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ABSTRACT 

Player balancing helps people with different levels of 

physical ability and experience play together by providing 

customized assistance. Player balancing is particularly 

important in exergames, where differences in physical ability 

can have a large impact on game outcomes, and in making 

games accessible to people with motor disabilities. To date, 

there has been little research into how balancing affects 

people’s gameplay behaviour over time. This paper reports 

on a six-day study with eight youths with cerebral palsy. Two 

games incorporated algorithms to balance differences in 

pedaling ability and aiming ability. Balancing positively 

impacted motivation versus non-balanced conditions. Even 

in “blowout” games where one player won by a large margin, 

perceived fun and fairness were higher for both players when 

a player balancing algorithm was present. These results held 

up over six days, demonstrating that the results of balancing 

continued even after players had the opportunity to 

understand and adapt to the balancing algorithms.  
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INTRODUCTION 

Players of video games have different levels of ability, 

affecting how well they are able to play. Game-playing 

ability is multi-factorial: in addition to personal experience, 

players' performance in a given game might be affected by 

physical abilities like manual ability and reaction time, or 

abilities in cognitive tasks such as spatial reasoning, forming 

tactics, strategy, and pattern matching [12].  

When players need to perform vigorous physical activities, 

such as when playing exergames, physical fitness [21] 

influences game-playing success. Physical abilities are 

particularly important for children with motor disabilities, 

who may be less adept than typically-developing children in 

activities such as running, jumping, or pedaling a bicycle. 

Player balancing alters game mechanics to assist players with 

weaker abilities [4,8]. In the general population, balancing 

algorithms are helpful; among people with physical 

disabilities, they are critical. Previous research has 

investigated techniques for player balancing. However, little 

is known about how players’ behaviour in games changes 

over time in response to balancing algorithms. For example, 

do players change how they play after they have had time to 

understand the effects of balancing algorithms? How does 

the presence or absence of player balancing in games affect 

players’ motivation, effort, and other gameplay behaviours? 

Do the effects of balancing on player behaviour persist or 

change over time? 

We are interested in whether the effect of balancing 

algorithms for people with disabilities is transient, or 

whether balancing can work over the longer term to make 

exergames more accessible to groups with differences in 

physical ability. 

To address these questions, we ran a study of eight youths 

with cerebral palsy (CP) playing two test exergames over six 

days. These exergames were designed to test two core areas 

of difference between children with CP: gross motor 

function, and fine motor function. Gross motor function was 

tested in a cycling-based racing game, while fine motor 

function was tested in a shooting game. Participants played 

each game in pairs, giving a total of 28 distinct pairings of 

the eight participants. 

The key results of this study are: 

 Balancing for physical ability both increased player 

motivation and reduced the number of “blowout” races 

where one player performed vastly better than the other. 
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 Perception of fun and fairness was unaffected overall, 

but in races that were blowouts, both winners and losers 

considered gameplay both more fun and more fair with 

balancing algorithms applied. 

 Balancing increased players' accuracy in the shooting 

game, but their rate of fire was unchanged. 

 These differences held up across the 6 days of the study. 

We begin with an overview of game balancing techniques 

and research on player perceptions of balancing. We then 

provide the context of the research, design of the study, and 

overviews of the two games used for testing. Finally, we 

present the results of the study, discussion and analysis of 

results, and implications for design. 

RELATED WORK 

A body of research has developed over recent years in 

algorithms for balancing games, and in understanding how 

players react in the presence of such algorithms.  

Game Balancing 

Balancing in multi-player games can be difficult because 

skill is multi-factorial, including but not limited to prior 

experience, reaction time, and fine motor control [3,23]. Skill 

imbalance arises when the skill level between players varies, 

which can result in weaker players becoming frustrated at the 

game and stronger players becoming bored at the lack of 

challenge [8]. Skill imbalance is particularly pronounced 

when some players have motor disabilities [11,24]. 

Player Balancing Mechanisms 

Prior research into player balancing mechanisms has 

identified four distinct approaches: difficulty adjustment, 

matchmaking, asymmetric roles, and skill assistance. 

Difficulty adjustment 
Difficulty adjustment matches the level of challenge in the 

game to the player’s ability [4,6,16,22,23], and can be static 

or dynamic in nature. Static difficulty adjustment is typically 

based on predetermined difficulty levels or handicaps 

applied to the stronger player, while dynamic algorithms 

involve performance-based difficulty adjustments. In multi-

player games, difficulty adjustment algorithms balance the 

level of challenge presented to the player by adjusting 

mechanics affecting the performance of the players [1]. For 

example, the lightning bolt item in Mario Kart Wii has a 

longer effect on racers closer to first place [25]. 

Matchmaking 

Matchmaking systems balance by ranking player skill using 

a rating system, and then grouping players of similar rank 

together [4,6,22,23]. Matchmaking systems are core to the 

gameplay of competitive multi-player games like League of 

Legends [26]. However, these systems require a large pool 

of players with different skill levels in order to accurately 

place players [4]. Temporary fluctuations in performance 

(e.g., an unlucky series of losses) can have a severe impact 

on a player’s rank [6,22], and it is not always possible to find 

an exact match to a team or personal rank.  

Asymmetric roles  

In games with asymmetric roles, player balancing occurs 

naturally when players select roles that suit their level of 

expertise [4,6,22,23]. In Blizzard’s Overwatch, heroes are 

grouped into four roles [27], with each hero having different 

responsibilities and play styles. Even if players lack the skill 

to perform certain tasks, they can still contribute to their 

team’s success by choosing roles that play into their 

strengths. However, players may be forced into playing 

specific roles [6], leaving them unable to practice the skills 

they need to branch out into different roles. 

Skill Assistance 

Skill assistance compensates for lower ability by making it 

easier to correctly perform in-game actions [4,6,23]. These 

skills vary depending on the game. For example, in the racing 

game Forza Motorsport 4, players can turn on steering, 

braking, and stability assists to improve their performance. 

Most research in skill assistance has been in aim assistance, 

which reduces the accuracy required to acquire a target 

[6,23], making it easier for the player to score hits [22]. Two 

aim assistance strategies that have been shown to be effective 

in stylized [3] and realistic [23] shooting games are bullet 

magnetism [8,23] and area cursors [22,23]. Prior studies 

found that aim assistance provided a more enjoyable 

experience for all players [3,22]. Experiments have 

suggested that balancing does not limit the rate at which 

players develop gaming skills [9]. 

Balancing Exergames 

When balancing exergames (games that incorporate physical 

exercise) [12,15], designers need to account for differences 

in physical ability [7,16]. The balancing problem requires 

designers to account for differences both in player skill levels 

and physical ability [20].  

Balancing between disparate fitness levels 

Prior research has shown that multi-player exergames can be 

balanced by basing in-game performance on the player’s 

physical effort [13,16,21]. Heart rate has been used as a 

measure of effort in jogging-based exertion games [16] and 

pedaling-based exergames [21], allowing people with 

different fitness levels to compete and play together. 

Accessibility and Video Games 

While game balancing attempts to address skill imbalance, 

game accessibility attempts to open games to a broader 

audience [28]. Players with disabilities may have deficits in 

how they perceive stimuli, determine responses, or provide 

input in video games [24]. This can exclude players with 

disabilities from many of the games they would like to play. 

Motor disabilities are the farthest-reaching category of 

impairment, affecting a significant percentage of persons 

with disabilities [28]. They may find conventional game 

controllers difficult to use due to impaired fine motor control 

[10–12]. Inputting time-sensitive commands, or having to 

input multiple commands at once may be too difficult.  

Exergames present particular challenges to accessibility, as 

some players may be unable to perform the physical actions 



– such as pedaling, jumping or running – required by the 

exergame [10]. In exergames, player balancing becomes 

especially important because differences in physical ability 

affect game outcomes. 

Accessibility strategies (e.g., simplifying input by using 

contextual actions [12]) can inform player balancing, and 

allow games to be played by gamers with and without 

disabilities [24,28]. Gerling et al. have shown that players 

without disabilities and players using wheelchairs could 

compete in a dance exergame [7]. But to date, there has been 

little work in player balancing for persons with disabilities, 

particularly on balancing for disparate levels of physical 

ability in multi-player games. Many commercial games 

provide design features such as remappable keys to 

accommodate disabilities, but few provide balancing 

specifically for players with disabilities. 

Effects of Balancing on Players 

In determining what strategies to use for balancing, it is 

important to understand how players perceive and change 

their behaviour in response to balancing approaches. 

Perceived competence and self-esteem 

Prior research indicates that players’ perception of balancing 

largely depends on their awareness of in-game assistance 

[1,6,7]. Short-term studies have shown that balancing usually 

increases perceived competence in weaker players without 

negatively impacting stronger players [20,22]. 

Player experience and perception of games with balancing 

How players respond to balancing depends on the visibility 

of the assistance [6] and play setting. In social play, players 

are more accepting of assistance because it promotes playing 

together with friends who may have disparate skill levels [6]. 

In social play, the use of skill assistance can lead to increased 

engagement [6] and can enable players with extreme ability 

differences to compete without reducing the fun of stronger 

players [7,3]. Research also suggests that weaker players 

tend to want their receipt of assistance to be concealed from 

others while stronger players prefer full disclosure [1]. In 

addition, stronger players are more accepting of assistance in 

a social multi-player setting [6]. 

Balancing algorithms have been shown to improve play 

experience and perception of fairness in single-session 

studies [3]. Little is known about player reaction to balancing 

algorithms over a longer timeframe. Gutwin et al. have 

shown that skill assistance does not hinder the development 

of skills over time [8], which may be promising to designers 

who fear players becoming overly reliant on assistance. 

CONTEXT 

This research was performed in the context of the two-week 

SportFit summer camp for children with cerebral palsy (CP), 

held at a children’s rehabilitation hospital. CP is a 

neurological disorder causing a broad range of motor 

disabilities [9–12]. Children with CP often experience 

decline in gross motor function as they transition to 

adulthood [9,10,12]. This decline is multifactorial, but 

significant contributors are poor physical fitness, muscle 

weakness due to disuse, changes in body composition, 

limitations in range of motion, and pain [10,12]. 

The camp aimed to improve the cardiovascular fitness of the 

participating children, and promote gross motor recreational 

activity participation. Prior research [9,10] suggests that 

moderately to vigorous physical exercise, such as that 

encouraged through exergaming, promotes an improvement 

in cardiovascular fitness. 

As one of the camp’s activities, children played one hour per 

day of the cycling-based Liberi exergame [11]. This allowed 

us to observe participants’ impressions of and behaviour 

toward balancing algorithms over a two-week period, 

addressing the question of whether behaviour changes as 

players become aware of the algorithms’ properties. To 

isolate balancing from other factors, we included daily play 

of two custom-designed games focusing on balancing of 

gross motor function (Gekku Pedal) and aiming skills 

(Gekku Aim). Our study was run under the aegis of the 

hospital’s research ethics board. 

Impact of Cerebral Palsy on Balancing 

The motor disabilities present in CP impact performance in 

exergames such as Liberi. Deficits in gross motor function 

impact pedaling ability; deficits in visual-motor integration 

and processing and fine motor control impact the aiming 

tasks used, for example, for shooting and navigating in 

games. Gross motor function in people with CP is 

categorized by the Gross Motor Function Classification 

System (GMFCS) [17–19], ranging from limited impairment 

at level I to severe impairment at level V. SportFit attendees 

were all at GMFCS level II or III. But even within these 

levels, there is a wide range of function. People at GMFCS 

level III use mobility devices, which may range from hand-

held walkers to motorized wheelchairs. At level II, people 

are able to climb stairs holding a railing, but may or may not 

use mobility devices. 

In multiplayer games, people with CP have a particular need 

of algorithms that compensate for differences in motor 

ability because there is significant variation in individual fine 

and gross motor ability [17–19], which presents a challenge 

to children playing together with their peers [11,14]. This 

balancing challenge is compounded by the lack of 

availability of accessible action-based exergames. Therefore, 

we designed our own test games to compare the impacts of 

players' fine and gross motor ability. 

TEST GAMES 

To test balancing for gross motor function (GMF) and for 

fine motor function, we needed to be able to separate their 

effects on game outcomes. We did this by creating two 

separate test games.  



Gekku Pedal is a racing game whose outcome is decided by 

gross motor function and player effort. Gekku Aim is 

shooting game, based on aiming skills and fine motor 

function. These games were created using assets from the 

Liberi game Gekku Race, featuring cartoon lizards called 

“gekkus”. Intentionally, little gameplay skill is required by 

these two games, which allows us to observe imbalance that 

arises from different levels of gross and find motor function. 

Because the difference in physical abilities is great among 

people with CP, imbalance between players in this 

population is visible, allowing clear perception of how well 

a balancing algorithm is functioning.  

For these trials, we were interested in players’ perceptions of 

and adaptations to the balancing algorithms. We therefore 

made the effects of the algorithms obvious, to increase the 

likelihood of players understanding over time that balancing 

was being used, and subsequently adapting their behaviour 

to the algorithm. In terms of Mueller et al.'s framework for 

creating balanced exertion experiences [15], this can be 

expressed as strongly explicit rather than hidden 

presentation. The algorithms we used are also controlled by 

the designer rather than the user, and use static rather than 

dynamic adjustment, to simplify the algorithms and enable 

us to focus on player's reactions to the balancing. 

We adopted the conventions of the Liberi exergame being 

used in the study. Players are seated at a custom-designed 

bicycle [10], and pedal to move their avatar (see Figure 1 for 

the exergame hardware setup). The game world is shown on 

a screen mounted in front of the player’s bicycle. Players use 

a handheld video game controller to steer their avatar 

through the world, and to activate in-game actions. 

Gekku Pedal 

To test gross motor balancing, we created Gekku Pedal (see 

Figure 2 left). In Gekku Pedal, two players race their “gekku” 

lizards up a wall. The first to reach the top is the winner. 

Gekkus run straight up, so the winner is determined by 

pedaling speed. 

In the non-balanced version of Gekku Pedal, players’ 

pedaling cadence is linearly mapped to the gekkus’ forward 

speed. The faster the player pedals, the faster the gekku runs 

toward the finish line. In the balanced version, gekkus move 

at only one speed. If the player is pedaling at all, then the 

gekku runs forward at this constant speed. Since any 

pedaling cadence results in the same speed, differences in 

gross motor function have no effect, as long as players are 

able to pedal. 

We adopted this extreme balancing approach to increase the 

visibility of the algorithm to the players. We expected that 

players would realize that they could pedal less vigorously, 

since increased effort did not influence the chance of 

winning. We also expected that some players might find the 

algorithm to be unfair, as increased effort is not rewarded. 

Gekku Aim 

Players’ reaction to the presence of balancing for aiming 

ability was tested using the Gekku Aim game (see Figure 2 

right). Gekku Aim is a two-player game, where players 

attempt to hit their opponent by spitting cashews. The winner 

is the player who has the highest number of hits within the 

one-minute duration of the game. When the game starts, 

gekkus automatically move up the track at a set speed. 

Players shoot cashews by aiming with the joystick and 

pressing any of the buttons on the controller to fire. When a 

gekku lizard is hit, it becomes invisible and teleports to a 

random nearby location before becoming visible again, 

requiring both players to re-acquire their target. 

Figure 1: Youth with CP seated on custom-built recumbent 

bicycle with pedaling attachments and lateral supports. 

Figure 2: In Gekku Pedal (left), players pedal a bike to move their avatar up the track; the first to the top of the track wins the 

race. In Gekku Aim (right), players shoot other players by aiming at them and pressing a button to fire a cashew. 



Balancing in Gekku Aim is aided by a bullet magnetism aim 

assistance algorithm [22,23]. When aim assistance is not 

active, the cashews travel in precisely the direction the 

shooting player is aiming, whether or not that shot will result 

in a hit. With aim assist on, the game checks in an area 

around where the shooter is aiming. If an opponent is within 

that area, the cashew shoots in the direction of that opponent. 

This algorithm is static rather than dynamic, in that it 

provides all players with the same assistance. We 

nevertheless expected the algorithm to favour players with 

weaker aiming skills, as they are more likely to be pointing 

in the wrong direction. We also intended that players would 

understand the effect of the algorithm over time, realizing 

that at times the cashew moved directly toward the opposing 

gekku despite their aiming in the wrong direction. 

STUDY DESIGN 

During the two-week SportFit camp, one hour a day was set 

aside for participants to exercise by playing exergames. 

During this time, participants played the balanced and non-

balanced versions of Gekku Pedal and Gekku Aim in pairs. 

When not engaged in the study games, participants played 

Liberi for fun. Participants were allowed to stop at any time. 

The first four days of the SportFit camp were devoted to 

calibration of the games and familiarization of the 

participants with the equipment. Study data was collected on 

the remaining six days of the camp. 

Research Questions 

The study addressed three primary research questions: 

RQ1: Do the balancing algorithms reduce differences in 

players’ performance? We hypothesized that the presence of 

balancing algorithms would reduce differences between 

players in game outcomes. 

RQ2: How does the presence or absence of a balancing 

algorithm affect player behaviour and player perception? 

We hypothesized that players might pedal more slowly or 

shoot less, because they feel their efforts have less effect. 

Also, players might feel that balancing makes the game more 

fun to play, or that more balanced games are more fair. 

RQ3: How do these effects persist or change over time? We 

were interested in understanding how players perceived 

balancing over time, and how their behaviour would adapt 

once they had recognized and understand the properties of 

the in-game balancing algorithms over two weeks of play. 

Participants 

Study participants were children with CP who were clients 

of Holland Bloorview Kids Rehabilitation Hospital, where 

the study took place. Participants were invited, with their 

parents'/guardians' permission, to participate in our study. 

Recruitment parameters were: 8-14 years old, GMFCS level 

II or III, and able to operate a hand-held videogame 

controller. Exclusion criteria were orthopedic surgery within 

the last three months, or health conditions counter-indicating 

play of exergames. 

A total of eight participants (2 female) were recruited for the 

study, with a mean age of 10.2 ± 2.2 years. The participants 

were evenly distributed between GMFCS levels II and III. 

Three participants had played Liberi previously. All youth 

were able to actively participate in the games and the 

intensive therapy protocols, and were able to engage well 

with their peers and other SportFit camp participants. 

Equipment 

Participants played the games using a Logitech F710 

wireless gamepad, and a custom-designed stationary 

recumbent exercise bicycle (see Figure 1 for hardware 

setup). The game client itself ran on a 23” screen all-in-one 

computer. Participants wore Polar chest-strap heart rate 

monitors. For reasons of data security, the games were 

hosted on a closed LAN. Each client machine was connected 

through an Ethernet router to a server computer, operated by 

a researcher overseeing play. 

Measures 

In this section, we describe the measures used to capture 

effectiveness of the balancing algorithms, player behaviour, 

and player perception. 

Effectiveness Measures 

Spread is the difference between the two players’ 

performances in a game. We consider low spread to be an 

indication that the game was balanced. 

 In Gekku Pedal, spread is the average vertical distance 

between players across the first 19 seconds of the race 

(the duration of the shortest recorded race). 

 In Gekku Aim, spread is the difference in final score, 

measured as the higher score minus the lower score. 

Blowouts are games in which one player was very far ahead 

of the other. The losing player has fallen so far behind that 

they had no hope of catching up. The blowout rate is then the 

number of blowouts divided by the total number of games 

played. A good balancing algorithm reduces blowout rates. 

 In Gekku Pedal, we consider a race to be a blowout if 

one player is so far ahead that the trailing player cannot 

see the other's gekku (see Figure 3) for at least three 

consecutive seconds. 

Figure 3: A blowout race in Gekku Pedal. The leading player 

is so far ahead as to no longer be visible on screen. 



 In Gekku Aim, we consider a game to be a blowout if 

the winning player's score is more than 50% higher than 

the losing player's score. 

Hit rate in Gekku Aim is the number of times the player hit 

their opponent during the race, divided by their total number 

of shots. This is a primary measure of players’ success in the 

balanced/non-balanced conditions. 

Behaviour Measures 

Player behaviour was monitored by the researchers 

overseeing play. We also included two quantitative 

measures, one for each game: 

 Average cadence in Gekku Pedal is a player's mean 

cadence, used as a measure of player effort. 

 Fire rate in Gekku Aim is a player's average number of 

cashews shot per second, calculated as number of 

cashews shot divided by total number of seconds. This 

is used as a measure of how much a player is trying to 

win (inverse measure of player conservatism). 

Player Perception Measures 

Players’ perceptions were gathered through two questions 

rated on five-point Likert scales: 

 Fun is participants' answers to the question “was that 

game fun?” 

 Fairness is participants’ answers to the question “was 

that game fair?” 

In previous studies, we have found that asking too many or 

overly detailed questions often led to young players losing 

focus and answering haphazardly. These questions are 

intentionally simple to avoid this problem. 

Method 

Due to a limited number of cycling stations, the eight 

participants were divided into two groups of four. To ensure 

that every participant played the test games with each other 

participant, a player from each group was switched with one 

from the other each day, for a total of 28 distinct player pairs 

for each game. Participants played for a total of one hour per 

day. When not engaged in playing Gekku Aim or Gekku 

Pedal, players had free-play time where they could choose 

which Liberi games to play. 

Each pair of participants played all four test conditions – both 

test games, both with and without balancing – back-to-back. 

Test games were run starting with Gekku Pedal and 

alternating with Gekku Aim, to allow players to rest in 

between rounds of Gekku Pedal. The order in which the test 

conditions were run was otherwise order-balanced to include 

all possible sequences. 

The SportFit camp ran for 10 days over two weeks. We 

began our study on day five of the camp, resulting in six days 

of data. For examination of whether results varied over time, 

we considered separately the first two days, capturing initial 

impressions. From the final four days, we captured longer-

term impressions. Testing prior to the study determined the 

appropriate mapping of cadence to in-game speed for the 

non-balanced condition of Gekku Pedal, based on all 

participants' average cadence across the calibration period. 

Data Collection 

Data for measuring spread, blowouts, hit rate and fire rate, 

and average cadence were captured quantitatively within the 

games and written to log files. These log files were 

transferred to a secure offline database. The measures were 

then computed by an analysis program polling the database 

and generating tables containing the desired measures. The 

tables were imported into IBM SPSS v24 for analysis. 

Players’ perceptions of whether games were fun and fair 

were obtained with a Likert scale questionnaire by the three 

observers supervising the participants. The questionnaire 

was applied following each round of the game.  

The observers also collected data on participant behaviour by 

recording instances of players noticing the difference 

between the balanced and non-balanced conditions. To 

distinguish between players’ initial impressions and their 

longer-term impressions, we compared players’ behaviour 

observed in the first two days of the study (early) to 

behaviour observed in days three to six (late). 

RESULTS 

We present our results around our research questions about 

game outcome, play behavior and player perception of 

balancing algorithms over time. Alpha for significance was 

set at .05. When applied, Bonferroni correction is reported as 

an adjustment to this alpha threshold rather than as 

adjustments to the p-values. To avoid assumptions around 

the shape of the data, all ANOVAs were conducted using 

Greenhouse-Geisser correction. To capture effect size, we 

report Cohen’s d values; Cohen suggests that d=0.2 indicates 

a small effect; d=0.5 indicates a medium effect, and d=0.8 

indicates a large effect [5]. 

RQ1: Effectiveness of Balancing 

We first examined the degree to which the balancing 

algorithms employed in the Gekku Pedal and Gekku Aim 

games reduced differences in player performance. 

Gekku Pedal: effectiveness of gross-motor balancing 

To test how gross-motor balancing affected player 

performance, we analyzed spread (average difference in 

position) and blowout rate.  

A paired-samples t-test showed that average spread between 

players was lower in the balanced condition (M=1.57, 

SD=0.894) than in the non-balanced condition (M=10.39, 

SD=6.25); t(27)=7.46, p<.001, d=1.98. In the non-balanced 

condition, the blowout rate was close to 90% (M=.886, 

SD=.318), compared to zero in the balanced condition 

(M=.000, SD=.000); t(68.5)=-23.3, p<.001. 

Gekku Aim: effectiveness of fine-motor balancing 

To see how the presence of aim assistance for balancing 

affected player performance, we considered hit rate, spread 

(average difference in score), and blowout rate.  



A t-test showed that players had a higher hit rate in the aim 

assistance condition (M=.781, SD=.126), than in the no aim 

assistance condition (M=.629, SD=.214); t(7)=8.09, p<.001, 

d=1.26. Player hit rate without aim assistance was found 

through linear regression to be correlated with improvement 

in hit rate in the aim assistance condition (see Figure 4); 

R=.889, p=.003. 

A t-test showed that players had higher scores in the presence 

of aim assistance (M=15.7, SD=3.39) than without aim 

assistance (M=12.2, SD=4.10); t(7)=9.57, p<.001. However, 

there was no significant difference in average score spread 

between the aim assistance (M=6.10) and no aim assistance 

(M=6.95) conditions; t(27)=1.03, p=.311. Without aim 

assistance, more than half of the games played were 

blowouts (M=.536, SD=.508). In the presence of aim 

assistance, the number of blowout games dropped by almost 

50% (M= .286, SD=.460); t(27)=-3.00, p=.006. 

RQ2: Effect on Player Behaviour and Player Perception 

Having established that the balancing algorithms improved 

player performance, our next question asked whether the 

presence of balancing affected the way people play, or 

affected their perceptions of the game’s fun and fairness. 

Gekku Pedal: behavioural effect of gross-motor balancing 

To evaluate how balancing affected the level of effort players 

put into pedaling, we compared players' average cycling 

cadence. A t-test showed that players pedaled harder in the 

presence of balancing (M=70.9 RPM, SD=21.6) than when 

no balancing algorithm was used (M=58.5 RPM, SD=22.9); 

t(7)=-4.02, p=.005, d=.556.  

With cadence considered separately between non-balanced 

blowout races, non-balanced non-blowout races, and 

balanced condition races (all non-blowouts), an RM-

ANOVA showed a significant within-subjects effect; F(1.28, 

7.70)=8.46, p=.017. Post-hoc pairwise comparisons (see 

Figure 5) showed that cadence was lower in non-balanced 

blowouts (M=57.7, SD=25.3) than in balanced races 

(M=70.7, SD=23.3); p=.014, d=0.532. 

Cadence was not significantly different between non-

balanced non-blowouts (M=68.1, SD=26.1) and balanced 

races; p=.188. There was an apparent difference between 

blowouts and non-blowouts in the non-balanced condition, 

but the difference was not significant at the Bonferroni-

corrected alpha=.05/3 level; p=.041. One of the participants 

only had blowout races in the non-balanced condition, and 

so was excluded from this analysis. 

Gekku Aim: behavioural effect of fine-motor balancing 

Our primary measure for whether player behaviour changed 

in the presence of balancing or over time is fire rate. Players 

might fire more quickly, allowing aim assistance to 

compensate for the resulting loss of accuracy. T-tests showed 

there was no difference in players’ fire rates between games 

with aim assistance (M=.330) and games with no aim 

assistance (M=.325); t(7)=1.10, p=.306. 

Gekku Pedal: perceptual effect of gross-motor balancing 

Participants' five-point Likert scale responses to whether 

they found the games fun or fair were analyzed through 2x2 

repeated measures ANOVAs, according to presence/absence 

of balancing and to whether the responding player had won 

or lost the race. 

Ratings of fun were not significantly different between 

balanced (M=4.09) and non-balanced (M=3.96) conditions; 

F(1,21)=0.475, p=.498. There was also no significant 

difference in responses between the winners (M=4.23) and 

losers (M=3.82); F(1,21)=2.78, p=.110.  

Responses for fairness were not significantly different 

between balanced (M=3.84) and non-balanced (M=3.75) 

conditions; F(1,21)=.164, p=.690. No significance was found 

between the winners (M=3.93) and losers (M=3.66); 

F(1,21)=1.08, p=.311. 

Gekku Aim: perceptual effect of fine-motor balancing 

Participants did not report a difference in fun between the 

aim assistance (M=3.78) and no aim assistance (M=3.80) 

conditions; F(1,22)=.004, p=.950. There was likewise no 

difference in fun between winners (M=3.72) and losers 

(M=3.87); F(1,22)=1.43, p=.245.  

Perceived fairness was not different between aim assistance 

(M=3.67) and no aim assistance (M=3.63) conditions; 

F(1,22)=.015. Fairness was not different between winners 

(M=3.65) and losers (M=3.65); F(1,22)=.000, p=1.00. 

To test what effect blowouts had on players’ perceptions of 

the game, we repeated these tests using data from blowout 

games only (this could not be done for Gekku Pedal, as there 

were no blowouts in the balanced condition). 

Participants rated blowouts as more fun with aim assistance 

(M=4.06) than in the no aim assistance condition (M=3.81); 

F(1,7)=7.00, p=.033. Blowouts were also considered more 

Figure 4: Linear regression of players’ initial hit rates versus 

their aim-assisted hit rate. 



fun by the winners (M=4.50) than the losers (M=3.38); 

F(1,7)=5.97, p=.045. No significant interaction was found 

between assistance condition and winner/loser; F(1,7)=1.40, 

p=.275. (See Figure 6 right). 

Participants considered blowouts to also be more fair in the 

aim assistance condition (M=4.00) than in the no aim 

assistance condition (M=3.56); F(1,7)=8.80, p=.021. 

Blowouts were not considered significantly more fair by 

winners (M=4.25) than by losers (M=3.31); F(1,7)=2.63, 

p=.149. No interaction was observed between condition and 

winner/loser; F(1,7)=.127, p=.732. (See Figure 6 left). 

RQ3: Persistence of Effects Over Time 

Finally, we were interested in whether the identified 

behavioural changes persisted over time. 

Gekku Pedal: persistence in gross-motor balancing behavior 

Average pedaling cadence over the course of the study was 

examined through a 2x2 RM-ANOVA using time during 

study and balancing condition as within-subjects factors. No 

significance was found between early (M=64.5) and late 

(M=65.3) races; F(1,7)=0.0542, p=.823. No significant 

interaction was found between time during study and 

balancing condition; F(1,7)=1.36, p=.281. 

Gekku Aim: persistence in fine-motor balancing behavior 

A 2x2 RM-ANOVA examining fire rate was conducted, with 

time during study and balancing condition as factors. No 

significance was found between early (M=.325) and late 

(M=.333) games; F(1,7)=.561, p=.476. No significant 

interaction was found between time during study and 

balancing condition; F(1,7)=1.20, p=.309. 

A second 2x2 test was run for hit rate, again with time during 

study and balancing condition as within-subjects factors. No 

significant difference was found between early (M=.722) and 

late (M=.727) games; F(1,7)=.027, p=.874. No interaction 

was found between time and condition; F(1,7)=.296, p=.603. 

DISCUSSION 

This study was designed to test the effects of employing 

balancing in exergames for both gross motor function and 

fine motor function, in a population (people with CP) with 

wide variability in both. Our primary areas of inquiry were 

to confirm that the balancing algorithms functioned, to 

examine how presence or absence of balancing affected 

players’ behaviour and perceptions, and to investigate 

whether these effects varied over several days of play. 

RQ1: Effectiveness of Balancing 

Both algorithms improved metrics associated with 

balancing. In Gekku Pedal, both spread (average distance 

between players) and blowout rate were far lower in the 

balanced condition than in the non-balanced condition. This 

was as expected, given that in the balancing condition, all 

players moved at the same speed if they were pedaling at all. 

In the balanced condition, the differences between players’ 

positions were due to players stopping. Races were 

nonetheless close, with no blowouts seen in the balanced 

condition. 

In Gekku Aim, aim assistance improved players’ hit rates 

and final scores, indicating that the algorithm indeed 

improved players’ ability to hit. Players with weaker aiming 

ability benefitted more from the balancing; this was 

expected, as players who miss more frequently have more 

opportunity for those misses to be turned into hits. The aim 

assistance algorithm dramatically lowered the blowout rate, 

indicating that players were less likely to win (or lose) by a 

large margin. The average spread between players decreased, 

but this decrease was not significant. Therefore, the primary 

effects of the aim assistance algorithm were to improve 

aiming and to reduce blowouts, although on average, races 

were not closer. A contributing factor is that all players saw 

their hit rate improve, not just those who needed it most. 

RQ2: Effect on Player Behaviour and Player Perception 

Two results around player behaviour are notable. First, in 

Gekku Pedal, players expended more effort in the balanced 

condition. These results are consistent with the observations 

of Jensen and Grønbæk, who also saw a positive effect of 

balancing on effort in exergames [13]. This result is likely 

because, in a less-balanced race, the weaker player is 

demotivated by having little chance of winning, while the 

stronger player sees that they can win without expending full 

effort. This is supported by analysis of blowout vs non-

blowout races. In non-balanced blowouts, cadence was much 

lower than in the balanced condition, indicating that players 

reduced effort if the race’s outcome was already clear: no 

need to pedal hard if you know you will win, and no need to 

pedal hard if won't stop you from losing.  

Interestingly, non-blowouts had similar average cadence 

even between conditions. Motivation to exert is critical for 

an exergame to have any exercise value [15], suggesting an 

Figure 5: Average cadence in Gekku Pedal between 

conditions, counting blowout and non-blowout races 

separately in the non-balanced condition. Vertical bars show 

standard deviation. Horizontal hats indicate statistical 

significance at α = .05. 



important role for balancing to maintain exergame player 

motivation. The possibility of winning kept players pedaling 

hard, whether or not pedaling quickly would actually help. 

This indicates that the key contribution of balancing may be 

to reduce the incidence of very imbalanced blowout races, 

and that this metric should be considered more explicitly in 

future research in exergame balancing.  

The second notable result is that players’ fire rate did not 

vary between conditions. This was surprising since we 

expected players to take advantage of aim assistance and fire 

more rapidly, trusting the algorithm to compensate for 

reduced accuracy. Players were aware that there was a 

difference between the balanced and non-balanced 

conditions, and two of eight players were particularly vocal 

when aim assistance was unavailable. For example, one 

player stated “I’m aiming but it’s not working” in the non-

aim assisted condition, referring to the increased difficulty of 

aiming.  

The aiming problem therefore has two components: aiming 

itself, and time to aim. Our algorithm helped with the first, 

but not with the second. This example shows that it is 

important to understand that players may fail to adapt their 

play to the presence of a balancing algorithm, and that the 

task being balanced may have more factors than initially 

considered. 

We expected that players would find the balanced versions 

of games to be more fun and more fair. Our results showed 

no difference in perceptions of the two conditions when all 

races were considered. However, analysis of blowout races 

in Gekku Aim did reveal differences in perception of fun and 

fairness. Unsurprisingly, winners of blowouts found the 

game more fun than losers. More interestingly, losers of 

blowouts found the game more fun in the balanced condition. 

We believe that this is because being able to hit more often 

makes the game fun, even when the player is devastatingly 

outmatched. Also, both winners and losers of blowouts found 

the game fairer in the balanced condition. This result is 

particularly surprising, but perhaps indicates that when 

players felt they had a better chance of landing their shots, 

the game felt more fair, even in the case of lopsided wins. 

This result indicates that balancing can have positive benefits 

even in games that have poorly-balanced results. Players 

appear to appreciate being able to complete game tasks 

successfully even if they ultimately lose the game. Similar 

analysis of blowout races was not possible with Gekku Pedal, 

as there were no blowouts in the balanced condition. 

RQ3: Persistence of Effects Over Time 

The main contribution of this study is that we observed 

participants over six days of play, during which time they 

played the games dozens of times, and consequently came to 

recognize the difference between the balanced and non-

balanced versions of the games. This differs from most 

earlier studies where play was observed over a single session.  

We expected to see changes in behaviour over time as the 

players learned the algorithms’ properties. We expected, for 

example, that players’ effort level would drop in the balanced 

version of Gekku Pedal as they realized that pedaling speed 

did not affect avatar speed. We expected that as players came 

to understand Gekku Aim’s aiming assistance algorithm, 

they would fire more frequently, allowing the algorithm to 

compensate for any reduced accuracy. 

Surprisingly, we saw no difference in results between the 

beginning of the study (days 1 and 2) and the rest (days 3 

through 6). In Gekku Pedal, players’ exertion level remained 

the same over time; the difference between the balanced and 

non-balanced conditions did not change. All players were 

able to perceive that there was a difference between 

conditions. One commented, for example, that he felt “held 

back” by his lower speed in the non-balanced condition. 

The fact that players did not adapt to balancing by reducing 

effort even after days of play is a reassuring result. Gekku 

Pedal uses a heavy-handed algorithm where all players move 

at the same speed when pedaling, and even then, players 

Figure 6: Fun (left) and Fairness (right) ratings in Gekku Aim for blowouts, separated by winners/losers and by presence or 

absence of aim assistance. Vertical bars show standard deviation. Horizontal hats indicate statistical significance at α = .05. 



exerted themselves more than in the non-balancing 

condition, long after they understood how the algorithm 

worked. This lends confidence that more sophisticated 

balancing algorithms (e.g., heart rate balancing [21]) can be 

practical over the long-term.  

In Gekku Aim, players did not adapt to the availability of aim 

assistance, as evidenced by no change in fire rate over the 

course of the study. Given six days to adapt to the aim 

assistance in Gekku Aim, players still did not take advantage 

of the ability to shoot more quickly while still hitting the 

target. This again shows that even when given the chance to 

observe and learn a balancing algorithm, players may 

continue to play as if the algorithm is not present. 

IMPLICATIONS FOR DESIGN 

In this section we discuss implications for design arising 

from this study. CP represents a difficult case for balancing 

due to the large differences in ability among people with CP. 

Conversely, game balancing represents an enormous 

potential benefit to people with CP, allowing them to play 

multiplayer games in a broader group. Further research is 

required but we expect our findings could also apply to motor 

balancing in other kinds of exergames. 

Use Balancing to Enhance Player Motivation 

A concern about balancing for player ability is that players 

will use it as a crutch instead of trying their best. This is 

particularly an issue in exergames, where exertion is core to 

the game’s purpose. We found that players exerted 

themselves more in the balanced condition. Earlier research 

has found that players find close games to be more fun than 

unbalanced ones [6,22], and we confirm these results. Effort 

declined in blowout games, which occurred more often in 

non-balanced games. Our findings suggest that players try 

harder when there is a reasonable chance that either player 

could win, and that players continue to try harder in balanced 

games after extended play.  

Notably, our results show that this effect persists over six 

days of play, indicating that the positive effects of balancing 

on motivation last beyond the time it takes for players to 

understand the presence of balancing in-game. As such, a 

primary goal of designers of exergames should be to use 

balancing mechanisms to reduce blowouts, in the expectation 

that players will then increase their exertion level. 

Aim Assistance Should Be Visible to The Player 

We found that aiming ability is comprised of two key parts: 

how well players can hit the target, and how quickly they can 

line up their shots. In our study, we made the presentation of 

the assistance explicit rather than hidden, but there was no 

clear indication of whether a shot was certain to hit. 

Accordingly, players could detect the presence or absence of 

aim assistance, but did not know whether their aim was true. 

Adding such an indicator (e.g., highlighting the target for a 

definite hit) might have encouraged players to increase their 

fire rate to get full advantage from aim assistance. 

Prior work has shown that explicit disclosure of skill 

assistance does not have a significant negative impact on 

play experience or fairness [6,13]. Assistance should be 

made explicit to the players receiving the boost so that they 

can learn to adapt to its presence and make use of it. 

However, as observed by Gerling et al., highly noticeable 

algorithms can negatively impact self-esteem [7]. This 

suggests that, while players must perceive balancing clearly 

enough to make full use of it, they should also not be able to 

easily tell how much or how little assistance they are 

receiving compared to other players. 

Use Customized Balancing Algorithms 

Our aiming assistance algorithm used static adjustment, 

providing all players with the same degree of assistance. As 

a consequence, all players’ hit rates improved (albeit with 

greater improvement among weaker players – Figure 6). This 

approach was sufficient to cut in half the blowout rate, but 

not enough to reduce differences in scores. In this case, 

providing the same assistance to all players was not 

sufficient to balance the game. This result confirms the 

motivation for earlier research, where differing degrees of 

assistance are provided based on player performance. 

CONCLUSION 

Balancing for player ability helps people who have different 

physical abilities and experience levels play games together. 

Player balancing is particularly important in exergames 

where people who have different levels of physical ability, 

fitness, and impairment may want to play and compete 

together. In this paper, we investigated how players reacted 

and adapted to the presence of balancing in exergames over 

time. Our results showed that motivation was higher in 

balanced versus non-balanced conditions; this held even in 

“blowout” games where one player dominated. Furthermore, 

perceived fun and fairness were higher for both winners and 

losers in balanced versus non-balanced conditions. These 

results were consistent over the six days of the study, 

showing that the effect of balancing on players continued 

even after having the opportunity to understand and adapt to 

the algorithms. Player balancing algorithms should be 

designed around the multi-factored nature of ability, so that 

multi-player games can be engaging and fun for all players. 

In future research, we plan to use our findings here to 

implement aim assistance and GMF balancing into full 

games rather than focused test games. It would also be 

valuable to test using typically-developing youth to see if the 

findings of this study are generalizable. 

ACKNOWLEDGEMENTS 

This research was funded by the Childhood Cerebral Palsy 

Integrated Neuroscience Discovery Network (CP-NET), the 

Kids Brain Health Network, and the Natural Sciences and 

Engineering Research Council of Canada (NSERC). 



REFERENCES 

1. Alexander Baldwin, Daniel Johnson, and Peta Wyeth. 

2016. Crowd-Pleaser: Player Perspectives of 

Multiplayer Dynamic Difficulty Adjustment in Video 

Games. In Proceedings of the 2016 Annual Symposium 

on Computer-Human Interaction in Play (CHI PLAY 

’16), 326–337. 

https://doi.org/10.1145/2967934.2968100 

2. Alexander Baldwin, Daniel Johnson, Peta Wyeth, and 

Penny Sweetser. 2013. A Framework of Dynamic 

Difficulty Adjustment in Competitive Multiplayer 

Video Games. In 2013 IEEE International Games 

Innovation Conference (IGIC), 16–19. 

https://doi.org/10.1109/IGIC.2013.6659150 

3. Scott Bateman, Regan L. Mandryk, Tadeusz Stach, and 

Carl Gutwin. 2011. Target Assistance for Subtly 

Balancing Competitive Play. In Proceedings of the 

SIGCHI Conference on Human Factors in Computing 

Systems (CHI ’11), 2355–2364. 

https://doi.org/10.1145/1978942.1979287 

4. Jared E. Cechanowicz, Carl Gutwin, Scott Bateman, 

Regan Mandryk, and Ian Stavness. 2014. Improving 

Player Balancing in Racing Games. In Proceedings of 

the First ACM SIGCHI Annual Symposium on 

Computer-human Interaction in Play (CHI PLAY ’14), 

47–56. https://doi.org/10.1145/2658537.2658701 

5. Jacob Cohen. 1977. Statistical Power Analysis for the 

Behavioral Sciences. Academic Press, New York. 

6. Ansgar E. Depping, Regan L. Mandryk, Chengzhao Li, 

Carl Gutwin, and Rodrigo Vicencio-Moreira. 2016. 

How Disclosing Skill Assistance Affects Play 

Experience in a Multiplayer First-Person Shooter 

Game. In Proceedings of the 2016 CHI Conference on 

Human Factors in Computing Systems (CHI ’16), 

3462–3472. https://doi.org/10.1145/2858036.2858156 

7. Kathrin Maria Gerling, Matthew Miller, Regan L. 

Mandryk, Max Valentin Birk, and Jan David 

Smeddinck. 2014. Effects of Balancing for Physical 

Abilities on Player Performance, Experience and Self-

esteem in Exergames. In Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems 

(CHI ’14), 2201–2210. 

https://doi.org/10.1145/2556288.2556963 

8. Carl Gutwin, Rodrigo Vicencio-Moreira, and Regan L. 

Mandryk. 2016. Does Helping Hurt? Aiming 

Assistance and Skill Development in a First-Person 

Shooter Game. In Proceedings of the 2016 Annual 

Symposium on Computer-human Interaction in Play 

(CHI PLAY ’16), 338-349. 

https://doi.org/10.1145/2967934.2968101 

9. Steven E. Hanna, Peter L. Rosenbaum, Doreen J. 

Bartlett, Robert J. Palisano, Stephen D. Walter, Lisa 

Avery, and Dianne J. Russell. 2009. Stability and 

Decline in Gross Motor Function Among Children and 

Youth with Cerebral Palsy Aged 2 to 21 Years. 

Developmental Medicine & Child Neurology 51, 4: 

295–302. https://doi.org/10.1111/j.1469-

8749.2008.03196.x 

10. Hamilton A. Hernandez, T.C. Nicholas Graham, Darcy 

Fehlings, Lauren Switzer, Zi Ye, Quentin Bellay, Md 

Ameer Hamza, Cheryl Savery, and Tadeusz Stach. 

2012. Design of an Exergaming Station for Children 

with Cerebral Palsy. In Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems 

(CHI ’12), 2619–2628. 

https://doi.org/10.1145/2207676.2208652 

11. Hamilton A. Hernandez, Mallory Ketcheson, Adrian 

Schneider, Zi Ye, Darcy Fehlings, Lauren Switzer, 

Virginia Wright, Shelly K. Bursick, Chad Richards, 

and T.C. Nicholas Graham. 2014. Design and 

Evaluation of a Networked Game to Support Social 

Connection of Youth with Cerebral Palsy. In 

Proceedings of the 16th International ACM 

SIGACCESS Conference on Computers & Accessibility 

(ASSETS ’14), 161–168. 

https://doi.org/10.1145/2661334.2661370 

12. Hamilton A. Hernandez, Zi Ye, T.C. Nicholas Graham, 

Darcy Fehlings, and Lauren Switzer. 2013. Designing 

Action-based Exergames for Children with Cerebral 

Palsy. In Proceedings of the SIGCHI Conference on 

Human Factors in Computing Systems (CHI ’13), 

1261–1270. https://doi.org/10.1145/2470654.2466164 

13. Mads Møller Jensen and Kaj Grønbæk. 2016. Design 

Strategies for Balancing Exertion Games: A Study of 

Three Approaches. In Proceedings of the 2016 ACM 

Conference on Designing Interactive Systems (DIS 

’16), 936–946. 

https://doi.org/10.1145/2901790.2901843 

14. Lin-Ju Kang, Robert J. Palisano, Margo N. Orlin, Lisa 

A. Chiarello, Gillian A. King, and Marcia Polansky. 

2010. Determinants of Social Participation—with 

Friends and Others Who Are Not Family Members—

for Youths with Cerebral Palsy. Physical Therapy 90, 

12: 1743–1757. https://doi.org/10.2522/ptj.20100048 

15. Mallory Ketcheson, Zi Ye, and T.C. Nicholas Graham. 

2015. Designing for Exertion: How Heart-Rate Power-

ups Increase Physical Activity in Exergames. In 

Proceedings of the 2015 Annual Symposium on 

Computer-Human Interaction in Play (CHI PLAY 

’15), 79–89. https://doi.org/10.1145/2793107.2793122 



16. Florian Mueller, Frank Vetere, Martin Gibbs, Darren 

Edge, Stefan Agamanolis, Jennifer Sheridan, and 

Jeffrey Heer. 2012. Balancing Exertion Experiences. In 

Proceedings of the SIGCHI Conference on Human 

Factors in Computing Systems (CHI ’12), 1853–1862. 

https://doi.org/10.1145/2207676.2208322 

17. Robert J. Palisano, Steven E. Hanna, Peter L. 

Rosenbaum, Dianne J. Russell, Stephen D. Walter, 

Ellen P. Wood, Parminder S. Raina, and Barbara E. 

Galuppi. 2000. Validation of a Model of Gross Motor 

Function for Children with Cerebral Palsy. Physical 

Therapy 80, 10: 974–985. 

https://doi.org/10.1093/ptj/80.10.974 

18. Robert Palisano, Peter Rosenbaum, Stephen Walter, 

Dianne Russell, Ellen Wood, and Barbara Galuppi. 

1997. Development and Reliability of a System to 

Classify Gross Motor Function in Children with 

Cerebral Palsy. Developmental Medicine and Child 

Neurology 39, 4: 214–223. 

https://doi.org/10.1111/j.1469-8749.1997.tb07414.x 

19. Robert J. Palisano, Peter Rosenbaum, Doreen Bartlett, 

and Michael H. Livingston. 2008. Content Validity of 

the Expanded and Revised Gross Motor Function 

Classification System. Developmental Medicine and 

Child Neurology 50, 10: 744–750. 

https://doi.org/10.1111/j.1469-8749.2008.03089.x 

20. Jeff Sinclair, Philip Hingston, and Martin Masek. 

2007. Considerations for the Design of Exergames. In 

Proceedings of the 5th International Conference on 

Computer Graphics and Interactive Techniques in 

Australia and Southeast Asia (GRAPHITE ’07), 289–

295. https://doi.org/10.1145/1321261.1321313 

21. Tadeusz Stach, T. C. Nicholas Graham, Jeffrey Yim, 

and Ryan E. Rhodes. 2009. Heart Rate Control of 

Exercise Video Games. In Proceedings of Graphics 

Interface 2009 (GI ’09), 125–132.  

http://dl.acm.org/citation.cfm?id=1555880.1555912 

22. Rodrigo Vicencio-Moreira, Regan L. Mandryk, and 

Carl Gutwin. 2015. Now You Can Compete with 

Anyone: Balancing Players of Different Skill Levels in 

a First-Person Shooter Game. In Proceedings of the 

33rd Annual ACM Conference on Human Factors in 

Computing Systems (CHI ’15), 2255–2264. 

https://doi.org/10.1145/2702123.2702242 

23. Rodrigo Vicencio-Moreira, Regan L. Mandryk, Carl 

Gutwin, and Scott Bateman. 2014. The Effectiveness 

(or Lack Thereof) of Aim-assist Techniques in First-

person Shooter Games. In Proceedings of the 32Nd 

Annual ACM Conference on Human Factors in 

Computing Systems (CHI ’14), 937–946. 

https://doi.org/10.1145/2556288.2557308 

24. Bei Yuan, Eelke Folmer, and Frederick C. Harris Jr. 

2010. Game Accessibility: a Survey. Universal Access 

in the Information Society 10, 1: 81–100. 

https://doi.org/10.1007/s10209-010-0189-5 

25. Mario Kart Wii. Retrieved September 6, 2016 from 

http://www.nintendo.com/games/detail/O8zz_eN8oGR

K9ApOgJ86zbE6zRv3pdB2 

26. League of Legends. Retrieved January 16, 2017 from 

http://na.leagueoflegends.com/en/ 

27. Overwatch. Retrieved September 6, 2016 from 

https://playoverwatch.com/en-us/ 

28. Welcome to Includification - Actionable Game 

Accessibility. Retrieved September 2, 2016 from 

http://www.includification.com/ 

 


