

The Effects of Consistency Maintenance Methods on
Player Experience and Performance in Networked Games

Cheryl Savery1, T. C. Nicholas Graham1, Carl Gutwin2 and Michelle Brown3

1School of Computing
Queen’s University

Kingston, ON, Canada
{savery | graham}@cs.queensu.ca

2Dept. of Computer Science
University of Saskatchewan

Saskatoon, SK, Canada
gutwin@cs.usask.ca

3Dept. of Computer Science
York University

Toronto, ON, Canada
brown@cse.yorku.ca

ABSTRACT

Network lag is a fact of life for networked games. Lag can
cause game states to diverge at different nodes in the
network, making it difficult to maintain the illusion of a
single shared space. Traditional lag compensation
techniques help reduce inconsistency in networked games;
however, these techniques do not address what to do when
states actually have diverged. Traditional consistency
maintenance (CM) does not specify how to make game-
critical decisions when players’ views of the shared state
are different, nor does it indicate how to repair
inconsistencies. These two issues – decision-making and
error repair – can have substantial effects on players’
gaming experience. To address this shortcoming, we have
characterized a range of algorithmic choices for decision-
making and error repair. We report on a study confirming
that these algorithms can have significant effects on player
experience and performance, and showing that they are
often more important than degree of consistency itself.

Author Keywords
Consistency maintenance; game development; usability

ACM Classification Keywords
H.5.3Information Interfaces and Presentation: CSCW.

General Terms
Human Factors; Algorithms

INTRODUCTION
Real-time networked systems, such as multi-player games
or shared-workspace groupware, often follow the principle
of distribution transparency [26] - they attempt to provide
an experience that is the same over distance as it is when
people are in the same location. The illusion of
transparency often breaks down, however, due to problems
in the network, such as latency, jitter, or packet loss - often
collectively referred to by gamers as ‘lag.’ In these

situations, those parts of the shared environment (e.g., the
game world of a multi-player game) that are stored at each
node in the network diverge, leading to strange phenomena
such as bullets not hitting their targets, objects jumping
across space, or avatars moving in a halting and jerky
fashion.

Most networked games (and other kinds of distributed
systems) combat these problems with lag compensation
techniques that try to ensure that information at different
nodes in the network (e.g., the locations and status of
players in the game world) is in the same state. There are
several types of techniques that operate on different
principles: for example, some use prediction to try to
overcome latency, some use ‘local lag’ to slow down input
to match the latency in the network, and some use time
offsets to reduce the variance in remote update times. These
techniques work well in many situations - shown both by
research studies (e.g., [1,20,25]) and by their adoption by
virtually all commercial networked games.

However, the focus of these techniques on ‘simple
consistency’ does not address all of the issues caused by lag
and diverging state. In the case of networked games, we
have identified two additional factors that are important to
player experience and performance, but that are not
adequately considered by most consistency maintenance
schemes. First, lag compensation techniques are never
perfect, and so games need to make decisions in the
presence of inconsistency. Second, when the techniques
recognize a state divergence and attempt to correct it, the
error must be repaired at one (or more) of the nodes.

The first issue is called the decision-making problem. When
the game must make a fast decision about a game-critical
event (e.g., whether a bullet hits a target), it must often do
so with the assumption that states at different nodes have
diverged. Therefore, the game must choose one of the
different states to use as the basis for the decision. This
choice could mean substantially different outcomes for
game events, which could have a large effect on
understandability and player experience.

The second issue is called the error repair problem. When
a state divergence is identified (e.g., when a prediction
algorithm has moved an avatar to the wrong location), the
error must be repaired – and since errors often involve a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
CSCW'14, February 15–19, 2014, Baltimore, Maryland, USA.
Copyright © 2014 ACM 978-1-4503-2540-0/14/02...$15.00.
http://dx.doi.org/10.1145/2531602.2531616

visible object in the game, the repair must be visually
understandable. Some techniques provide smoother
corrections (e.g., interpolating between the incorrect and
correct locations over a time period) but at the cost of
reduced consistency, in that it takes longer for the two
nodes to reach the same state.

Understanding the effects of the decision-making problem
and the error repair problem are important in the design of a
game’s overall approach to consistency maintenance, but
there is little information available about how important
these issues are, and how they affect player performance
and experience. To address this shortfall, we carried out an
experiment to address three questions:
• Is simple consistency the most important issue for

player experience in networked games?
• What are the effects of different choices about what

state is used to make game-critical decisions?
• What are the effects of different choices about how

errors are corrected?

Our study tested 26 people (13 experts and 13 novices) in
three different custom games that implemented several
different techniques for lag compensation, decision-making,
and error repair. We recorded both player performance and
subjective assessments of play experience. Our study
confirms that decision-making and error repair are
important design considerations for networked games.
Players preferred conditions where game-critical decisions
were made such that outcomes were more understandable to
the local player. Players also preferred smooth animation
over jerky movements caused by instantaneous ‘warps’
when the corrections were small. However, when larger
corrections were required, players only marginally
preferred smooth corrections compared to warping. These
results show that simple consistency is not the most
important element in player experience, since both smooth
corrections and local-player understandability actually
reduce the overall state consistency of the game.

Our study also provides several additional results that add
to our knowledge of player experience in conditions of lag.
For example, we found that there were large differences in
the degree to which experts and novices noticed the effects
of the consistency techniques; we also found that some
players enjoyed the challenge of having to adjust for the
lag, particularly when playing against a weaker opponent.

Our work makes three important contributions to the
understanding and design of CM schemes for networked
games. First, we demonstrate that state consistency alone
does not address all of the issues that arise from lag.
Second, we present an integrated CM design space that
brings lag compensation together with the additional
techniques of decision-making and error repair. Third, we
provide the first empirical evidence of how these factors
affect player experience and performance in three different
game genres, and identify trade-offs in the techniques’ use.

Figure 1. Typical client-server architecture: server maintains
canonical game state; local clients use prediction and server
updates to determine local game state.

BACKGROUND AND RELATED WORK
In this section, we describe the consistency maintenance
problem and briefly review existing research related to
consistency maintenance in networked games.

The Consistency Maintenance Problem
In multiplayer games, inconsistencies arise due to a
combination of network latency and the use of prediction
by the client to determine the local game state. Because of
the real-time performance requirements of many forms of
networked games, some inconsistency must typically be
tolerated in exchange for faster feedback to the player and
quicker resolution of game events.

Most networked games are based on an authoritative central
server (Figure 1). To combat cheating, game clients are
generally not allowed to make any decisions that affect
player performance in the game [15]. Player inputs are
passed to the server, which determines the new game state
and propagates it back to the clients. Due to network
latency, the client cannot wait for the next game state to
arrive from the server before providing feedback to the
player. Thus, the client must use prediction to calculate the
local game state. Problems occur when the client’s
predicted state differs from the server state. For example,
consider a racing game where two players attempt to move
their car to the same position at the same time. Each player
sees that the position is open, and locally the client predicts
that the move can occur. However, when the server receives
the commands, it determines that a collision has occurred.
The server sends the corrected game state to the clients,
which are then forced to repair this inconsistency. The use
of multiple servers can reduce the latency between the
server and client, but introduces the complexity of
maintaining a consistent state among the servers [7].

Inconsistencies can have a negative impact on player
performance and experience [4,19], such as the confusion
caused by sudden warps in position, the frustration of
shooting directly at another player and missing [5], or the
perplexity of suffering damage from a grenade while
protected by an invincibility shield [2].

Lag and Consistency in Games
Research on consistency in games can be divided into two
categories: studies that look at the general effects of latency
on player performance and experience [4,10,11,19], and
research into specific CM techniques such as dead
reckoning [1,21] and local lag [9,25]. These techniques are
described in detail in the Reducing Inconsistency section.

Claypool [11] generalizes the effects of latency in
networked games by categorizing game actions along two
dimensions: precision (the accuracy required in performing
an action) and deadline (the time period within which an
action must be performed). This provides us with an
understanding of the types of game actions that are most
affected by network latency, but provides no guidance on
techniques that can mitigate the effects of latency.

The Human Factors framework [22] discusses three aspects
of multiplayer games that must be considered when
determining CM requirements. First, there are the types of
entities found in the shared environment. E.g., objects such
as avatars typically have tighter consistency requirements
than other objects in the game world. Second are the types
of interactions players can have with those entities,
particularly whether interaction with multiple players is
possible and whether the interaction affects game critical
variables. The framework then considers how player states
may diverge in time and space and in rate of change. This
work provides a good foundation for making CM choices,
but focuses primarily on the single dimension of the CM
problem of reducing inconsistency.

AN EXPANDED CONSISTENCY DESIGN SPACE
Unlike the work described above, we believe that there are
three factors to be considered in the design of a CM
scheme: in addition to the traditional factor of reducing
inconsistency, we highlight the importance of decision-
making and error repair. These factors are related and it is
important to deal with them as a whole rather than looking
at each factor individually. We introduce three axes (Figure
2), describing a range of approaches that help with each
problem, and concluding with a discussion of how
decisions in each axis influence the behavior of the others.

Reducing Inconsistency
The first line of defense in the CM problem is to deploy an
algorithm that prevents or reduces inconsistency in the first
place. While a core set of algorithms has been proposed, it
is not yet fully understood in what situations different
algorithms should be applied. In general, these algorithms
trade off game responsiveness, the frequency with which
the algorithm causes jarring corrections to the player’s
view, and the degree to which the views of different players
diverge [22]. These algorithms follow three broad
strategies, all of which have been used in commercial
games: using prediction to anticipate remote updates;
delaying input to allow simultaneous execution on all
players’ computers, and offsetting time to allow state to
diverge in a controlled fashion.

Figure 2. The design space consists of three axes capturing the
issues that must be addressed in deciding on a consistency
maintenance scheme

More specifically:
• Predictive techniques, such as dead reckoning [16,20],

predict changes to remote state before those changes are
propagated over the network. The predicted state can be
used locally, compensating for the time to transmit the
state over a network. However, if the prediction is
incorrect, the local state must be updated, possibly in a
jarring or confusing manner. Dead reckoning is
commonly found in role-playing games such as
EverQuest and World of Warcraft. Here, game clients
predict the position of remote entities based on their last
known position and velocity.

• Delayed input techniques, such as bucket synchronization
[6] and local lag [17], delay local actions to allow
simultaneous execution by all clients. For example, if a
player presses the “W” key to move forward, he will not
see his avatar move until after the delay period, providing
time for the input to be sent over the network to remote
game clients. Delayed input algorithms improve
consistency, at the cost of slower response to player
actions.

• Time-offsetting techniques, such as remote lag [5], apply
a constant delay to updates from remote clients. For
example, in the Half-Life first person shooter game,
remote players’ avatars are lagged by a constant 100ms.
Time-offsetting increases inconsistency (since remote
state updates are not applied immediately), but makes the
degree of consistency predictable, something to which
players may be able to adapt.

Each of these strategies embodies trade-offs. Prediction can
increase consistency when the prediction is correct, at the
cost of potentially jarring corrections when the prediction is
wrong. Delayed input increases consistency at the cost of
reduced responsiveness. Time-offsetting lends
predictability to inconsistency, but increases inconsistency
overall. Because time-offsetting displays an exact replica of
the remote state which has been simply offset in time, its
use can reduce or even eliminate the need for error repairs.

A growing body of research attempts to determine the
conditions under which the various techniques are
applicable [9,21,25]. For example, local lag is effective up
to about 100ms of lag [25,9]; bucket synchronization is
most effective in real-time strategy games where users can
tolerate small delays [11]. However, little work has been
done on the criteria for selecting one algorithm over
another.

Decision-Making
Game-critical events are highly visible occurrences with
significant impact on the game’s progression. Examples
include picking up a piece of treasure, crashing into an
opponent’s car and blowing up, or defeating a “boss”
enemy to complete a level. Game-critical events are
different from, for example, moving an avatar, which can
generally be easily undone or corrected, and where small
differences in positions may be unnoticeable.

The resolution of game-critical events in the presence of
inconsistency can have an enormous impact on player
experience and performance. In a shooter game, one player
might be frustrated to miss an enemy who was clearly in his
cross-hairs, while another might be upset at being hit while
hiding behind a rock. When inconsistency causes players to
see the world differently, the outcome of such game critical
events can have unintuitive and negative consequences.

An important question in resolving game-critical events is
the choice of perspective to use. If game clients all have a
different state, which state should be used to resolve the
outcome? One important case involves actions which have
a source and a target: e.g., one player shoots another, or
throws a pass to another. The game-critical questions to be
resolved are whether the target player was shot, or whether
the target player caught the ball. Three choices of
perspective are available:
• Server perspective. The game server maintains a

canonical state. The event is resolved relative to this
state, even if it disagrees with what the players see.

• Source client perspective: The decision is based on what
the initiator of the action sees. For example, Counter
Strike uses this approach for shooting, in the belief that
it is more noticeable to the shooter if he erroneously
misses, than to the target if he is erroneously hit [5].

• Target client perspective resolves events based on what
the target of the action sees. This is used, for example,
in Halo: Reach for determining damage when a player
has activated Armor Lock [2], an ability providing the
player with a few seconds of invincibility. During this
period, a player would be frustrated if a grenade thrown
toward her inflicted damage.

Note that the choice of perspective does not necessarily
imply the node within a distributed system where choices
are made. For example, Counter Strike uses the shooter
perspective, but the hit decision is actually made on the
server (and therefore requires the server to be able to
reconstruct what the shooter saw when firing) [5].

The perspective used for resolving hit decisions can have an
enormous impact on player experience. Dick et al. have
shown that in Unreal Tournament 2004, network latency
above 100ms has a significant impact on game score, while
in Counter Strike, player skill was the primary determinant
of game score [12]. A primary difference between these
games is that Unreal Tournament 2004 uses server-
perspective for resolving hit decisions, while Counter Strike
uses the perspective of the shooter.

When choosing a strategy for decision-making, game
developers should consider which player is more likely to
notice an unintuitive result, and which player is more
negatively impacted by an erroneous determination.

Error Repair
The final axis of the design space deals with how to repair
inconsistencies when they are discovered. Three basic
approaches are used to resolve inconsistencies:
• Correct immediately: The simplest solution is to

immediately update the local state to the newly arrived
correct state. This may result in jarring visual artifacts,
such as remote players “warping” to a new location.
This warping can be confusing, and can distract the
player’s attention to the location of the abrupt change.

• Correct smoothly: Here, the incorrect local state is
progressively updated to the correct state. For example,
a remote avatar might quickly run to the correct location
rather than simply warping. This removes the effect of
jarring corrections at the cost of prolonging the period
of inconsistency.

• Tolerate: If the inconsistency doesn’t matter, it may be
preferable to leave it as-is. For example, the positions of
players in Blizzard’s World of Warcraft are often
inconsistent, with little effect on gameplay.

There are significant tradeoffs between these solutions, and
to-date, these have received little attention. Correcting
immediately may affect players’ immersion in the game
world since a player’s attention will be drawn toward any
sudden discontinuities in the position or motion of objects
in the game [18]. A player may also lose context, for
example, if an avatar that was in front of him is suddenly
behind him and now out of his field of view.

Smooth corrections may reduce the jarring effect of
corrections [24]; however, they prolong the inconsistency,
which may be unacceptable in some game situations.
Fiedler suggests the rule of thumb of moving 10% toward
the true position during each frame, but if the correction is
large, simply warping to the new position [13]. More
sophisticated forms of smooth correction are possible; e.g.
varying priorities may be given to different objects in the
game to ensure the objects of higher importance deviate the
least from their true position [8]. To date, there has been
little effort to characterize when smooth corrections are
effective, and how they should be applied.

Design Consequences
Designers need to be aware of how decisions made in one
axis can affect the range of choices in other axes. We now
list some examples of possible interactions. Our study,
presented in the next section, explicitly tests the effects of
these interactions on players’ experience and performance.
• The use of local lag has positive effects on the

decision-making and error repair axes. Local lag
reduces inconsistency, therefore reducing the
magnitude of corrections and increasing the likelihood
that client and server perspectives are the same when
decisions are made. Local lag may be a good choice in
situations where corrections are particularly bad, e.g.,
to avoid race conditions when two players are
concurrently picking up the same item.

• Prediction can lead to large state divergences. This can
increase the importance of the choice of perspective
used for decision-making, and can lead to an increasing
frequency and magnitude of corrections. Prediction
may be most appropriate in situations where an
accurate prediction algorithm is available and where
corrections do not negatively impact gameplay.

• The suitability of the remote lag algorithm depends
upon the nature of game-critical decisions. If one
player is more impacted by the outcome of a game
decision, as in our shooter example, remote lag can
allow the decision to be made from that client’s
perspective. However, if all players care equally about
a decision, having divergent views of the game world
can be confusing. For example, in a two-person racing
game, if each player saw a delayed version of the other
player, both players might believe that they were the
first over the finish line.

• Smooth corrections may reduce the jarring effect of
warps, but increase state divergence versus immediate
correction of inconsistencies when they are discovered.
Smooth corrections may therefore be a poor choice
when state consistency is very important.

USER STUDY: TYING THE DESIGN SPACE TO USER
EXPERIENCE AND PERFORMANCE
We carried out a study to provide a better understanding of
how the dimensions of the design space affect player
experience and performance. In particular, we designed the
study to answer four questions:
Q1. Does better overall consistency in a distributed game

always lead to better experience?
Q2. How does the decision perspective (client or server)

affect player perception of critical game events?
Q3. How do different error repair strategies (warping or

smooth correction) change experience?
Q4. Does the player’s level of experience affect the results

of Q1-Q3?

We answered these questions with three custom networked
games designed specifically for this study. The games
replicated critical aspects of real multiplayer game
situations (but were otherwise kept simple to avoid the

Figure 3. Paddle Blasters: Players cooperate to paddle a canoe
and follow a path indicated by a black line.

Figure 4. Eliminate: FPS in which players attempt to hit their
opponent while avoiding being hit themselves.

effects of strategy). The three games were Paddle Blasters,
a cooperative canoeing game, Eliminate, a first-person
shooter, and Speed Daemons, a racing game.

Paddle Blasters is a cooperative two-player game that was
used to investigate whether overall consistency led to better
player experience (Q1). In Paddle Blasters, players attempt
to paddle a canoe down a river; the goal is to keep the
canoe as close as possible to the black line that zigzags
down the river (Figure 3). Each player paddles on one side
of the canoe. If one player is paddling, the canoe turns;
when both players paddle, the canoe moves ahead in its
current direction.

Eliminate is a first-person shooter game used to investigate
the effect of using different perspectives for game-critical
decisions (Q2). In the game, players attempt to shoot their
opponent while avoiding incoming shots. Simple block
avatars are located on a platform separated from the other
player by an open area that cannot be crossed (Figure 4).
This restricts the movement of each player and forces the
player to focus on the shooting task. To discourage firing
without aiming, players must wait three seconds between
shots.

Speed Daemons is a 2-D side scrolling game used to study
two techniques for repairing location errors: immediate
warping and smooth correction (Q3). Each player controls a
racecar and attempts to pick up coins while avoiding mud
puddles (Figure 5). Players earn one point for each coin
they collect; colliding with puddles causes a loss of two
points. The game scrolls from right to left at a constant rate
with new coins and mud puddles appearing from the right.

Figure 5. Speed Daemons: Racing game in which players
attempt to collect coins while avoiding mud puddles.

Study Methods

Participants
26 participants were recruited from a local university. 13 of
the participants were frequent and experienced gamers, and
13 were non-gamers. We classed participants as gamers if
they played fast-paced games at least once per week. We
did not require expertise in any given game. Although
expertise might be specific to an individual game or game
genre, we hypothesized that there is significant
commonality between games in, for example, the ability to
rapidly manipulate game controls, or to visually process
game events. In addition, because our games are designed
to focus on common game elements (moving, targeting,
avoiding), there is a reasonable expectation that expertise
will apply across all of our scenarios. We use gaming
experience as a factor in the study, as described below.

Procedure
Participants played in pairs, seated at separate computers
and able to communicate through a headset. For each game
scenario, the players were shown the game and allowed to
practice for up to five minutes. During this learning period
no latency was added to the game. Typical network latency
during the practice sessions, as measured by ping time, was
1ms or lower.

Following the training period, in order to simulate typical
wide area network conditions, synthetic latency was
introduced on the network. Based on work by Armitage [3]
showing that players of games such as Quake 3 actively
select servers where the latency is less than 150 to 180ms,
we chose to limit the synthetic latency to 200ms. The
latency was randomly distributed between 50 and 200ms
according to a Poisson distribution. Because the games used
synthetically created latency over a local area network,
there were no large latency spikes during the trials. The
participants played several trials. Each trial used a different
CM technique, corresponding to the conditions from
questions 1-3 above. The order of the trials was randomized
and the conditions were balanced for order. Specifics of the
trial conditions for each game scenario are described below.

Paddle Blasters (Q1). Participants played three different
conditions. Each condition was repeated three times for one
minute each. In condition A, 200ms of remote lag was used

(Lowest Consistency between the two players’ views); in
condition B, 100ms of local lag was used in addition to
dead-reckoning-based prediction (Medium Consistency);
and in condition C, 200ms of local lag was used (Highest
Consistency). In condition B, warping was applied to repair
any incorrect states that occurred when latency exceeded
100ms. No information regarding the specific differences
between conditions was provided to the participants.

 Eliminate (Q2). There were two five-minute trials, both of
which used 200ms of remote lag for displaying the position
of the remote avatar. In trial A, hits were determined based
on the shooter’s perspective (Shooter), while in trial B, hits
were determined based on the canonical game state as
determined by an authoritative central server (Server).
Expert gamers typically play their game of choice for many
hours each week, and over weeks, they become intimately
familiar with the algorithms being used in the game. As
each condition was played for only five minutes, we told
the participants what scheme was being used in order to
simulate the experience they would have in extended play
in real life.

Speed Daemons (Q3). Participants played three one-minute
trials. In both trials A and B, dead reckoning was used to
predict the position of the remote car. However, in trial A,
immediate position warping (Warping) was used to fix
incorrect positions, and in trial B, smooth interpolation-
based correction techniques were applied (Smooth). In trial
C, remote lag of 200ms was applied to the remote car
position, meaning that no corrections were required for the
position of the remote car. Smooth corrections were used to
repair any incorrect states for the local car caused by
collisions between the two cars (Local Only). No
information regarding the specific differences between
conditions was provided to the participants.

After each of the trials in each of the games, participants
answered several Likert-style questions about their
experience in that particular trial condition (Tables 1, 2, and
3). After all the trials for each game, participants were also
asked to indicate which of the conditions they preferred.

Setup and Apparatus
The study used custom software written in C#, XNA, and
the Janus toolkit [23], and ran on two computers connected
via a dedicated network. The system maintained a frame
rate of approximately 60 FPS. Each game used two clients
and a server. The server arbitrated conflicts between the
two clients (e.g., if both players picked up a coin at the
same time in Speed Daemons).

Study Design

We analysed each game separately, using mixed-factorial
ANOVAs to test for effects on performance measures. One
within-participants factor was determined for each question
(i.e., Degree of Consistency for Q1, Decision Perspective
for Q2, and Correction Method for Q3, and Expertise
(Gamer or Non-Gamer) was used as a between-participants

Figure 6. Paddle Blasters: Overall performance (means) (low
score is best) and questionnaire measures (medians), by degree
of consistency.

OtherDelay: The other player’s paddling seemed delayed.
Jerky: The canoe moved in an unexpected jerky manner.
Coordinate: It was easy to coordinate my paddling with the other player.
Responsive: The canoe movement was responsive when I pressed the space bar.
Overall: Overall this version was as good as the practice version.

Table 1. Player Experience questions for Paddle Blasters

Figure 7. Paddle Blasters: Questionnaire median responses by
expertise (Gamer / Non-Gamer) and degree of consistency

factor. Player experience (the questions of Tables 1, 2, and
3) was analysed with Wilcoxon tests on medians.

In the following sections, we present our results. For each
question, we first consider the performance measures, and
then the player experience questions.

Results

Q1: Does better consistency lead to better performance?
The Paddle Blasters game compared three different
consistency maintenance schemes, providing different
amounts of overall consistency between the two clients’
views. Remote Lag produces the least overall consistency
because the remote player’s actions are delayed by 200ms.
Local Lag produces the highest consistency because both
players’ actions are delayed by the same amount, so both
players have an identical view of the game. The hybrid
approach provides consistency between these two extremes.

We analysed the effects of Degree of Consistency on the
pair’s shared score (we used the mean of the pair’s best two
scores for each technique; note that lower scores are better
in this game). One-way within-subjects ANOVA showed a
significant effect of Degree of Consistency (F(2,49)=3.81,
p=0.038) (see Figure 6). Follow-up pairwise t-tests
indicated that scores were significantly worse in the High
Consistency condition (200ms Local Lag) compared to the
Medium and Low Consistency conditions (p<0.05).

Q1: Does better consistency lead to better experience?
For the experience questions (Figure 6), Friedman tests
showed a main effect of Degree of Consistency for the

‘overall’ question (χ2=6.72, p=0.035) and near-significant
effects for the ‘jerkiness’ question (χ2=5.51, p=0.063) and
the ‘responsiveness’ question (χ2=5.51, p=0.063) (Fig. 6).

In addition, we divided the data by Expertise into Gamer
and Non-Gamer groups (Figure 7). For Non-Gamers,
Friedman tests show no effect of Degree of Consistency on
any question. For Gamers, Friedman tests showed a main
effect of Degree of Consistency for the ‘jerkiness’ question
(χ2=6.78, p=0.034) and a near-significant effect for the
‘overall’ question (χ2=5.90, p=0.052). Follow up Wilcoxon
tests showed that for the jerkiness question, the Medium
Consistency condition was significantly worse than either
Low or High Consistency (p<0.05). For the ‘overall’
question, Wilcoxon tests showed no differences.

Following the trials, the participants indicated their overall
preference among the three techniques. For Non-Gamers,
five chose the Low Consistency condition (Remote Lag),
two chose Medium Consistency (Local Lag plus prediction),
and six chose High Consistency (Local Lag). For Gamers,
seven chose Low Consistency, two chose Medium
Consistency, and four chose High Consistency.

Q1 – Interpretation of Results
In Paddle Blasters, the High Consistency condition (Local
Lag) resulted in the worst overall score. This indicates that
overall consistency does not necessarily result in the best
performance. Interestingly, however, the results were not as
clear-cut for player experience, with 10 players selecting
the High Consistency condition as the best overall and 12
selecting the Low Consistency condition.

Contrary to previous evidence that 100ms is the limit for
local lag for direct interaction [25], we found that fewer
than half of the participants noticed 200ms of local lag.
Answers to the ‘responsiveness’ question (Table 1) showed
that 15 of the 26 participants found the High Consistency
(Local Lag) condition to be as or more responsive than the
Low Consistency (RemoteLag) condition. We believe that
the game type has an effect on the noticeability of local lag.
The fact that the local player was not the only one
controlling the canoe meant that most players (even the
gamers) did not notice the 200ms of local delay. However,
even though the participants did not always notice the lag, it
affected their score in the game.

The Medium Consistency condition resulted in the best
overall score. However, only four of the 26 participants
selected this as their preferred version of the game. This
counter-intuitive result is best explained by one
participant’s comment: “The jerkiness of [this condition]
was off-putting, but it played the best.”

Our results show that players have definite opinions about
the play experience of different CM techniques, but that
these are not strongly related to degree of consistency
(players preferred either the least or the most consistent
version). In addition, it is clear that the visual jerkiness of

the game is an important factor (an issue we consider in
more detail below).

Q2: Effects of decision perspective on performance
The Eliminate game was used to explore the importance of
the perspective from which game-critical decisions were
made. The two conditions were Server, where decisions are
made based on the server view of the game, and Shooter, in
which decisions are made based on what the shooter saw.
The Server condition requires players to lead or predict the
position of a moving enemy in order to score a hit. We
analysed the effects of factor Decision Perspective on game
performance (individual accuracy and score).

A 2x2 ANOVA showed a main effect of Decision
Perspective on score (F1,24 =4.39, p=0.042) and on accuracy
(F1,24 =8.00, p=0.007). As shown in Figure 8, both score and
accuracy were lower when decisions were made based on
the Server viewpoint.

ANOVA did not show a main effect of Expertise on either
score (F1,24=2.83, p=0.10) or accuracy (F1,24=.282, p=0.60).
Differences between Gamers and Non-Gamers are shown in
Figure 8. There was no interaction between Decision
Perspective and Expertise on score (F1,24 =0.68, p=0.41) or
accuracy (F1,24 =0.165, p=0.69).

Q2: Effects of decision perspective on experience
For the experience questions (Figure 9), Wilcoxon tests
showed a main effect of Decision Perspective (Z=-2.42,
p=0.015) only for the question “Aiming at the other player
was easy.” Since Wilcoxon tests do not determine
interactions, we divided the data by Expertise, and carried
out secondary analyses with the Gamer and Non-Gamer
data (Figure 10).

For Non-Gamers, Wilcoxon tests did not show a main
effect of Decision Perspective for any of the questions.
However, for the Gamers, Wilcoxon tests showed a main
effect of Decision Perspective for three questions: “Aiming
at the other player was easy.” (Z=-2.62, p=0.009), “The
game felt delayed or laggy.” (Z=-2.02, p=0.044) and “There
were no issues with delay in this game” (Z=-2.26, p=0.024).
In all three cases, participant responses favoured the
Shooter condition.

Following the game trials, participants were asked which
condition they preferred. Among Non-Gamers, 8 preferred
the Shooter condition and 5 preferred the Server condition;
for Gamers, 10 preferred Shooter and 3 preferred Server.

Interview comments show that for some players, the added
challenge of leading when aiming (in the Server condition)
increased enjoyment as opposed to causing frustration. For
example, player 13 commented, “I preferred Game A
[Shooter] but compensating for the lag in Game B was
actually kind of fun”; player 1 stated, “Game B is better
because of the increased potential for improvement of skills
and increased challenge.”

Figure 8. Eliminate: Mean performance by expertise and
decision perspective (Server / Shooter).

Figure 9. Eliminate: Questionnaire median responses by
decision perspective (Server/Shooter)
Aiming: Aiming at the other player was easy
GameLag: The game felt delayed or laggy.
OpponentLag: The other player seemed delayed
Controls: The mouse and keyboard controls worked well.
DelayIssues: There were no issues with delay in this game.
Improvement: I was getting better at shooting/aiming throughout the game.

Table 2. Player Experience questions for Eliminate

Figure 10. Questionnaire median responses by expertise
(Gamer / Non-Gamer) and by decision perspective

Q2 – Interpretation of Results
The choice of decision perspective had a significant impact
on player performance, with score and accuracy being
significantly better in the Shooter condition. This is not
surprising, as in this condition, the player scores a hit
whenever he shoots with his cross-hairs over the enemy’s
avatar.

This performance difference was seen in both Gamers and
Non-Gamers. Surprisingly, score and accuracy measures for
the Gamers were not significantly better than for the Non-
Gamers. We attribute this to the fact that the Gamers were
frequently paired with other Gamers who were also better at
avoiding being hit. When we analyzed separately the five
trials in which Gamers were paired with Non-Gamers, we
did find a significant effect of Expertise on both score (F1,8
=13.98, p=0.002) and accuracy (F1,8 =14.77, p=0.001) with
Gamers performing significantly better than the Non-
Gamers.

Gamers were more aware of the effects of latency. For the
‘game lag’ question, they reported that the Server condition
felt significantly more laggy and for the ‘delay issues’
question they reported that the Shooter condition had fewer

Figure 11. Speed Daemons: Performance (means) by expertise
(Gamer / Non-Gamer) and by correction method
OtherJump: It was annoying when the other car jumped or moved unexpectedly.
MyJump: It was annoying when my car jumped or moved unexpectedly.
DelayIssues: There were no issues with delay in this game
Overall: Overall this version was as good as the practice version.

Table 3. Player Experience questions for Speed Daemons

Figure 12. Speed Daemons: Questionnaire median responses
by correction method

Figure 13. Speed Daemons: Questionnaire median responses
by expertise (Gamer / Non-Gamer) and by correction method

issues with delay. Non-Gamers responses for these
questions showed no significant difference between the
conditions. However, despite not subjectively seeing a
difference, Non-Gamers’ performance was affected by the
choice of technique. This suggests that Non-Gamers may
not notice subtle differences in CM techniques because they
are too busy with general gameplay, but that these
differences may nevertheless impact their performance.

A main lesson is that consistency between players’ views
may be less important than perceived local correctness (i.e.,
intuitive resolution of game-critical events).

Q3: Effects of error repair strategies on performance
The Speed Daemons game was used to examine the
difference between three error repair techniques:
instantaneous correction (Warping), interpolated correction
(Smooth), and a technique that avoided all corrections of the
remote car (Local Only). We analysed the effects of
Correction Method on individual performance (game score
and puddle hits).

ANOVA did not show a main effect of Correction Method
on either player score (F2,72=0.20, p=0.82) or puddle hits
(F2.72=0.29, p=0.75) and there was no interaction between
Correction Method and Expertise on either measure (score:
F2,72=0.02, p=0.98; puddle hits: F2.72=0.02, p=0.98).

ANOVA did show a main effect of Expertise on both score
(F1,72 =5.12,p=0.027) and puddle hits (F1,72 =7.62, p=0.007).
As shown in Figure 11, the score was higher for Gamers
and the number of puddle hits was lower.

Q3: Effects of error repair strategies on experience
For the experience questions (Figure 12), Friedman tests
showed a main effect of Correction Method for the last
three of the four questions (see Table 3). Since Friedman
tests do not determine interactions, we divided the data by
Expertise, and carried out secondary analyses with the
Gamer and Non-Gamer data (Figure 13).

For the Gamers, Friedman tests showed a main effect of
Correction Method for all of the last three questions: for the
‘other jump’ question, (χ2=7.37, p=0.025); for the ‘delay
issues’ question, (χ2=10.3, p=0.006); and for the ‘overall’
question, (χ2=13.0, p=0.002). Follow-up Wilcoxon tests
showed that for the ‘delay issues’ question, Warping was
significantly worse than both Smooth and Local Only and
that Smooth was significantly worse than Local Only
(p<0.05). For the ‘overall’ question, both Warping and
Smooth were significantly worse than Local Only (p<0.05).

For Non-Gamers, Friedman tests only showed a main effect
of Correction Method (χ2=8.19, p=0.017), for the third
question “There were no issues with delay in this game”.
Follow up Wilcoxon tests showed that both Warping and
Smooth were worse than Local Only (p<0.05).

Following the trials, the participants indicated their overall
preferences. Among Non-Gamers, participants were evenly
split (each technique was chosen by four people, with one
participant stating no preference). Among Gamers, three
people preferred Warping, two preferred Smooth, seven
preferred Local Only, and one did not state a preference.

Q3 – Interpretation of Results
In Speed Daemons, we saw that player performance was
not affected by the choice of technique. We attribute this to
two aspects of the game. First, collecting the coins was a
very simple task and during each trial all the coins were
always collected. Second, the mud puddles were large and
players could find themselves cornered into a position
where the puddle was unavoidable. Getting into such a
position was affected more by player skill than by the
choice of technique.

Surprisingly, smooth corrections provided only a
marginally better player experience than warping. (Gamers
found there to be more issues with delay in warping than
smooth corrections, but otherwise there were no significant
differences between the two.) We attribute this to the large
magnitude of corrections in Speed Daemons and to the very
visible nature of the corrections. Corrections occurred when
the cars collided with each other and the local client
predicted that they did not, or vice versa. When a correction
occurred, it was possible for the cars to be on the wrong
sides of each other. To do the correction smoothly, the cars
quickly drove around each other. Participants’ lukewarm

response to smooth corrections suggests that these large,
rapid movements may be as problematic as instant warping.

In the Local Only condition (which used Remote Lag), the
position of the remote car was always correct, just delayed
in time. The local client can still make incorrect predictions
about whether the local car collided with the remote car,
and thus there may still be corrections to the local car when
the true remote position arrives over the network. However,
these corrections were smaller and less frequent than with
dead reckoning, and had less impact on player experience.

As with Eliminate, gamers and non-gamers had similar
experiences with the different techniques, although gamers
continued to be more sensitive to the differences.

The clear winner for player experience is Remote Lag,
which reduced the number and magnitude of corrections.
Remote Lag leads to greater divergence in state among the
participants, but generally leads to smoother animation.
This is another indication that factors other than overall
consistency can be critical to player experience.

SUMMARY OF RESULTS
To summarize, the following are the important lessons from
the study:
• The algorithm that leads to the best player performance

does not always lead to the best player experience. In
both Paddle Blasters and Eliminate, we saw a decoupling
of player performance and experience. In Paddle Blasters,
medium consistency was chosen by only 4 of 26 players
as their preferred algorithm, yet delivered the best score
(in a statistical tie with low consistency). While most
players in Eliminate preferred the direct aiming that
allowed them to score more hits, some preferred the
leading version that provided more challenge.

• Similarly, the algorithm providing the best consistency
does not always lead to the best player performance or
the best player experience. In Paddle Blaster, the high
consistency condition led to lowest scores and worst
experience.

• In all three games, we saw that expert gamers are more
likely to perceive anomalous behavior due to latency than
are novice players. Surprisingly, novice players can fail
to distinguish negative behavior even when their
performance suffers from it. This was most evident in
Eliminate where the novice players had significantly
worse accuracy in aiming in the Server condition, but
reported no significant difference when responding to the
experience questions.

• Smooth corrections are not always better than warping,
particularly for large corrections that may be required
after collisions between entities. In Paddle Blasters, the
participants reacted negatively to the small warps in
position that caused jerky motion. However, in Speed
Daemons, smooth corrections were found to be only
marginally better than warping. The large corrections
where a car moved quickly around the other car were
disconcerting, even when they were done smoothly.

We next discuss the conclusions we can draw from these
findings.

DISCUSSION
Our study shows that the CM problem is multi-dimensional,
as captured in the three dimensions of our design space.
The three example games show that focusing on
consistency alone is insufficient, and that the factors of
decision-making and error repair are important in designing
a complete CM scheme. The study indicates that designers
must consider questions such as the following:

• How important is consistency to decision-making? For
example, in a scenario where two players attempt to pick
up the same object at the same time, it is critical that all
clients make the same decision, and a high-consistency
CM scheme should be adopted, such as local lag.

• To what degree can decision-making be viewed as
asymmetric, in the sense that the results of the decision
are more critical to one player than another? If this is the
case, then the remote lag CM scheme can be used.

• To what degree can corrections be tolerated? For
example, in games where player movement is highly
predictable, dead reckoning schemes may be appropriate
as they will result in few corrections, and these can be
easily and (often) imperceptibly repaired. However, if the
corrections are highly noticeable, remote lag and local
lag, both of which reduce the number and size of
corrections, may be more suitable.

The multi-dimensional nature of the CM problem highlights
the importance of user testing to determine the true effects
of algorithmic choices on player experience. As we have
seen, the best player experience is not always provided by
the algorithm that leads to the highest consistency, or even
the best player scores. We saw two reasons why the
participants actually preferred games where they scored
worse. First, part of the fun of playing a game is the
challenge of trying to accomplish a goal. If the game is too
easy, players may find it boring and not as fun as a more
challenging version. For this reason, we believe some of
the gamers enjoyed the version of Eliminate where they
could not aim directly at their opponent, but instead had to
determine how much to lead them. Second, in one condition
of Paddle Blasters, warps were used to correct the canoe
position as quickly as possible which allowed the players to
score better than in the other two conditions. However, the
warps lead to jerky animation that many players found to be
visually annoying.

 Play testing also showed the fallacy of assuming that
smooth corrections would always provide a superior
experience over warping. Testing showed that remote lag
was a surprisingly good option in many situations, as it
negated the need for most of the corrections.

The study shows that the type of game and the target player
group are important considerations in developing a CM
strategy. Games designed for casual players may be able to

use a simpler strategy, as many of the subtle effects may go
unnoticed by the players. However, fast paced games
designed for expert gamers must carefully consider the
impact of CM choices on each interaction.

We have seen that there are interesting interactions between
the three axes. The use of remote lag can reduce the number
of corrections making it easier to provide a smooth
animation. However, remote lag also leads to the greatest
state divergence and can make it more difficult to make
game critical decisions that appear intuitive to all players.

Dead reckoning has the potential to help with this and
works well when the movements of the game entities are
highly predictable. However, when an entity moves
erratically, a large number of jarring corrections can result.
Smooth correction techniques can mask the negative effects
of the error repairs, but when the game uses physics and
entities collide with each other, the corrections may be too
large to mask with smooth corrections.

In a perfect world, game developers would prefer complete
consistency among all players’ views of the game world.
However, as a consequence of the tight performance
requirements of most networked games, we must accept a
degree of inconsistency and sometimes even make incorrect
decisions. Ultimately, the key to a good consistency
maintenance strategy is providing players with an intuitive
local view of the game world. Similar to the findings of
Greenberg and Marwood [14] for some classes of real time
groupware, it is not necessary that each player have an
identical view of the state, merely that the views are
consistent enough and that the outcomes of game critical
decisions can be rationalized by the players.

CONCLUSIONS AND FUTURE WORK
Our research has provided an expanded view of CM in
networked games, focusing on two factors – decision-
making and error repair – that can help designers improve
player experience. We have performed a user study
confirming that it is not sufficient to focus on consistency
alone. While it is difficult to generalize the results of game
performance studies because changing even small
parameters in a game can possibly result in quite different
results, we claim that it is productive to analyze individual
games in terms of the three axes of the design space, and
that surprising results can be obtained from these analyses.
From our study, we saw that consistency algorithms
providing the best consistency do not necessarily lead to the
best user experience. We found that players preferred
smooth animation and preferred the results of game-critical
decisions to be consistent with their view of the game, even
when this resulted in lower overall consistency. Other
surprising results included that smooth corrections were not
always successful in masking error corrections, and that
novice players often failed to noticed the effects of lag even
when it caused their performance to suffer.

In future work, we will carry out additional studies using
the framework, exploring these axes in real-world gaming
situations, and investigating techniques that can better
manage the tradeoffs identified in our study. We plan to
further investigate interaction effects among the axes such
as the relationship between remote lag and corrections and
whether the perspective for game critical decisions affects
the choice of correction technique.

ACKNOWLEDGEMENTS
We gratefully acknowledge the funding of the GRAND
Network of Centres of Excellence.

REFERENCES
1. Aggarwal, S., Banavar, H., and Khandelwal, A.

Accuracy in dead-reckoning based distributed multi-
player games. SIGCOMM Workshops, (2004), 161–165.

2. Aldridge, D. I shot you first! Gameplay networking in
Halo: Reach. Game Developers Conference, (2011).

3. Armitage, G., An experimental estimation of latency
sensitivity in multiplayer Quake 3. Networks, (2003),
137–141

4. Beigbeder, T., Coughlan, R., Lusher, C., Plunkett, J.,
Agu, E., and Claypool, M. The Effects of Loss and
Latency on User Performance in Unreal Tournament
2003. SIGCOMM’04 Workshops, (2003), 144–151.

5. Bernier, Y.W. Latency compensation methods in
client/server in-game protocol design and optimization.
Game Developers Conference, (2001).

6. Bettner, P. and Terrano, M. 1500 archers on a 28.8
network: Programming in the Age of Empires and
beyond. Game Developers Conference, (2001).

7. Brun, J., Safaei, F., and Boustead, P., Managing latency
and fairness in networked games. Commun. ACM 49,
11 (2006), 46-51.

8. Chandler, A. and Finney, J. On the effects of loose
causal consistency in mobile multiplayer games.
NetGames ’05, (2005), 1–11.

9. Chen, H., Chen, L., and Chen, G. Effects of local-lag
mechanism on task performance in a desktop CVE
system. JCST, Vol. 20, 3 (2005), 396–401.

10. Claypool, M. The effect of latency on user performance
in real-time strategy games. Elsevier Computer
Networks, Vol 49, (2005) 52–70.

11. Claypool, M. and Claypool, K. Latency and player
actions in online games. CACM 49, 11 (2006), 40–45.

12. Dick, M., Wellnitz, O., and Wolf, L. Analysis of factors
affecting players’ performance and perception in
multiplayer games. NetGames’05, (2005), 1–7.

13. Fiedler, G. Networked Physics. 2006.
gafferongames.com/game-physics/networked-physics/.

14. Greenberg, S. and Marwood, D. Real time groupware as
a distributed system: Concurrency control and its effect
on the interface. CSCW, (1994), 207–217.

15. Hogland, G. and McGraw, G. Exploiting online games:
Cheating massively distributed systems. Addison-
Wesley, 2007.

16. IEEE. IEEE Standard for Distributed Interactive
Simulation - Application Protocols. IEEE Standard
1278.1-1995 (revision of IEEE Std 1278-1993), 1995.

17. Mauve, M., Vogel, J., Hilt, V., and Effelsberg, W.
Local-lag and timewarp  : Providing consistency for
replicated continuous applications. Transactions on
Multimedia 6, 1 (2004), 47–57.

18. Murphy, C. Believable dead reckoning for networked
games. In E. Lengyel, ed., Game Engine Gems, Volume
2. CRC Press, 2011, 307–328.

19. Nichols, J. and Claypool, M. The effects of latency on
online Madden NFL football. NOSSDAV ’04, 146–151.

20. Pantel, L. and Wolf, L.C. On the suitability of dead
reckoning schemes for games. NetGames’02, (2002),
79–84.

21. Pantel, L. and Wolf, L.C. On the impact of delay on
real-time multiplayer games. Proc NOSSDAV (2002),
23–29.

22. Savery, C., Graham, T.C.N., and Gutwin, C. The human
factors of consistency maintenance in multiplayer
computer games. GROUP’10, (2010), 187–196.

23. Savery, C. and Graham, T.C.N. Timelines: Simplifying
the programming of lag compensation for the next
generation of networked games. Multimedia Systems,
(2012).

24. Smed, J. and Hakonen, H. Algorithms and networking
for computer games. Wiley, 2006.

25. Stuckel, D. and Gutwin, C. The effects of local lag on
tightly-coupled interaction in distributed groupware.
CSCW’08, (2008), 447–456.

26. Zhao, S., Li, D., Lu, T., and Gu, N. Back to the future:
A hybrid approach to transparent sharing of video
games over the internet in real time. CSCW’11, (2011),
187–196.

