
TREC: Platform-Neutral Input for Mobile Augmented
Reality Applications

Jason Kurczak and T.C. Nicholas Graham
School of Computing, Queens University

Kingston, Canada K7L 3N6
{kurczak, graham}@cs.queensu.ca

ABSTRACT
Development of Augmented Reality (AR) applications can
be time consuming due to the effort required in accessing
sensors for location and orientation tracking data. In this pa-
per, we introduce the TREC framework, designed to handle
sensor input and make AR development easier. It does this in
three ways. First, TREC generates a high-level abstraction
of user location and orientation, so that low-level sensor data
need not be seen directly. TREC also automatically uses the
best available sensors and fusion algorithms so that complex
configuration is unnecessary. Finally, TREC enables exten-
sions of the framework to add support for new devices or
customized sensor fusion algorithms.

Author Keywords
augmented reality, tracking sensors, input framework, sensor
fusion

ACM Classification Keywords
H.5.1 Information Interfaces and Presentation: Artificial, aug-
mented and virtual realities

General Terms
Design

INTRODUCTION
Mobile Augmented Reality (mobile AR) is rapidly making
inroads in the consumer market, with applications such as
Car Finder [1] and Layar [2] being released for mobile phone
platforms. These applications use the phone’s camera and
screen to superimpose information on a video feed of the
real world, and have served to demonstrate the potential of
mobile AR to the general public.

Mobile AR applications use sensors such as GPS, compass,
and inertial sensors to determine the physical location and
orientation of the device. The problem for mobile AR de-
velopers is that such sensors may be unreliable and noisy.
Applications often must fuse inputs from multiple sensors to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’11, June 13–16, 2011, Pisa, Italy.
Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

Figure 1. Using the tourist application

determine accurate values. Even when a framework is used
to handle the input devices, it can require complex manual
configuration and be hard to extend or modify. These prob-
lems require the developer to focus on low-level sensor pro-
gramming rather than focusing on the functionality and us-
ability of the application.

In this paper, we present an architecture for input frame-
works designed to help address these issues, which is imple-
mented in the TREC (TRacking using Extensible Compo-
nents) framework. The advantages of this architecture are il-
lustrated by its use in the Noisy Planet application described
in the Motivating Example and Applying TREC sections.

The main advantages provided by TREC’s architecture in-
clude giving programmers open access to a hierarchy of de-
vices, transformative modules, and high-level abstracted in-
terfaces; being able to dynamically select sensors and sensor
fusion algorithms thanks to multiple levels of abstraction;
and allowing modification and extension at every level.

MOTIVATING EXAMPLE: AN AR TOURIST APPLICATION
To provide context to our description of TREC, we intro-
duce Noisy Planet, a mobile tourist guide. This applica-
tion, shown in figures 1 and 2, has been implemented using
TREC. Noisy Planet allows a tourist staying in an unfamiliar
city to navigate to proximate destinations on foot while also
allowing serendipitous exploration of the area.

283

Figure 2. Overhead view

Noisy Planet uses 3D sound to convey to users the position
and distance of nearby points of interest. For example, in
figure 1, the user “hears” that the Stauffer Library is behind
him and to his right. Each point of interest is represented
by a subtle repeating tone – for example, the sound of rif-
fling pages represents the library; clinking glasses represent
a restaurant, and jingling coins represent a bank. The appli-
cation overlays an aural landscape over the physical world.
The sounds emanate from the correct location, even as the
user walks or turns his head. Since the sounds are subtle and
repeating, the tourist can easily choose to listen to them or
tune them out.

The Noisy Planet implementation must track the user’s lo-
cation and head orientation so that sounds appear to em-
anate from the correct direction. It is challenging to accu-
rately determine this information using off-the-shelf sensor
equipment, and often multiple sensors are required to accu-
rately estimate location and orientation. We currently use
GPS, compass and gyroscope devices. Each device has its
own data format, requiring programmers to write low low-
level interfacing code. Each device type has limitations that
cause it to deliver highly innacurate data under some circum-
stances. The programmer must therefore and must identify
and code heuristics determining which device to use when
they deliver conflicting information. As we shall see, our
TREC framework helps with these difficulties.

INPUT HANDLING IN MOBILE AR APPLICATIONS
Before presenting the design of TREC, we first review cur-
rent methods for obtaining input in mobile AR applications.
We consider hardware support for location and orientation
input, then review the state of the art in sensor fusion, and
finally discuss existing input toolkits.

Hardware for Location and Pose Detection
A variety of off-the-shelf devices are available for estimating
a user’s location and pose in mobile contexts.

GPS devices triangulate their position using signals from
orbiting satellites. Consumer devices have an accuracy of
about 5-10m, depending on overhead visibility in outdoor
environments [14].

Accelerometers can be used to track changes in position by
calculating acceleration vectors based on the experienced
forces, and integrating this data twice to obtain displace-
ment [8]. Accelerometers provide faster updates and higher
resolution updates than a GPS, but lack an absolute frame
of reference and are subject to drift, therefore requiring pe-
riodic checks with some other absolute measure of position.

Other methods for tracking position include triangulation of
signals from known locations, such as cellular tower signals,
wifi signals or ultrasonic transmitter systems [6]. These ap-
proaches suffer from limited coverage.

Digital compasses (or magnetometers) detect orientation rel-
ative to magnetic north, but suffer serious drawbacks in ac-
curacy. With the help of a 3-axis accelerometer to track
the direction of earth’s gravitational pull, a magnetometer
can provide pitch, yaw, and roll data. Errors arise due to
the lack of uniformity of the earth’s magnetic field and its
susceptibility to magnetic materials and artificial magnetic
fields. In addition, outside forces (e.g., from walking) dis-
turb the accelerometers’ measurement of the gravitational
vector and can cause large deviations in measured orienta-
tion when walking.

Gyroscopes measure angular displacement relative to some
initial orientation, and so cannot indicate absolute direction
on their own. However, unlike magnetometers, they are not
affected by magnetic anomalies or by outside forces. Errors
accumulated over time, however, will cause drift from the
true direction. At high speeds of rotation (e.g., due to rapid
head movement) some gyroscopes may exceed their upper
limit of measurement and return wildly inaccurate results.

Sensor Fusion Techniques
Sensor fusion improves accuracy by combining data from
multiple sensors [3]. A simple form of sensor fusion is to
average the input of multiple sensors that are measuring the
same property, in order to average out the noise from indi-
vidual sensors (e.g. averaging the measurements of multi-
ple anemometers to ascertain wind speed). More complex
techniques take advantage of known properties of different
sensor types. For example, a gyroscope, magnetometer, and
accelerometer might be used in tandem, where the magne-
tometer is used to calibrate the gyroscope whenever the sen-
sor is at rest.

Another approach is to use a Kalman filter [13], which takes
multiple noisy sensor measurements, estimates the error in
these measurements, and then estimates the actual state of
the system being measured [4].

Programming fusion algorithms requires iterative tuning based
on deep knowledge of the properties of the underlying sen-
sors.

284

Frameworks
TREC is far from the first framework used to process input
from tracking devices.

VRPN provides an interface between input hardware and
Virtual Reality (VR) applications. VRPN allows VR hard-
ware peripherals to be shared across many computers on the
same network, and simplifies development by providing a
standardized interface for peripherals with the same func-
tionality [12]. VRPN standardizes the sensor data being de-
livered to applications so that their code is not dependent on
the sensors being used. It does not, however, dynamically
choose which of the attached devices to use; this must be
specified by the application developer. In terms of extensi-
bility, VRPN permits the creation of new devices and device
types, while also supporting layered devices that let the de-
veloper program higher-level behaviour based on input from
one or more sensors.

OpenTracker supports tracking hardware with a flexible and
customizable architecture [10]. It uses dataflow graphs to
manage data being passed from sensors to applications. Here,
“device drivers” act as source nodes that bring data into the
system; “filter nodes” transform, merge, or otherwise mod-
ify passed data from source nodes, and “sink nodes” output
the data to an application. OpenTracker has a high level of
configurability, using an XML schema to define the dataflow
graph and supporting custom nodes. Like VRPN, however,
OpenTracker does not offer automatic configuration and choice
of devices, requiring the developer to provide a configura-
tion file that describes the exact dataflow graph and devices
to use.

Ubitrack, on the other hand, is designed for automatic con-
figuration [9]. It is meant to support large networks of sen-
sors to provide AR tracking using all available resources,
with completely dynamic configuration of dataflow networks
based on Spatial Relationship Graphs (SRGs) of the sensors
in the network. There does not appear to be any way to mod-
ify or extend the algorithm used to configure the dataflow
networks, or to override this algorithm to use specific de-
vices or configurations.

The OpenInterface Project [11] has very interesting parallels
in another area of HCI research. It is an open source platform
for rapidly prototyping multimodal input interfaces for com-
puter programs, with the benefit of a GUI interface. OpenIn-
terface is designed to transform hardware input into a format
suitable for the client application using modular transforma-
tion components, support a broad range of input devices, and
be easily extensible. OpenInterface does not support the au-
tomatic selection of sensors and fusion algorithms, requir-
ing explicit configurations by the developer like VRPN and
OpenTracker.

All of these AR frameworks support abstraction of sensor
data to standard interfaces. VRPN, OpenTracker, and Open-
Interface are extensible, allowing new sensor types to be eas-
ily added. Ubitrack provides automatic sensor configuration.
None of these toolkits addresses all three of these important

goals. The TREC framework has been designed specifically
to fill this gap.

THE TREC FRAMEWORK
TREC is a software framework for input handling in mo-
bile AR applications. TREC’s goals are to reduce the time
required to develop interfaces for hardware sensors, and to
reduce the difficulty of adapting AR apps to work with a par-
ticular collection of sensors. Specifically, TREC addresses
the problems identified in the last section where: 1) writ-
ing low-level interfaces to sensors distracts developers from
the core application design; 2) changing the set of available
sensors may break applications, requiring extensive recod-
ing; 3) combining the input from different sensors is tricky,
requiring experimentation and iteration

First, in order to make the application programmer’s job eas-
ier, TREC abstracts all sensor data into a high level repre-
sentation of location and orientation. TREC provides the
application programmer with simple interfaces for these two
properties in its abstract input layer.

Second, TREC automatically configures the sensors by de-
termining at runtime which of the connected sensors can be
used to provide the best data to the application. Because
the TREC layered architecture hides all differences between
sensor hardware, it can provide the application plug-and-
play compatibility with different sensors.

Finally, TREC uses sensor fusion algorithms automatically
when a supported configuration is available, and the archi-
tecture makes it easy to extend the framework to support new
algorithms. It uses a three-layer hierarchy (see figure 3) to
abstract device details. This allows newly added sensors in
the device layer to work automatically with existing appli-
cations, and fusion algorithms in the abstract device layer
can take advantage of the abstracted devices automatically.
The framework is open and allows access and modification
at any level, meaning low-level sensor data can always be
accessed directly if necessary.

In summary, the 3-layered architecture of TREC allows it to
provide open access to high and low levels of abstraction,
makes it easier to support automatic configuration based on
a hierarchy of device types, allows sensor fusion algorithms
to be dynamically chosen in the same way as devices, and
makes new devices and algorithms easily interoperable with
existing code.

The TREC Architecture
The framework is structured around a three-layer architec-
ture: the Abstract Input Layer, the Abstract Device Layer,
and the Device Layer.

The lowest layer, the device layer, contains objects that ex-
pose the data provided directly by device sensors. Devices
must implement one one more abstract device interfaces (see
below). For example, the OceanServer USB Compass pro-
vides both compass and accelerometer functionality. To add

285

+OrientationRadians() : float
+OrientationDegrees() : float

«interface»
IOrientation

+Location() :
+Origin() :

«interface»
ILocation

+OrientationRadians() : float
+OrientationDegrees() : float

CompassOrientation

+OrientationRadians() : float
+OrientationDegrees() : float

GyroscopeOrientation

+Heading() : float
+AccX() : float
+AccY() : float
+AccZ() : float

OSCompass

OceanServer
USB Compass

+AngularVeclocity() : float

WTGyroscope

WiTilt v3.0
Gyroscope

+Time() : int
+Status() : string
+Latitude() : float
+Longitude() : float
+Bearing() : float
+Speed() : float
+NewValue() : bool

IBlueGPS

iBlue 737A+
GPS

«uses»
«uses»

+Location() :
+Origin() :

GPSLocation

+OrientationRadians() : float
+OrientationDegrees() : float

FusedOrientation

+Heading() : float

«interface»
ICompass

+AngularVelocity() : float

«interface»
IGyroscope

+AccX() : float
+AccY() : float
+AccZ() : float

«interface»
IAccelerometer +Time() : int

+Status() : string
+Latitude() : float
+Longitude() : float
+NewValue() : bool

«interface»
IGPS

«uses»

Abstract input layer

Abstract device layer

Device Layer

vector2
vector2

vector2
vector2

Figure 3. The TREC 3-layered architecture.

a new device to the framework, a developer needs to create
a device-layer class for the device.

The abstract device layer groups standard types of sensor
devices, and also provides virtual sensors by fusing the data
from multiple concrete devices. For example, the Compas-
sOrientation class provides orientation data from compass-
like devices, such as OSCompass, while the GyroscopeOri-
entation class provides orientation data from gyroscope-like
devices. Meanwhile, FusedOrientation provides orientation
information by fusing data from a number of devices.

Finally, the abstract input layer provides interfaces for spe-
cific input data types. In the current version of the frame-
work, two types of input are defined: IOrientation provides
head orientation data and ILocation provides position infor-
mation. To access input, an application queries the TREC
device manager for one of these types of input, and receives
an object in return implementing the appropriate abstract in-
put type. In this way, the TREC framework shields appli-
cations from the details of individual devices or fusion algo-

rithms, and simplifies the work of the developer by providing
a simple and uniform way to access input information.

APPLYING TREC
We now show, by example, how TREC helps both applica-
tion programmers creating a mobile AR system, and systems
programmers adding new functionality to TREC itself.

The Application Programmer’s Perspective
To illustrate how TREC helps in developing mobile AR ap-
plications, we examine the implementation of the Noisy Planet
tourist application. Users of the application carry a mobile
device containing a GPS, and wear a gyroscope and compass
for head tracking. These sensors are hidden behind TREC’s
IOrientation and ILocation abstract input types.

To access the abstracted sensor data, the Noisy Planet code
requests an appropriate data source from TREC’s Device
Manager. E.g., when an orientation data source is requested,
the Device Manager provides an object that adheres to the
IOrientation interface, with data coming from either the OS-

286

Compass or WTGyroscope device. The application cannot
tell which device is supplying this data, and does not need
to know since the incoming data is in a standardized format.
This allows TREC to provide the best available sensor, and
allows new devices to be added to TREC without impacting
application code. If the programmer for some reason pre-
ferred a compass, he/she could choose to access the Compas-
sOrientation object in the abstract device layer to guarantee
the use of a compass, or even directly access the OSCompass
in the device layer to choose that specific device.

In addition to automatically choosing from available sensors,
TREC can automatically use sensor fusion algorithms when
sufficient sensors are available. Noisy Planet could actually
receive a FusedOrientation object (from the abstract device
layer) after the earlier request for an orientation object. This
happens without any changes or configuration on the appli-
cation side. TREC decides which device or combination of
devices to use based on an internal rating mechanism, which
is currently a hard-coded list of the known devices.

For comparison, we implemented a version of Noisy Planet
without access to TREC. This implementation required ap-
proximately 250-350 lines of code per sensor (GPS, com-
pass, gyroscope) to handle serial input from these devices,
in addition to another 80 lines to manage these sensors and
perform the sensor fusion. The version using TREC requires
just two method calls: one to get the current orientation, and
another for the current location.

The Toolkit Developer’s Perspective
TREC is an open framework, making it straightforward to
add support for new devices. We now discuss our experience
in adding a new hardware and a new virtual device to TREC.

Adding a New Hardware Device
The custom code that connects to and processes data from a
sensor is contained within a class at the device layer. Based
on the type of sensor, accessor methods need to be created
that will adhere to the proper interface at the abstract device
layer (e.g., the IBlueGPS in figure 3 must implement the
IGPS interface in order to automatically work with TREC
applications).

Adding a Simple Sensor Fusion Algorithm
TREC’s layered architecture allows easy integration of sen-
sor fusion algorithms into applications, and allows the fusion
code itself to be shielded from the details of the underly-
ing devices. Sensor fusion algorithms are written as abstract
device modules that adhere to a standard interface. There-
fore, any program taking advantage of TREC’s abstract in-
put modules (IOrientation and ILocation) can automatically
use the new algorithm.

For example, to implement the FusedOrientation class of
figure 3, a new abstract device class is created in the ab-
stract device layer. This class implements the IOrientation
interface, and therefore can be used whenever orientation in-
formation is requested by the application. Inside FusedOri-
entation, a gyroscope, compass and accelerometer are used

(each of which are abstract devices), and some kind of loca-
tion service is used (an abstract input.) Specifically, the gy-
roscope is used to determine orientation; the compass is used
to calibrate the gyroscope from time to time, but not when
the compass is moving (as determined via the accelerometer
or from changes in location).

This example shows how the fusion algorithm leverages TREC’s
layered architecture. When necessary, the fusion algorithm
knows the kind of device that it is using (gyroscope, com-
pass, etc.), but does not need to know exactly which device
is in use. Furthermore, when it is not necessary to know the
kind of device (i.e., for the location service), the appropriate
abstract input can be used.

DISCUSSION
We have shown how TREC helps developers by providing a
single standardized view of sensor data, making sensor se-
lection and sensor fusion automatic, and letting developers
easily extend the framework to support new devices or cus-
tom fusion algorithms. We now discuss broader questions
related to TREC’s design.

Platform Standardization: Smartphone platforms are mak-
ing sensors suitable for mobile AR applications broadly avail-
able. Exciting future work would involve customizing TREC
around the sensor packages in common phones. The easy ex-
tensibility of TREC is important, as the sensors change be-
tween generations of phones, requiring updates to the frame-
work. One limitation to this approach is that current phones
do not provide sensors suitable for head-tracking.

Computer vision for tracking: Computer vision is widely
used for pose detection in AR applications (e.g., using AR-
Toolkit [7]), but we have not discussed its use in TREC. Vi-
sion is less immediately useful in mobile applications, due
to the difficulty of placing fiduciary markers in the outside
environment. However, there is no inherent reason why vi-
sion could not be included as a sensor type within the frame-
work. This would integrate into the TREC hierarchy just as
any other sensor does, though requiring a new abstract de-
vice interface to be defined for vision systems.

Extending to other kinds of AR: The framework as presented
is heavily influenced by the ambient audio Noisy Planet ap-
plication. In Noisy Planet, head tracking is important to
overlay an audio soundscape onto the real world, and this
head tracking need only be in a 2D plane. TREC can eas-
ily be extended to other forms of AR, however, simply by
adding new device types.

For example, one common form of mobile AR involves track-
ing the position and orientation of a handheld device (e.g., a
Smartphone), so that its display can provide visual overlays
onto the real world. Here, positioning information is de-
tected for the device, not the head, using the sensors in the
device. TREC’s IOrientation interface would need to be ex-
tended to provide 3D positions. This change would require
additional programming, but does not represent a fundamen-
tal change to TREC’s design.

287

Sensor management: Future work with TREC includes im-
proving the sophistication of its sensor management capabil-
ities. Currently, TREC’s Device Manager determines which
among the available set of sensors to use by traversing a
ranked list of known devices. An improved device manager
would automatically determine the best set of a sensors to
use, and would dynamically reconfigure the sensor set (e.g.,
in response to failure of one of the sensors.) This issue of
sensor management has been more thoroughly covered in
the Ubitrack system [9] and in the hybrid tracking AR sys-
tem of Hallaway et al. [5].

Sensor fusion: The layered architecture of TREC permits
AR applications to use sensor fusion automatically. An ex-
ample was shown in the last section of how a simple sen-
sor fusion algorithm could be implemented as an abstract
device. More investigation is required to assess the diffi-
culty of implementing more general fusion algorithms, than
the one presented in the example. The algorithm used there
does not depend on specific devices and will work with any
sensors of the same type. A Kalman filter, however, may re-
quire unique knowledge about each sensor to create a good
model of the system. In future work, we hope to investi-
gate whether TREC can support these advanced algorithms
without restricting their use to predetermined hardware.

CONCLUSION
In this paper we have presented TREC, a new framework
for handling sensor input in mobile augmented reality ap-
plications. TREC has been designed to provide high-level
abstraction of the sensor data, automatic configuration, and
ease of extension and manual configuration when desired.
While there are many other frameworks addressing these is-
sues comprehensively, none provide all of these features to-
gether in a cohesive package.

The key to TREC’s success is its three-layer architecture.
An abstract input layer provides high-level input types that
completely abstract the underlying hardware. An abstract
device layer collects classes of sensors (e.g., compass, ac-
celerometer), as well as virtual devices implementing sensor
fusion. Finally, a device layer provides interfaces to concrete
devices. This architecture allows the abstraction of different
hardware sensors into a uniform representation of location
and orientation, and simplifies the automatic use of avail-
able sensors at runtime (including the automatic fusion of
multiple devices). This hierarchy also makes the process of
adding new devices straightforward, while providing com-
patibility with any applications already using TREC.

The next steps for the TREC framework include adding broader
support for hardware sensors, investigating the implemen-
tation of complex sensor fusion algorithms using the ab-
stract devices in TREC, and implementing a robust sensor-
management algorithm to allow better dynamic configura-
tion of the system.

ACKNOWLEDGEMENTS
This work was funded by NSERC Strategic Project #365040-
08 and by the GRAND Network of Centres of Excellence.

We would like to thank Claire Joly for her feedback on us-
ing TREC, and Jonathan Segel for his contributions to the
design of Noisy Planet.

REFERENCES
1. Intridea Car Finder. http://carfinderapp.com/.

2. Layar Augmented Reality Browser.
http://www.layar.com/.

3. B. Dasarathy. Sensor fusion potential
exploitation-innovative architectures and illustrative
applications. Proceedings of the IEEE, 85(1):24 –38,
1997.

4. E. Foxlin. Inertial head-tracker sensor fusion by a
complementary separate-bias Kalman filter. In IEEE
VRAIS, pages 185–194, 267, 1996.

5. D. Hallaway, S. Feiner, and T. Höllerer. Bridging the
gaps: Hybrid tracking for adaptive mobile augmented
reality. Applied Artificial Intelligence, 25:477–500,
2004.

6. J. Hightower and G. Borriello. Location systems for
ubiquitous computing. Computer, 34(8):57–66, 2001.

7. H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and
K. Tachibana. Virtual object manipulation on a
table-top AR environment. In ISAR, pages 111–119,
2000.

8. P. Lang, A. Kusej, A. Pinz, and G. Brasseur. Inertial
tracking for mobile augmented reality. In IMTC,
volume 2, pages 1583–1587, 2002.

9. D. Pustka, M. Huber, C. Waechter, F. Echtler, P. Keitler,
J. Newman, D. Schmalstieg, and G. Klinker. Ubitrack:
Automatic configuration of pervasive sensor networks
for augmented reality. IEEE Pervasive Computing,
preprint, June 2010.

10. G. Reitmayr and D. Schmalstieg. Opentracker: A
flexible software design for three-dimensional
interaction. Virtual Reality, 9:79–92, 2005.

11. M. Serrano, L. Nigay, J.-Y. L. Lawson, A. Ramsay,
R. Murray-Smith, and S. Denef. The OpenInterface
framework: a tool for multimodal interaction. In CHI
extended abstracts on human factors in computing
systems, pages 3501–3506, 2008.

12. R. M. Taylor, II, T. C. Hudson, A. Seeger, H. Weber,
J. Juliano, and A. T. Helser. VRPN: a
device-independent, network-transparent VR peripheral
system. In VRST, pages 55–61, 2001.

13. G. Welch and G. Bishop. An introduction to the
Kalman filter. Technical Report TR 95-041,
Department of Computer Science, University of North
Carolina at Chapel Hill, 1995.

14. M. G. Wing. Consumer-grade global positioning
system (GPS) accuracy and reliability. Journal of
Forestry, 103:169–173, 2005.

288

	Introduction
	Motivating Example: An AR Tourist Application
	Input Handling in Mobile AR Applications
	Hardware for Location and Pose Detection
	Sensor Fusion Techniques
	Frameworks

	The TREC Framework
	The TREC Architecture

	Applying TREC
	The Application Programmer's Perspective
	The Toolkit Developer's Perspective
	Adding a New Hardware Device
	Adding a Simple Sensor Fusion Algorithm

	Discussion
	Conclusion
	Acknowledgements
	REFERENCES

