
It’s About Time: Confronting Latency in the Development
of Groupware Systems

Cheryl Savery and T.C. Nicholas Graham
School of Computing
Queen’s University

Kingston, Canada K7L 3N6
{savery | graham}@cs.queensu.ca

ABSTRACT
The presence of network latency leads to usability problems
in distributed groupware applications. Example problems
include difficulty synchronizing tightly-coupled collabora-
tion, jarring changes in the user interface following the re-
pair of conflicting operations, and confusion when partici-
pants discuss state that appears differently to each of them.
Techniques exist that can help mitigate the effects of latency,
both in the user interface and the groupware application.
However, as these techniques necessitate the manipulation
of state over time, the effort required to implement them can
be significant. In this paper, we present timelines, a pro-
gramming model allowing the explicit treatment of time in
groupware applications. The model has been implemented
as part of the Janus toolkit.

General Terms
Languages, Human Factors, Design

Author Keywords
Groupware toolkits, temporally-aware groupware

ACM Classification Keywords
H.5.3 Information Interfaces and Presentation: Group and
Organization Interfaces—Computer-supported cooperative
work; D.2.2 Software Engineering: Design Tools and Tech-
niques—user interfaces

INTRODUCTION
A fundamental challenge in implementing distributed group-
ware is overcoming network latency, the time required to
communicate information over networks. Latency leads to
usability problems such as difficulty coordinating tightly-
coupled activities [5], jarring corrections when two people
perform conflicting actions [11], and confusion when differ-
ent users’ views are poorly synchronized [26].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSCW 2011, March 19–23, 2011, Hangzhou, China.
Copyright 2011 ACM 978-1-4503-0556-3/11/03...$10.00.

There are two broad strategies for mitigating the usability
problems resulting from network latency. Problems can be
addressed in the user interface, by improving users’ aware-
ness of how latency is affecting their interaction; e.g., tele-
pointer trails give temporal context to remote participants’
actions [13]. Problems can also be addressed “behind the
scenes” through custom consistency maintenance algorithms
that reduce the impact of latency for a particular style of
groupware (such as first-person shooter games [3] or real-
time strategy games [4].) We term groupware applications
that use either of these approaches to explicitly recognize
time in their design as temporally-aware.

Most existing groupware toolkits provide shared state ab-
stractions that attempt to hide the presence of latency. These
toolkits provide no mechanism for detecting and managing
divergence between the local and remote state, and therefore
make it difficult to implement temporally-aware groupware.

In this paper, we present timelines, a novel programming
model for shared-state distributed groupware. Timelines ex-
pose the temporal dimension of shared state, allowing pro-
grammers to manipulate past and future state values. Time-
line variables can be shared between remote participants in a
groupware session. In so doing, they allow programmers to
modify the rate at which time flows, and to create divergent
timelines for different participants. These provide the nec-
essary constructs for creating temporally-aware groupware.
Timelines have been implemented within the Janus toolkit,
and have been used by the authors and by other developers
to create a range of groupware applications.

We illustrate the advantages of timelines by showing how
they can be used to implement several classes of temporally-
aware groupware. These include:

• Helping participants manage the effects of latency by show-
ing the temporal context for the actions of others;
• Helping participants coordinate their actions by better syn-

chronizing events on participant clients;
• Reducing jarring effects through smooth corrections;
• Reducing confusion by basing application decisions on

the affected participants’ frame of reference, and
• Reducing loss of context following short-term disconnec-

tion from a session through progressive catch-up.

The paper is organized as follows. We first present a novel
classification of ways in which groupware can be made tem-
porally-aware. We then discuss how existing programming
tools and frameworks treat the notion of time, motivating the
need for our timelines model. Finally, we present the model,
and then discuss its implementation in the Janus toolkit.

CONFRONTING LATENCY: MAKING GROUPWARE TEM-
PORALLY AWARE
Most groupware applications strive to hide from their users
that there is a time delay between performing an action and
having others see it. These time delays do exist, however,
and necessarily lead to temporary divergence of state be-
tween the clients of different users. Examples range from
multiplayer games, where other players’ positions may be
incorrectly reported [1], to shared editors such as Google
Docs, where users’ edits take time to propagate through the
network. Attempting to hide latency can negatively affect
the usability of the application, for example leading players
to shoot at the wrong location in a game, or leading to con-
fusion when discussing recent edits in a text document.

Another approach is to confront latency in the programming
of groupware applications, either through novel ways of pre-
senting information that help users compensate for the nega-
tive effects of latency, or through algorithms that reduce the
negative consequences of temporal divergence at the appli-
cation level.

In this section, we present five broad ways in which con-
fronting latency can help application usability. Existing pro-
gramming tools provide no support for implementing such
time-sensitive semantics, which may discourage some pro-
grammers from using them.

Giving temporal context to actions of other users
When interacting with others at a distance, it can be difficult
to maintain the context of their interactions. This is partic-
ularly true when multiple collaboration modalities are used,
and are poorly synchronized due to network latency.

For example, if a collaborator is pointing using a telepointer
while talking over voice over IP, her voice may not be syn-
chronized to the pointing gesture, leading to confusion. This
confusion can be helped with telepointer trails (figure 1),
where not just the current telepointer position is shown, but
also its recent positions. As Gutwin et al. have shown, these
telepointer trails can help remote users maintain context [13].

Figure 1. Telepointer trails give temporal context to the actions of
remote participants

1 2 3

4

1 2 3 4 5 1 2 3 4 5

5

6

7

8

6

7

8

6

7

8

9 9 9

(a) Local client (b) Warping (c) Smooth corrections

Figure 2. Smoothing corrections can reduce jarring changes to the
user interface. Given avatar movement on a local client (a), corrections
on a remote host can lead to large warps (b), or can be smoothed (c).

The technical challenge in programming such mechanisms
that give temporal context to the actions of others is that
it is insufficient to maintain just the current system state.
Past state must be retained as well, and mechanisms must
be created allowing the application to efficiently access ear-
lier states.

Improving coordination
Collaborators can better coordinate their activities if they see
the same actions at the same time. Various algorithms have
been developed that manipulate time to improve the consis-
tency of experience of different groupware participants. No-
table among these is local lag [18], which delays the appli-
cation of local inputs to allow them time to propagate around
the network.

Programming local lag requires a mechanism for delaying
inputs for the appropriate amount of time and a means for es-
timating message delivery time between the different nodes.
It also requires a policy for handling messages that take longer
than the lag constant to arrive.

Smooth corrections
When participants in groupware sessions perform conflict-
ing actions, the presence of network latency means that there
may be a noticeable delay before the conflict is detected.
Conflict can arise when two people perform competing ac-
tions (e.g., two people making different edits to the same
text at the same time), or as a consequence of errors in pre-
dictive consistency maintenance algorithms (e.g., dead reck-
oning may incorrectly cause a game player’s view of another
player’s position to diverge from the real position [1].)

When conflicts are detected, they must be resolved so that
all participants’ views return to a consistent state. The sim-
plest (and most frequently used) solution to this is to com-
pute what that consistent state should be (e.g., through op-
erational transform [24]), and to set that state on all partic-
ipants’ clients. The problem with this approach is that the
user may be presented with jarring changes to her display
with no obvious explanation of why they have occurred.

An alternative solution is to allow the transition to a consis-
tent state to be carried out progressively, allowing the user
to see what changes are being carried out [23]. For example,
in the online game World of Warcraft, when the local repre-

sentation of another player’s position is corrected, the other
player’s avatar runs quickly to the correct position, rather
than simply warping. This takes longer to return the client
view to a consistent state, but is less jarring. This idea is
shown in figure 2: figure 2(a) shows the actual path taken by
an avatar. Figure 2(b) shows how the path would appear to
a remote participant, assuming that dead reckoning is used
to predict the avatar’s location. Note how the avatar “over-
shoots”, then jarringly warps to the correct location (at posi-
tion 6) when the next positional update is received. Finally,
figure 2(c) shows the path when using smooth corrections:
at time 5, the error is detected, and the avatar moves at in-
creased speed until it attains the correct location at time 9.
Algorithms such as this require controlled deviation in the
experience of different users, as implemented by divergent
states and differing rate of time flow.

Application decisions based on other participants’ frame
of reference
A core problem in the development of distributed groupware
is that no one node can have complete knowledge of the state
of any other node. When application-level decisions are re-
quired, the state of other nodes must either be guessed (pos-
sibly leading to error), or complex (and slow) protocols must
be used to ensure their states are synchronized.

A key example of this problem is in multiplayer shooter
games, where one player attempts to aim and shoot at an-
other. The shooting player aims at the target player’s avatar
as represented on his own computer. The target player may,
however, have moved in the meantime, and that movement
may not yet have propagated to the shooter’s client. The
decision as to whether the shooter has hit the target there-
fore requires knowledge of both the shooter and target client
states. This problem is illustrated in figure 3(a), where a
shooter needs to understand that the position of the target’s
avatar is incorrect, and guess where it is on the target player’s
client.

The Half-Life series of games bases hit decisions on the
shooter’s viewpoint, not the target’s [3]. A server determines
whether the shooter was correctly aiming at the target at the
time of shooting, based on the information available to the
shooter at that time. This allows direct aiming, as shown in
figure 3(b).

(a) Leading target (b) Aiming at target

Figure 3. a Shooting often requires players to “lead”, guessing where
the target actually is (a). The Half-Life algorithm allows players to
shoot at the target where they see it (b).

Implementing this Half-Life algorithm is complicated by the
server’s needs to be able to reconstruct the state of the shooter’s
client at the time the shot was made.

Allow catch-up following short-term disconnections
Short-term network congestion is frequent, leading to brief
periods where a groupware participant sees no updates from
other participants. The usual solution to these short-term dis-
connections is to simply apply all remote updates once they
arrive (after the congestion clears). Similarly to the prob-
lem of abrupt corrections discussed above, this may lead to
jarring changes in the user interface, and a loss of context.

For example, in a drawing application, a user would lose
the timing and ordering of the drawing operations performed
by other participants during the disconnection. A better ap-
proach might be to play the missed operations at double
speed, preserving order and timing [15]. Such algorithms
require the program to buffer incoming messages, and ma-
nipulate the flow of time as they are replayed.

Summing up: temporally aware groupware
Together, these examples show how groupware applications
can be improved by confronting latency. Some of our exam-
ples enhance participants’ user interfaces (temporal context,
smooth updates), while others use time behind the scenes to
improve participants’ quality of experience (improved coor-
dination, basing application decisions on other participants’
frame of reference.)

These examples break the paradigm of distributed model-
view-controller which underlies many groupware develop-
ment tools (e.g., GT/SD [7], Clock [10] and Fiia [25]), be-
cause the distributed models are explicitly allowed to diverge
(for disconnection recovery or smooth corrections), because
actions may be deferred to the future (for consistency main-
tenance algorithms such as used in Half-Life), and because
access to past or even future states may be required (for bas-
ing application decisions on others’ frame of reference.)

Programming support that allows the manipulation of time
is required. We now review existing programming models
that explicitly recognize time, following which we introduce
our own timelines model and its implementation in the Janus
toolkit.

CURRENT APPROACHES FOR MANAGING TIME
The preceding examples lead us to a list of requirements for
programming with time:

1. Data must have a temporal dimension, allowing a vari-
able’s values to be accessible at any point in the past,
present or future;

2. Data from multiple points in time must be accessible at
the same time; and

3. A mechanism must exist to control interpolation and ex-
trapolation between/from values at different times.

Existing groupware toolkits satisfy none of these temporal
requirements, but instead attempt to preserve the illusion that

shared state is the same on all clients [7, 10, 22, 25]. Most
toolkits support the development of groupware through ab-
stractions supporting shared state and mechanisms for dis-
tributed message passing. The shared state abstractions pro-
vide no means for determining in what ways one partici-
pant’s view differs from another, or for accessing past or
future values of the state.

We therefore look to other programming environments where
time has been explicitly incorporated into the language. Data-
flow programming languages (such as Lucid [2]) represent
variables and expressions as an infinite series of data objects
as opposed to single values. In dataflow languages, vari-
ables move sequentially from one state to the next; however,
there is no mechanism for accessing an arbitrary state in the
past or future. Constraint imperative languages extend data
flow languages to express temporal constraints in user inter-
faces [9], but again do not permit manipulation of past or
future states.

The field of animation has a long history of managing vari-
ables that evolve over time. Myers et al. have shown how
constraints can be used to create animated interfaces [20].
However this work provides no notion of attributes existing
as a continuous series of values and it does not support ex-
trapolation beyond the ending values.

A variety of commercial toolkits are available which man-
age some notion of time. Quicktime (http://bit.ly/cH6hVk)
provides extensive support for time based media. Toolkits
such as Adobe Flash (www.adobe.com), Core Animation
(http://bit.ly/a3B1z3) and Windows Presentation Foundation
(WPF) (http://bit.ly/kFqqE) provide explicit access to time
to help create animations. They allow attributes of an object
(such as position or colour) to be set at two points in time. It
is then possible to access interpolated values at any point in
time between these start and end points. However, the pro-
grammer is limited to accessing data from one point in the
animation at a time, and there is no notion of sharing these
animations between participants connected by a network.

Spatio-temporal databases [21] capture spatial and temporal
aspects of data and deal with the position and/or geometry
of objects changing over time. Spatio-temporal databases
support queries about time, temporal properties, and tempo-
ral relationships allowing data to be accessible at any point
in time. As well, data from multiple points in time may be
accessed within the same query.

Process historians such as OSISoft’s PI System (osisoft.com)
and AspenTech’s InfoPlus.21 (aspentech.com) are used in
the process control industry to store time series data and
events. The APIs for these systems implement many of the
principals required by temporally-aware groupware includ-
ing the ability to set and get values for any arbitrary time
and automatically interpolate values between time intervals.
Data can be accessed using either absolute or relative time.

These tools and programming languages introduce a variety
of concepts for manipulating data which changes over time.

Our work extends the temporal components found in these
environments by applying them to shared data in a group-
ware toolkit. Specifically, our timelines model combines the
ability of Flash and WPF to index variables by time, and the
ability of spatio-temporal databases and process historians
to set and query data at arbitrary times in the past and future.
In the following section, we will demonstrate how timelines
help programmers add temporal-awareness to their group-
ware applications, addressing usability problems of latency.

EMBRACING TIME: THE TIMELINES MODEL
The timelines model helps programmers to create temporally-
aware groupware. Rather than hiding the consequences of
network latency, timelines allow states to be indexed by time,
and allow temporally-based control of how remote updates
are applied locally. These features of the model simplify the
programming of temporally-aware groupware applications
as characterized in the last section.

In the timelines model, shared state variables are not repre-
sented as instantaneous values in time, but as values index-
able by time. Variables represent all the values they have
held in the past and all values they will hold in the future.
As we shall see, this is a simple yet powerful way for pro-
gramming temporally-aware groupware. For example, the
telepointer trails of figure 1 can be implemented simply by
accessing (and drawing) the previous positions of the tele-
pointer from its “position” timeline.

Timelines are composed of:

• Get/set operations that access the timeline’s value at a
given time;
• Interpolation and extrapolation functions that estimate val-

ues for times when no value is known;
• A remote update function that processes timeline updates

from remote peers.

Figure 4 shows how these elements are combined. In the
timeline, v1, v2 and v3 represent values for times t1, t2 and

interpolated
values

extrapolated
values

v1 v2 v3

t1 t2 t3

values values

t1 t2 t3

remote update
functionmodifications to

timeline

remote updates

Figure 4. Elements of the timelines model: a timeline includes a set
of past and future known values (v1, v2, . . .), along with the times at
which they hold (t1, t2, . . .). Values between these times are computed
using an interpolation function, and values after these times are es-
timated using an extrapoloation function. A remote update function
determines how updates received from peers are inserted into the time-
line.

t3 respectively. These are known values, meaning that they
have been explicitly set in the timeline.

While timelines may contain objects of arbitrary complex-
ity, we introduce the model by examining a timeline for a
simple integer value. Consider health, an integer timeline
representing the health points of an avatar in a multiplayer
game. Storing values in the timeline is as simple as assign-
ing those values at a specific time. Thus,

health(-100) = 200;

assigns the known value of 200 to the integer timeline at 100
ms in the past, and

health(0) = 230;

assigns the known value of 230 to the timeline at the current
time. (Time references are expressed in milliseconds, may
be positive or negative, and are relative to the current time.)

When the value for a given time is not known, it is inter-
polated or extrapolated from its neighbouring known val-
ues. The value of health(−50) would be derived as 215
using linear interpolation between the two known values of
200 and 230, and the value of health(100) would be ex-
trapolated to be 260. Thus, although our timeline currently
contains only two known values, any value from the past or
future can be determined through interpolation or extrapola-
tion. As more known values are added to the timeline, the
interpolated and extrapolated values may change.

As we shall see, in our Janus toolkit, all timelines derive
from a Timeline base class. The constructor for a timeline
object requires one parameter, the string name of the time-
line. If IntegerTimeline is an implementation of a timeline
containing integer values, then

IntegerTimeLine health
= new IntegerTimeLine("player1Health");

creates a local instance of the “player1Health” timeline.

If two clients both create instances of the “player1Health”
timeline, Janus synchronizes both instances. The timeline’s
remote update function specifies how updates arriving over
the network are to be applied. Whenever a timeline is up-
dated by assigning a new value at a given time, an update
message is sent to any synchronized instances on other clients.
By default, the remote update function adds the incoming
update into the timeline at the correct location. As we shall
see, this behaviour can be overridden in useful ways.

To illustrate the model, we show how it can be used to im-
plement the examples of temporally-aware groupware that
we have introduced earlier.

Providing temporal context: Telepointer Trails
As shown in figure 1, telepointer trails can help retain con-
text when another participant is using her pointer to gesture.
Assume we use a timeline tp to represent the position of an-
other participant’s telepointer, and assume that a DrawTele-
pointer operation draws a telepointer at a given location in a

given colour. Then a code sketch for drawing a telepointer
with its trails is simply:

for(int time = -300; time < 0; time += 50)
{

DrawTelepointer(tp(time), gray);
}
DrawTelepointer(tp(0), blue);

Here, the “trail” is represented as a set of gray telepointer
symbols, placed at past positions. These positions are sam-
pled over the last 300 ms at 50 ms increments. The current
telepointer is drawn in blue. Times are relative to the current
time, allowing this code to work whenever it is executed.

Improving coordination: Local Lag
Another example is the local lag algorithm, used to increase
consistency in participants’ experience. As described ear-
lier, a constant delay (e.g., 100 ms) is applied to all input
operations. When the operation is applied on remote sites,
the delay must compensate for the time to deliver the op-
eration so that the operation is applied at the same time on
all clients. Local lag algorithms must have some means of
dealing with messages which take longer than the constant
delay to arrive, and therefore cannot be applied on time. In
the timelines model, this behaviour is easily specified.

Consider that “Alice” and “Bob” control avatars in a virtual
world. Alice’s avatar’s position is represented in a timeline
of positions called alicePos. Alice’s client uses local lag to
set positions in response to her movement commands. As-
suming that the lag constant is LAG, and Alice moves to a
new position 〈x, y〉, then the operation on Alice’s client to
process the movement is simply:

alicePos(LAG) = (x, y);

For example, if LAG = 100, then Alice’s position has been
set to 〈x, y〉 100 ms in the future.

On both Bob and Alice’s clients, Alice’s position is drawn
as:

DrawAvatar(alicePos(0));

That is, the avatar is drawn at its position at the current time.
(A typical approach would be to put this DrawAvatar com-
mand into a loop executing at 60 frames per second.)

This very simple code has a range of interesting effects, as
illustrated by figure 5. On Bob’s client, messages indicating
Alice’s movements are automatically inserted into the time-
line when they arrive. If the real time of the movement is t
(i.e., t is the time that Alice set the position plus LAG), then
the new position 〈x, y〉 is inserted at time t.

If the message took less than LAG ms to arrive (figure 5(a);
hopefully the normal case), then on Bob’s remote client, the
new position appears in the future, allowing the present posi-
tion to be interpolated (using previously recorded positions).
Therefore, the local lag functionality supports smooth move-
ments on remote clients without annoying corrections.

interpolated
l

<x1,y1>

current time

values

<x,y>

(a) current time t

extrapolated
values

(a)

< > < ><x1,y1>

current timet

<x,y>

(b)

Figure 5. Local lag in the timelines model. Messages may arrive (a)
as future states, enabling the use of interpolation, or (b) as past states,
requiring the use of extrapolation.

Alternatively, if the message took more than LAG ms to ar-
rive (figure 5(b)), then the positional update appears in the
past, and current positions are extrapolated from this (and
possibly other) past values.

This simple example illustrates the power of the timelines
model. Very little code is required to implement local lag,
since the problems of synchronizing lag between different
clients and of dealing with messages which take longer than
the lag constant to arrive are handled automatically.

The model offers significant flexibility. By overriding the
default interpolation/extrapolation functions, a wide range of
behaviour can be specified. And as we shall see in the next
two examples, custom handling of remote messages allows
clients to diverge their timelines from that of other clients,
allowing easy expression of complex temporal behaviour.

Smooth Corrections: World of Warcraft position fixups
Smooth positional corrections [23] can be easily specified
using timelines. The simplest way of handling position cor-
rections is to immediately move (or “warp”) the avatar to the
new position. This can have a jarring effect as an avatar sud-
denly jumps across the screen. An alternative solution, is to
have the avatar move quickly to the new position.

We implement smooth corrections by overriding the posi-
tion timeline’s default remote update function. As we have
seen, remote updates are normally handled by adding the in-
coming value to the timeline at the appropriate time. This
approach replicates the timeline on all clients that have ac-
cess to it. For smooth corrections, however, we purposely
wish the timelines to diverge – when a local client receives a
correction, the local timeline is modified to gradually move
towards a consistent state.

Figure 6 shows this approach. Assume the avatar of a remote
player has been extrapolated, based on earlier known posi-
tions, to be at a location currentPos at the current time. The
client receives a message indicating that the avatar was ac-
tually at a position fixupPos at some earlier time fixupTime.
Extrapolating from this position and time, we deduce that

the avatar should in fact currently be at position correctCur-
rentPos.

The simple solution to this error would be to update the cur-
rent position to correctCurrentPos, and this is in fact what
the timelines model does by default: when a value is set in
the past, all future known values are considered to be in-
validated and are removed from the timeline. The current
position would therefore be extrapolated from the fixup po-
sition.

Instead, we decide to move the avatar to the correct position
over the next 2,000 ms. The avatar’s target position (target-
Pos) is determined by extrapolating 2,000 ms into the future
from the correctCurrentPos. The avatar will move quickly
over the next two seconds to that position.

This is accomplished as follows using the timelines model.
First, we need to save the current position before the update
is applied, i.e., the avatar position at time 0. This is necessary
because inserting a new past value into the timeline will alter
the current position.

currentPos = avatarPos(0);

Next, we place the fixup position (the position contained in
the latest update message) into the timeline at the correct
time. This allows us to estimate a target position we want to
arrive at 2,000 ms in the future:

avatarPos(fixupTime) = fixupPos;
targetPos = avatarPos(2000);

Finally, we insert both the current position, and the target po-
sition into the timeline. (The assignment of the target posi-
tion is necessary as its extrapolated value changes following
the update of the current position.)

avatarPos(0) = currentPos;
avatarPos(2000) = targetPos;

This example illustrates how one form of smooth correction
can easily be implemented via timelines. The key concept is
that by having the ability to modify a timeline, programmers
are able to explicitly control the divergence of timelines be-

Where avatar
should be in
2,000 ms
(t tP)

Where avatar should
be at current time
(correctCurrentPos) (targetPos)(correctCurrentPos)

Actual avatar
position from
time fixupTime
(i t)(in past)

Avatar position at
current time (currentPos)

Earlier known position

Figure 6. A timelines implementation of smooth corrections in the style
of World of Warcraft positional updates.

tween different clients. The remote client, where the avatar
is being controlled, sees neither the error nor the correction.

Application decisions based on other participants’ frame
of reference: Half-Life Targeting
The examples of temporally-aware groupware that we have
explored so far directly modify the user interface, and are
therefore prominently visible to the user. Another use of
temporal awareness is to improve how application-level de-
cisions are made, by allowing the application to consider
that different participants’ clients have different states. As
we have discussed, one example of this is the aiming mech-
anism in the Half-Life series of games, where a server arbi-
trates hit decisions based on the state of the shooter’s client
at the time the shot was made. This requires the server to be
capable of unwinding time to determine the position of the
target avatar on the shooter’s client.

In Half-Life, this problem is made more difficult through
the use of lag compensation, which allows each player to
sees his own avatar in real-time and a lagged version of all
remote players [3]. This “remote lag” algorithm applies a
constant lag to the actions of other players, removing the
effects of variance in packet delivery time, and allowing the
use of interpolation rather than error-prone dead reckoning
when displaying the positions of enemy players.

Figure 7 shows how timelines are used to solve this targeting
problem. Two clients (one for the shooter and one for the tar-
get) and a server share timelines representing the current and
past states of the shooter and the target. When players per-
form input actions, the appropriate timelines are updated at
time 0. To implement remote lag, remote players are drawn
at time −REMOTE LAG, ensuring that they are rendered a
constant time in the past. Timeline updates are automati-
cally propagated between the server and clients. Assuming
a message takes L ms to travel from the shooter client to the
server, the hit decision is based on the state of the shooter
at time −L (when the message was sent) versus the state of
the target at time −L − REMOTE LAG (where the shooter
believed the target was at time −L).

On shooting:
Did shooter(‐L) hit
target (‐L‐REMOTE_LAG)?

Server

On user input:
set shooter(0)

On user input:
set target(0)

latency L

Draw:
shooter(0)
target(‐REMOTE_LAG)

Shooter client

Draw:
target(0)
shooter(‐REMOTE_LAG)

Target client

Figure 7. A timelines approach to implementing Half-Life’s hit deter-
mination code

More precisely, two timelines are used: shooterTimeline and
targetTimeline. These timelines specify the player’s posi-
tion, heading and whether the player is currently shooting.
Periodically, the server checks the shooter timeline to see
whether a shot has been fired. The time of the last known
shooter status is queried and saved to t. The state of the
shooter at that time is retrieved, and used to determine whether
the shooter was firing his weapon at that time:

t = LastKnown(shooterTimeline);
shooter = shooterTimeline(t);
if(shooter.IsShooting) ...

If the player was shooting, the server then determines the
state of the target player at the time of firing, as viewed by
the shooter. This is done by subtracting the amount of re-
mote lag from the time the shot was fired, and retrieving the
target state at that time:

target = targetTimeline(t - REMOTE_LAG);

Finally a TargetHit function uses the avatars’ positions and
shooter’s direction to determine whether the target avatar
was hit. If the target was hit, its health points are decre-
mented.

if (TargetHit(shooter.Position, shooter.Heading,
target.Position))

{
targetHealth(0) = targetHealth(0) - 1;

}

Thus, the server needs to take account of the shooter’s frame
of reference when a shot was made to determine whether the
shot hit the target. The timelines model’s ease of accessing
past states makes this straightforward.

Short-term disconnections: telepointer updates
As our final example, we consider the problem of updating
a participant’s state following a short-term disconnection.
This example shows how the rate at which time flows can
be modified.

In this example, we wish to replay all the actions that oc-
curred while the client was disconnected. The actions are
replayed at a faster pace allowing the client to see all the
changes that occurred while she was disconnected, and to be
quickly brought up to the current state.

This scenario is again straight-forward to program using time-
lines. Consider the following example in which a remote
telepointer is being displayed. When the client reconnects,
a variable drawLag is initialized to the duration of the dis-
connection in milliseconds. (This disconnection time could
easily be determined based on the time of the last update
received.)

drawLag = DisconnectionTime;

A second variable elapsedTime contains the time in millisec-
onds between successive executions of a DrawTelepointer
function. It is assumed that some form of delay exists be-
tween successive executions of the DrawTelepointer func-
tion. (DrawTelepointer might be repeatedly invoked through
a timer event.) On the first execution of DrawTelepointer,
the telepointer is drawn at its position as of the disconnec-

tion’s start. With each successive execution, drawLag is
decremented by an amount equal to the elapsedTime. This
has the effect of replaying the telepointer positions at twice
the original speed.

DrawTelepointer(int elapsedTime)
{

Draw(pointerTimeline(-drawLag));

if (drawLag > 0)
{

drawLag -= elapsedTime;
}

}

Summing Up: the Timelines Model
This section has introduced the timelines model, and shown
how it allows explicit manipulation of time in groupware ap-
plications. The model’s ability to access and modify past
and future states, to change the rate of time, and to cre-
ate divergent timelines for different participants provides the
necessary infrastructure for the creation of a broad range of
temporally-aware groupware applications. We now discuss
how timelines can be supported in a practical toolkit.

IMPLEMENTING TIMELINES: THE JANUS TOOLKIT
In order to support experimentation with the timelines model,
we have implemented it within the Janus toolkit. The toolkit
is named after the eponymous Roman god, who as with users
of timelines, had the ability to see into the past and future.

Janus is written in C#, although it could easily be ported to
any other object oriented language. It has been used by the
authors and by other developers to create several groupware
applications based on Windows Forms and Microsoft’s XNA
game development library.

Within Janus, timelines are implemented as objects descended
from the Timeline class. Each timeline has a base type (the
type of the timeline state) and methods implementing inter-
polation, extrapolation and remote update handling. The de-
fault values of these methods can be overridden to create ar-
bitrary timeline types. Timeline objects also provide Get and
Set methods for retrieving/modifying the timeline’s state, as
well as methods for accessing the previous/next “known”
value (i.e., value that is defined in the timeline, rather than
interpolated/extrapolated.)

Each timeline object has a string identifier. If two clients
create timelines with the same identifier, those timelines are
synchronized. Whenever a timeline is modified, an update
is sent over the network to its remote peers. When a re-
mote update is received, it is applied via the remote update
handling function. By default, this function simply inserts
the new state into the timeline at the correct time; as we
have seen, overriding this function can allow easy program-
ming of interesting behaviours. To support synchronization,
Janus uses a global clock, which we implemented using the
Berkeley algorithm, whose accuracy is in the small tens of
milliseconds [12].

Known timeline states (i.e., those that have been set with the

Set method) are simply organized into a doubly-linked list,
where each state is tagged by its time. The shared state ob-
ject may be as simple as a single integer, for example repre-
senting the health points of an entity in a game, or it may be
any arbitrarily complex object containing multiple properties
such as the shape, rotation and colour of a drawing program
entity. Although the time values stored in the linked list are
real times (measured in ms since the epoch), the program-
mer always accesses states using relative time, where zero
(0) means now, +10 represents 10 ms in the future, and -10
represents 10 ms in the past.

The Get method is used to retrieve the state of the timeline
at a given time (past, present or future). The Get method
uses the timeline’s interpolation and extrapolation functions
as necessary to provide values at times when none is known.

Distributed Architecture
From the developer’s point of view, Janus has a peer-to-peer
architecture. That is, updates are automatically routed be-
tween peers that share the same timeline, and all data is fully
replicated. If a server is required (as with our Half-Life ex-
ample of figure 7), one of the peers can be allocated a server
role.

In the current implementation of Janus, we have developed
a centralized message router to implement this peer-to-peer
communication. The router is based on a distributed publish
and subscribe architecture [8]. Timeline synchronization is
implemented by peers subscribing to updates for the timeline
in question. Updates are multiplexed so that one socket can
be used to synchronize any number of timelines.

Two notable optimizations are possible with this architec-
ture. First, updates are sent to peers whenever a timeline is
modified. For objects with large state, this can consume sig-
nificant bandwidth. In some cases, updates are predictable
with high accuracy – e.g., changes to the position of a draw-
ing program element that a user is dragging, or changes to
the scroll position when a user is navigating a document.
In our implementation of the Set method, we keep track of
which messages have been sent to remote clients. Then,
prior to sending an update to the timeline server, we cal-
culate whether or not the remote client would be able to ac-
curately extrapolate the new position if the message was not
sent. If the remote client would be able to extrapolate the
value of the update, then the update is stored locally but is
not sent over the network. A second reduction in bandwidth
requirements can be achieved by observing that often only
part of the shared state has been changed. Instead of send-
ing the complete state of changed values, deltas can be sent
specifying what has changed.

The amount of memory used by our implementation repre-
sents an area for future optimization. Currently all values
that are set are stored in the timeline, possibly requiring large
memory. Janus currently truncates history to limit storage
requirements. We plan to adapt algorithms for compacting
groupware history developed for the latecomer problem [6],
and mechanisms for compressing groupware messages [14].

Other areas for optimization include the networking infras-
tructure used by the toolkit. For example, recent techniques
such as lazy scheduling [16] could be used to improve the
efficiency of message delivery.

EXPERIENCE
Despite its status as a research prototype, Janus has been
used by a growing number of developers to create temporally-
aware groupware applications. The authors have used the
toolkit to develop the cooperative Snagger game. With the
toolkit, we were able to implement and experiment with a
variety of consistency maintenance algorithms including lo-
cal lag, dead reckoning, and the Half-Life algorithm.

The toolkit has been used by other developers to create sev-
eral other games including three simple exercise games, a
ubiquitous game based on spatial audio played on handheld
devices, and a multiplayer physics-based platformer game.
Because the latter game supports large numbers of players
within a vast persistent world, the networking code needed to
incorporate sophisticated interest management. These games
were developed by five developers, none of whom were au-
thors of Janus itself. All were students, ranging from un-
dergraduate to Ph.D. level, and most had only passing expe-
rience with distributed systems programming. Despite this,
they all reported finding it relatively straightforward to im-
plement networking using the Janus toolkit. For the two
player exercise games and the spatial audio game, the time
to incorporate networking was measured in hours. Although
the multiplayer game involving interest management was
more complex, it was still just a matter of days to implement
multiplayer support.

Our experience indicates that timelines can make it easy to
implement basic networking in groupware applications. As
we have seen, timelines also provide the opportunity to im-
plement more sophisticated algorithms. Because timelines
form a sufficiently different way of thinking about shared
data, we have found that some instruction is required to il-
lustrate the many ways in which they can be used.

Although our experience has largely focused on the develop-
ment of multiplayer games, timelines can readily be applied
to other groupware applications such as shared editors and
drawing tools or chat applications where temporal awareness
could lead to improved user experiences.

We have found timelines to be a powerful tool for adding
temporal awareness to groupware applications. However,
not all communication in groupware can be naturally mod-
elled via shared data. For example, in the targeting example
of figure 3, shooting actions are more naturally modelled via
events than state changes. We are currently investigating ap-
proaches for integrating events with timelines.

DISCUSSION
We have illustrated that the development of temporally-aware
groupware requires programmers to explicitly manipulate
time, and have discussed that existing groupware toolkits
do not provide the necessary mechanisms to do so easily.

We have shown through examples that the timelines model
(and its implementation in the Janus toolkit) can ease the de-
velopment of temporally-aware groupware by allowing de-
velopers to access and modify past and future states, create
divergent timelines, and change the rate at which time flows.

Many of our examples are drawn from multiplayer games.
This is because games are a highly popular form of dis-
tributed groupware, and a great deal of innovation in user
interfaces has come from well-funded gaming companies.
While the benefits of temporal awareness can be applied to
all forms of distributed, real-time groupware, outside the
gaming sphere, most work has been done in research labs
where the complexity of creating such applications has lim-
ited their exploration. We hope that once the Janus toolkit
has been released to the public, it will permit wider explo-
ration of temporally-aware groupware.

Interesting technical questions remain with the implemen-
tation of timelines. As discussed earlier, we plan to explore
how timelines can be represented efficiently (using compaction
algorithms), and how update messages can be compressed.
A further interesting question is how accurately the toolkit
can handle time. Our current implementation of the global
clock can lead to divergence of tens of milliseconds between
different nodes in the network, and the Windows CPU schedul-
ing algorithm (based on multi-level priority queues) can lead
to milliseconds of error when attempting to schedule an ac-
tivity for a particular time. Characterizing the scope of these
errors is an interesting question, as is the degree to which
they can be mitigated by improved algorithms.

A significant issue to be addressed in future work is how
traditional concurrency control algorithms can be meshed
with the timelines model. Initial explorations indicate that
the concepts fit well. A simple “lock” timeline whose state
specifies the owner of a lock at a given time could support
pessimistic concurrency control. For optimistic approaches
(such as operational transform [24]), the concurrency control
algorithm would be built into the remote update function,
mediating when and how updates are applied to the time-
line. Rollback algorithms [17] are easily implemented using
timelines’ ability to access previous states. Techniques that
would allow the merging of data from multiple sources [19]
might be possible by customizing the remote update func-
tion. Further work is required to rigorously examine how
well such existing consistency maintenance algorithms can
be adapted to the timelines approach.

We also plan to explore how richer interpolation and ex-
trapolation functions can be used in timelines. In some ap-
plications, extrapolation could be based on user models or
deeper application knowledge. In games, extrapolation of
the behaviour of other players could be based on pathfinding
algorithms, sophisticated artificial intelligence, or could be
linked to a physics engine.

CONCLUSION
In this paper we have presented timelines, a programming
model easing the development of temporally-aware group-

ware. We have argued that the presence of network latency
requires better handling of time in groupware applications.
Timelines makes the treatment of time an integral part of
the programming model, allowing manipulation of past and
future values, allowing changes in the rate at which time
passes, and allowing control over how state diverges over
time for different participants in a groupware session.

Timelines have been implemented within the Janus toolkit,
and were used to implement all examples of temporally-
aware groupware presented in the paper.

ACKNOWLEDGMENTS
We gratefully acknowledge the funding of the NSERC Strate-
gic Project Grant on Technology for Rich Group Interaction
in Networked Games and the GRAND Network of Centres
of Excellence.

REFERENCES
1. S. Aggarwal, H. Banavar, and A. Khandelwal.

Accuracy in dead-reckoning based distributed
multi-player games. In Proc. NetGames ’04, pages
161–165, 2004.

2. A. E. Ashcroft and W. W. Wadge. Lucid, a
nonprocedural language with iteration. CACM,
20(7):519–526, July 1977.

3. Y. W. Bernier. Latency compensating methods in
client/server in-game protocol design and optimization.
In Game Developers Conference, 2001.

4. P. Bettner and M. Terrano. 1500 archers on a 28.8:
Network programming in Age of Empires and beyond.
In Game Developers Conference, 2001.

5. N. Bouillot. Fast event ordering and perceptive
consistency in time sensitive distributed multiplayer
games. In CGAMES2005, pages 146–152, 2005.

6. G. Chung, P. Dewan, and S. Rajaram. Generic and
composable latecomer accommodation service for
centralized shared systems. In EHCI, pages 129–147,
1998.

7. B. de Alwis, C. Gutwin, and S. Greenberg. GT/SD:
Performance and simplicity in a groupware toolkit.
EICS, pages 265–274, 2009.

8. P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec.
The many faces of publish/subscribe. ACM computing
Surveys, 35(2):114–131, 2003.

9. B. Freeman-Benson and A. Borning. The design and
implementation of Kaleidoscope’90, A constraint
imperative programming language. Proc. IEEE Intl.
Conf. on Computer Languages, pages 174–180, 1992.

10. T. C. N. Graham and T. Urnes. Linguistic support for
the evolutionary design of software architectures. In
ICSE 18, pages 418–427, 1996.

11. S. Greenberg and D. Marwood. Real time groupware as
a distributed system: Concurrency control and its effect
on the interface. In CSCW, pages 207–217, 1994.

12. R. Gusella and S. Zatti. The accuracy of the clock
synchronization achieved by TEMPO in Berkeley
UNIX 4.3 BSD. IEEE T-SE, 15(7):853, 1989.

13. C. Gutwin. Traces: Visualizing the immediate past to
support group interaction. In Graphics Interface, pages
43–50, 2002.

14. C. Gutwin, C. Fedak, M. Watson, J. Dyck, and T. Bell.
Improving network efficiency in real-time groupware
with general message compression. In CSCW, page
128. ACM, 2006.

15. C. Gutwin, T. C. N. Graham, C. Wolfe, N. Wong, and
B. de Alwis. Gone but not forgotten: Designing for
disconnection in synchronous groupware. In CSCW,
pages 179–188, 2010.

16. S. Junuzovic and P. Dewan. Lazy scheduling of
processing and transmission tasks in collaborative
systems. In Group’09, pages 159–168. ACM Press,
2009.

17. A. Karsenty and M. Beaudouin-Lafon. An algorithm
for distributed groupware applications. In Proc.
ICDCS, pages 195–202, 1993.

18. M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg.
Local-lag and timewarp: Providing consistency in
replicated continuous interactive media. IEEE
Transactions on Multimedia, 6(1):47–57, 2004.

19. J. Munson and P. Dewan. Sync: A Java framework for
mobile collaborative applications. IEEE Computer,
30(6):59–66, June 1997.

20. B. Myers, R. Miller, R. McDaniel, and A. Ferrency.
Easily adding animations to interfaces using
constraints. In UIST ’96, pages 119–128, 1996.

21. N. Pelekis, B. Theodoulidis, I. Kopanakis, and
Y. Theodoridis. Literature review of spatio-temporal
database models. Knowledge Engineering Review,
pages 235–274, 2004.

22. M. Roseman and S. Greenberg. Building real-time
groupware with group-kit, a groupware toolkit. ACM
TOCHI, 3(1):66–106, 1996.

23. J. Smed and H. Hakonen. Algorithms and Networking
for Computer Games. Wiley, 2006. ISBN:
9780470018125.

24. C. Sun and C. Ellis. Operational transformation in
real-time group editors: Issues, algorithms, and
achievements. In CSCW, pages 59–68. ACM, 1998.

25. C. Wolfe, T.C.N. Graham, W.G. Phillips, and B. Roy.
Fiia: User-centered development of adaptive groupware
systems. EICS, pages 275–284, 2009.

26. J. Wu and T. C. N. Graham. Toward quality-centered
design of groupware architectures. In Engineering
Interactive Systems, volume 4940 of Lecture Notes in
Computer Science, pages 339–355, 2008.

	Introduction
	Confronting Latency: Making Groupware Temporally Aware
	Giving temporal context to actions of other users
	Improving coordination
	Smooth corrections
	Application decisions based on other participants' frame of reference
	Allow catch-up following short-term disconnections
	Summing up: temporally aware groupware

	Current Approaches for Managing Time
	Embracing Time: The Timelines Model
	Providing temporal context: Telepointer Trails
	Improving coordination: Local Lag
	Smooth Corrections: World of Warcraft position fixups
	Application decisions based on other participants' frame of reference: Half-Life Targeting
	Short-term disconnections: telepointer updates
	Summing Up: the Timelines Model

	Implementing Timelines: The Janus Toolkit
	Distributed Architecture

	Experience
	Discussion
	Conclusion
	REFERENCES

