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ABSTRACT
Shared control is an emerging interaction paradigm in which a hu-
man and an AI partner collaboratively control a system. Shared
control unifies human and artificial intelligence, making the hu-
man’s interactions with computers more accessible, safe, precise,
effective, creative, and playful. This form of interaction has inde-
pendently emerged in contexts as varied as mobility assistance,
driving, surgery, and digital games. These domains each have their
own problems, terminology, and design philosophies. Without a
common language for describing interactions in shared control, it is
difficult for designers working in one domain to share their knowl-
edge with designers working in another. To address this problem,
we present a dimension space for shared control, based on a survey
of 55 shared control systems from six different problem domains.
This design space analysis tool enables designers to classify existing
systems, make comparisons between them, identify higher-level
design patterns, and imagine solutions to novel problems.
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1 INTRODUCTION
Human-AI shared control is an emerging interaction paradigm in
which systems are controlled through the tightly-coupled cooper-
ation of a human and an artificially intelligent (AI) agent. While
the human user controls the system to perform their tasks, the AI
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provides assistance, making the humans’ interactions more accessi-
ble, safe, precise, reliable, creative, and playful. For example, digital
games use shared control to improve their accessibility to players
with motor impairments [13–17, 23, 40, 63, 80]. Teleoperated robots
and unmanned aerial vehicles (UAVs) share control to make com-
plicated manipulation tasks easier [19–22, 24, 32, 37, 42, 44, 45, 81].
Surgical robots filter out tremulous movements and guide the sur-
geon’s control of their implements [36, 43, 47, 48, 61, 77, 96, 107].
Creativity support systems make sketching and playing musical in-
struments easier using motors or electrical muscle stimulation [50,
51, 60, 84, 89, 95, 97, 99, 108]. However, each of these domains has its
own assumptions about the roles that human users and the AI agent
play, and uses different designs to facilitate these interactions. For
example, smart power wheelchairs are typically designed to help
people who have difficulty using a joystick to avoid collisions with
obstacles in their environments [18, 25, 26, 34, 56–58, 90]. Since
the user is unable to perform this task on their own, smart power
wheelchair AI supervises the human user and amends their control
when needed. In contrast, semi-autonomous vehicles expect the
human user to supervise the AI’s driving activities and take over
control when necessary [29, 33, 46, 53, 91].

When the human and AI cooperate harmoniously, shared control
can blur the lines between human and AI action. For example,
Kasahara et al. modified a device called Wired Muscle [69] that
helps humans perform difficult timing tasks using electrical muscle
stimulation (EMS) [49]. If the human is tasked with catching a
falling ruler, then an EMS forearm strap stimulates their muscles
to close their hand with superhuman timing. However, the human
might not feel in control if the device reacts before they have noticed
the ruler is falling, so it delays its response to maximize the human’s
sense of agency. This can improve users’ reaction timing while
allowing them to retain the sense of being fully in control. By
carefully designing the human’s interactions with the AI, shared
control systems can unify human and artificial intelligence, enabling
each actor to complement and extend the abilities of the other.

Even though many technologies use shared control, the styles
of interaction that they afford can differ vastly across domains.
Designers working in one domain may be unaware of how shared
control is used by others and may be unaware of solutions that
have proven useful for solving similar problems. The terminology
frequently differs, making it difficult for design insights discovered
in one domain to be transferred to others. In order to understand
how commonly used design patterns overcome a problem and to
make comparisons between designs, we need a common language
for describing the design space of shared control systems. We need
tools that help designers to better communicate their ideas about
how interactions between human users and AI agents should be
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Figure 1: Kiviat diagrams capturing three shared control systemsusing our dimension space. Each is plotted in four dimensions.
WiredMuscle, on the left, supports the human in catching a ruler; theAI supports the human, guiding the human’s actions. The
M3 power wheelchair supervises the human’s movement and helps to avoid collisions. Tesla’s Navigate on Autopilot enables
drivers to delegate driving tasks to the AI under the driver’s supervision. The details of the dimension space are presented in
Section 4

.

structured in shared control, to identify gaps in the approaches
used in one domain, and take inspiration from approaches used in
others.

This paper makes two contributions. We present the first design
space analysis tool for classifying human-AI shared control systems.
As a secondary contribution, we survey the use of shared control
in six problem domains. Our dimension space is defined along four
axes: AI Role, Supervision, Influence, and Mediation. These dimen-
sions were constructed through an inductive process of discovering
distinctions between systems’ designs that have meaningful con-
sequences for the human-AI interactions they afford, described in
Section 3. Figure 1 depicts the classification of three example sys-
tems using our dimension space, which is presented in Section 4. In
Section 5, we use this tool to identify common design patterns in six
domains using shared control (i.e., games, semi-autonomous driving,
creativity support, mobility assistance, telerobotics, and surgery), and
compare the interactions that these systems afford. We then use the
dimension space to identify opportunities for design. In Section 5.2
we identify under-explored gaps in the design of human-AI shared
control systems, propose novel designs that leverage existing de-
sign knowledge in new ways, and suggest directions for future
research. We begin, in the next section, by defining what we mean
by shared control, introducing the six domains we have surveyed,
and summarizing prior reflections on the design of shared control
systems.

2 BACKGROUND
It is important to distinguish shared control from other uses of AI
agents. For example, when used in a car, Apple’s Maps application
suggests destinations based on the contents of the user’s calendar.
This example is not shared control, because it is not tightly-coupled,
and because the AI agent does not share a control interface with

the user; it makes suggestions, but does not actually control the car.
Also note that in this paper, we adopt the established use of the term
shared control [1, 22, 27, 67, 68, 94] to designate the partnership
of human and AI. This term can be confusing to an HCI audience,
who might consider human-human cooperation in a shared text
editor such as Google Docs to be an example of shared control. In
this paper, however, the term shared control refers to the special
case of human-AI shared control.

In this section, we describe what shared control is, where it
is used, and how it can be understood. This motivates the need
for tools such as our dimension space that help in understanding
the range of possible designs for shared control and suggesting
new designs that have not yet been considered. We first provide
a definition for shared control. We then introduce six application
domains inwhich shared control is used, explain how shared control
overcomes domain-specific problems, and describe how systems
from these domains afford different styles of human-AI interaction.
Finally, we summarize existing knowledge about the shared control
design space and explain how our dimension space addresses gaps
in our understanding.

2.1 Human-AI Shared Control
Shared control systems are characterized by tightly-coupled collab-
oration between a human and an AI agent. In this partnership, two
actors, one human and one AI, control the same system through
a common interface [22, 67, 68]. For example, power wheelchairs
are often controlled by a joystick, which can be difficult to accu-
rately manipulate by persons with fine-motor deficits [81]. In a
smart power wheelchair, an AI agent works with the user of the
wheelchair, adapting the user’s commands to avoid collisions and
to better navigate to a desired destination [26]. Both actors control
the system directly and in real time. This unifies what the human
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wants to do and what the AI wants to do into a single command, as
per the adage “two heads are better than one.”

More technically, the power wheelchair might expose an inter-
face that enables users to move forward and backward, and rotate
to the left or right. These are the system’s inputs [22, 67, 68], which
actors control using a sequence of commands called a control sig-
nal [67, 68]. A human user of this power wheelchair might use their
control signal to make the wheelchair move forward along a side-
walk, turn right at a corner, and move forward again down another
street. So when control is shared between the human user and an
AI agent, each actor sends a control signal to the interface’s inputs,
which is used to construct a new shared control signal. This creates
a tightly-coupled form of cooperation between human and AI that
unifies their control of an interactive system. For example, a shared
control power wheelchair agent might detect that the human has
erroneously commanded their wheelchair to move forward into
traffic and instead command the wheelchair to turn right and follow
the sidewalk.

This example describes a style of interaction that is typical of
power wheelchairs [57, 58] but also applicable to other interactive
systems. The AI listens to the human’s commands and interprets
them to infer what command they really intended. Unlike other
systems that combine actors’ commands, it then selects its own com-
mand to control the wheelchair when it believes the human to be in
error. This same approach is used in digital games to help players
with disabilities to aim more precisely [40], in cars to decide when
to assist with lane keeping [85], and in remotely controlled robots to
decide when it is unsafe to execute the human’s commands [44, 45].
This design pattern is similar to the interleaved controller switching
of mixed-initiative systems [5, 39], as it provides a style of interac-
tion in which users can expect the AI to control the system on its
own. And as we shall see, this is only one of several design patterns
used in shared control.

From a technical perspective, all that matters is how control
signals are created and how the human and AI’s control signals are
unified. Architecture or block diagrams and kinematics or dynamics
models can tell us a lot about what the AI does and how actors’
control signals are put together, but they cannot tell us what it is
like to interact with them. For example, the distinction described
in the last paragraph, wherein actors’ control signals are either
Selected or Combined, corresponds to the Mediation axis of our
dimension space (Section 4.4). This simple binary classification en-
ables designers to discuss human-AI interactions in shared control
using language, rather than systems of equations. It enables us to
reason about the design of shared control systems more abstractly,
to compare available design choices, and to explain how low-level
design choices afford different interactions. Therefore, insights into
the design of shared control surgical robots, for example, can inform
the design of sketching assistants, and vice versa. In the rest of this
section, we describe how different domains use shared control and
summarize existing high-level design knowledge.

2.2 Shared Control Domains
In our search for dimensions of variability that have meaningful
consequences for human users’ interactions in shared control, we

examined 55 systems and categorized them according to their in-
tended uses. We found that shared control is used in playing digital
games, driving motor vehicles, creating artifacts or performances,
getting around using mobility aids, operating robots at a distance,
and performing surgical operations. Others have identified similar
categories (e.g., {automotive, robot-assisted surgery, brain-machine
interfaces, learning} [1] or {robotic wheelchairs, telerobotics, autopi-
lots, intelligent vehicles, autonomous manufacturing} [94]). In this
section, we describe six domains using shared control, what they
have in common with other domains, and what properties distin-
guish these domains from the others. Systems referenced in the rest
of this paper can be found in Table 1 according to an ID tag that
we have assigned; for example, G1 is the game Zac - O Esquilo [63].

2.2.1 Digital Games. Digital games (henceforth simply “games”)
have become an enormously popular pastime. However, some play-
ers are disadvantaged or even excluded from the play of games due
to differences in physical ability [109]. Shared control is used in
some games to make them accessible and to level the playing field
between persons with different abilities [14].

There are many ways that games can be made more accessible
to players with motor disabilities [109], and among them player
balancing and input automationmay use shared control [14]. Player
balancing helps weaker players compete with stronger players [10];
for example, many first-person shooter games designed for home
consoles provide aim-assist to make aiming with an analog stick
easier [103]. The AI in Gekku Aim (G6) aims directly at the closest
opponent when the player shoots, stepping in at the last moment
to override the player’s command.

In contrast, steering assistance inMario Kart 8 Deluxe (G5) steers
the player’s kart when they are in danger of driving off course. This
enables disabled players to overcome gameplay challenges that
would be too difficult otherwise. Alternatively, disabled players who
are unable to control some aspects of play at all can be assisted using
input automation. In this approach, an AI agent automates control
of inaccessible game inputs, enabling players to play using whatever
inputs they can control. For example, acceleration automation in
Mario Kart 8 Deluxe makes the player’s kart accelerate constantly,
as though the player is holding down the “A” button.

Assisting human users who have difficulty controlling a system
is common to all six of the domains we surveyed, although automat-
ing control of inaccessible inputs is unique to games. Most games
using input automation are classified as one-switch games—games
designed to be played using a single button or switch [109]—and
were developed to make existing games more accessible to players
with motor disabilities. For example, Alienated (G2) is a one-switch
clone of the popular arcade game Space Invaders. An AI agent au-
tomates control of shooting lasers at enemies and pressing the
button makes the player’s avatar move right, if it was moving left,
or left, if it was moving right. In this way, shared control overcomes
a pervasive problem encountered by players with motor disabili-
ties, extending access to the fully-featured games enjoyed by their
non-disabled peers [14].

2.2.2 Semi-Autonomous Driving. Fully autonomous vehicles are
fast approaching, but in the meantime drivers have been invited
to share control with driving automation systems. Here, both the
human and AI control the car through its interface of accelerating,
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Table 1: Our corpus of shared control systems according to their classifications in our dimension space. More intense colors
indicate greater extension along an axis. Italicized names are those designated by the system’s designers.

Domain ID Name AI Role Supervision Influence Mediation
Games G1 Zac - O Esquilo [63] Complementary Unsupervised Independent Combined

G2 Alienated [80] Complementary Unsupervised Independent Combined
G3 Partial Automation [14] Complementary Unsupervised Independent Combined
G4 Imaginary Pong for One [59] Complementary Unsupervised Guided Combined
G5 Mario Kart 8 Deluxe [23] Delegated By AI Independent Combined
G6 Gekku Aim [40] Supportive By AI Interpreted Selected
G7 Racing game [13] Supportive By AI Interpreted Combined
G8 Missile Command clone [15–17] Cooptable By Human Independent Selected

Semi-Autonomous Driving D1 Lane-keeping assistant [93] Supportive Unsupervised Guided Combined
D2 Lane-keeping assistant [91] Supportive By Human Guided Combined
D3 Lane-keeping assistant [46] Supportive Mutual Codependent Combined
D4 Lane Keeping Aid [104] Supportive Mutual Codependent Combined
D5 Lane-keeping assistant [85] Supportive By AI Interpreted Selected
D6 Automated driving system [53] Delegated By Human Independent Selected
D7 Navigate on Autopilot [98] Delegated By Human Independent Selected
D8 Hotzenplotz Interface [33] Cooptable Unsupervised Independent Selected
D9 H-Mode car [29] Cooptable By Human Codependent Combined

Creativity Support C1 PossessedHand [95] Supportive Unsupervised Guided Combined
C2 EMS Air Guitar [97] Supportive Unsupervised Guided Combined
C3 dePENd [108] Supportive By AI Guided Combined
C4 Haptic Intelligentsia [99] Supportive By AI Guided Combined
C5 FreeD [110] Supportive By AI Guided Combined
C6 Sketching assistant [50] Supportive Mutual Guided Combined
C7 Image classifier [84] Cooptable By Human Guided Selected
C8 Tanagra [89] Delegated By Human Independent Selected
C9 Muscle-Plotter [60] Delegated Unsupervised Independent Combined
C10 TransPen & MimeoPad [51] Complementary Unsupervised Independent Combined
C11 Origin [83] Complementary Unsupervised Independent Combined
C12 Digital Airbrush [88] Complementary By AI Codependent Combined

Mobility Assistance M1 Mobility robot [105] Supportive By AI Interpreted Combined
M2 Power wheelchair [56] Supportive By AI Interpreted Combined
M3 Power wheelchair [18] Supportive By AI Interpreted Combined
M4 Power wheelchair [26] Supportive By AI Interpreted Combined
M5 Power wheelchair [57] Supportive By AI Interpreted Selected
M6 Power wheelchair [58] Supportive By AI Interpreted Selected
M7 Power wheelchair [90] Supportive By AI Independent Selected
M8 Power wheelchair [25] Supportive By AI Independent Combined
M9 Mobility robot [34] Complementary By AI Independent Combined

Telerobotics R1 Telemanipulation robot [81] Supportive By AI Independent Combined
R2 Telemanipulation robot [20–22] Supportive Mutual Independent Combined
R3 Unmanned aerial vehicle [24] Supportive Unsupervised Interpreted Combined
R4 Unmanned aerial vehicle [44] Supportive By AI Interpreted Selected
R5 Rescue robot [45] Supportive By AI Interpreted Selected
R6 Unmanned aerial vehicle [32] Supportive By Human Independent Combined
R7 Telemanipulation robot [42] Supportive Mutual Codependent Combined
R8 DJI Mavic Air 2 [19] Reciprocal Mutual Interpreted Combined
R9 Unmanned aerial vehicle [37] Complementary Unsupervised Independent Combined

Surgery S1 Steady-Hand [96] Supportive Unsupervised Codependent Combined
S2 Micron [61] Supportive Unsupervised Codependent Combined
S3 Craniostar [47] Supportive By AI Codependent Combined
S4 Supervisory Steady-Hand [48] Delegated By Human Codependent Combined
S5 Comanipulation robot [107] Complementary Unsupervised Codependent Combined
S6 Force amplifier [77] Supportive Unsupervised Guided Combined
S7 Acrobot [43] Supportive By AI Guided Combined
S8 Comanipulation robot [36] Supportive By AI Guided Combined



Two Heads Are Better Than One CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

braking, and steering. These systems come in two flavors with sim-
ilar acronyms: advanced driving assistance systems (ADAS) and
automated driving systems (ADS) [71]. ADAS assist drivers in per-
forming primary [54, 79] or operational [64, 71] driving tasks, such
as accelerating, braking, and steering. For example, lane-keeping as-
sistants (D1-5) help drivers to stay in their lane by steering towards
the lane’s center when the vehicle deviates. This leads to tightly-
coupled interaction, where the human and AI agent can be literally
moving the steering wheel at the same time, the human with their
hands and the agent with a motor. ADAS’ assistance helps drivers
to drive more safely when they are fatigued or distracted, and the
AI’s intervention can help them to recognize their mistakes, for
example changing lanes without signalling (D4).

In contrast, ADS relieve drivers of driving tasks entirely (D6-7).
For example, Tesla’s Navigate on Autopilot (D7) fully automates
highway driving from on-ramp to off-ramp. The human is required
to drive before the feature is initiated and after it disengages, as
well as supervise the AI at all times so that they can take over in
case of an emergency. ADS systems remove much of the tedium
from driving, since they relieve drivers of their tasks by delegating
them to the AI, and have the potential of increasing the safety and
accessibility of driving.

Much like systems from other domains, player balancing features
in games, driver support systems work to prevent disaster when
control is difficult, although some are able to support drivers even
further. They may use haptic shared control, which provides the
additional benefit of communicating the AI intentions to the driver
via force feedback [2]. For example, Volvo’s Lane Keeping Aid (D4)
rotates and vibrates the steering wheel when the vehicle unexpect-
edly crosses over lane markings, thereby informing the driver of
their situation and amending their control. This same approach
is used in surgical robots to improve surgeons’ awareness of the
tissue they are cutting [78]. Otherwise, driving automation systems
relieve drivers of their tasks entirely. This use case is unique to
semi-autonomous vehicles, since driving is the only application
domain we surveyed in which it is preferable for the AI to do all the
work. In contrast, input automation controls inaccessible inputs to
make games more accessible, not to make play less tedious.

2.2.3 Creativity Support. Shared control can also support humans
in creative endeavors such as making sketches or sculptures (C3-
6,C9,C10), musical performances (C1-2), and digital artifacts such as
levels for a digital game (C8) or labelled datasets (C7). For example,
dePENd (C3) is a sketching assistant that helps designers to draw
shapes by guiding a pen across a sheet of paper using a magnet.
By drawing two short lines at two points on the sheet, users can
instruct dePENd to drag the pen from the second point to the
first. The AI therefore supervises the human while they sketch;
however, the user is free to wiggle the pen, to create wavy lines,
or periodically lift the pen to create dotted lines. The user requests
assistance by modifying the artifact and dePENd responds to these
changes. Both human and AI control the pen at the same time in
the real-time task of drawing. The collaboration is tightly-coupled,
where movements of the pen immediately convey intent.

Systems can also assist users in real time performances, such
as playing an instrument. For example, PossessedHand (C1) uses
EMS to share control of the user’s body while playing a traditional

Japanese instrument called the koto. Fourteen electrodes are placed
on the user’s forearm and EMS causes the user’s hand to play
along with a piece of sheet music. In this way, PossessedHand
demonstrates to users how the koto is played and may facilitate
learning to play without assistance. These systems were designed
to overcome technical barriers experienced by creators, guiding
their performance of difficult tasks, and are therefore especially
useful to novices.

Shared control in creativity support is often explicitly didactic.
PossessedHand, for example, was designed for users who had never
played the koto before. In contrast, surgical robots guide surgeons’
control of their implements to supervise and support them, but not
to teach them how to perform an operation. This makes creativity
support unique among domains we surveyed in that, although it is
not yet known whether using such a system can yield long term
improvement in the performance of creative acts, creativity support
AI can be designed to show novice users how a task should be done.

2.2.4 Mobility Assistance. Many people have mobility disabilities,
as did an estimated 9.6% of Canadians in 2017 [92], and may need
the assistance of a device, such as a walker or wheelchair, to get
around. Mobility assistance devices enable many users to navigate
independently, but others may find using their wheelchair’s joystick
too difficult. These users may be able to use an alternative device,
such as a sip-n-puff or head controller, but these devices may them-
selves be too difficult or tiring to use without assistance [25, 57].
Therefore, smart power wheelchairs share control with their users,
helping them to avoid obstacles and navigate smoothly. For ex-
ample, Soh & Demiris designed a smart power wheelchair (M7)
that learns and mimics the hand-over-hand assistance occupational
therapists provide for novice power wheelchair users.

Mobility assistance devices use shared control to assist users who
have difficulty navigating independently. Therefore, their designs
embed the assumption that users need to be supervised to navigate
safely. All of the devices we surveyed help users to avoid colli-
sions (M1-9) and many help with navigating smoothly (M1-4, M9).
For example, Ezeh et al. compared two smart powerwheelchairs [25],
representing radically different forms of shared control. The first
(M4) implements linear blending (i.e. policy blending [22] or direct
blending [70]), a form of shared control that weights and sums the
human user and AI agent’s control signals. The path planner gen-
erates a control signal that smoothly steers the wheelchair away
from obstacles and uses the average of the human and AI’s control
signals to control the wheelchair. In so doing, the linear blending
wheelchair supervises the user and refines their control signal. In
contrast, the second (i.e. M8) smart power wheelchair implements
probabilistic shared control [25, 26], a form of shared control that
learns from the human to infer their intentions [100]. The path plan-
ner uses its model of the human to select a command that it judges
the human will find most agreeable and that best satisfies obstacle
avoidance and smoothness constraints. The probabilistic approach
used by this wheelchair illustrates another assumption embedded
in the design of mobility assistance devices using shared control:
since the human is expected to err, it is better to interpret their
intentions than obey their commands. In this way, many systems
use the AI to supervise and override the human’s control (M1-6),
preventing disaster when the human is unable to navigate safely.
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Much like player balancing in games and ADAS in cars, shared
control mobility assistance devices use the AI to supervise the hu-
man’s actions and assist when their actions are dangerous. However,
these systems typically interpret the human’s commands in a way
that is unique to their problem domain, and may be inappropriate
in other situations. For example, M8 gives the AI more authority
than the human user. The AI interprets the human’s intentions and
navigates on their behalf. In contrast, surgical robots have been
designed to filter surgeons’ tremors, but it would be inappropriate
for these robots to operate autonomously because the surgeon is
considered the ultimate authority [78]. Differences in the design
of these systems expose designers’ assumptions about each actors’
capabilities and how their interactions should be structured. There-
fore, shared control of mobility assistance devices takes the form of
a strict hierarchy, with the supervisory AI interpreting the human’s
commands and acting on their behalf from above.

2.2.5 Telerobotics. The first shared control systems were designed
to make dangerous and difficult work easier for humans [22]. In
particular, teleoperated robots can perform manipulation tasks
on the human’s behalf (R1,R2,R7) or explore environments that
are unsafe for humans (R3-6,R8,R9). For example, Rakhimkul et
al. created a robot arm (R1) for users with motor disabilities that
identifies objects in its environment and changes its pose to make it
easier for the human to pick them up. Therefore, telemanipulation
systems use shared control to make human work and activities of
daily living safer and easier. Otherwise, teleoperated robots can
work in places that are inaccessible or unsafe for humans. For
example, recreational drones—miniature unmanned aerial vehicles—
such as DJI’s Mavic Air 2 (i.e. R8), or those created for research (R3-
6,R9), could assist search and rescue services in locating persons
missing in dangerous or difficult environments.

Teleoperated robots can automate tasks at a distance and in
environments that would be unsafe for humans. But, as has been
demonstrated time and time again, automation does not replace
human work, it changes human work [8, 75]. And so, telerobotics
comes with its own set of problems that shared control is used to
overcome. For example, telemanipulation AI can share control of
a robot arm that the user controls using a joystick (R1) or skele-
ton tracking system (R2). Using these input devices may be tiring,
imprecise, or difficult, so the AI assists to make the human’s con-
trol less arduous. In some cases, working remotely also introduces
issues related to signal interference and time delays that shared
control can alleviate. For example, the Mavic Air 2 has a Failsafe
Return to Home feature that causes it to fly back to a specified
location when the human’s control signal is lost for more than
three seconds and Engel et al. created quadrocopter AI (R3) that
overcomes unstable behaviour caused by short time delays. Shared
control likely cannot overcome problems caused by extreme time
delays, such as those experienced by robots on Mars [101], but it
can account for short lapses in real-time control. Therefore, shared
control is used in telerobotics to overcome some issues inherent to
controlling robots remotely, making them more reliable.

Shared control telerobots leverage AI to make the human’s tasks
easier and safer, but in ways unlike systems in other domains. For
example, shared control telerobots expect interruptions in the hu-
man’s control signal, but fewer than half of the systemswe surveyed

used these data to construct the AI’s control signal (R3-6, R8), as
is typically done by mobility assistance AI. Therefore, telerobots
are designed to provide a form of shared control characterized by
the human and AI’s real-time and joint performance of their tasks.
Rather than supervising the human and trying to infer their in-
tentions, telerobots share control by performing the same tasks
as the human and providing continuous support, working in the
background in case the human needs assistance.

2.2.6 Surgery. Surgery is a risky and delicate task that sometimes
requires more precision than human surgeons can provide. As ex-
plained by Jakopec et al., total knee replacement surgery leads to
large misalignment of knee prostheses, which may necessitate re-
vision surgery in over one third of cases [43]. It is surgeons’ need
for precision that drives the development of shared control surgi-
cal robots [78]. These are grounded robots (i.e., affixed to a static
structure, such as an operating table) or ungrounded robots (i.e.,
mounted on the surgeon’s body or tools) that share control of the
surgeon’s implements. For example, the grounded Acrobot (S7)
guides the surgeon’s control of an orthopaedic cutter system for
milling patients’ bones during total knee replacement surgery, elim-
inating unwanted deviations in prosthesis alignment. In this way,
shared control surgical robots overcome imprecision in surgeons’
control of their implements, making their work safer and more
effective.

The imprecision that surgical robots are typically designed to
overcome is called tremulous motion. These are involuntary and
high-frequency hand movements that may be unnoticeable in non-
surgical contexts but disabling for surgeons, as they can be orders
of magnitude larger than than some of the smaller bodily structures
surgeons routinely manipulate [61]. Due to their distinctively high
frequencies, surgical robot designers rely on a signal processing
analogy in which shared control is used to “filter” [48, 61, 78, 96]
tremors. The ungrounded Micron system (S2), for example, imple-
ments a low-pass filter that removes high-frequency components
from the surgeon’s control signal, using only the low-frequency
components to drive a piezoelectric manipulator that moves the
tool’s tip. This can give the surgeon the sensation of being in com-
plete control while the assistant removes tremulous motion that
the surgeon may not even be aware of.

These systems enable surgeons to operate with superhuman
precision and their motors can confer superhuman awareness as
well. For example, instead of reducing noise, the force amplifying
device developed by Payne et al. (i.e. S6) amplifies forces at the tip
of the surgeon’s implement. This enables the surgeon to determine
an appropriate amount of pressure to apply, overcoming the re-
duced kinaesthetic feedback surgeons experience during minimally
invasive surgery [77]. A similar approach was used in Acrobot,
which uses force feedback to prevent surgeons from cutting beyond
predefined regions. In this way, surgical robots can share control of
the surgeon’s implements to guide their control, informing them
of their mistakes and preventing them from making them.

Designers’ expectations of surgeons’ capabilities make surgery
unique among domains we surveyed. The human user in these sys-
tems is a surgeon who is expected to be less precise than the AI, but
far more knowledgeable and prudent. Games, mobility assistance
devices, and telerobots expect that human users may be unable
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to provide their intended command, so they step in to control the
system on the user’s behalf. Some creativity support systems guide
users’ performance and even go so far as to force the user to take
action when they may not have intended to. In contrast, surgical
robots expect their users to err, but never act on the human’s behalf.
They have been designed to filter out a specific form of noise in
the human’s control signal, leveraging shared control to discover
the true signal that it suggests. Force feedback can inform surgeons
about the tissue they are cutting and help them to recognize when
they have made a mistake, but it is never used to force the sur-
geon’s hand. Therefore, shared control is used by surgical robots
to support surgeons’ control of their implements as a subordinate,
but not as an equal or superior.

We see from this presentation that human-AI shared control
has arisen in numerous contexts, often independently and without
knowledge of its use elsewhere. Each is characterized by the human
and the agent sharing the same interface to the system – sometimes
through software, and sometimes through physical embodiment of
the agent through magnets, motors, or even electrical stimulation
of the user’s muscles. This usage of the system is tightly-coupled,
oftxen involving simultaneous control of the system by both human
and agent. Our review has revealed some of the difficult decisions
that are faced by designers of shared control systems. For example,
should the human or the agent have primary control? What forms
of supervision should be present between human and agent? How
and when should control transfer between the two actors? These
are questions that our dimension space will help address, first by
precisely characterizing the forms of interaction exhibited by spe-
cific systems, and then by identifying design patterns that can be
used to drive design and analyze design choices.

We turn our focus now to the design of shared control systems
more generally. In the next section, we summarize what is known
about the design of shared control systems and explain how the
design space analysis tool proposed in this work addresses gaps in
our knowledge. The dimension space itself is presented in Section 4
and its uses are demonstrated in Section 5.

2.3 Shared Control Design Space Analysis
Design space analysis is “a perspective on design which emphasizes
the role and representation of design rationale.” [62] It recognizes
that a design process produces not only a reified artifact but also
an abstract design space of possible options. This notion of design
space analysis is closely related to Alexander’s notion of pattern
languages for describing design patterns [3, 4]. The connection is
most obvious in Alexander’s own words: “The real work of any
process of design lies in this task of making up the language, from
which you can later generate the one particular design.” [3] A design
pattern is “a rule which describes what you have to do to generate
the entity which it defines” [3] and they can be composed to express
novel designs using pattern languages.

In this work, we attempt to elucidate a design space of shared
control systems and propose a design space analysis tool through
which it can be understood. The tool we construct in this paper is
called a dimension space; these are used to structure a design space,
classifying and comparing systems along different dimensions. For

example, one could construct a dimension space to understand
the properties of interactive systems in a physical environment
according to the system’s role and the physicality of its manifesta-
tion [35], or to classify and compare musical devices according to
their required expertise and number of degrees of freedom [11]. Di-
mension spaces enable designers to describe a design space, explore
the design choices available to them, and communicate their design
rationale to others. When they describe meaningful differences
between designs, they can help designers to realize possibilities
that they may not have conceived of otherwise. To the best of our
knowledge, no such tool exists for reasoning about the design of
human-AI shared control systems. In the rest of this section, we
describe several analogous design spaces that have influenced our
thinking. We illustrate that existing tools for understanding and
designing shared control systems do not provide adequate under-
standing of the human-AI interactions afforded by different design
choices.

2.3.1 Verplank Notions. Sheridan and Inagaki’s extensions to Ver-
plank’s roles of automation can be used to describe the roles AI
play in shared control. The AI can extend the human’s capabilities,
relieve them of burdens, or partition and perform part of their func-
tions [41, 86, 87]. These ideas have been used to describe human-
machine cooperation for over four decades and have been hugely
influential in designers’ thinking. However, their expressiveness
is limited, as they can only describe what roles the automation
plays and not how it plays those roles. Furthermore, the roles of au-
tomation are potentially problematic when used as a dimension for
design, because each is defined in different terms and are therefore
not mutually exclusive. For example, input automation in games
extends the player’s capabilities by controlling inaccessible inputs,
it relieves them of this burden, and it partitions their function by
performing inaccessible parts. The historical significance of the
roles of automation indicates that understanding the AI’s role in
shared control is important for understanding how it cooperates
with the human.

2.3.2 Design Frameworks. Many recent works [27, 30, 55, 65, 66,
72, 74, 75] have iteratively constructed a human-machine interac-
tion model composed of layers of shared and cooperative control,
assistance, and automation [73]. As explained by Pacaux-Lemoine
& Flemisch, human-machine cooperation involves a human and
AI agent communicating with each other and controlling a system,
via a Common Work Space [66, 72]. Their framework can express
what types of tasks each agent performs [75], on what levels they
communicate [72], and whether they control the system directly,
but it cannot express how agents’ control signals are composed
to create a shared control signal. In a similar vein, Abbink et al.
have proposed a design framework for shared control systems [1].
It can express how human and AI perform a hierarchy of tasks
and communicate using signals, signs, and symbols [82] at each
level, but says little about how a particular design choice might
influence users’ experiences. These design frameworks provide an
especially technical account of shared control, and thereby provide
little intuition for how designers’ choices affect users’ experiences
of sharing control. These authors’ focus on precisely how human
and AI communicate with each other indicates that understanding
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how actors influence each other is important for understanding
interactions in shared control.

2.3.3 Pattern Languages. There are at least two pattern languages
that can be applied to shared control, although neither is specific
to it. Baltzer et al. proposed an interaction pattern language for
human-machine cooperation defined in terms of the problem a
pattern addresses, the solution that overcomes the problem, the
consequences of using the solution, and example systems that imple-
ment it [9]. This tool can express how and why a particular design
overcomes a problem, but as van Diggelen & Johnson have previ-
ously argued [102], pattern languages reliant on natural language
descriptions lack uniformity and therefore make comparing designs
difficult. Since this pattern language provides no guidance regarding
the design space of shared control systems, designers using it could
easily get lost. van Diggelen & Johnson have proposed their own
pattern language for human-agent team design patterns, defined
in discrete terms[102]. They considered the types of work actors
perform, whether the work is physical or cognitive, actors’ spatial
distribution, and how actors communicate. Using these elements
of team work, the authors have demonstrated how higher-level
design patterns, such as human supervisory control [86], could
be expressed. This pattern language enables designers to describe
existing human-agent team patterns, and envision new ones, but
it cannot describe how teams share control. It indicates that un-
derstanding how actors supervise each other is necessary for un-
derstanding how they cooperate, but more specificity is needed to
understand how design choices determine users’ experiences.

Flemisch et al. have argued that shared control is the sharp end
of human-machine cooperation [27, 28]. Like a single person wield-
ing a spear, the human and AI cooperatively hold the blunt end,
communicating their goals and plans, and strike using the sharp
end, jointly controlling the system using their common interface. It
is therefore cooperation at the sharp end (i.e. controlling a common
interface) that is unique to shared control. The blunt end (i.e. com-
munication between human and AI), however, is common to all
forms of human-machine cooperation and, therefore, much more
is known about it. This is the gap that our dimensions space fills.
For the first time, designers are able to express how design choices
at the sharp end determine how human users interact with their
AI partners. We provide a structure to the design space of shared
control systems and describe how different design choices afford
different interactions and experiences to users. In the next section,
we describe our surveying method and how the dimension space
was constructed.

3 METHOD
In order to better understand how human-agent interactions are
structured in shared control, we set out to create a dimension space,
which is shown in Figure 1 and will be presented fully in Section 4.
We compared descriptions, diagrams, use cases, and user evalua-
tions of shared control systems to identify dimensions of variability
that have meaningful consequences for the interactions they afford.
We surveyed the literature using an approach similar to a scop-
ing review [6]. Our goal was to discover the boundaries of shared
control and identify problem domains in which it is used, so that

designers working in one domain could understand design insights
from other domains. We followed an iterative process in which we
(1) searched online databases using keywords found in relevant pa-
pers, (2) identified papers that described human-AI shared control
systems that were somehow novel, and (3) mined these papers for
new keywords and references to potentially relevant systems. This
process is described in Table 2 and the resulting 55 works consulted
are summarized in Table 1.

From the outset, we recognized that shared control is an inter-
action paradigm used in disparate domains and that there were
differences in terminology between these domains. Most impor-
tantly, “shared control” is a term used primarily in robotics [22]
and so non-robotics uses of shared control may not be identified
as such. Therefore, an exhaustive search using fixed search terms
could unintentionally exclude relevant, albeit unconventional, areas
of the literature. Furthermore, we knew a priori of some domains
in which human-AI shared control was used (i.e., digital games,
driving automation, and robotics), we did not know whether there
were more or how they related to each other. We therefore followed
the iterative approach shown in Table 2, repeating our search as
new keywords were discovered.

As we built our corpus, we grouped systems according to the
problems that they were designed to overcome and called these
groups domains. For example,mobility assistance systems help users
to get around while creativity support systems support users in cre-
ative endeavors. This process was repeated until we had exhausted
all of our keywords and identified samples representing the vari-
ability in designs used in each domain.

Table 2 summarizes our search process. In Phase 1, we performed
a sequence of searches on Google Scholar and the ACM Digital
Library for an expanding set of keywords, starting with “shared
control” and “shared-control”, and ending with the list of keywords
shown in the table. In this first phase, 58 papers were examined
and 13 were found to be relevant, i.e., presenting systems deploy-
ing Human-AI Shared Control. The second phase focused on two
series that were found to be especially relevant to human-AI shared
control: the IEEE International Conference on Systems, Man, and
Cybernetics (SMC) and the International Federation of Automated
Control (IFAC) Symposium on Analysis, Design, and Evaluation of
Human-Machine Systems (HMS). We searched the proceedings of
both conferences, SMC on IEEE Xplore and HMS on ScienceDirect,
using the keywords identified in phase 1. These searches yielded 41
potentially relevant systems, of which 12 were considered relevant
and included in our corpus. The third phase addressed newly pub-
lished research [16, 17, 50]), which expanded the search to creativity
support systems, and also identified the Human-Agent Interaction
(HAI) conference as a venue for shared control research. 57 systems
were examined in phase 3, of which 18 were found to be relevant.
We then repeated phase 1 with the complete set of keywords iden-
tified in phases 1 through 3. In this phase 8 systems were examined
and 7 were added to our corpus. Finally, 4 especially notable cre-
ativity support systems were examined during the review process,
of which 3 (i.e., C5 & C11-12) were included.

As we built our corpus, we described the systemswe encountered
and recorded how these systems’ designs differed. By considering
what made systems similar or different informally and subjectively,
we constructed dimensions of variability that enabled us to classify
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Table 2: The systems examined, topics encountered, and search terms used in each phase of our survey.

Phases Keywords Systems
Phase 1 player balancing, input automation, crowd control (58 found, 45 excluded)

(Google Scholar, semi-autonomous vehicles, haptic shared control, drones G1, G3
ACM Digital Library) smart power wheelchairs, mobility assistance robots, D2, D3

human-supervisory control, aviation automation, smart homes, M2, M4-7, M9
teleoperated robots, human-adaptive mechatronics, surgical training R2, R6-8

Phase 2 human-machine cooperation, cooperative control, (41 found, 29 excluded)
(IEEE Xplore, adaptive automation, adaptive cruise control, D1, D4, D5, D7, D9
ScienceDirect) lane keeping assistants, air traffic control, M1, M3, M8

quadrocopters, quadrotors, R1, R3, R4
comanipulation robots S8

Phase 3 interactive machine learning, gaze control, (57 found, 40 excluded)
(Google Scholar, mixed-initiative, interactive fabrication, G2, G4-8

ACM Digital Library) sketching assistants, electrical muscle stimulation, D6, D8
human-robot teams, human-AI teams, C1-4,C6-10

R5, R9
Phase 1 Bis surgical robots, all of the above (8 found, 1 excluded)

(Google Scholar S1-7
ACM Digital Library)

systems more formally and objectively. At the end of each phase
of our survey (Table 2), we chose the dimensions that we believed
were most important for explaining how human-AI interactions in
shared control are designed, and classified all of the systems in our
corpus using these dimensions. When our dimensions classified sys-
tems as inappropriately similar or needlessly different, we split or
combined axes to form new concepts. This process of expanding our
dimension space to capture notions inspired by the literature, and
contracting our dimension space by removing and combining axes,
was repeated until we converged on a set of dimensions describ-
ing the most important similarities and differences for explaining
human users’ interactions with the systems we surveyed.

4 DIMENSION SPACE
The dimension space has four axes: AI Role, Supervision, Influence,
and Mediation. They are depicted as Kiviat diagrams in Figure 2
(left), as is conventional for dimension spaces (e.g., [11, 35, 38]). AI
Role describes the different ways tasks might be shared between
human and the AI agent. Supervision specifies how actors monitor
and correct each other. Influence captures how an actor chooses
its own actions in response to those of the other actor. Mediation
describes how actors’ commands are unified through combination
or selection. As suggested by Figure 2 (right), these dimensions
correspond to different aspects of actors’ interactions in shared
control. AI Role is about actors’ tasks, whileMediation is about their
commands. Influence is about being aware of and responding to the
other’s actions, while Supervision is about taking action to correct
the other. These dimensions have been constructed so that they
can describe all human-AI shared control systems of which we are
aware, and so that any position in the dimension space describes a
non-empty set of plausible systems.

We designed this dimension space to provide the properties of
totality, orthogonality, and mutual exclusion, which we define here.
Each dimension was designed to be total, meaning that systems be-
long to at least one of the categories along each axis. This property
holds of every system in our corpus. The dimensions are designed
to be orthogonal, meaning that a system’s classification in any di-
mension is independent of its classification along the others. Not
all dimension spaces are orthogonal (e.g., [11]), but this property is
desirable for our purpose because every position in the dimension
space describes a valid system that designers could then implement.
Figure 2 (right) shows how each dimension corresponds to a dif-
ferent aspect of the human and AI agent’s interactions in shared
control. There is no reason, for example, why a specific role would
constrain choices around supervision, influence, or mediation. Fi-
nally, we designed the dimensions to bemutually exclusive, meaning
that a system occupies at most one point in the design space. This
property holds of all systems in our corpus. By aspiring to these
properties, the dimension space can be used to classify systems in
which one human shares control with one AI agent, and can be
used to identify common design patterns between sets of systems.
In this section, we describe the four dimensions of the dimension
space: AI Role, Supervision, Influence, and Mediation.

4.1 AI Role—Who Does What and When?
The AI Role dimension answers questions of the form “who does
what and when?”, a phrase borrowed from Inagaki [41]. Users inter-
act with a system for some purpose; they have some set of tasks that
they are performing. When control is shared, the AI can support the
human by cooperatively performing these tasks at the same time,
the AI can take over control of the human’s tasks to perform them
at a different time, or it can perform its own tasks that are separate
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Figure 2: On the left, our dimension space represented as Kiviat diagram axes. Representing systems this way communicates
their differences visually, leveraging the spatial arrangement of each classification to show how different they are. Therefore,
the area that a diagram covers is not meaningful, although its shape is. On the right, our dimension space represented as a
block diagram. Each actor has a set of tasks (i.e., clouds at the bottom) that the human (i.e., red figure on the left) may delegate
or coopt to or from the AI (i.e., blue figure on the right). Actors may supervise (i.e., vision cones emanating from the figures)
or influence (i.e., dashed lines) each other, but they always share control of the system (i.e., solid lines).

from the human’s. This dimension captures how tasks are shared
among actors and how the human assigns tasks. It tells designers
how the human’s interactions with the AI are related to the tasks
they perform and how these tasks are shared between them. In all
of the systems we surveyed, it is the human who allocates tasks and
never the AI. We therefore define five types of AI role: Supportive,
Delegated, Cooptable, Reciprocal, and Complementary, which we
define in this section.

4.1.1 Supportive: The AI assists the human with a subset of the
human’s tasks
The human is primarily in control when the AI performs a Sup-
portive role. The human is engaged in all parts of their overall task
while the AI performs some tasks at the same time to help the
user if they run into trouble. For example, Gurnel et al. created a
comanipulation robot (S8) that helps surgeons to more precisely
insert needles into tissue samples using virtual fixtures. While the
surgeon moves the needle, five haptic guides exert forces on the
needle to guide the surgeon towards the desired needle position
and orientation. Systems designed such that the AI performs a Sup-
portive role assist humans with their tasks while the human retains
primary control.

4.1.2 Delegated: Supportive & The human can hand over a subset
of their tasks to the AI
AI agents that perform a Delegated role relieve humans of specific

tasks and perform them on their behalf. For example, human users
may command Muscle-Plotter (C9) to do physical simulations using
car designs that they have sketched and then graph the results using
EMS. Digital game level designers can instruct Tanagra (C8) to fill
in missing level geometry after they have made a change to the
level. Delegated AI performs tasks that the human could do but
prefers not to, or takes over control of tasks that the AI can perform
more precisely.

4.1.3 Cooptable: Supportive & The human can take over a subset
of the AI’s tasks
In contrast to theDelegated role, which enables humans to delegate
their tasks to AI, theCooptable role enables humans to take over con-
trol of the AI’s tasks. For example, Flemisch et al. designed a semi-
autonomous vehicle (D9) according to the H-Metaphor [31, 94],
which suggests that drivers’ interactions with autonomous vehi-
cles should resemble riders’ interactions with horses. In horseback
riding, riders can loosen their grip on the reins, thereby shifting con-
trol authority to the horse, or tighten their grip, to seize authority.
In this way, the vehicle autonomously drives around a racetrack,
albeit less skillfully than a human might, while the driver subtly
takes control, tightening the rein, to assist the AI. In sum, AI agents
performing a Cooptable role are primarily in control of their tasks,
while the human is able to take over the AI’s tasks when they see
fit.
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4.1.4 Reciprocal: Delegated & Cooptable
When the AI performs a Reciprocal role, the human can delegate
tasks to the AI and take over tasks that the AI is controlling. For
example, the Mavic Air 2 (R8) is a recreational drone with an array
of operational modes. Active Track enables pilots to instruct their
drone to follow them and record video, delegating this task to the
AI. The pilot can then take back control by turning the feature
off, but only so long as the drone receives their control signal.
Should the Mavic Air 2 lose the human’s control signal, due to
interference from the environment, the Failsafe Return to Home
feature causes the drone to return to a predetermined location. Once
their connection is reestablished, the pilot is free to disable this
feature and coopt the AI’s control of the drone’s navigation. Thus
Reciprocal shared control AI confers the benefits of both Delegated
and Cooptable. The AI relieves users of their tasks and enables them
to amend the AI’s control of its own tasks.

4.1.5 Complementary: Supportive & The AI has its own tasks that
the human never performs
A Complementary design partitions the human’s task and allocates
some parts to the AI in their entirety. This role can reduce the
human’s control burdenwhen controlling the system is complicated,
and can make systems more accessible when the human is unable
to perform some tasks at all. For example, Shaper’s Origin (C11) is a
woodworking router that helps users to cut along a reference path
more precisely. When using a typical router, moving the device’s
frame also moves the cutting tool, causing it to cut. In contrast,
Origin separates control of the frame, which is moved by the human,
from the tool, which is moved within the frame by the AI. In this
way, the human is tasked with positioning the device while the
AI is tasked with cutting. These systems relieve humans of part
of their task, either because the AI can do it better or because the
human is unable to do it at all.

4.2 Supervision—Do Actors Correct Each Other?
A shared control system’s design embeds assumptions about the
supervisory relationships among actors. For example, the SAE’s lev-
els of automation assume that human drivers of semi-autonomous
vehicles, who until recently have been solely responsible for all
primary driving tasks, are more capable drivers than the AI. They
are therefore responsible for supervising the AI agent’s control and
overriding it when necessary [71]. In this way, one actor intervenes
to prevent the other actor’s mistakes. For example, a driver using
Navigate on Autopilot (D7) may not know exactly what the AI is
doing, only that they don’t like it, and choose to take back control.
Many systems assume a one-way supervisory relationship, with
either the human supervising the AI (G8, D2, D6-7, D9, C7-8, R6,
S4) or the AI supervising the human (G5-7, D5, C3-5, C12, M1-9,
R1, R4-5, S3, S7-8). Some systems make no such assumptions (G1-4,
D1, D8, C1-2, C9-11, R3, R9, S1-2, S5-6), while others afford mu-
tual supervision (D3-4, C6, R2, R7-8) where AI and human each
supervise the other. Our Supervision dimension captures the super-
visory responsibilities of actors according to these four categories:
Unsupervised, By AI , By Human, and Mutual.

4.2.1 Unsupervised: Neither actor supervises the other
When both actors are Unsupervised, neither actor controls the

system to prevent the other frommaking mistakes. Their intentions
may still conflict, such as when a smart power wheelchair steers to
the right to avoid an obstacles while the human steers to the left, but
not because one believes the other to be in error. For example, EMS
Air Guitar (C2) helps humans to strum an imaginary guitar along
with music. The system has no sensors, and is therefore unable to
react to anything, so it stimulates the human’s armmuscles without
supervising their movements.

4.2.2 By AI: The AI supervises the human
Many AI agents are designed to monitor the human and take
action when the human errs. For example, every mobility assistance
system we surveyed (M1-9) uses AI to supervise the human and
amend or override their control to prevent collisions. This form
of supervision is applicable when the AI is able to detect that the
human has erred; for example, the craniotomy tool Craniostar (S3)
tracks a reference path across a patient’s skull and steers the drill
towards the path when it deviates.

4.2.3 By Human: The human supervises the AI
Conversely, shared control systems can be designed such that the
human user supervises the AI. For example, Supervisory Steady-
Hand (S4) performs microinjections fully autonomously, but re-
quires a surgeon to supervise its performance and verify that it
succeeded.

4.2.4 Mutual: Both actors supervise the other
Finally, shared control systems can be designed such that both
actors supervise each other. For example, the Mavic Air 2 super-
vises the human to help with collision avoidance during manual
operation, and the human needs to supervise the AI when it flies
autonomously. In lane assistance driving systems (D3-4), the AI
supervises the human’s steering, taking over when the car drifts
out of lane; the human in turn supervises this correction, and can
override it by applying extra force to the steering wheel.

4.3 Influence—Do Actors Attend to and
Influence Each Other?

To cooperate effectively, both human and AI may need to monitor
what the other is doing to determine how they should control
the system together. In some systems, the AI’s control signal is
a function of the human’s. For example, the racing game AI of
Cechanowicz et al. (G7) only assists the player when it detects that
they are steering. In other systems, the human responds to the
AI’s control signal, which they perceive via force feedback (D1,
C3-6), EMS (C1-2), or a visual display (C7). For example, Haptic
Intelligentsia (C4) helps users to construct sculptures out of glue by
guiding their control of a hot glue gun. When the user moves the
gun outside a predefined 3D volume, known to the AI but not to
the user, a haptic device pushes the gun back towards the volume’s
surface. This informs the user of the volume’s location and helps
them to decide where to put more glue. In this way, users of these
systems are made aware of the AI’s commands and may infer and
react to its intentions. When both the human and AI each respond
to the other’s control signal, they can communicate with each other
and negotiate how the system is controlled. We term the way in
which human and AI interpret and respond to the other’s control
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signal Influence, which we have observed as being Independent,
Interpreted, Guided, and Codependent.

4.3.1 Independent: Neither actor influences the other
In many systems, there is no obvious benefit to actors influencing
each others’ control. For example, in the Space Invaders clone Alien-
ated (G2) the player controls the avatar’s movement while the AI
controls its shooting. Since movement does not affect shooting, the
AI’s decision to fire is determined by the game’s state, rather than
the player’s actions. Neither actor is directly aware of the other’s
commands.

4.3.2 Interpreted: The AI’s actions are influenced by the human’s
actions
When the AI interprets the human’s control signal, it may be able
to infer and help the human achieve their goals. For example, Gekku
Aim (G6) is a 2D racing game designed for children with cerebral
palsy who have difficulty aiming at targets. When the player aims
near an enemy and fires a shot, the AI steps in at the last moment
and aims directly at the enemy closest to where the player was
pointing. In this way, the AI may interpret users’ control signals
to infer their intentions and then take action to help the human
realize them.

4.3.3 Guided: The human’s actions are influenced by the AI’s ac-
tions
Several systems use EMS or force feedback to guide the human’s
control. For example, Kianzad et al. created a physically assisted
sketching system (C6) that pushes the user’s pen away from bound-
ing lines they have drawn on paper, helping them to stay within a
predefined region. This form of Influence can guide the human’s
control not only by physically pushing or pulling the system’s hard-
ware but also by improving the human’s awareness. For example,
the force-amplifying surgical robot created by Payne et al. (S6)
improves kinaesthetic feedback from the tip of the surgeon’s in-
struments, which is otherwise not present in minimally invasive
surgery. This enables surgeons to sense what the AI senses and use
their heightened awareness to operate more precisely.

4.3.4 Codependent: Both actors’ actions are influenced by each
other’s actions
When both actors are aware of the other’s control signal, they
may infer the other’s intentions to cooperate better. If both actors
control the same parts of the system’s interface, they may engage
in a negotiation to determine their form of control. For example,
Shilkrot et al. created a digital airbrush (C12) that uses force feed-
back on its trigger to help users paint a reference image. When
the human pushes down on the trigger to paint over an already
painted area, the AI pushes back. Therefore, both actors influence
each other by communicating their intentions through the trigger.
This specific form of Codependent shared control, in which control
is negotiated using physical forces, has been called haptic shared
control by Abbink et al. [2]. It is especially applicable to systems
where actors need to maintain awareness of the other’s control in
real time, such as semi-autonomous vehicles (D3-4, D9) and surgical
robots (S1-5).

4.4 Mediation—How are Actors’ Commands
Unified?

Sometimes, the actions that the human and the AI agent perform
may conflict. For example, the image classifier of Seno et al. (C7)
may incorrectly label an object as a car while the human correctly
labels it as a horse. The Mediation dimension captures how such
conflicts are resolved. More technically, this dimension describes
how actors’ commands are used to control the system.

4.4.1 Combined: Actors’ commands are combined to construct the
shared control signal
A system’s mediation of actors’ control signals is said to be Com-
bined if the shared control signal is always a combination of both
actors’ control signals. For example, a human driver may turn their
steering wheel to change lanes while their car’s lane-keeping AI
turns the wheel in the opposite direction, negating the human’s
action because they did not signal. In this example, actors’ com-
mands are Combined physically to create a new command. Both
actors contribute to this new command and may control the system
more forcefully, turning the wheel further in this case, to override
the other actor’s contribution. This approach is used by several
lane-keeping assistants (D1-4).

4.4.2 Selected: One actor’s command is selected as the shared con-
trol signal
Alternatively, a system might select one actor’s control signal as
the preferred control signal, in which case its mediation is said to
be Selected. These systems continuously check if the human or the
AI should be solely in control. For example, Sentouh et al. created
a lane-keeping assistant (D5) that monitors the human driver’s
commands and selectively ignores them when they might violate
stabilization and lane-keeping constraints. Instead of combining
both actors’ commands, this assistant decides which actor should
steer and selects their command to control the vehicle. In some
Selected systems, actors’ commands are both Combined and Selected
at different times. For example, G8 combines the player’s shooting
commands with the AI’s aiming commands, but selects the player’s
aiming commands when they take control of that input. This type
of Mediation has important consequences for the human-agent in-
teractions systems afford. Selected systems enable actors to remove
the other from the control loop, which means that one actor can
act autonomously and without interference.

5 ANALYSIS
As we have shown, our dimension space describes human-agent
interactions in shared control along four dimensions: AI Role, Su-
pervision, Influence, and Mediation. The dimension space enables
designers to classify systems and discover patterns in the designs
used within a problem domain. Our dimension space can help
designers to identify common assumptions about actors’ roles, re-
sponsibilities, competencies, and ways of cooperating and then
imagine how these interactions might otherwise be structured. In
this section, we apply the dimension space to the systems from
which it was derived to demonstrate how it can elucidate common
design patterns. We then apply it to our entire corpus to identify
larger design patterns used across domains.



Two Heads Are Better Than One CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

AI Role

Games
Player Balancing

Mediation

Influence

Supervision

Racing Game (G7)

Gekku Aim (G6)

Complementary

Reciprocal

Cooptable

Ind
ep

en
de

nt

Inter
pret

ed
Guid

ed

Cod
ep

en
de

nt

Mutu
al

By H
um

an

By A
I

Uns
up

erv
ise

d

Delegated

Supportive

Combined

Selected

AI Role

Games
Input Automation

Mediation

Influence

Complementary

Reciprocal

Cooptable

Indep
en

den
t

Int
erp

ret
ed

Guid
ed

Cod
ep

en
de

nt

Mutu
al

By H
um

an

By A
I

Delegated

Supportive

Selected

Combined

Unsu
perv

ise
d

Zac - O Esquillo (G1)
Alienated (G2)
Partial Automation (G3)

AI Role

Semi-Autonomous Driving
Low-to-High

Mediation

Influence

Complementary

Reciprocal

Cooptable

Ind
ep

en
de

nt

Int
erp

ret
ed

Cod
ep

en
de

ntSupervision

Mutu
al

By H
um

an

By A
I

Uns
up

erv
ise

d

Delegated

Combined

Selected

Lane-Keeping Assistant (D1)

Guided Supervision

Lane-Keeping Assistant (D2)

Supportive

AI Role

Semi-Autonomous Driving
High-to-Low

Mediation

Complementary

Reciprocal

Cooptable

Ind
ep

en
de

nt

Int
erp

ret
ed

Guid
ed

Cod
ep

en
de

nt

Mutu
al

By H
um

an

By A
I

Uns
up

erv
ise

d

Delegated

Supportive

Combined

Selected

Hotzenplotz Interface (D8)

H-Mode Car (D9)

Influence

Supervision

AI Role

Creativity Support
Guided Performance

Mediation

Influence

Complementary

Reciprocal

Cooptable

Ind
ep

en
de

nt

Int
erp

ret
ed

Guided

Cod
ep

en
de

nt

Mutu
al

By H
um

an

By A
I

Uns
up

erv
ise

d

Delegated

Supportive

Combined

Selected

Supervision

PossessedHand (C1)
EMS Air Guitar (C2)
dePENd (C3)
Haptic Intelligentsia (C4)
FreeD (C5)
Sketching Assistant (C6)

AI Role

Mobility Assistance
AI Supervisory Control

Mediation

Influence

Supervision

Complementary

Reciprocal

Cooptable

Ind
ep

en
de

nt

Inter
pret

ed
Guid

ed

Cod
ep

en
de

nt

Mutu
al

By H
um

an

By A
I

Uns
up

erv
ise

d

Delegated

Supportive

Combined

Selected

Mobility Robot (M1)
Power Wheelchair (M2-4)
Power Wheelchair (M5-6)

AI Role

Telerobotics
Daemon Assistant

Mediation

Influence

Complementary

Reciprocal

Cooptable

Ind
ep

en
de

nt

Int
erp

ret
ed

Guid
ed

Cod
ep

en
de

nt

Mutu
al

By H
um

an

By A
I

Uns
up

erv
ise

d

Delegated

Supportive

Selected

Combined

Supervision

Unmanned Aerial Vehicle (R3)
Unmanned Aerial Vehicle (R6)

Telemanipulation Robot (R2)

AI Role

Surgery
Negotiated Control

Mediation

Complementary

Reciprocal

Cooptable

Ind
ep

en
de

nt

Int
erp

ret
ed

Guid
ed

Codep
en

den
t

Mutu
al

By H
um

an

By A
I

Uns
up

erv
ise

dSupportive

Delegated

Combined

Selected

Supervision

Influence

Steady-Hand (S1)
Micron (S2)
Craniostar (S3)

Supervisory Steady-Hand (S4)

Comanipulation Robot (S5)

Figure 3: Design patterns found in each of the six domains we surveyed. Each pattern is defined using at least one of the
dimension space’s four axes. For example, guided performance (bottom left corner in green) provides a Supportive, Guided,
and Combined form of shared control, indicated by the bold green axis labels. This pattern is exhibited in six systems (C1-6);
however, individual systems vary with respect to their types of Supervision, which are shown in the diagram using different
shades of green.

5.1 Domain-Specific Design Patterns
Designers can classify a shared control system by assigning it to
one category in each dimension in the dimension space. When mul-
tiple systems from the same problem domain are classified, patterns
emerge, providing insight into to the types of interactions they
afford. For example, human users of mobility assistance systems
are typically supervised by the AI who supports them in avoiding
collisions and interprets their commands to infer their intentions.
However, they may either combine or select actors’ control sig-
nals. Therefore, mobility assistance devices exhibit a Supportive, By
AI , and Interpreted design pattern, defined along three dimensions
(leaving the category in the fourth dimension open). We have called
this pattern AI supervisory control in mobility assistance devices,
but in games it is already known as player balancing. Therefore,
similarities in the patterns used in multiple domains may reveal
correspondences in the interactions systems afford and users’ ex-
periences of them. Design insights discovered in one domain may
be directly applicable in designing systems for another.

Of course, identifying design patterns is only the first step. Once
we know how a set of design choices overcomes domain specific
problems, we can better understand how similar designs might
overcome other problems. We can describe what about a pattern
makes it effective and imagine how the strengths of multiple pat-
terns might be combined to provide novel forms of shared control.

In this section, we demonstrate how our dimension space enables
designers to classify, compare, and understand shared control solu-
tions to similar problems by identifying common design patterns
within each of the six domains we surveyed. We present eight pat-
terns drawn from dimension space plots of our 55 surveyed systems,
shown in Figure 3.

5.1.1 Digital Games. Player balancing enables weaker players to
compete with stronger opponents. For example, in Gekku Aim (G2)
players shoot projectiles at each other in a 2D play area and aim their
shots using a gamepad’s analog stick. The game assists players with
deficits in manual dexterity by aiming directly at an opponent when
their aim is misaligned but close. This makes the game easier to play
for players who experience difficulty. As shown in Figure 3, Player
Balancing is a Supportive, By AI , and Interpreted design pattern.
The AI’s role is to support the player’s activities. To do so, the AI
supervises the player and interprets their aiming actions, modifying
this control signal to provide the player with improved aim. The
pattern is agnostic with respect to Mediation strategy. Figure 3
shows two games whose aim assistance algorithms follow this
pattern.

A second design pattern for games, Input Automation, is also
shown in Figure 3. This pattern delegates control of inaccessible
game inputs to an AI agent. For example, in Zac - O Esquilo, a
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one-switch clone of Frogger, the player presses a button when they
want their avatar to move [63]. The AI then selects the movement
direction it deems most appropriate and the avatar moves in that di-
rection. While the player controls both when and where their avatar
moves in the original game, Zac - O Esquilo partitions the player’s
task by asking them only to choose when to move. Games like Zac
- O Esquilo use input automation to make games nearly universally
accessible by adhering to a Unsupervised, Complementary, Indepen-
dent, and Combined design pattern. Actors perform different tasks
simultaneously and therefore do not directly supervise each other
(Unsupervised Supervision) or influence each other (Independent
Influence). The AI’s Role is to complement the player’s actions. The
player and AI’s inputs do not conflict and are therefore Combined
as a Mediation strategy.

Input automation can enable players with radically different
physical abilities to play the same games, by broadening their ac-
cessibility to players they were not designed for. However, players
may experience automation confusion [14] if they do not understand
what the AI is doing, because it performs a Complementary role, or
become frustrated when it does things they do not like, because
their control signals are Independent.

5.1.2 Semi-Autonomous Driving. Early semi-autonomous driving
systems, such as lane-keeping assistants, sought to make simple
driving tasks easier. These systems represent a transition from low-
to-high automation, introducing automation into manual driving.
These systems follow a Supportive, Combined, and Guided pattern
that enables the AI to perform operational level driving tasks at
the same time as the human (Figure 3). The AI supports drivers as
they both steer to stay in the lane. AI in low-to-high automation
uses force feedback to guide the driver’s steering, which makes lane
keeping easier by combining steering forces from both actors. The
pattern is agnostic as to Supervision strategy.

As more automated features have been integrated into cars, de-
signers have imagined novel interaction metaphors and design
philosophies for semi-autonomous driving. Consequently, a high-
to-low automation pattern has begun to emerge, introducing man-
ual control into automated driving. For example, the H-Metaphor
suggests that semi-autonomous vehicles should cooperate with
drivers in the same way horses cooperate with riders, in that they
can act autonomously or allow the human to take control [31, 94].
Otherwise, designers may see automating driving tasks as “an am-
putation” [52] of the driver’s task and seek to provide them with
playful ways to engage in driving [33, 106]. High-to-low systems
put the human in a position of greater authority and put the AI
in a Cooptable role. Systems adopting this approach differ in their
choices of Influence, Supervision, and Mediation approaches, indi-
cating that the design of high-to-low systems is still under active
exploration.

5.1.3 Creativity Support. Several of the creativity support systems
we surveyed were designed to help novices sketch (C3, C6, C9-10) or
play a musical instrument (C1-2). They use EMS and force feedback
to guide creators’ control of their tools, enabling them to perform
skilled actions that may be too difficult without assistance. These
systems represent a form of shared control that we have called
guided performance (Figure 3), in which the human is Guided by the

AI which performs a Supportive role while actors’ control signals
are Combined. Example systems use different forms of Supervision.

Since guided performance systems are designed for novice users,
the AI’s guidance is intended to help them overcome technical
barriers to creative endeavors. For example, sketching assistants
help humans to draw straight lines (C3) and stay within them (C6),
both of which are tasks that the human may learn to do on their
own with more experience. Therefore, this pattern helps novices to
get acquainted with their craft by removing technical burdens and
enabling creators to create freely.

5.1.4 Mobility Assistance. Mobility assistance is one of the more
popular applications of shared control and was one of the more
homogeneous domains we surveyed. Since the user is expected
to have difficulty controlling these devices, the AI is put in the
role of supervisor and is often permitted to override the user’s
control when it sees fit. These systems interpret the human’s control
signal to infer their intentions and may ignore their commands if
executing them is dangerous. Therefore, the human’s control signal
is Interpreted as they are supervised By AI , which plays a Supportive
role. These systems have the AI supervise the human, sometimes
preventing them from controlling the device at all, and therefore
adhere to a design pattern that we have called AI supervisory control.
The pattern does not specify a Mediation strategy.

Unfortunately, little has been reported about users’ experiences
of interacting with these devices, since many evaluations have not
included disabled users (e.g. [18, 26, 57, 58, 90, 105]) and authors
are typically more focused on the technical challenges of avoiding
collisions. However, what is known indicates that these devices can
help disabled users to navigate more safely [25, 34]. If interacting
with these systems is anything like interacting with games that use
player balancing, which exhibit the same design pattern, then users
may find the AI’s intervention helpful but potentially intrusive.

5.1.5 Telerobotics. As explained by Jiang & Odom, the history of
human-robot team design marks an ideological shift from seeing
robots as subordinate tools to seeing them as equal partners [45].
Regardless of whether it is posing a robot arm to make manipula-
tion easier or stabilizing a drone to counteract signal interference,
teleoperated robots are being designed to overcome technical and
human factors problems by leveraging their unique strengths. For
example, Dragan & Srinivasa created a telemanipulation robot to
assist remote operators in picking up objects [20–22]. They point
out that human operators have a better understanding of the task
than the robot (e.g., knowing that caution is needed around break-
able objects), although they have difficulty controlling the robot
precisely and can become fatigued over time. In contrast, an AI
partner is tireless and can control a robot perfectly precisely. In
order to account for the deficiencies of one actor by leveraging
the strengths of the other, the AI predicts which object the user is
trying to grab and assists them in doing so safely. However, unlike
AI supervisory control, these systems do not necessarily have the AI
supervise the human, since the human is assumed to have greater
authority in some situations. Therefore, teleoperated robot systems
typically adhere to a Supportive and Combined pattern, which we
have called daemon assistant (Figure 3), in which the AI works in the
background to support the human by combining their commands.
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5.1.6 Surgery. Surgical robots help surgeons to perform delicate
and precise operations by providing haptic guidance and filtering
tremulous movement. Because the surgeon is the designated expert
in the operating room, the AI agents in these systems are seldom
capable of performing tasks on their own, although some examples
can be found (S4-5). These systems also vary with regards to actors’
supervisory responsibilities. The surgeon is authoritative, but not
infallible, so some systems let the AI supervise (S3, S7-8) while
others are designed for neither actor to supervise the other (S1-2, S5-
6). Surgical robots therefore adhere to a Combined and Codependent
design pattern, which we have called negotiated control (Figure 3).
Since actors sense the other’s actions via the forces they exert on
the surgeon’s implements, actors negotiate how the system should
be controlled. Each responds to the other’s movements, which move
the surgeon’s tools when combined, so their action is codependent. If
the AI believes the surgeon to be in error, the surgeon may discover
their mistake when the AI counteracts their movement using force
feedback. This approach can provide surgeons with superhuman
precision with their implements and superhuman awareness of
their workspace.

5.2 Design Patterns Across Domains
Having shown how human-agent interactions are structured in var-
ious domains using shared control, we now apply our dimension
space to our entire corpus to determine which designs are used
across domains. In so doing, we elucidate commonalities in the
design of these systems and describe the forms of shared control
they provide. These patterns tell us not only how shared control
is used across multiple domains but also what problems these do-
mains have in common. Because designers working in the domains
we surveyed may be unaware of how shared control is used by
others, these patterns represent more general forms of shared con-
trol that have been discovered independently multiple times. The
broader perspective we take in this section enables use to identify
the most popular design patterns and understand how common de-
sign choices overcome the most pervasive problems in controlling
interactive systems.

To identify these patterns, we used Artur &Minghim’s Subspaces
Explorer system, shown in Figure 4, which uses correlation analyses
to embed and cluster data in an alternative RadViz space [7]. The
color coding and spatial arrangement of systems plotted this way
are explained in the figure caption. We then selected homogeneous
clusters and combined them to create patterns, such that each had a
similar number of systems that adhere to it (i.e., 7 to 16). The cluster
in the center of the RadViz plot in Figure 4 contains the outliers that
did not belong to a more cohesive pattern, so this cluster was not
selected. In this section, we describe the four higher-level design
patterns we identified.

5.2.1 Vigilant Savior. The vigilant savior pattern has the AI step in
to override the user’s control in dangerous situations. The human
is supervised By AI , which performs a Supportive role. When the AI
detects that the human is in need of assistance, the human’s control
signal is Interpreted by the AI whose control signal is Selected as the
shared control signal. For example, Jiang et al. created a UAV (R4)
that predicts whether the human’s command would put it into an
unsafe state and overrides their control if it would. This pattern is a

more specific form of the player balancing and AI supervisory con-
trol patterns described in the last section. However, this pattern has
also been used in semi-autonomous vehicles for lane-keeping (D5)
and in teleoperated robots to take over control when the human
performs poorly (R5). In this way, vigilant savior systems assume
a deficiency in the human’s capabilities and override the human’s
control to prevent them from making mistakes, saving the day.

5.2.2 Supportive Patron. Like the vigilant savior, the supportive
patron pattern has the AI supervise the human and support them
with their tasks as needed. However, this pattern uses Combined
control and the AI does not necessarily interpret to the human’s
commands. Rather, the AI is Supportive of the human, who is su-
pervised By AI , and their control signals are Combined to perform
the same tasks at the same time. The pattern is used across a range
of Influence styles. For example, Deng et al. created a smart power
wheelchair (M3) that refines the human’s control by blending it
with the control signal of an autonomous path planner that moves
away from obstacles. Should the user command their wheelchair to
move towards an obstacle, blending nullifies the user’s command
and prevents the collision. When the wheelchair gets too close to
an obstacle, the planner adjusts the user’s course to give them the
space they need to operate the wheelchair safely. This is similar
to how the comanipulation robot of Gurnel et al. (S8) pushes and
rotates the surgeon’s implements to guide them towards a desired
position and orientation. Instead of stepping in to replace the hu-
man’s control signal, this pattern’s AI uses shared control to make
the human’s tasks easier by performing the tasks at the same time.

5.2.3 Compromise Negotiator. Many AI agents both interpret the
human’s control signal and use their own to guide the human.
These provide a form of Codependent and Combined shared con-
trol that Abbink et al. have previously called haptic shared con-
trol [2]. For example, the haptic shared control vehicle presented
by Johns et al. (D3) enables both actors to steer and communicate
their intentions using the steering wheel (Codependent Influence).
Both the human and AI negotiate the shared control signal by si-
multaneously applying forces to the system’s physical interface
(Combined Mediation). However, as described in Section 5.1.3, the
pattern encompasses other ways in which AI’s control signal can
be communicated to the human. The compromise negotiator pattern
encompasses these haptic shared control systems, but is instead
defined in terms of the Mediation and Influence of actor’s con-
trol signals. The AI interprets and guides the human’s control to
negotiate a shared control signal that both actors find agreeable.

As seen in Figure 4, numerous systems with differing AI Role
and Supervision styles follow the Compromise Negotiator pattern.
For example, the digital airbrush of Shilkrot et al. (C12) selects
which color to paint and supervises the user, negotiating how much
paint to apply. The H-Mode car (D9) is supervised by the human,
who coopts the AI’s tasks, negotiating how quickly the vehicle
accelerates and turns. Many surgical robots (i.e., S1-5) use this
pattern to negotiate how the surgeon handles their implements.

5.2.4 Equal Partner. When AI agents share control to perform
their own tasks that are Complementary to the human’s, they can
extend the human’s capabilities by performing tasks that the human
cannot, or partition the human’s tasks to make the human’s job
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Figure 4: The data view RadViz plot generated by the Subspaces Explorer tool and higher-level design patterns used across
multiple domains. In the data view in the center, each of the systems in our corpus are represented as circles colored according
to their domains and plotted according to their similarities with other systems as well as the axes along which they are similar.
For example, the cluster in the top right corner use a distinctive combination of Influence and Mediation, while the cluster
at the bottom places the AI in a unique AI Role. Systems found in the center of the plot did not exhibit a cohesive pattern,
so this cluster was not selected. Selected patterns are encased in colored rectangles that each correspond to a diagram of the
same color on the right and left.

easier. For example, a mobility assistance robot could brake to catch
the human if they fall (M9) or an endomicroscopy robot could rotate
a scanner while the human translates it across a sample (S5). Since
the AI performs tasks that the human does not, their control signals
are often Independent, Combined with equal control authority, and
Unsupervised. This form of shared control frames the AI as an equal
partner who simultaneously performs its own tasks. It has been
used in each of the domains we surveyed, save for semi-autonomous
driving.

6 FUTURE OF SHARED CONTROL
Human-AI shared control can personalize the control of systems
to the abilities of users, by leveraging the abilities of one actor
to extend the abilities of the other. It unifies human and artificial
intelligence, enabling humans to play and create without barriers,
get around more safely, and work more effectively. The systems
we surveyed demonstrate how shared control can improve human
users’ interactions with computers in tasks as diverse as surgery
and sketching. We turn our attention now to the future of shared
control and demonstrate how our dimension space might help
designers to explore the design choices available to them.

We have shown how our dimension space supports analysis of
shared control systems at different scales. Applying the dimension
space to individual systems (as in Figure 1) enables designers to

understand and compare the specific human-agent interactions
they afford. By using the dimension space to classify a more diverse
sample of systems (as in Section 5.1), designers can gain insights
into how broadly applicable design patterns can address problems
encountered in their own domain. However, there is still one fur-
ther use case for our dimension space that we demonstrate in this
section. Once known solutions are classified, designers can use the
dimension space to imagine how other types of Supervision, AI
Role, Mediation, and Influence might shape the interactions that
systems afford. In this section, we provide examples of designs
generated with aid of the dimension space.

We propose novel designs for shared control systems in three
of the domains we surveyed. Our proposals, depicted in Figure 5,
are largely speculative and there may be concrete human factors
or technical problems that preclude their creation. Section 6.1 de-
scribes how the Equal Partner pattern, modified to provide Inter-
preted Influence, might make driving more accessible to persons
with disabilities. Section 6.2 describes how Cooptable AI, similar to
the High-to-Low pattern used in semi-autonomous driving, might
overcome an emerging problem in the performing arts. Section 6.3
describes how a Guided telemanipulation system might help users
to understand the AI’s assistance.
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Figure 5: Kiviat diagrams representing the three systems described in Section 6.

6.1 Semi-Autonomous Driving
Designers of semi-autonomous vehicles tend to approach the prob-
lem from one of two perspectives: removing manual control from
driving (low-to-high automation) or introducing manual control
into autonomous driving (high-to-low automation). However, both
assume a one-dimensional shift in control authority between hu-
man and AI. These approaches are appropriate for persons without
disabilities, but the advent of autonomous vehicles has also sparked
discussion regarding how they might better serve persons with dis-
abilities. Brewer & Kameswaran asked persons with vision impair-
ments how automation might enable them to drive and discovered
that they wanted autonomous vehicles to present drivers with a
“spectrum of desired control” [12]. They wanted to personalize their
control of the vehicle based on their abilities, rather than designers’
expectations of their abilities.

We did not encounter any systems that partition driving tasks
to make driving more accessible to drivers with disabilities. For ex-
ample, many people with spinal cord injury find aspects of driving
inaccessible. They may customize their vehicles with hand controls
instead of pedals or pedal controls instead of a steering wheel, but
for some there may be no configuration of assistive technologies
that make all tasks safe and accessible. Using shared control, design-
ers could automate different aspects of the driver’s task separately
and drivers with spinal cord injury could perform whichever tasks
are accessible to them. The AI could perform an entirely Comple-
mentary role, filling in for the driver by performing tasks that they
cannot. Using Interpreted Influence, the AI could look for clues
in the driver’s commands that indicate what the driver wants to
do next. For example, the AI could change lanes when the driver
accelerates towards slower vehicles ahead. In accordance with the
equal partner pattern, in which the AI performs a Complementary
role, it may be appropriate for neither actor to supervise. Just as
input automation controls inaccessible inputs to make games more
accessible, AI performing a Complementary role could make driving
more accessible to drivers with motor disabilities.

6.2 Creativity Support
The Under Presents: Tempest is a production of William Shake-
speare’s The Tempest staged live in virtual reality (VR). A lone actor,
of the thespian variety in this case, plays multiple roles throughout
the performance by controlling virtual character models, although
they can only play one part at a time. Were the performance to
require that multiple parts be played simultaneously, then multiple
actors would be needed. Instead, productions could be scaled up
dramatically by sharing control of each virtual character with an
AI agent that performs scripted behaviours autonomously. The cast
could supervise these agents and selectively coopt their roles. For
example, should an audience member try interacting with a virtual
character without any scripted dialogue, a cast member might take
control of this character and improvise. While the character is be-
ing controlled, the AI could monitor the cast member’s movement,
to infer which actions they are doing, and continue doing those
actions when control is relinquished. In this way, these Cooptable
agents are supervised By Human and the human actor’s commands
are Interpreted when they are Selected to control the character.

6.3 Telerobotics
Telerobots are operated at a distance, so human users may have
lower awareness of the robots’ environment than the robot itself.
For example, operators of a robot arm may be unsure whether the
arm’s gripper has successfully picked up an object using visual
feedback alone [76]. For this reason, haptic feedback has been used
in telemanipulation systems to improve operators’ telepresence.
However, we encountered no telerobotic systems that use haptic
feedback to share control. This is unfortunate because controlling
these robots may be difficult [21, 22, 81] and unsafe in some envi-
ronments [76]. Sharing control may help operators to avoid making
mistakes (e.g., R1-2), but without adequate awareness of how the
AI has amended their commands, operators may find control con-
fusing. Instead, telerobots could be Supportive of operators and
inform them of the AI’s commands, such that their supervision of
each other isMutual and Guided using force feedback. For example,
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systems in which actors’ joystick commands are Combined could
position the user’s joystick to reflect the Combined command the
system received. Users could sense that their command is danger-
ous, not because the robot’s sensors indicate they might hit an
object but because the AI has already prevented it. This approach
may improve operators’ awareness of the robot’s environment,
actions, and intentions while also providing the improved task per-
formance afforded by haptic feedback.

Throughout this work, we have described many systems that
solve similar problems in significantly different ways using shared
control. We have also shown how designing novel uses of shared
control benefits from our existing design knowledge and exposes
new problems that we know little about. It has only been in the
last decade that shared control has emerged as a way of controlling
interactive systems beyond the relatively narrow design space of
robots. These recent uses of shared control in games and creativity
support suggest a future in which shared control is used to improve
all sorts of human activities. As shown by the speculative examples
presented in this section, the dimension space presented in this
paper provides designers with the language to express how shared
control might overcome new problems. We are now equipped to go
beyond the domains where shared control has proven useful, using
this dimension space to guide our exploration.

7 CONCLUSION
Shared control is being used in radically different ways to improve
our lives. It can extend the accessibility of interactive systems to
users with motor disabilities, it can help human users to perform
tasks more safely, and it can facilitate engagement in creative and
playful activities. But our knowledge of how to design shared con-
trol systems is often specific to an application domain, and some
systems are not identified as using shared control by their designers.
This makes it difficult for designers using different approaches to
share their design knowledge or take inspiration from solutions
used by others. Solutions may look different when they are similar
(e.g., sketching and lane-keeping assistants) or they may look simi-
lar when they are different (e.g., surgical and teleoperated robots).
Therefore, designers may not see whether solutions used in other
domains can be used to overcome problems in their own. To break
down barriers between domains using shared control, we need a
common language for describing the design space of shared control
systems.

In this paper we presented a dimension space for shared control
defined along four axes: AI Role, Supervision, Influence, and Media-
tion. It enables designers to classify the human-AI interactions a
system affords, make comparisons with other systems, and imag-
ine novel approaches to shared control that have never been tried
before. Using this simple language, designers may be able to better
communicate their design ideas to others, allowing their knowledge
of the shared control design space to be more easily shared. With
this dimension space as our guide, shared control promises a future
in which humans’ interactions with computers are more accessible,
safe, creative, and playful.
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