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Abstract—Consistency maintenance techniques used in net-
worked multiplayer games require a tradeoff between the degree
of consistency and the responsiveness to player commands. The
choice of which technique is most appropriate depends upon the
specific game situation. However, all techniques share the need
to deal with time as well as with game state data. This can make
implementing consistency maintenance techniques difficult. The
solution is to have a programming model that is better able to
deal with time. In this paper, we present such a programming
model, timelines. Timelines allow for the explicit treatment of
time and have been implemented as part of the Janus toolkit.

I. INTRODUCTION

Consistency maintenance in gaming refers to the techniques
used to ensure that different players see the same shared state.
Networked multiplayer games use a variety of techniques for
consistency maintenance such as dead reckoning [1], delaying
local inputs [5] and lag compensation [2]. Each technique
represents a tradeoff between the degree of consistency and
the response time to player actions [8]. As a result, specific
techniques are best suited to different game situations [4]. One
of the challenges in implementing any consistency mainte-
nance technique is that the programmer needs to deal with time
as well as with shared state data, for example coordinating
the time a shot was fired to prevent situations where dead
men are able to keep shooting [7]. The solution is to have a
programming model that is better able to deal with time.

In this paper, we present timelines, a novel programming
model for shared-state in multiplayer games. Timelines expose
the temporal dimension of shared data, allowing programmers
to manipulate past and future state values. Timeline variables
can be shared between remote players. This allows program-
mers to modify the rate at which time flows, and to create
divergent timelines for different players.

II. THE TIMELINES MODEL

In the timelines model, shared state variables are not repre-
sented as instantaneous values in time, but as values indexable
by time. Variables represent all the values they have held in
the past and all values they will hold in the future. Timelines
are composed of:

• Get/set operations that access the timeline’s value at a
given time; and

• Interpolation and extrapolation functions that estimate
values for times when no value is known.
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Fig. 1. Elements of the timelines model: a timeline includes a set of past and
future values (v1, v2, . . .), along with the times at which they hold (t1, t2,
. . .). Values between these times are computed using an interpolation function,
and values after these times are estimated using an extrapolation function.

Figure 1 shows how these elements are combined. In the
timeline, v1, v2 and v3 represent values for times t1, t2 and t3
respectively. These are known values, meaning that they have
been explicitly set in the timeline.

Consider fuel, an integer timeline representing the amount
of fuel in a spaceship. Storing values in the timeline is as
simple as assigning those values at a specific time. Thus,

fuel(-100) = 230;

assigns 230 to the integer timeline at 100 ms in the past, and

fuel(0) = 200;

assigns 200 to the timeline at the current time. (Time ref-
erences are expressed in milliseconds, may be positive or
negative, and are relative to the current time.)

When the value for a given time is not known, it is interpo-
lated or extrapolated from its neighbouring known values. The
value of fuel(−50) is derived as 215 using linear interpolation
between the two known values of 200 and 230, and the value
of fuel(100) is extrapolated to be 170. Thus, although our
timeline currently contains only two known values, any value
from the past or future can be determined through interpolation
or extrapolation. As more known values are added to the
timeline, the interpolated and extrapolated values may change.

The timelines model is fully replicated with each client stor-
ing a local timeline object for each portion of the shared state
in which it is interested. If two clients create instances of the
same timeline, the timelines are automatically synchronized.
Figure 2 shows two clients each with a copy of the same
timeline. When Client 2 inserts a new value into the local
timeline, the value is propagated over the network and a remote
update function on Client 1 is invoked. The remote update
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Fig. 2. Timelines are fully replicated. When a client sets a new value into
the local timeline, the remote update function inserts the value into the same
timeline on all other clients

function specifies how updates arriving over the network are
to be applied.

III. IMPLEMENTING TIMELINES

We now discuss how timelines are implemented within our
Janus toolkit. Janus has been used by the authors and by other
developers to create several games based on Microsoft’s XNA
game development library.

Within Janus, timelines are implemented as objects de-
scended from the Timeline class. Each timeline has a base
type (the type of the timeline state) and methods implementing
interpolation, extrapolation and remote update handling. The
default values of these methods can be overridden to create
arbitrary timeline types. Timeline objects also provide Get and
Set methods for retrieving/modifying the timeline’s state.

Each timeline object has a string identifier. If two clients
create timelines with the same identifier, those timelines are
automatically synchronized. As shown in figure 2, whenever
a timeline is modified, an update is sent over the network
to its remote peers. When the remote update is received,
it is applied via the remote update handling function. By
default, this function simply inserts the new state into the
timeline at the correct time; overriding this function can
allow easy programming of other interesting behaviours. To
support synchronization, Janus uses a global clock, which we
implemented using the Berkeley algorithm, whose accuracy is
in the small tens of milliseconds [6].

Known timeline states (i.e., those that have been set with
the Set method) are simply organized into a doubly-linked
list, where each state is tagged by its time. The shared state
object may be as simple as a single integer, or it may be any
arbitrarily complex object containing multiple properties.

A timeline’s Get method is used to retrieve its state at a
given time (past, present or future). The Get method uses
the timeline’s interpolation and extrapolation functions as
necessary to provide values at times when none is known.
Default implementations of linear and stepwise interpola-
tion/extrapolation are provided, and developers can override
these functions to provide domain-specific behaviours.

To reduce bandwidth requirements, each client keeps track
of which values have been sent over the network. Prior to

sending an update, the client performs a check to determine
whether or not remote clients can predict the new updated
state. Only if the remote client is unable to predict the
new state within a set error threshold will the new state be
transmitted. Auto-adaptive dead reckoning schemes [3] can be
implemented by changing the error threshold depending upon
the game situation or factors such as network congestion and
bandwidth availability.

IV. STRENGTHS AND LIMITATIONS

The power of the timelines model lies in its explicit
treatment of time. Automatic interpolation and extrapolation
allow programmers to easily access shared state data from
any point in the past or future. This technique is extremely
powerful for manipulating shared data, although it is not
without limitations. The current timeline implementation does
not support multiple clients updating the same timeline, as the
updates from one client by default will overwrite updates made
by the other client. Further research is required to look at how
timelines can be adapted to handle such concurrency control
problems. Fortunately though, in most gaming situations,
updates for a given entity are controlled by a single client
or game server.

Timelines currently require the entire shared object to be
sent over the network for each update. This makes them
unsuitable for large data structures. We plan to explore how
timelines can be made more efficient by sending only changes
to the shared state, as opposed to sending the entire object.

Timelines provide a novel programming model. For pro-
grammers familiar with message passing techniques, the shift
to thinking about a shared state model indexable by time can
be significant, perhaps analogous to the shift from procedural
to object oriented programming. We have found that devel-
opers who dive into the model without carefully studying its
documentation and examples make the mistake of trying to
treat it like a message passing system.

The Janus toolkit and documentation are available for
download at http://equis.cs.queensu.ca/ equis/Janus.
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