditional techniques would still require
O(p × d) time. As we shall see, however, we can overcome
this problem with a novel algorithm that runs in O(p) time,
with sufficiently small constant factors to outperform both
the 1-D Gaussian and other common approaches.

The Difference of Quadratics
Our DQ filter approximates the 1-D difference of Gaussians
using the difference of piecewise quadratic functions. As in
the difference of Gaussians (Figure 3), we begin with a nar-
row filter and subtract a wider one with the same total area.
More precisely, we define the dual-quad filter dqγ as:

dqγ(x) = qγ(x)− q2γ(x)

Applying this 1-D filter to the rows and columns of an image
yields output similar to the 2-D mid-pass filters. Figure 5(b)
shows the result of dq4 applied to a synthetic image. The in-
put image (Figure 5(a)) contains a variety of blob sizes, rang-
ing from tiny noise to large circles, and a background rang-
ing from pure black to a lighter grey. In the output, many of
these features have been removed: the background gradient

and small dots are completely gone, and the large circles have
been reduced to a dim outline. Meanwhile, the finger-sized
blobs remain bright and are available for easy recognition.

Fast Implementation of the Dual-Quad Filter
As discussed above, a simple implementation of the DQ filter
would require similar processing time to a 2-D Gaussian. We
now present our novel approach to implementing piecewise
quadratic filters, which reduces this time to O(p) with small
constant factors.

Our algorithm is motivated by the fast box filter, a classical
example of a filter that runs in fast constant time per pixel [8].
This is made possible by an accumulator, which is updated in
O(1) as the filter “slides” through a row or column. Extend-
ing this concept to multiple accumulators allows us to apply
our piecewise quadratic filter in similar O(p) total time. To
our knowledge, this approach is unique within the image pro-
cessing literature.

Fast Box Filter To give the intuition behind our algorithm,
we first review the fast box filter, and then build toward the
DQ filter. Consider a filter f summing pixels over odd diam-
eter d, applied to a row or column s around position x. For
convenience, let c be

⌊
d
2

⌋
. Then:

f(x) =
1

d

x+c∑
i=x−c

s(i)

The fast sum filter relies on producing f(x+1) from f(x) in
constant time:

f(x+ 1) =

x+1+c∑
i=x+1−c

s(i)

=

(
x+c∑
i=x−c

s(i)

)
− s(x− c) + s(x+ 1 + c)

= f(x)− s(x− c) + s(x+ 1 + c)

The fast box filter is simply this sum divided by d. We can
generalize this recurrence using the derivative of the filter
with respect to x:

f(x+ 1) = f(x) +

∫ x+1

x

f ′(x) dx

If this integral can be evaluated in O(1), as in the case in the
box filter, the entire image can be filtered in O(p), where p is
the number of pixels in the image.

Fast Piecewise Quadratic Filter Unlike the fast box filter,
the first derivative of our quadratic filter can not be trivially
computed. Indeed, by virtue of being a piecewise quadratic,
the first derivative is piecewise linear (Figure 6(a)) and the
second derivative is piecewise constant (Figure 6(b)). How-
ever, the third derivative (Figure 6(c)) is instantaneous, so
can be evaluated in O(1) by reading four pixel values:

q′′′γ (x) =
1

4γ3
(s(x− 2γ)− 2s(x− 1γ)+

2s(x+ γ)− s(x+ 2γ))

(a) First derivative (b) Second derivative (c) Third derivative

Figure 6: The derivatives of qγ . These figures use the
same axes as Figure 4.

Because γ is a positive integer, qγ and its derivatives are con-
tinuous except at some pixel boundaries. That is, q′γ(x) is
linear, q′′γ(x) is constant, and q′′′γ (x) is zero. We can there-
fore use the fast filtering recurrence to express the functions,
and simplify the corresponding integrals:

qγ(x+ 1) = qγ(x) +
∫ x+1

x

q′γ(x) dx

= qγ(x) + (q′γ(x+ 1) + q′γ(x))/2

q′γ(x+ 1) = q′γ(x) +
∫ x+1

x

q′′γ(x) dx

= q′γ(x) + q′′γ(x+ 1)

q′′γ(x+ 1) = q′′γ(x) +
∫ x+1

x

q′′′γ (x) dx

= q′′γ(x) + q′′′γ (x+ 1)

This allows us to store qγ(x), q′γ(x) and q′′γ(x) in accumula-
tors, and then calculate qγ(x+ 1), q′γ(x+ 1) and q′′γ(x+ 1)
inO(1). Using these recurrences, each row or column can be
filtered in time linear on its length, and the entire image can
be filtered in O(p).

Fast Dual-Quadratic Filter The dqγ filter is defined as a sub-
traction of two q functions, so is itself a piecewise quadratic
function with the same properties as q. Using three accumu-
lators with the same recurrences as above, we merely need to
define the third derivative dq′′′γ (x) = q′′′γ (x)− q′′′2γ(x).

This algorithm is sketched in Figure 7. The accumulators
a0, a1 and a2 represent dqγ(x), dq′γ(x) and dq′′γ(x), respec-
tively. During each iteration the accumulators are updated
based on their recurrences. For efficiency, scaling is post-
poned until the final output is written.

The 1-D dqγ algorithm is applied to each column of the input
image, and then to each row of that result. This entire oper-
ation runs in O(p) time. Further, each step consists only of
additions and shift operations (multiplications by powers of
two), so is inexpensive to compute. Our actual implementa-
tion partially unrolls the loop to handle cases where the input
image would read out of bounds, and has specialized variants
for processing rows and columns.

In summary, our Dual Quad filter provides a 1-D mid-pass
filter which can be executed very efficiently. In the next sec-
tion, we evaluate the effectiveness of our filter against a vari-
ety of other noise reduction filters.

// Area of the doubled kernel.
const int area = 16 * gamma * gamma * gamma;

int a0 = 0; // Value of filter
int a1 = 0; // First derivative
int a2 = 0; // Second derivative

// Apply the filter over one pass. We start
// before the edge of the image to handle
// the forward-looking reads.
for (i = -4*gamma; i < N; ++i) {
// Update the accumulators
a1 += a2;
a0 += a1;

// Output value is adjusted to center of a
// pixel, and scaled by the total area.
output[i] = (a0 - 0.5*a1) / area;

// Update 2nd derivative accumulator with
// the high-frequency part of the filter.
a2 -= 8 * input[i - 2*gamma];
a2 += 8 * input[i - 1*gamma] * 2;
a2 -= 8 * input[i + 1*gamma] * 2;
a2 += 8 * input[i + 2*gamma];

// Update 2nd derivative accumulator with
// the low-frequency part of the filter.
a2 += input[i - 4*gamma];
a2 -= input[i - 2*gamma] * 2;
a2 += input[i + 2*gamma] * 2;
a2 -= input[i + 4*gamma];

}

Figure 7: The algorithm applies DQ filter to a single
row or column of an image in O(N) time.

EVALUATION
As we saw in the last section, the DQ filter works effec-
tively over synthetic data such as that seen in Figure 5. In
this section, we demonstrate that the algorithm works well
over data obtained from real tabletop surfaces, providing the
best combination of accuracy and performance among the
tested filters. Specifically, the DQ filter has the best accuracy
of all filtering algorithms tested, and close to the best per-
formance. We tested accuracy and performance of the DQ
filter compared to the mid-pass Gaussian filter (Mid Gauss),
the mid-pass Box filter (Mid Box; as used in CCV) and the
median filter (as used in Touchlib.)

We performed two experiments, the first addressing perfor-
mance, and the second addressing accuracy.

Experiment 1: Performance
To evaluate performance, we considered two scenarios. The
“small table” scenario places low-cost processing hardware
in a small table; this is similar to a SMART Table or even
a tablet PC. We assumed a camera capable of delivering
640× 480 input, and used a laptop to simulate the embedded
computer. This laptop has an AMD Turion 64 X2 Mobile
TL-50 (1.6 GHz) processor, 2 GB RAM, and an ATI X1300
graphics card.

The “large table” scenario assumes a conference-table-sized
surface with input captured from two 720 × 640 cameras,
and automatically stitched into a 1280× 720 video. For this
scenario, we used a modern desktop computer with an Intel
Core 2 Quad Q8200 (2.33 GHz) processor, 4 GB RAM, and
an NVidia GeForce 9600 GT graphics card.

The image processing in both scenarios was executed using a
single CPU thread. This simplified timing, and allows a fair
comparison with the single-threaded pipelines implemented
by CCV and reacTIVision. We measure the runtime perfor-
mance of the noise reduction algorithms using two metrics:
• Filter time: This represents the time (in milliseconds) re-

quired to apply a given noise reduction filter to a camera
image. This allows direct comparison of the filters within
the EquisFtir pipeline.
• Pipeline processing rate: This represents the number of

frames per second that can be processed by the complete
input pipeline (of which the noise reduction filter is one
component.) This indicates the fastest camera speed that
can be supported by the pipeline.

Method For each of the two scenarios, we used the hard-
ware and input image sizes specified above.

We wrote an application to read frames from a video file, and
pass them to the customized EquisFtir pipeline. The execu-
tion time of the entire pipeline and of the candidate noise
reduction filter was measured programmatically, using the
Win32 performance counter. The application wrote out both
times in milliseconds, along with the standard deviation. The
pipeline processing rate for a given filter was then calculated
as 1000/pipeline execution time

The performance of the pipeline depended slightly on the
number of blobs detected, but was otherwise unaffected by
the content of the source video. To minimize this effect, we
used a clean video from which the different algorithms pro-
duced similar numbers of blobs.

We tested the following filters by embedding them within the
EquisFtir image processing pipeline:
• Dual Quad (DQ): our novel mid-pass algorithm.
• Mid Gauss: the difference of Gaussians using filters pro-

vided by OpenCV [12].
• Mid Box: our implementation of the difference of boxes

filter used in CCV.
• Median: the median filter provided by OpenCV, as used in

Touchlib.
For calibration, we informally observed processing times re-
ported by the CCV and reacTIVision toolkits.

Performance Results Figure 8 shows the results of this ex-
periment. All differences in the table are significant at the
α = .05 level. When applied to the same input, CCV and
reacTIVision reported comparable processing times.

We see that in both scenarios, the DQ filter dramatically out-
performed the Mid Gauss filter and the Median filter. Our
implementation of the Mid Box filter was somewhat faster
than the DQ filter. This is not surprising, as the box filter is a
much simpler function than our piecewise quadratic.

Filter Time and Pipeline Frame Rate column widths are not the same

Small Table Large Table

Algorithm
Filter Time

(ms)
Pipeline Frame

Rate (fps)
Filter Time

(ms)
Pipeline Frame

Rate (fps)

Dual Quad 9.1 57.7 12.9 40.7

Mid Box 6.9 66.2 11.7 42.9

Mid Gauss 36.1 22.6 37.2 20.6

Median 28.2 27.5 56.2 14.8

Figure 8: Comparison of performance of four noise
reduction filtering algorithms inserted into the EquisFtir
pipeline. Filter time is the time to execute the noise
reduction filter over a single camera image. Pipeline
frame rate is the number of frames per second that the
entire pipleline can process.

CCV achieved a pipeline frame rate of approximately 45 FPS
in the small table case, and 33 FPS in the large table case.
CCV was considerably slower than EquisFtir with Mid Box.
This is primarily because CCV uses the OpenCV version of
the box filter, which is significantly slower than the Mid Box
filter we added to EquisFtir.

reacTIVision exceeded 100 FPS in both cases. This is pos-
sible because reacTIVision does not use a noise reduction
image filter. The resulting simpler pipeline runs at approx-
imately the same speed as the EquisFtir or CCV pipelines
with the noise filter excluded.

We did not record processing times for Touchlib. Our timing
of OpenCV’s median filter, as used by Touchlib, shows that
it is considerably slower to compute than the DQ filter and
Mid Box filters.

Over all, we conclude that the DQ and Mid Box filters are
both strong candidates for input libraries where performance
is an issue. The next experiment shows, however, that the
DQ filter is a far better choice when accuracy is taken into
consideration.

Experiment 2: Accuracy
Our second experiment compared the accuracy of different
noise filters including our novel DQ filter. For consistency,
we tested all filters within EquisFtir. To provide a broader
comparison, we also evaluated the accuracy of CCV, Touch-
lib and reacTIVision. As we have discussed, CCV uses an
OpenCV-based Mid Box filter, Touchlib uses a Median filter,
and reacTIVision uses no noise reduction filter.

The Discriminability Index The accuracy of an input library
is derived from two measurements:

• Hit rate (H): the percentage of the time that a touch was
present where the algorithm correctly identified it (how
good the system is at correctly identifying touches); and

• False alarm rate (F): the percentage of time where there
was no touch, but the algorithm incorrectly reported one
(how frequently the system detects a touch when none is
there).

It is not sufficient to compare algorithms based on hit rate
alone, since a liberal algorithm can always increase its hit
rate by allowing more false alarms. (In fact, users of all the
evaluated input libraries can choose the tradeoff between hit
rate and false alarms by adjusting thresholds.) Signal detec-
tion theory [9] allows us to combine both hit rate and false
alarm rate to provide a single measure of the detection ac-
curacy. Accuracy is measured in terms of a discriminability
index, or d′ for short, where d′ = z(F)− z(H).

In this equation, z(F) and z(H) are the z-scores for the false
alarm rate and hit rate respectively. (A z-score measures the
distance of a value from the mean of a normally distributed
population, and is measured in standard deviations.) This
approach allows us to compare algorithms based on a single
metric.

Some examples of d′ values are:

• H = 50%, F = 50% gives d′ = 0 (purely random)
• H = 75%, F = 5% gives d′ = 2.32
• H = 90%, F = 1% gives d′ = 3.61
• H = 99%, F = 1% gives d′ = 4.65

Method To obtain a broad comparison, we solicited data
from a variety of labs in Canada and Europe. We asked re-
spondents to record video from their tabletop’s camera while
the table was being used. This video records the raw in-
put that the input library uses to determine touch events.
From this data, we were able to compare the effects of our
noise reduction algorithms against other openly available ap-
proaches. We now describe these steps in detail.

We recruited participants by sending email to our project
partners in Canada and Europe, by posting on the NUIGroup
forums, and by mailing to a Google Group related to multi-
touch table construction. We solicited people who had hand-
built FTIR or DI tables, using low-cost cameras. Six groups
responded and were sent instructions on how to send us data,
and four provided data. As a fifth case, we included data
from our own tabletop surface. We refer to these sites as L1
through L5.

We provided participants with a simple Java application that
drew moving colored circles on the tabletop surface. The
participants followed the circles with their fingers, providing
drag inputs. Participants were asked to use the video capture
application of their choice to record the images from their
camera as they interacted with the test application. They
were asked to perform this procedure using two lighting con-
ditions: as they normally used their tabletop, for example
turning down lights and closing blinds if they usually did;
and in a noisy light environment, with lights on and blinds
open. This provided approximately two minutes of video for
each condition. All algorithms performed well on the clean
data, so we compare accuracy using the noisy datasets.

The resulting videos represented a wide variety of hardware
conditions. Four tables used FTIR technology (L1,L2,L3,L5)
and one used DI (L4). Cameras included inexpensive Log-
itech webcams (L1, L5), Sony Playstation Eye (L2, L4) and
a professional quality PointGrey FireflyMV (L3).

 Lab L1 L2 L3 L4 L5

Algorithm Y;N 6179;1655 1826;776 3028;736 1675;907 2889;985

Dual Quad
H

d’
.94

4.8*†
.83

4.3*
.90

4.3
.91

4.0*
.98

5.6*
F .001 0.0 .001 .004 0.0

Mid Gauss
H

d’
.99

5.2*
.73

4.0*†
.16

1.6
.62

3.7*
.96

5.2*
F .001 0.0 .005 0.0 0.0

Mid Box
H

d’
.98

5.2*
.71

3.9*†
.52

0.9
.62

2.0†
.97

5.4*
F .001 0.0 .198 .049 0.0

Median
H

d’
.92

4.6*†
.66

3.1†
‡

.20
0.4*

.20
0.8

.69
1.1†

F .001 .004 .102 .049 .27

CCV
H

d’
.95

3.6
.76

3.1†
‡

.74
3.0

.79
1.9†

.87
4.6*

F .024 .008 .008 .132 0.0

Touchlib
H

d’
.93

4.5†
.64

2.8‡
.15

-0.4
.34

1.2
.34

3.1
F .001 .008 .254 .049 0.0

reacTIVision
H

d’
N/A

N/A
.45

2.7‡
.13

0.4*
.15

-0.5
.03

1.6†
F N/A .003 .057 .307 0.0

 Lab L1 L2 L3 L4 L5

Algorithm Y;N 6179;1655 1826;776 3028;736 1675;907 2889;985

Dual Quad
H

d’
.94

4.8*†
.83

4.3*
.90

4.3
.91

4.0*
.98

5.6*
F .001 0.0 .001 .004 0.0

Mid Gauss
H

d’
.99

5.2*
.73

4.0*†
.16

1.6
.62

3.7*
.96

5.2*
F .001 0.0 .005 0.0 0.0

Mid Box
H

d’
.98

5.2*
.71

3.9*†
.52

0.9
.62

2.0†
.97

5.4*
F .001 0.0 .198 .049 0.0

Median
H

d’
.92

4.6*†
.66

3.1†‡
.20

0.4*
.20

0.8
.69

1.1†
F .001 .004 .102 .049 .27

CCV
H

d’
.95

3.6
.76

3.1†‡
.74

3.0
.79

1.9†
.87

4.6*
F .024 .008 .008 .132 0.0

Touchlib
H

d’
.93

4.5†
.64

2.8‡
.15

-0.4
.34

1.2
.34

3.1
F .001 .008 .254 .049 0.0

reacTIVision
H

d’
N/A

N/A
.45

2.7‡
.13

0.4*
.15

-0.5
.03

1.6†
F N/A .003 .057 .307 0.0

Figure 9: Results for clean and noisy datasets, show-
ing number of “yes” frames (Y), number of “no” frames
(N), hit rate (H), false alarm rate (F) and d′ for each
case. Within each column, d′ values whose differ-
ences are not statistically significant (at α = .05) are
grouped with ∗, † and ‡ symbols.

For each video, we manually determined a “ground truth”
by manually marking touches in each frame. To create the
ground truth, we developed an application that played the
submitted videos and allowed an analyst to trace the posi-
tions of touches. These traces were recorded to file, allowing
automated computation of hit rate, false alarm rate and d′

values for each of the algorithms we tested.

All algorithms were hand-calibrated to give the best results
(in terms of d′) that we could obtain.

Accuracy Results
Figure 9 summarizes the results of our experiment. The table
shows the d′ value for each filter in each of the five datasets.
For context, the hit rate and false alarm rate is also shown in
each case.

Statistical significance of the difference between d′ values
was computed in the standard way for signal detection the-
ory, by comparing the 95% confidence interval around the
observed differences [9]. Within each column of Figure 9, d′
values whose differences are not statistically significant are
grouped with ∗, † and ‡ symbols.

The results show that the DQ filter provided the best accu-
racy in all 5 datasets (including statistical ties); Mid Gauss
provided best accuracy in 4/5 datasets and Mid Box provided
best accuracy in 3/5 datasets.

Analysis
Combining the results of these two experiments, we conclude
that the DQ filter represents the best balance between perfor-
mance and accuracy. The DQ filter provides slightly slower
performance than Mid Box in return for substantially higher
accuracy. Compared with Mid Gauss, the DQ filter provides
dramatically better performance while providing similar or
better accuracy.

A few interesting cases are worth highlighting.

In L3, most filters perform very poorly. As shown in Fig-
ure 10, in the L3 video, the background lighting becomes
brighter over the course of time. This is consistent, for ex-

Figure 10: Two excerpts from L3 Noisy showing the
change of brightness of the image over a two minute
time frame.

ample, with the sun coming out from behind a cloud. This
dynamic change in the level of background lighting reduces
the effectiveness of EquisFtir’s background subtraction step,
which assumes that background noise is completely static.

Our DQ filter is more robust to changes in background light
than the other filters, as it is more selective about the shape
of a touch. CCV does considerably better than the Mid Box
case, because its background subtraction algorithm success-
fully adjusts to the slow change. This example shows the
utility of the dynamic background subtraction, but the fact
that EquisFtir still outperformed CCV indicates that there is
room for improvement in the noise reduction algorithm used
by CCV.

The L1 dataset shows a limitation of the DQ filter. This video
was recorded on a smaller table, so touches are proportion-
ally larger with a different distribution of brightness. Here
the DQ filter’s selectivity works against it, reducing the hit
rate. Even in this case, the DQ filter’s results remain a statis-
tical tie for best accuracy,

It is interesting to compare the CCV and Touchlib libraries
to the Mid Box and Median cases, which use the same fil-
ters within the EquisFtir pipeline. Touchlib is similar to Me-
dian in four of five datasets. CCV is similar to Mid Box in
three datasets. Of the other two, one is due to the background
lighting changes described above. Contributors to these dif-
ferences are that the EquisFtir, Touchlib and CCV pipelines
differ in several ways (as described earlier). As a result of
these differences, we found Touchlib and CCV to be more
sensitive to calibration then EquisFtir, sometimes making it
difficult to maximize their d′ values.

DISCUSSION
Our experiments have shown that the DQ filter is a strong
candidate for inclusion in touch-focused input libraries for
optical surfaces. We now discuss some of the broader ques-
tions around the problem of noise reduction, present issues
for further research, and describe limitations of our approach.

Can’t We Just Solve This in Hardware?
Some sources of noise in our experimental datasets can be
attributed to low-cost tabletop construction. To some de-
gree, these problems can (and should) be solved with higher-
quality hardware and construction techniques. However these
problems are not always obvious: our highest d′ values were
scored by tables using low-cost webcams (L1 and L5), be-
cause the camera noise was easily removed by all filters.

Meanwhile, the lowest d′ values were from a table using
a professional camera, which happened to be saturated by
background light (L3).

Table designers need to be mindful of the tradeoffs of dif-
ferent hardware alternatives. The primary balance is be-
tween price and quality. We hope that multi-touch tabletops
will eventually be a common part of the home, but commer-
cial tabletops still cost far too much for consumers. To ex-
pand hobbyist and consumer interest – and preserve research
budgets – we cannot automatically adopt hardware solutions
without regard to cost. In many areas researchers and hob-
byists have explored hardware alternatives, and discovered
good compromises. For example, the Sony Playstation Eye
offers a low-cost camera with good frame rate and quality.

The problems caused by environmental light have also drawn
significant attention. One approach for FTIR tables, as used
by the SMART Table, is to use a tabletop surface that blocks
infrared light. The necessary materials are expensive, and ex-
clude optical techniques (such as DI) that require the camera
to capture light originating above the surface.

Multiple cameras can be used to improve image quality and
tolerance to environmental light. The Microsoft Surface, for
example, uses five cameras to produce a reported 1280x960
net resolution. This adds the cost of both additional cameras
and the hardware required to connect them to a computer.
In addition, they add to the image processing requirements,
further motivating fast algorithms like the DQ filter.

In general, it makes sense to use the best hardware that the
construction budget allows. Nevertheless, no hardware so-
lution can remove all noise. As multi-touch tabletops are
increasingly used in difficult environments, the need will re-
main for better and faster noise reduction algorithms.

Aren’t Computers Getting Faster?
Computers continue to become more powerful, with each
year seeing improved clock rates, increased numbers of cores,
and more powerful graphics processing units (GPUs). It is
reasonable to consider whether problems with algorithmic
performance will be rendered moot by faster hardware.

Because of these improvements in computer hardware, op-
tical multi-touch tables can become larger, and operate at
higher input resolutions and frame rates. Likewise, they
can become more portable: pico-projectors are increasingly
available, and the iPhone 4 now ships with a built-in 720p
video camera. Integrating sensing elements with an LCD
display (e.g. ThinSight [6]) could even allow optical multi-
touch with a hand-held device, but inherits the processing
and power limitations of such a platform.

Furthermore, the tests we have presented assume a signifi-
cant proportion of the processing resources will be dedicated
to input processing (50% for the “small table”, 25% for the
“large table”). In fact, the huge majority of the computer’s
resources should be available for the user’s applications, not
dedicated to an input device. Therefore, the need for fast
image processing algorithms will continue despite improve-
ment in computer hardware.

Alternatives to performing image processing on the CPU also
exist. Modern graphics cards include GPUs, which are mas-
sively parallel data processors. To obtain a sense of the cur-
rent state of GPU processing, we applied CCV’s GPU im-
plementation of the Mid Gauss filter to our “large table”
scenario (using an NVidia GeForce 9600 GT). The pipeline
frame rate was approximately 44 FPS, more than double
the frame rate of EquisFtir with the CPU-based Mid Gauss.
General-purpose GPU libraries, like OpenCL, would support
our filter on the GPU, and likely offer a similar speed-up. Re-
lying on GPU processing poses compatibility problems, and
has the disadvantage of loading the GPU. Either can interfere
with user’s actual applications. These problems can be mit-
igated by limiting the selection of GPUs or adding special-
purpose image processing hardware. However the cost of
these alternatives suggests that fast CPU-based processing
will remain interesting, particularly as the number of CPU
cores continues to increase.

In sum, while faster computers help with the input process-
ing problem, demand for more capable tables, lower costs,
and preserving processing power for actual applications will
continue to drive the need for fast algorithms.

Future Work
Our results highlight two problems for future research.

Adaptive Background Subtraction All of the noise reduc-
tion algorithms tested rely on background subtraction to re-
move “touch-like” artifacts. Changes in environmental light,
shadows, and shifting or jiggling table components can ren-
der static background subtraction ineffectual. To avoid these
problems, it is important to investigate improved techniques
for adaptive background subtraction. CCV uses a form of
adaptive background subtraction that supports slow changes,
as encountered in L3. Rapid changes, such as turning on the
lights in a room or shaking the frame of the table, require
improved techniques for achieving this functionality.

Automatic Configuration Configuring optical multi-touch li-
braries is difficult, because expertise – or significant trial and
error – is required to understand the effects and interactions
of each tunable parameter. We reviewed the code and doc-
umentation of all tested systems, and experimented exten-
sively in pursuit of good results. However, it is hardly rea-
sonable to expect typical users to go to such lengths to choose
effective thresholds. It is important to investigate techniques
for simplifying and automating the configuration process.

Limitations
The work presented in this paper has a number of limitations
that should be addressed in further study.

None of the systems we tested take inter-frame information
into account. In particular, blob tracking can be greatly im-
proved by basing detection decisions on a small buffer of
frames. If a blob is lost in one frame and recovered in the
next, the blob tracker can infer that the finger was temporar-
ily lost and not interrupt a drag operation. This approach
comes with the cost of increased latency, since inputs can-
not be processed immediately. Because the best tradeoff be-
tween accuracy and latency is application-dependent, we be-

lieve that such algorithms should be provided by higher-level
gesture and UI libraries, rather than embedded within the in-
put processing pipeline.

Our experiments assumed that users kept their touches widely
separated. None of the evaluated libraries handle the merg-
ing and splitting of blobs (e.g. two fingers touching and then
moving apart). The problem appears in the blob tracking
phase: when the fingers move apart, one will be reported
as a new press. This problem can be addressed in two ways:
using shape information, a library may be able to recognize
a “figure-eight” blob and emit two touches; if a single touch
splits into two, the library needs to report the correction.

The algorithms described in this paper depend on finger-
based input. Interactions with the tabletop using different
shapes, like a palm, edge of hand, or a stylus or paint-
brush [15], would be filtered out. Since optical tabletop inter-
actions are biased towards finger-based gestures, we believe
that this is a reasonable price to pay for the significant in-
crease in accuracy. Other processing approaches could be
combined in parallel to recognize different shapes.

Finally, we have compared our work only to published algo-
rithms and those used in open-source libraries. These may
differ from the algorithms used in commercial tables, which
are far more likely to choose dedicated image processing
hardware. While the algorithms used in these products are
not available to us to study, our informal experience is that
they suffer from similar environmental problems as home-
constructed tables. From this, we hypothesize that our results
will also be of use in commercial optical tabletop products.

CONCLUSION
In this paper, we have described a novel noise reduction al-
gorithm for finger-based optical multi-touch. This algorithm
is based on a piecewise quadratic filter that removes low- and
high-frequency noise from camera input, enhancing the mid-
frequency signals that correspond to finger-sized input. The
approach is practical due to a novel algorithm for applying
piecewise quadratic filters in fast constant time per pixel.

We have empirically evaluated our algorithm against com-
mon alternatives using raw input from our table as well as
four other labs. This has shown that the approach offers sig-
nificant improvement over other algorithms, and also outper-
forms the popular CCV, Touchlib and reacTIVision libraries.
Our noise reduction algorithm has been implemented and op-
timized within the EquisFtir library.

ACKNOWLEDGMENTS
We would like to thank the groups who contributed data for
our experiment: Robert Biddle, School of Computer Sci-
ence, Carleton University; Sophie Stellmach with Raimund
Dachselt, User Interface and Software Engineering Group,
Otto-von-Guericke-Universität Magdeburg; Jimmy Hertz, Sas-
sExperience; and Khaled Tangao with Stacey Scott, Collab-
orative Systems Laboratory, Systems Design Engineering,
University of Waterloo. We also gratefully acknowledge the
financial support of the NSERC SurfNet Strategic Network.

REFERENCES
1. K.R. Castleman. Digital Image Processing. Prentice

Hall Press, Upper Saddle River, NJ, 1996.

2. CCV. Community core vision,
http://ccv.nuigroup.com/.

3. F. Chang, C. Chen, and C. Lu. A linear-time
component-labeling algorithm using contour tracing
technique. Computer Vision and Image Understanding,
93(2):206–220, 2004.

4. L. di Stefano and A. Bulgarelli. A simple and efficient
connected components labeling algorithm. In ICIAP,
pages 322–327, 1999.

5. L. He, Y. Chao, K. Suzuki, and K. Wu. Fast connected-
component labeling. Pattern Recognition, 42(9):1977–
1987, 2009.

6. Shahram Izadi, Alex Butler, Steve Hodges, Darren
West, Malcolm Hall, Bill Buxton, and Mike Molloy.
Experiences with building a thin form-factor touch and
tangible tabletop. In Tabletop, pages 181–184, 2008.

7. M. Kaltenbrunner and R. Bencina. reacTIVision: a
computer-vision framework for table-based tangible in-
teraction. In Tangible and Embedded Interaction, pages
69–74, 2007.

8. A. Lukin. Tips & Tricks: Fast Image Filtering Algo-
rithms. In Proc. GraphiCon, pages 186–189, 2007.

9. N.A. Macmillan and C.D. Creelman. Detection Theory:
A User’s Guide. Lawrence Erlbaum, second edition,
2005.

10. K. Nice, T.V. Wilson, and G. Gurevich. How
stuff works: How digital cameras work.
http://electronics.howstuffworks.com/cameras-
photography/digital/digital-camera5.htm.

11. NUIGroup. Touchlib: A multi-touch development kit,
http://nuigroup.com/touchlib.

12. OpenCV. OpenCV computer vision library,
http://opencv.willowgarage.com/wiki/.

13. R. Rau and J.H. McClellan. Efficient approximation of
Gaussian filters. IEEE Transactions on Signal Process-
ing, 45(2):468–471, 1997.

14. S.D. Scott, A. Allavena, K. Cerar, G. Franck, M. Hazen,
T. Shuter, and C. Colliver. Investigating Tabletop In-
terfaces to Support Collaborative Decision-Making in
Maritime Operations. In ICCRTS, 2010.

15. J.D. Smith, T.C.N. Graham, D. Holman, and
J. Borchers. Low-cost malleable surfaces with multi-
touch pressure sensitivity. In Tabletop, pages 205–208,
2007.

16. C. Wolfe, J.D. Smith, and T.C.N. Graham. A low-cost
infrastructure for tabletop games. In Future Play, pages
145–151, 2008.

