Reducing the Negative Effects of Inconsistencies
in Networked Games

Cheryl Savery
School of Computing
Queen’s University
Kingston, Ontario, Canada
cheryl.savery @queensu.ca

ABSTRACT

Networking is a key component of digital games, with many
featuring multiplayer modes and online components. The
time required to transmit data over a network can lead to
usability problems such as inconsistency between players’
views of a virtual world, and race conditions when resolving
players’ actions. Implementing a good consistency mainte-
nance scheme is therefore critical to gameplay. Sadly, prob-
lems with consistency remain a regular occurrence in multi-
player games, causing player game states to diverge. There is
little guidance available on how these inconsistencies impact
player experience, nor on how best to repair them when they
arise. We investigate the effectiveness of different strategies
for repairing inconsistencies, and show that the three most
important factors affecting the detection of corrections are the
player’s locus of attention, the smoothness of the correction
and the duration of the correction.

Author Keywords
Consistency maintenance; game development; usability

ACM Classification Keywords
H.5.3 Information Interfaces and Presentation: CSCW

General Terms
Human Factors

INTRODUCTION

Networking has become a key technology within digital
games, as multiplayer interaction has become an almost ubi-
quitous feature. The time required to transmit data over a net-
work can lead to usability problems in networked games, such
as inconsistency between players’ views of a virtual world
and race conditions when resolving players’ actions. Imple-
menting a good consistency maintenance scheme is therefore
critical to game play.

Sadly, problems with consistency remain a regular occurrence
in multiplayer games, including some top-selling titles, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CHI PLAY’14, October 19-21, 2014, Toronto, ON, Canada.

Copyright © 2014 ACM 978-1-4503-3014-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2658537.2658539

237

T.C. Nicholas Graham
School of Computing
Queen’s University
Kingston, Ontario, Canada
nicholas.graham @queensu.ca

these problems can have a huge impact on player experi-
ence. For example, when Battlefield 4 [2] was released in
November 2013, players protested about the numerous lag is-
sues with the game. Sites such as IGN [12] and Reddit [18]
were inundated with negative comments from users. Even to-
day, the game continues to suffer from issues such as rubber-
banding, where characters are pulled back to previous po-
sitions, and players being killed despite being under cover.
While Battlefield 4 is one of the most egregious cases, it is
certainly not unique. In a 2009 survey of 389 reviews of
networked games, Pinelle et al. found that 49 of the reviews
specifically cited gameplay problems related to network la-
tency [17]. For example, in his review of Rainbow Six: Lock-
down, William Harms commented that “there were constant
issues with ghosting, where an enemy would simply vanish
right before you doubletapped him” [11].

What is it about game networking that makes it so difficult
to provide a consistent view of the game world to all play-
ers? The primary culprits are network latency, that is, the
time required for updates to travel over the network, and lim-
ited bandwidth, meaning there is sometimes more data to be
updated than can be transmitted without delays. To over-
come these restrictions, games rely on a variety of techniques
to maintain consistency, such as dead reckoning [16], which
uses prediction to estimate the positions of remote players
and other game objects between network updates, and local
lag [13], which delays local updates in order to improve over-
all consistency. Regardless of the technique used, the fact that
it takes time to transmit state updates over a network means
that the game state can never be perfectly synchronized. In-
consistencies are thus inevitable.

Despite the large body of research on techniques for main-
taining consistency in networked games, the issue of how
to repair inconsistencies when they are detected has been
largely overlooked. Inconsistencies can be repaired immedi-
ately, possibly resulting in a confusing or jarring experience
such as seen in Battlefield 4. Or gameplay can be adjusted to
mask the inconsistency until it can be repaired. There is lit-
tle guidance available as to which of these broad approaches
(and their many variants) best reduces the impact on player
experience. To address this, we conducted an experiment that
provides answers to three broad questions:

e How noticeable and annoying are corrections in networked
games?

e How do different gameplay conditions affect a player’s re-
action to these corrections? and

e What techniques may make corrections less annoying to
game players?

Our study tested 18 people in five variations of a custom game
that implemented several techniques for error correction. For
each correction, we recorded whether or not players noticed
the correction, and if they did notice it, the degree to which
they found the correction annoying. Some of our results were
largely expected, but are confirmed here for the first time:
corrections are most problematic when they occur within the
player’s locus of attention, and corrections are far more an-
noying when they impact the game situation. Other results
were surprising. Smoothing corrections over even a 250 ms
interval has an enormous effect on how frequently corrections
are noticed. Performing corrections with a gradually chang-
ing velocity is surprisingly better than using constant veloc-
ity. And the likelihood with which a player sees that a correc-
tion has taken place depends more on the correction’s velocity
than its magnitude.

This paper represents the first study of the impact of error
repair on player experience in networked games, and makes
three important contributions. First, we provide a list of
factors that influence how corrections affect player experi-
ence. Second, we evaluate techniques for reducing this im-
pact. Third, we provide specific guidelines for the rate at
which inconsistencies should be corrected.

BACKGROUND AND RELATED WORK

In networked games, inconsistencies arise due to a combina-
tion of network latency and the use of prediction by the game
client to determine the local game state. Because of the real-
time performance requirements of many networked games,
some inconsistency must typically be tolerated in exchange
for faster feedback to the player and quicker resolution of
game events.

Inconsistencies can have a negative impact on player perfor-
mance and experience [3, 15], such as the confusion caused
by sudden warps in position, the frustration of shooting di-
rectly at another player and missing [4], or the bafflement of
suffering damage from a grenade while protected by an invin-
cibility shield [1].

When an inconsistency between the views of two players is
identified (e.g., when a prediction algorithm has moved an
avatar to the wrong location), the error must be repaired —
and since errors often involve a visible object in the game,
the repair must be visually understandable. As we describe
in more detail below, some techniques provide smoother cor-
rections (e.g., interpolating between the incorrect and correct
locations over a time period) but at the cost of prolonging
the inconsistency, in that it takes longer for the two players’
views to reach the same state.

To get a better understanding of inconsistencies and how they
can be repaired, let’s consider two players, Alice and Bob.
Alice is controlling her in game avatar. She is moving from
left to right and then suddenly turns upward. We see this

238

A

I

I \

I

I

I

I

I

I
-=> > > >
Actual Warping Smooth Even Smoother
Motion Correction Correction Correction

(@ (b) (©) (d)

Figure 1. The dashed line (a) shows the motion of a game object that
is travelling from left to right and then sharply turns upward. The next
three images show the motion of that same object as viewed on a remote
display when using (b) warping, (c) simple smooth corrections and (d)
smooth corrections with a gradually adjusted correction rate.

motion in Figure la. Bob is playing on another computer,
and there is network latency between their two computers.
In Figures 1b, ¢ and d, we see three possible representations
of what might be shown on Bob’s screen. In all cases, Bob
sees Alice’s avatar moving from left to right, but when Al-
ice’s avatar turns, there is a delay before Bob’s computer re-
ceives a message specifying that Alice’s avatar has changed
direction. Until this message arrives, Bob’s computer con-
tinues to predict (incorrectly) that Alice’s avatar is moving to
the right. When the update arrives at Bob’s computer, Bob’s
game client detects an inconsistency: since Alice’s avatar has
been predicted to be moving to the right, but was in fact mov-
ing up, her avatar is shown in the wrong location on Bob’s
screen.

This error can be corrected in one of three ways. (1) Alice’s
avatar can simply be drawn in the updated location. More
precisely, the avatar will be drawn in a new predicted posi-
tion based on the newly received positional update — the pre-
diction is necessary, since the avatar may have moved during
the time it took for this update to be transmitted over the net-
work. Bob will see Alice’s avatar jump (or “warp”) to this
new position (Figure 1b). (2) The update can be performed
progressively, smoothly moving the avatar to the new loca-
tion. Bob would see Alice’s avatar speed up to join her newly
predicted path (Figure 1c). (3) Or, the avatar can be moved
with a gradually increasing speed to the new position. Bob
would see Alice’s avatar change speed more gradually to join
its newly predicted path (Figure 1d).

There are significant tradeoffs between these solutions, and
to-date, their impact on players’ experience has received very
little attention. Warping may affect players’ immersion in the
game world, since a player’s attention may be drawn toward
any sudden discontinuities in the position or motion of objects
in the game [15]. A player may also lose context, for exam-
ple, if an avatar that was in front of him is suddenly behind
him, out of his field of view. Smooth corrections may reduce
the jarring effect of corrections [20]; however, they prolong
the inconsistency, which may be unacceptable in some game
situations. Fiedler [8] suggests the rule of thumb of mov-
ing 10% toward the true position during each frame, but if
the correction is large, simply warping to the new position.

flrs

Figure 2. In the Space Rock-it colouring game, players colour the aster-
oids by bumping into them with their ship.

More sophisticated forms of smooth correction are possible;
e.g. varying priorities may be given to different objects in the
game to ensure the objects of higher importance deviate the
least from their true position [6]. While these algorithms are
promising, and while ad hoc rules of thumb can be useful,
there has been to-date no experimental validation of the im-
pact of these techniques on user experience. There has been
little effort to characterize when smooth corrections are effec-
tive, and to determine when and how they should be applied.

USER STUDY

As indicated previously, our research addresses three broad
questions: how noticeable and annoying corrections are in
networked games, how different gameplay conditions affect
players’ reactions to corrections, and what techniques make
corrections less annoying for game players.

To address these questions, we conducted a user study using
a custom-built game that allowed us to inject errors and cor-
rections into the game and to obtain player feedback. The
game — Space Rock-it, as shown in Figure 2 — features two
space ships and asteroids moving about in a 2-D world. Par-
ticipants played Space Rock-it under five separate gameplay
conditions, where they either observed the motion of the ob-
jects on the screen or controlled the motion of one of the space
ships. Consistency errors were periodically injected into the
game, with varying magnitude and varying correction styles.
Space Rock-it is intentionally simple in order to allow easy
isolation of gameplay conditions and to emphasize the impor-
tance of corrections on player experience. We now describe
how the game allowed us to address our research questions.

Q1: How Noticeable and Annoying are Corrections?

As participants played Space Rock-it, errors of differing mag-
nitude were randomly injected into the game and then cor-
rected using a variety of algorithms. Players were instructed
to press the space bar when they saw a correction, and then
rate how annoying they found the error. This allowed as-
sessment of what magnitude of errors people perceive, under
which conditions, and how annoying they found them.

239

Table 1. Summary of Game Conditions

Condition Game Ship
Name Task Entities Corrected
Observing - Single ~ Observe Only One Observed Ship
Observing - Many ~ Observe Only Many Observed Ship
Colouring Colour Asteroids Many Other Ship
Controlling Colour Asteroids Many My Ship
Shooting Shoot Other Ship ~ Many Other Ship

Q2: How Do Gameplay Conditions Affect Reactions to

Corrections?

In addition to the question of how annoying people find cor-
rections to be in general, we wished to investigate the im-
pact of three key factors on how players notice and react to
corrections. These factors are distraction, locus of attention,
and involvement with gameplay. First, the amount of activity
and number of objects or clutter in the game interface may
distract players and affect their ability to notice corrections.
Second, at any given time, people focus on a single area of
the display, and the proximity of a correction to this locus of
attention may affect how likely players are to notice it [21].
Finally, the very act of playing a game may affect a player’s
ability to notice corrections: playing a game may either dis-
tract players, causing them to not notice the corrections, or it
may exacerbate the effect of a correction if it breaks immer-
sion or affects gameplay performance.

To investigate these questions, we created five game condi-
tions within the Space Rock-it game (see Table 1). The ratio-
nale behind each condition is discussed below.

First, to investigate whether or not a visually busy game might
distract players and therefore mask corrections, we used two
conditions which differed only in the number of potentially
distracting objects on the screen. The task was simple: watch-
ing the screen and reporting corrections when they were ob-
served. In the Observing - Single condition, the participants
observed the motion of a single pink space ship on an other-
wise empty display. In the Observing - Many condition, the
participants again observed the motion of the pink space ship,
but there were also a second green ship and 40 asteroids mov-
ing about on the screen. In both conditions, corrections were
applied to the pink ship at random intervals. No corrections
were applied to the green ship or the asteroids. Comparing
the number of corrections detected by the participants in these
two conditions allowed us to see whether the distractions had
any effect.

In the Observing conditions described above, the participants
were passive observers of the pink space ship, allowing them
to fully focus their attention on it. By adding elements of
game play to Space Rock-it, we manipulated the players’ lo-
cus of attention. In the “Colouring Game”, players control the
green ship with the keyboard, and colour asteroids by bump-
ing into them. At the start of the game, all of the asteroids
are yellow in colour. If the green ship hits an asteroid, it
turns green. If the pink ship hits an asteroid, it turns pink.
This Colouring Game was used to create two conditions. In
the Controlling condition, the corrections all occurred to the
green space ship being controlled by the player, where we

presumed the player would be focusing most of her atten-
tion. In the Colouring condition, the corrections all occurred
to the pink, non-player controlled ship where we expected the
player would be paying much less attention. The “Shooting
Game” variant enable a third condition in which the player
needed to pay attention to two locations on the display. In the
Shooting condition, the player moved and aimed the green
ship while attempting to hit the pink ship with missiles. Cor-
rections were applied to the pink target ship. By compar-
ing the number of corrections detected by the participants in
the Controlling, Colouring and Shooting conditions, we de-
termined the degree to which the player’s locus of attention
affected their ability to notice corrections.

Finally, to investigate how playing a game impacted a player’s
opinion of corrections, we compared the Observing - Many
and the Controlling conditions described above. In both con-
ditions, the player is focused on the ship being corrected. The
conditions differ only in that in the Observing - Many condi-
tion, both ships move on their own, while in the Controlling
condition, the player attempts to colour asteroids by control-
ling the green ship that is experiencing the corrections. We
could thus determine how the act of playing a game affected
player perceptions by comparing the number of corrections
detected and the player ratings of the corrections for these
two conditions.

Q3: How Do Error Repair Techniques Impact Player Expe-

rience?

Our third major question addresses the effect of different re-
pair techniques on player experience. We implemented three
repair strategies in Space Rock-it: warping, smooth correc-
tions with a constant correction rate, and smooth corrections
with a variable correction rate. To provide guidelines for
repairing inconsistencies, we compared warping corrections
to smooth corrections and we compared smooth corrections
with a constant correction rate to those with a gradually ad-
justed rate. We also calculated detection limits for the various
corrections based on the time interval over which the correc-
tion was performed.

When performing smooth corrections, the simplest approach
is to pick a target location where the game entity should ar-
rive at some point in the future and then adjust the entity’s
velocity to smoothly move to that location (Figure 1c). The
problem with this approach is that, although there are no in-
stantaneous jumps in the position of the entity, there is a sharp
and sudden change in its velocity. Smed and Hakonen have
suggested that gradually changing the velocity (Figure 1d)
would make the correction less noticeable and thus be prefer-
able [20]. We sought to confirm this by implementing two
versions of smooth corrections. In the first version, we set
a time interval (ranging from 250 ms to 1000 ms, refer to
the Procedure section for specific values) over which the cor-
rection is to be completed and then move the entity toward
the correct location at a constant rate. This is shown by the
solid blue line in Figure 3. In the second version, we perform
the correction over the same time interval, but initially move
the entity slowly, increasing the correction rate over time as
shown by the dashed red line in Figure 3. The correction

240

Techniques for Smooth Corrections

PAN e Constant
% P4 \\ Correction
4
né P N Rate
2 L AN = «= Gradual
S V4 \ Change
£ ’ S
o P4 \
o P N
—r Nl
Time

Figure 3. Corrections may be done using either a constant or variable
correction rate

Using the keyboard indicate
how you pereeived the correction

1 Very Annoying

2 Annoying

3 Slightly Annoying

4 Perceptible but not Annoying

5 Imperceptible

Delete -- Oops didn't mean to press a key

Figure 4. When the participants noticed a correction they rated the
degree of annoyance on a scale of 1 to 5

rate increases linearly up to the mid point of the correction
and then decreases linearly. In both cases, the correction is
completed over in the same amount of time, and the average
correction rates are identical. Note, however, that when the
correction rate is changed gradually, the correction rate is ac-
tually higher in the middle of the correction. We compared
the number of corrections detected and the player ratings for
these two forms of smooth correction.

We expected that if smooth corrections are performed in-
creasingly slowly, there eventually comes a point where the
corrections are undetectable. In order to compute the detec-
tion limits, we included a range of correction sizes and cor-
rection times in the study. The specific values are listed in the
Procedures section.

Method

18 participants (16 male and 2 female) were recruited from
a local university. All of the participants were regular game
players who played fast-paced action games for a minimum
of four hours per week. We specifically recruited regu-
lar game players, as our earlier work has shown that non-
gamers have significantly less ability to detect anomalies in
games [19].

Procedure

The participants played the game seated at a computer with a
27 inch monitor and used the keyboard both to control their
on screen avatar (a space ship) and to provide feedback when
they observed a correction. Although the study investigated
repairs to inconsistencies in networked games, we used a sin-
gle player game in which errors and the subsequent correc-
tions were synthetically generated. This allowed us to control
the frequency and magnitude of repairs to inconsistencies.

The study began with a brief training session in which the
participants observed the normal motion of the space ship for
approximately thirty seconds. The ship then suddenly warped
to a new position and the participants were asked to press the
space bar when they saw this happen. At this point, the rating
system (Figure 4) appeared on the screen and was explained
to them. The participants continued to observe the space ship
for an additional minute and pressed the space bar each time
they noticed a correction.

Following this training period, the participants played the five
different game conditions listed in Table 1, with each con-
dition lasting approximately eight minutes. The conditions
were always played in the same order:

e Observing - Single: Observing one ship

e Observing - Many: Observing two ships and asteroids

e Colouring: Colouring game with corrections occurring to
the other ship

e Controlling: Colouring game with corrections occurring to
the player controlled ship

e Shooting: Shooting game with corrections occurring to the
target ship

We did not randomize the order of the conditions, because we
wanted the players to become thoroughly familiar with the
motion of the space ships and asteroids before beginning the
game play conditions. The results indicate that any learning
effect had little impact on the results, as we found no signif-
icant difference in the total number of corrections detected
between the Observing - Single, Observing - Many and Con-
trolling (first, second and fourth) conditions.

During each condition, corrections occurred to the position of
one of the two space ships. The players were asked to indi-
cate when they noticed a correction and to specify the degree
to which they found the correction to be annoying. When
the players noticed a correction, they pressed the space bar.
The game then paused and the participant rated how annoy-
ing they would have found a similar correction had it occurred
in an actual game (Figure 4). The rating scale was based on
the Mean Opinion Score (MOS) [14], a metric established for
subjective quality measurements of audio and video signals.
The MOS is based on human perception and has values rang-
ing from 1 to 5 with 1 indicating the poorest quality and 5
indicating no signal degradation. This scale has been adapted
and used by researchers to measure video game quality, par-
ticularly when affected by network latency [7, 22, 23].

The participants also had the option of pressing the delete key
to indicate that they had accidentally pressed the space bar.
While the game was paused, the positions of the space ships
and the asteroids were dimly visible in the background behind
the text. This enabled the players to remain focused on the
game while providing feedback about the corrections. The
game resumed immediately after the player pressed a number
key to rate the correction. The order of the errors was random-
ized and the errors and corrections were uniformly distributed
over three to eight seconds.

241

Following the study, we conducted a semi-structured inter-
view with each participant to elicit additional information
about how they rated the corrections and the types of cor-
rections they found most annoying.

During each condition, there were 60 corrections. We varied
the corrections along three axes:

o the magnitude of the correction,

e the correction time — the time over which the error was
repaired, and

e the smoothness of the correction

Each of these axes is described in more detail below.
Magnitude of the Correction

The magnitude of a correction is measured in centimetres on
the display. The space ship was 4 cm long by 1.5 cm wide and
travelled at a speed of 12 cm per second. This size was cho-
sen based on aesthetics and the requirement that the ship be
easily visible on the screen. The speed was selected to make
the ship comfortable to control. In setting the magnitude of
corrections, we considered the range of errors that might typi-
cally be found with modern network conditions and based the
size of the correction on how far the ship could travel in 125,
250 and 500 ms. With a ship velocity of 12 cm/s, the correc-
tion magnitudes were thus 1.5, 3.0 and 6.0 cm respectively.

Duration of the Correction

When repairing inconsistencies, a game developer must
choose between making the repair instantly with possibly jar-
ring effects or prolonging the inconsistency and progressively
fixing it over time. While it seems intuitive that repairing in-
consistencies over time would be superior to warping, this
had never been tested prior to this study, and there was no
experimental data to indicate how quickly the repairs should
actually be made. We performed a pilot study to determine
repair times that ranged from very obvious to rarely detected,
and based on these, we selected five duration values : 0 ms
(warping), 250 ms, 500 ms, 750 ms and 1000 ms.

Smoothness of the Correction

When repairing inconsistencies using smooth corrections, the
simplest solution is to adjust the speed of the entity and move
it at a constant rate toward the corrected position, as shown in
Figure lc. This has the potential to be jarring for the player
as the entity instantaneously changes speed and direction. As
shown in shown in Figure 1d, “smoother” corrections grad-
ually adjust the correction rate so that there are no sudden
changes in velocity [20]. The actual correction rates for these
two techniques are shown in Figure 3. When the correction
rate is changed gradually, the actual rate is faster at the mid-
point of the correction. In our study, we compared these two
options of constant and variable correction rates.

Data Collection and Analysis

The Space Rock-it game was used to log data about the cor-
rections and the participant responses. For each correction,
we recorded date and time, game condition, correction type
(constant or variable correction rate), magnitude of correc-

Table 2. Summary of Participant Responses

Number False
Description Reported Positives
1 Very Annoying 579 1
2 Annoying 660 5
3 Slightly Annoying 760 2
4 Perceptible but not Annoying 694 19
5 Imperceptible 3 0
Not detected 2,704
Total 5,400 27

tion, correction duration, positions of the ships, participant
response (or non-response if they did not detect the correc-
tion). We also recorded when participants incorrectly re-
ported corrections when none had occurred.

We analyzed the data using one-way ANOVA to test for ef-
fects on the number of corrections observed. Player opinion
of the corrections was analyzed with Wilcoxon tests on me-
dians.

RESULTS

The results of our study allow us to address the three broad
questions posed earlier in the paper: how noticeable and an-
noying do players find corrections; how do gameplay condi-
tions affect reactions to corrections; and how do error repair
techniques impact player experience?

During the study, participants were presented with a total of
5,400 corrections across all conditions. Participants noticed
2,696, or 50%, of these corrections. Table 2 summarizes the
level of annoyance that participants assigned to each correc-
tion. There were a large number of reports at each level, indi-
cating that participants used all available categories.'

We also collected data to measure the number of times a par-
ticipant pressed the space bar when no correction had oc-
curred (false positives). There were 27 false positives, rep-
resenting 0.5% of the total corrections. We believe this to be
a sufficiently small value as to not impact the overall results
of the study and thus the false positives were simply discarded
in the subsequent data analysis.

Q1: How Noticeable and Annoying are Corrections?
Participants noticed 50% of the corrections that occurred dur-
ing gameplay, and rated 46% of the corrections they noticed
as either “Annoying” or “Very Annoying”. This is consistent
with the anecdotal experience of games such as Battlefield 4
and Rainbow Six: Lockdown, where consistency issues were
reported by players and reviewers as significantly negatively
impacting player experience. This indicates that inconsisten-
cies in video games are a real problem, and that corrections
can be both noticeable and annoying for game players.

!Surprisingly, one participant rated three corrections as “Impercep-
tible”, raising the question of why he flagged them at all. During the
post-experiment interview, he explained that he had used the “Im-
perceptible” rating in cases where he was not sure whether he had
observed a correction.

242

Effect of Distractions on Number of
Corrections Observed

50
40

30

Observing - Single Observing - Many

Figure 5. The addition of distractions did not show a significant effect
on the number of corrections observed. The error bars shown represent
the standard error for the number of corrections detected.

Q2: How Do Gameplay Conditions Affect Reactions to

Corrections?

While the data from Table 2 shows that corrections are fre-
quently noticed and are frequently considered annoying, we
are primarily interested in what specific factors lead to cor-
rections being more or less visible or annoying. We investi-
gated the impact of three key factors on how players notice
and react to corrections. These factors are distraction, locus
of attention, and involvement with gameplay.

Distractions

We used the two “observing” conditions to evaluate how plac-
ing additional elements in the scene affects players’ ability to
notice when corrections occur. In both conditions, the play-
ers were merely observing the motion occurring in the scene.
The first condition, Observing - Single, displayed a single
pink space ship travelling around the screen, while the sec-
ond condition, Observing - Many, showed two mobile space
ships and forty asteroids. In both conditions, the participants
were asked to focus their attention on the pink ship and all the
corrections occurred to the position of the pink ship.

In each condition, a total of 60 corrections were displayed. In
Observing - Single, the participants noticed on average 35 of
the corrections, compared to 36 in the Observing - Many con-
dition (see Figure 5). A paired-samples #-test failed to show
a significant effect on number of corrections detected from
adding the distraction of the second space ship and asteroids
(#(17)=0.98, p=0.342).

Because we did not find a significant difference between these
two conditions, for simplicity, we will present only the Ob-
serving - Many condition in all further discussion of the re-
sults, and we will refer to this condition as Observing.

Locus of Attention

In a game, a player’s “locus of attention” is the point on the
screen where the player’s visual attention is focused. People
direct their focus on a small portion of the visual world and
their attention must be redirected to enable them to process
information in another region [21]. In both the Observing
and Controlling conditions, we directed participants to focus
their attention on the ship to which the corrections were be-
ing applied. However, in the Shooting condition, the player
was required to divide her attention between the ship she was

Effect of Locus of Attention on Number of
Corrections Observed

111«

Observing Controlling Shooting Colouring

Figure 6. The participants noticed more corrections when their atten-
tion was focused on the game entity to which the correction was applied.

shooting at and the ship she was controlling. In the Colouring
condition, the corrections all occurred to the Al-controlled
ship, and the player needed to focus little attention on the mo-
tion of that ship. These four conditions therefore represented
(1) locus of attention on the avatar being corrected (Observ-
ing and Controlling); (2) locus of attention split between the
avatar being corrected and another avatar (Shooting); and (3)
locus of attention on an avatar other than the one being cor-
rected (Colouring).

The number of corrections detected in each of these condi-
tions as well as the standard error is shown in Figure 6. One-
way ANOVA showed a significant effect of the locus of atten-
tion on the number of corrections observed (F(3,51)=48.17
p<0.001). Follow-up pairwise t-tests using Bonferroni cor-
rection indicated that the number of corrections observed in
the Colouring condition was significantly less than all the
other conditions (p<0.001) and that the Shooting condition
was significantly less than both the Observing (p=0.001) and
the Controlling (p=0.007) conditions. No significant differ-
ence was found in the number of corrections observed be-
tween the Observing and Controlling conditions (p=0.190).
The participants therefore saw most corrections in the cases
where they were focused on the avatar being corrected, less
in the split-attention case, and less yet when attention was
focused on another avatar.

To investigate more deeply peoples’ ability to perceive cor-
rections while focused on another avatar, we performed fur-
ther analysis on the Colouring condition, where players con-
trol a green ship that is not being corrected, while correc-
tions are applied to a pink ship. We hypothesized that players
would be more likely to notice corrections when the green
ship that they control is close to the pink ship that is being
corrected. We tested for a correlation between the distance
between the two ships and the likelihood of observing cor-
rections. We coded each correction as a 1 if it was detected
and a 0 if it was not detected and correlated versus distance
between the avatars. We found a weak negative correlation
between distance and observation of corrections, (r(1078)=
-0.134, p<0.01), establishing that indeed players were some-
what more likely to observe a correction when it occurred
near to their locus of attention.

243

Correction Ratings for the Observing and
Controlling Conditions

1ll

Very Annoying

~
G
=]

N
=3
=3

-
@
o

H Observing

=
1<)
S

[Controlling

Number of Corrections

@
o

Annoying Slightly Annoying Not Annoying

Figure 7. The participants rated the corrections as significantly more
annoying when they affected the game play.

Involvement with Gameplay

We used the Observing and Controlling conditions to inves-
tigate whether corrections are more annoying when they im-
pact gameplay. In the Observing condition, players simply
watched the ship, while in the Controlling condition, they
used the ship to colour asteroids. In both conditions, the
player’s attention was focused directly on the ship to which
the corrections were being applied, and so the only differ-
ence between the conditions was whether the observation was
passive, or whether the participant was engaged in the game-
like colouring activity. In the Controlling condition, when a
correction occurred, the player’s ship moved location, often
interfering with the player’s intended movement. We hypoth-
esized that this would cause players to rate the corrections as
more annoying than in the Observing condition.

As described in the previous section, we found no significant
difference between the number of corrections detected by the
participants in each of these conditions. To test whether the
corrections were more annoying when they impacted game-
play, we analysed players’ ratings of the corrections using the
Mean Opinion Score (Figure 4). A Wilcoxon signed rank test
indicated that the corrections were rated as significantly more
annoying in the Controlling condition than in the Observing
condition (z = -4.84, p<0.001). Figure 7 shows the correction
ratings for the Observing and Controlling conditions. More
corrections were rated as “Annoying” or “Very Annoying” in
the Controlling condition and more corrections were rated as
“Not Annoying” in the Observing condition.

Q3: How Do Error Repair Techniques Impact Player Expe-

rience?

We now compare the three principle correction techniques of
warping, smooth corrections with a constant correction rate
and smooth corrections with a variable correction rate and
calculate detection limits for the corrections based on the time
interval over which the correction was performed. We begin
by comparing warping to smooth corrections.

Smooth Corrections Versus Warping

Smooth corrections were performed over four time periods
ranging from 250 ms to 1000 ms. We first consider the short-
est repair period for smooth corrections, 250 ms. As shown
in Figure 8, in all the conditions, fewer corrections were de-
tected when they were performed smoothly over 250 ms than

Number of Corrections Observed for Warping
Corrections and Corrections Made Over 250ms
12

H Warp

[I'Smooth

o N & o

Observing Controlling Shooting Colouring

Figure 8. In all conditions, more corrections were noticed when warping
was used

if warping was used. In all cases, the difference was signifi-
cant (p <0.001).

In addition to comparing the number of corrections detected,
we also compared the participants’ ratings of the corrections.
For any correction the participants did not detect, we as-
signed a rating of 5, “Imperceptible”. For each condition,
we performed a Wilcoxon test to evaluate whether there was
a difference between warping corrections and the corrections
performed over a 250 ms window. In each case, the results
indicated a significant difference: Observing (z = -11.61,
p <0.001), Controlling (z = -9.72, p <0.001), Shooting (z
=-9.92, p <0.001) and Colouring (z = -8.30, p <0.001).
This indicates that players found smooth corrections to be
less annoying than warping in all five game conditions, when
smooth corrections were made over a 250 ms window.

Similar comparisons over longer correction windows (500 ms
to 1,000 ms) yielded the same results, that in all cases, smooth
corrections were preferred to warping, at the o <0.05 level.

Constant Versus Variable Correction Rate

To investigate the effect of the smoothness of corrections,
we first looked at the number of corrections detected by the
participants when the corrections were performed using a
constant correction rate and when they were performed by
gradually adjusting the correction rate (Figure 9). For each
condition, there were a maximum of twelve corrections of
each type that might have been detected by the participants:
three correction sizes (1.5, 3.0 and 6.0 cm) and four durations
(250 ms, 500 ms, 750 ms and 1,000 ms). Paired-samples ¢
tests showed that the difference was significant for the Con-
trolling condition (#(17)= 5.25, p<0.001), with fewer correc-
tions observed with variable correction rate. For the other
conditions, the results were as follows: Observing (t(17)=
1.23, p=0.235); Shooting (t(17)= 1.44, p=0.168); and Colour-
ing (t(17)=0.74, p=0.472). When we considered the different
correction sizes, there was a significant difference between
the number of corrections detected for the small (1.5 cm) and
medium (3.0 cm) corrections for both the Controlling and
Shooting conditions. For the large (6.0 cm) corrections, there
was no significant difference between the number of correc-
tions detected, likely because these larger corrections were
easier to detect and the participants noticed in excess of 60%
of the corrections in all of the conditions except Colouring.

We consulted the Mean Opinion Score ratings assigned un-
der each condition to determine whether participants found a

244

Number of Corrections Observed With Constant
Correction Rate and Gradually Changing Correction Rate
10

1LE

Observing

[Constant

O Gradual
Change

~

Controlling Shooting Colouring

Figure 9. In all conditions, fewer corrections were noticed when the
correction rate was adjusted smoothly

difference in annoyance of corrections using the constant ver-
sus variable algorithms. Wilcoxon tests indicated that there
was a significant difference in all conditions except Colour-
ing, indicating that variable rate corrections were less an-
noying in three of four conditions. The results were as fol-
lows: Observing (z = -2.47, p=0.014), Controlling (z = -6.69,
p<0.001), Shooting (z = -2.11, p=0.035) and Colouring (z =
-0.38, p=0.702).

A review of the number of positive and negative ranks re-
ported by the Wilcoxon test for each correction size and cor-
rection duration were similar, indicating that this difference
is applicable over the entire range of correction sizes and du-
rations tested in our study.

Correction Detection Limits

We calculated the detection limits for each correction size and
test condition. We use a standard psychophysical definition of
detection limit as the level at which 50% of the participants
notice the stimulus [9]. The detection limits were measured in
milliseconds. That is, we sought the minimum correction du-
ration in milliseconds where 50% of the participants detected
the correction. In all cases, we noticed that the detection limit
for the large (6 cm) corrections was approximately twice as
large as for the medium size (3 cm) corrections. Similarly the
detection limit for the medium size corrections was approxi-
mately twice as large as for the smallest (1.5 cm) corrections.
For this reason, we report the detection limits in terms of the
correction rate (cm/s) instead of in terms of the time over
which the correction was performed and combine the detec-
tion limits for the three correction magnitudes. A correlation
of the detection limits in cm/s versus the size of the correc-
tion validated this approach, showing no significant correla-
tion for any of the conditions: Observing p=0.080, Control-
ling p=0.575, Shooting p=0.812 and Colouring p=0.251.

In Figure 10, we show the average detection limit for each
condition. The Observing condition had the lowest detection
limit (M=5.0, SE = 0.4), followed by the Controlling con-
dition (M=6.4, SE = 0.8) and then the Shooting condition
M=7.5, SE = 0.7). The Colouring condition had a much
higher detection limit (M=26.2, SE = 4.1). For the first three
conditions, the detection limit is close to half the normal
speed of the space ship in the game. In the Colouring con-
dition, where the corrections occurred to the Al controlled
ship and the player was paying less attention to that ship, the
limit was much higher at over twice the normal ship speed.

Correction Detection Limits
35

30

25

—

20

5 Ship Speed 12 cm/s

-

Controlling

10

I

Observing

Correction Rate (cm/s)

-

Shooting Colouring

Figure 10. For the Observing, Controlling and Shooting conditions, the
detection limit arose at a correction rate of approximately half the nor-
mal ship velocity.

SUMMARY OF RESULTS

We found that the primary factor significantly affecting the
detection of corrections was the player’s locus of attention.
Distractions that did not shift the player’s focus had little im-
pact on the number of corrections detected.

We found that for the corrections in our study, smooth cor-
rections were vastly superior to warping. Also, based on the
player ratings of the corrections, we found that it was signif-
icantly better to make gradual adjustments to the correction
rate rather than performing the correction at a constant rate.

Finally, we found that the ability of players to detect correc-
tions is based on the speed of the correction, not its magni-
tude. When an entity is within the player’s locus of attention,
its speed can be adjusted by approximately 50% relative to its
normal speed. Significantly higher adjustments can be made
when the entity is outside the locus of attention.

DISCUSSION

The first objective of our study was to determine how notice-
able and annoying corrections are. We found that corrections
are a real problem in video games and players rated a signif-
icant proportion of them as either “Annoying” or “Very An-
noying”. All of the participants rated at least some of the
corrections as “Very Annoying”.

Our next objective was to determine which factors affected
players’ abilities to notice corrections and the degree to which
they found the corrections annoying.

We were surprised to find no significant difference in the
number of corrections detected as a result of adding distrac-
tions to the scene in our two observing conditions. In the first
condition, the scene showed only a single space ship and in
the other, a second ship and 40 asteroids had been added to the
scene. In both conditions, the corrections all occurred to the
same pink ship on which the participants were instructed to
focus their attention. The additional objects all moved around
the scene at a constant speed and did little to attract the par-
ticipants’ attention. Grad et al. [10] have shown that users
tend not to notice peripheral information unless it is flashing
or animated. Thus, we believe it is likely that the objects we
added to the scene did not cause the participants to shift their
focus away from the pink ship. It is quite possible that, if

245

the motion of the other ship and asteroids was discontinuous
or included some other unexpected motion, the distractions
might have had an effect. This tells us that, in general, we
cannot rely on distractions to mask the effects of repairs to
inconsistencies.

Interestingly, during the post-hoc interviews, 11 of the 18 par-
ticipants felt that the addition of the second space ship and the
asteroids did distract them. It appears, however, that most of
the participants thought that they were just momentary dis-
tracted; for example, participant 15 stated “Once I got dis-
tracted ’cause I was looking at the green ship.... Then, I
thought wait — I shouldn’t be watching that.” and participant
3 commented “I would start wandering off and think let’s see
what that green ship is doing, but I am pretty sure I didn’t
miss anything.”

The most significant factor we found in determining a
player’s ability to notice corrections was their locus of atten-
tion. Each of the three game-like conditions represented a
different level of focus relative to the game object experienc-
ing the corrections. In the Controlling condition, the players
were controlling the space ship being corrected and their at-
tention was almost completely focused on the point where
the corrections occurred. In the Shooting condition, the cor-
rections were applied to the target ship and the players were
required to divide their attention between the target ship and
the ship they were controlling. Finally, in the Colouring con-
dition, the corrections were applied to the other ship, yet the
position of that ship had little impact on the player. Thus,
the players focused little attention on these corrections. Ad-
ditionally, as the player’s attention is shifted away from the
point of the correction, fewer corrections were detected (al-
though this distance correlation was weak). Together, these
observations tell us that when developing games we need to
pay close attention to where the player is looking and attempt
to minimize the number and the visibility of corrections in
that area.

In addition to knowing which corrections are most easily de-
tected by players, it is also important to know what makes
the corrections upsetting or disturbing. We found that cor-
rections were more problematic when they interfered with
the player’s progress in the game. In the Observing con-
dition, corrections were rated as significantly less annoying
than those same corrections when they occurred in the Con-
trolling condition. Warping corrections were also found to
be significantly more annoying than smooth corrections, even
when the smooth corrections were completed over a time win-
dow as small as 250 ms. In the post-hoc interviews, when
the participants were asked which corrections they had found
most annoying, they all described either the warping correc-
tions or specific game situations that had affected them. Ten
of the participants specifically mentioned the warping correc-
tions; for example, participant 13 commented, “The leaping
one really bothered me a lot.”, and participant 9 stated “The
most annoying ones were when it flashed from one point on
the screen to another.” Eleven of the participants referred to
specific gameplay situations that they found annoying; for ex-
ample, participant 15 stated “When I was shooting at the pink

ship and tailing it, it glitched behind me” and participant 2
mentioned “The most annoying would be when you were try-
ing to hit a ship or an asteroid and it just flies you somewhere
totally different.” Although the players in our study found the
smooth corrections less annoying than the warping correc-
tions, we note that corrections are not the only factor affecting
player experience. For example, if the correction prolonged
the duration of an inconsistency, it is possible that decisions
such as who was shot might not be consistent with the players
view of the world. Further research is required to study the
interactions effects between these game critical decisions and
error correction techniques.

In addition to minimizing corrections near the player’s locus
of attention, developers should attempt to eliminate warping
corrections, and should reduce the impact of corrections that
affect gameplay. For game developers, eliminating warping
corrections can usually be accomplished by replacing them
with smooth corrections. Minimizing corrections that might
affect game play can be more challenging. One technique
that can help is adaptive dead reckoning [5] in which the fre-
quency of update messages for different game objects could
be varied based on factors like where the player is focusing
and whether or not the object is likely to be affected by game
play. The use of remote lag [4] can almost eliminate the need
for corrections to the positions of remote game entities, but
adds the complexity of making game-critical decisions when
players have diverging views of the game world [19].

When corrections are unavoidable, they should be performed
as slowly as possible using a gradual change in velocity over
time. We found that a correction rate equal to approximately
half of the normal ship velocity resulted in only half of the
participants detecting the correction. Further studies using
different types of motion and different velocities would be re-
quired to determine the general applicability of such a guide-
line.

CONCLUSIONS AND FUTURE WORK

Problems with consistency are a regular occurrence in mul-
tiplayer games and these problems can have a huge impact
on player experience. However, there has been until now lit-
tle guidance available on how these inconsistencies impact
player experience or how to repair inconsistencies once they
are detected.

We have provided insight into how players perceive correc-
tions in networked games and into techniques that can help
to minimize the negative effects of corrections. We have per-
formed a user study confirming that smooth correction tech-
niques are significantly better than warping and that smooth
corrections with a gradually changing correction rate are
preferable over corrections with a constant correction rate.
We found that players were most disturbed by warping cor-
rections and corrections that directly affected them in the
game, either moving them away from an asteroid they were
about to hit, or spoiling their aim when shooting at another
other ship. Finally, as a general guideline, we suggest that the
speed of corrections should be based on the typical speed of
the entity being corrected. We found that the detection limit
for corrections was when the entity speed changed by 50%.

246

In future work, we plan to carry out additional studies, ex-
ploring other game situations, other types of avatar motion
and other possible ways to distract players from the negative
effects of corrections.

ACKNOWLEDGMENTS
We gratefully acknowledge the funding of the GRAND Net-
work of Centres of Excellence.

REFERENCES
1. Aldridge, D. I shot you first! Gameplay networking in Halo: Reach. In
Game Developers Conference (2011).
2. Battlefield 4.
http://www.battlefield.com/battlefield—-4.

3. Beigbeder, T., Coughlan, R., Lusher, C., Plunkett, J., Agu, E., and
Claypool, M. The effects of loss and latency on user performance in
Unreal Tournament 2003. In NetGames, ACM (2004), 144—151.

4. Bernier, Y. W. Latency compensating methods in client/server in-game
protocol design and optimization. In GDC (2001).

5. Cai, W, Lee, F.,, and Chen, L. An auto-adaptive dead reckoning
algorithm for distributed interactive simulation. In PADS ’99, IEEE
(1999), 82-89.

6. Chandler, A., and Finney, J. On the effects of loose causal consistency
in mobile multiplayer games. In NetGames, ACM (2005), 1-11.

7. Dick, M., Wellnitz, O., and Wolf, L. Analysis of factors affecting
players’ performance and perception in multiplayer games. In
NetGames, ACM (2005), 1-7.

8. Fiedler, G. Networked physics.
gafferongame.com/game-physics/networked-physics,
2006.

9. Gescheider, G. A. Psychophysics: the fundamentals. Psychology Press,

2013.

Grad, K., Graham, T.C.N., and Stewart, J. Effective use of the

periphery in game displays. In Future Play, ACM (2007), 69-76.

Harms, W. Review of Rainbow Six: Lockdown.

http://pc.gamespy.com/pc/

rainbow-six—-4-tentative-title/690399p2.html,

2006. Accessed: 1-Apr-2014.

IGN. http://ca.ign.com/articles/games/

battlefield—-4/xbox-one-161397. Accessed: 9-Apr-2014.

Mauve, M., Vogel, J., Hilt, V., and Effelsberg, W. Local-lag and

timewarp: Providing consistency in replicated continuous interactive

media. IEEE Transactions on Multimedia 6, 1 (2004), 47-57.

ITU-T Recommendation P.800. Methods for Subjective Determination

of Transmission Quality, 1996”.

10.

11.

12.

13.

14.

. Murphy, C. Believable dead reckoning for networked games. In Game
Engine Gems, Volume 2, E. Lengyel, Ed. CRC Press, 2011.

Pantel, L., and Wolf, L. C. On the suitability of dead reckoning
schemes for games. In NetGames, ACM (2002), 79-84.

Pinelle, D., Wong, N., Stach, T., and Gutwin, C. Usability heuristics for
networked multiplayer games. In GROUP 09, ACM (2009), 169-178.
Reddit. http://www.reddit .com/r/battlefield_4.
Accessed: 9-Apr-2014.

. Savery, C., Graham, T.C.N., Gutwin, C., and Brown, M. The effects of
consistency maintenance methods on player experience and
performance in networked games. In CSCW, ACM (2014), 1344-1355.
Smed, J., and Hakonen, H. Algorithms and Networking for Computer
Games. Wiley, 2006. ISBN: 9780470018125.

Treisman, A. M., and Gelade, G. A feature-integration theory of
attention. Cognitive psychology 12, 1 (1980), 97-136.

Wattimena, A., Kooij, R. E., Van Vugt, J., and Ahmed, O. Predicting
the perceived quality of a first person shooter: the Quake IV G-model.
In NetGames, ACM (2006), 42.

Zander, S., and Armitage, G. Empirically measuring the QoS sensitivity
of interactive online game players. In Proc. ATNAC (2004), 511-518.

16.

17.

18.

20.

21.

22.

23.

http://www.battlefield.com/battlefield-4
gafferongame.com/game-physics/networked-physics
http://pc.gamespy.com/pc/rainbow-six-4-tentative-title/690399p2.html
http://pc.gamespy.com/pc/rainbow-six-4-tentative-title/690399p2.html
http://ca.ign.com/articles/games/battlefield-4/xbox-one-161397
http://ca.ign.com/articles/games/battlefield-4/xbox-one-161397
http://www.reddit.com/r/battlefield_4

	Introduction
	Background and Related Work
	User Study
	Q1: How Noticeable and Annoying are Corrections?
	Q2: How Do Gameplay Conditions Affect Reactions to Corrections?
	Q3: How Do Error Repair Techniques Impact Player Experience?
	Method
	Procedure
	Data Collection and Analysis

	Results
	Q1: How Noticeable and Annoying are Corrections?
	Q2: How Do Gameplay Conditions Affect Reactions to Corrections?
	Distractions
	Locus of Attention
	Involvement with Gameplay

	Q3: How Do Error Repair Techniques Impact Player Experience?
	Smooth Corrections Versus Warping
	Constant Versus Variable Correction Rate
	Correction Detection Limits

	Summary of Results
	Discussion
	Conclusions and Future Work
	Acknowledgments
	REFERENCES

