
Journal of Visual Languages and Computing (1992) 3, 25-47

GVL: Visual Specification of Graphical Output

JAMES R. CORDY* and T. C. NICHOLAS GRAHAM

‘> Department of Computing and Information Science, Queen’s University at Kingston,
Kingston, Canada K7L 3N6 and GMD Forscbungsstelle an der lJniversit& Karlsruhe,

Vincenz-Prielhitz-Str. 1, D-7500 Karlsruhe 1, Germany

Received 17 June 1991 and accepted 24 October 1991

The conceptual view model of output is based on the complete separation of the
output specification of a program from the program itself, and the use of implicit
synchronization to allow the data state of the program to be continuously mapped to
a display view. An output specification language called GVL is used to specify the
mapping from the program’s data state to the display. GVL is a functional language
explicitly designed for specifying output. Building from a small number of basic
primitives, it provides sufficient power to describe complex graphical output.
Examples shown in the paper include GVL specifications for linked list diagrams, bar
charts and an address card file. In keeping with its intended application, GVL is also a
visual language in which the user draws output specifications directly on the display.
It is shown how problems often associated with imperative graphical languages are
avoided by using the functional paradigm. A prototype implementation of GVL was
used to produce all examples of graphical output in the paper.

1. Introduction

THE MODEL of input/output used by most modern programming languages is based on
streams. A stream is a one-dimensional I/O channel: input characters are taken from
the front of the input stream and output characters are appended to the end of the
output stream. Output occurs only from specific points in the program where output
statements have been inserted. This stream model most easily supports the glass
teletype model of user interaction, where input and output take place on the bottom
line of the screen, and earlier interactions are scrolled up onto the remaining screen
lines. This glass teletype interaction leads to a prompt-and-respond program interface,
where the program prompts for the requried input in some order, and the user is
obliged to respond in that order.

Sufficient diversity in interface and hardware design has occurred that this view is
no longer adequately representative [l]. For example, sophisticated user interfaces are
two-dimensional, using the full display for interaction. Often the user is permitted to
direct the interaction, filling in inputs in whatever order is convenient. This style of
direct manipulation interface is difficult to implement when the programming
language provides only steam-level communication.

In recent years considerable work has gone into developing high level constructs in
programming languages to support better abstract data types. In modern application
programs, between 29 and 88% of the program code is required to implement the user

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada,
and by the Information Technology Research Centre.

1045-926X/92/010025 + 23 $03.00/O 0 1992 Academic Press Limited

26 J. R. CORDY & T. C. NICHOLAS GRAHAM

interface [2]. It is therefore appropriate to develop similar high level abstractions for
program input and output.

This paper describes GVL (Graphical View Language), a graphical, functional
language used to specify output. GVL is used to specify conceptual views of output,
which map the data state of an application program to a display view. Following a
brief overview of the conceptual view model, the paper describes GVL, the language
on which the model is based. (Earlier papers describe the conceptual view model in
more detail [3,4].) Weasel, a prototype implementation of the conceptual view model,
was used to produce all of the output shown in this paper.

2. The Conceptual View Model

The conceptual view model is based on a separation of a program’s output from the
program itself. Figure I shows a typical program organization under the conceptual
view model. The program consists of a set of modules, encoded in the language of
choice of the application programmer (e.g. C, Turing, Ada, etc.) The program
contains no output statements, therefore containing only data structures and
algorithms to manipulate the data structures.

A separate output specification maps the contents of a data structure to a display
view. As the data structure is modified, the display view is automatically updated.
Conceptual views can be thought of as a data probe, the software equivalent of a logic
probe. Each probe continuously senses the data state of the program and maps it to a
display view. The display view is an abstraction of the data structure, representing
some facet of the data structure that is of interest to the programmer; the name
conceptual view comes from this idea of abstraction.

Running
Program

Modules

I.

Conceptual
Views Mapping

Specifications

[+y T

r I *

ll”‘lxy - 11.1
I 1

I ’ I Probe
II I- I

Rides
--- 1 ----- -- ---- -- M --- ---- -- --

1 I I- I

Figure 1. Typical program organization under the conceptual view model

GVL: VISUAL SPECIFICATION OF GRAPHICAL OUTPUT

1979 1986 1981 1982 1983 1984 1985 1986 1987 1988
Figure 2. Bar graph output generated as a conceptual view of a list of real numbers

A data structure can be mapped to multiple different output views. For example, in
Figure 1, the specification Sl maps the data structure implemented in module Ml to
an arry diagram with a cursor, while specification S2 shows the same data structure as
a stack.

As the data structure is modified throughout the execution of the program, the
display is implicitly updated. These updates are based on the invariant assertion of the

[ucray4% weasel linkedlist
tiring Interpreter Vi.0
lcanning program.. .
hecuting program...
1

Figure 3. A series of snapshots over time of a linked list data structure as it is being constructed

28 J. R. CORDY & T. C. NICHOLAS GRAHAM

[UVWXYZ
I

Hombo Tombo

324 Rocky Cliff

577-3646 I
Figure 4. A card file name and address interface implemented as a conceptual view

module being displayed: when the invariant is false (i.e. an update is taking place), it is
illegal to update the display. When the invariant is true, the module’s data structure is
guaranteed to be in a consistent state, and the display can be updated. Therefore, it is
sufficient to update the display every time the module’s invariant changes from false
to true, which corresponds to the module being exited.

Conceptual view specifications are expressed in two parts. First, a specification
written in GVL expresses how the current state of the data structure is to be mapped
to a set of display primitives such as boxes, lines and text. The mapping specification
does not necessarily constrain the location or sizes of these primitives. Then, a set of
layout rules are applied to this form to determine the actual display. Layout rules
determine any unconstrained sizes and positions, and resolve how to fit large displays
when the physical display device is too small.

Figures 2, 3 and 4 show examples of conceptual views generated by the Weasel
protoype. Figure 2 shows a bar graph as the output of a list of real numbers. Figure 3
is a series of snapshots over time as a linked list is constructed. Figure 4 shows a
snapshot of an interface implementing a card file address book. This paper describes
how GVL can be used to specify these conceptual views.

3. A Simple Example

This section gives a brief example of a GVL output specification. This example is only
an overview of how such a specification is constructed; more detailed examples are
given later in the paper.

Consider that a programmer wishes to implement a database for names and
addresses. The user interface is modeled after a card file index, where the user can
move back and forth within the card file, and the current card is displayed on the
screen. The base program will contain the data structure to represent the card file, and
will encode the algorithms for traversing the file. Separately, a conceptual view is to
be specified to map the card file data structure to a screen view of the current card.

Figure 5 shows the GVL function to map from the card file data structure to a
display view of the card. The programmer has drawn the card as he/she intends it to
be seen. The card frame itself is drawn as a box, with a filled border to create the
illusion of a shadow. Within the box, applications of additional display functions are

GVL: VISUAL SPECIFICATION OF GRAPHICAL OUTI’UT

CardFile (firstName, lastName, address, phoneNumber)

29

6 firstName : DisplayString 6 lastName : DisplayString
I

L
I 6 address : DisplayString I

-----_---------------------
’ 6 phoneNumber : DisplayString

8 Cpeople (currentPerson).fintName:: string’:
“people (currentPerson) .IsstName:: string’:
lpeople (currerhnon) .address:: string’:
“people (currentPerson) .phoneNumber : : string” :CardfYe

Mimi Feret

24 Avenue de Verdun, France

642-6852

Figure 5. GVL function to implement part of the card file output shown in Figure 4, an application of this
function, and the resulting output

used to indicate where the name, address and phone number information is to be
placed on the card. Each application is of the form 6~: c where p is one of the
parameters to the CardFile function, and f is the name of the display function to be
applied. For example, 6 firstName :Dkp/a~4tktg indicates the first name is to appear
in the upper-left corner of the card. (DisplayString is a predefined function that
displays a character string.) Traditional notation for 6p:f might be f(p). The 6
notation is used instead since it is easily read as ‘display p as an f’, which reflects the
intuitive semantics. For example, 6 rest :LinkedList means ‘display rest as a
LinkedList’.

30 J. R. CORDY & T. C. NICHOLAS GRAHAM

type person:
record

lastName : string
firstName : string
address : string
phoneNumber : string

end record
var people :

array nullPerson.. numberOfPeople of person
var currentperson : = nullPerson

Figure 6. A Turing language data structure to implement the card file database

The CardFile function has four parameters, firstName, lastName, address and
phoneNumber. These four functions are to be bound to source expressions written
in the application programming language that refer to the data structure to be viewed.
Figure 6 shows a data structure encoded in the Turing language [5] that could be
used to implement the card file. The data structure consists of an arry of records, one
record per card. The currentPerson variable indicates which card is currently
selected.

To display the card file, the programmer can use the following application of the
CardFile function

6 (“people (currentPerson).firstName::string”,
“people (currentPerson).lastName :: string”,
“people (currentPerson).address :: string”,
“people (currentPerson).phoneNumber :: string”) : CardFile

This means, for example, that whenever the FirstName parameter is to be displayed,
the expression ‘people (currentPerson).firstName’ is evaluated to produce a character
string to be displayed on the output device.

The remainder of this paper describes GVL, a graphical functional language used to
specify conceptual view mappings.

3. GVL: a Graphical, Functional Language
A conceptual view mapping m is a mapping from the current state of a data structure
to a display view: i.e.

m : programState x IayoutRuleSet + display
where a programState is the state of the application program at some instance, and a
/ayoutRu/eSet is a set of rules to guide the exact placement and sizing of the
primitive elements of the display. We have found it convenient to describe these view
specifications graphically using GVL.

GVL functions take a list of parameters and yield a conceptual view mapping. In
particular, a GVL function is a function f such that

f: parameterList -+ (programstate x IayoutRuleSet -+ display)
where each parameter in a parameter list can be a source expression encoded in the
application programming language, a list of such expressions or another GVL
function.

The application of a GVL function results in a conceptual view, which in turn can
be applied to the program state to produce a display. Figure 5 showed the application

GVL: VISUAL SPECIFICATION OF GRAPHICAL OUTPUT 31

of the Cardfile function to a list of expressions to produce a conceptual view that
maintains a display of the current state of a card file database.

4. Why a Language?

A notation used to express conceptual view mappings requires at least some of the
features normally associated with a programming language. It is therefore desirable to
define the notation as a language, and to attribute to it a well-defined syntax and
semantics. To be a programming language, features equivalent to abstraction,
repetition and selection must be provided. The following paragraphs show why these
features are required in the conceptual view specification language.

4.1. Abstraction

In specifying output, many displays are used over and over again. For example, a
programmer would wish to re-use the same style of menus and dialogue boxes from
program to program. Similarly, when developing a complicated interface, a program-
mer would wish to be able to develop different parts of the interface in isolation, and
combine them later. Shaw et al. [l] discuss the need for hierarchies of predefined
abstractions to aid in the development of program interactions. GVL provides
function definitions as an abstraction mechanism.

4.2. Repetition

A bar graph display (Figure 2) requires a sequence of bars to be drawn, each one
beside the previous. A display of a linked list (Figure 3) requires a sequence of list
elements to be drawn. Each of these examples shows the necessity of including a
mechanism for repeating the same action an arbitrary number of times. GVL allows
the use of recursion for repetition.

4.3. Selection

In the example of the bar graph or linked list above, it is necessary to be able to test
when to stop repeating. In other cases, a display may be tailored to be of a different
form depending on the user’s request. These examples show the need to be able to
specify some form of conditions in output specifications; GVL provides a cond
primitive for selection.

The need for mechanisms for abstraction, repetition and selection imply that the
mapping specification language should be a full programming language.

5. Why Graphical?

The traditional approach has been to use a linear notation (i.e. text) to specify
graphical output. Rather than a user having to define a coordinate space and specify
the locations and sizes of objects in terms of numerical coordinates, a graphical
notation allows direct manipulation of a two-dimensional display to specify where the
various elements of a display are to be located and what size they are meant to be. To
specify graphical output, a visual language is less clumsy, more direct and therefore
less prone to error.

32 J. R. CORDY & T. C. NICHOLAS GRAHAM

6. Why Functional?

Given the decision to use a visual language, the functional paradigm presents some
strong advantages. In GVL, a small, powerful language was sufficient to achieve the
goals of combining flexibility with convenience. As examples will show, the high level
nature of the functional language simplifies specifications over imperative styles. For
example, infinite recursion is used in some GVL functions to simplify the expression
of the required output.

The functional style is appropriate to a graphical representation. Earlier graphical
languages have been mainly general-purpose languages, as opposed to special-purpose
output languages, and have tended to follow the imperative paradigm. Imperative
graphical languages tend to look like flow charts, and inherit their tangled control
flow. Graphically representing variables can be a problem; the Pitt system [6], for
example, uses colours to differentiate between variables. This not only loses the
mnemonic nature of the variable name, but also limits the number of variables to four
(i.e. the number of colours supported by the display). In a functional style these
difficulties are avoided. Since the only control construct is function application,
spaghetti coding is avoided. Functional languages do not have variables or assignment,
eliminating the problems of how to represent state manipulations.

A functional language also supports the building of programs from separate
components. When programming with a graphical language, it is common to wish to
draw two different programs and then combine them into one. In a functional style
there is no danger that one of the displays will have a side effect that causes it to
interfere with the other.

Finally, there is a wide class of known optimizations for functional languages. By
restricting the language to being purely functional, optimizations such as tail-
recursion elimination, inlining of functions and memoization (removal of duplicate
calls) are available [7].

In summary, the need for abstraction, selection and repetition imply that we should
design a language for output specification. Graphical specifications are more
convenient than textual ones for this purpose. Finally, a functional language appears
to be appropriate for graphical programming.

7. Language Constructs
Figure 7 shows the GVL primitives. In general, primitives must appear exactly as they
are drawn: if a line is 2 cm long in the specification, it must be 2 cm long in the
displayed output. This constraint on the location and size of a primitive is expressed
by placing an ‘x’ symbol on a vertex to be constrained. This symbol indicates the
vertex is to be drawn exactly where it is shown in the current definition. If a
coordinate is not constrained with an ‘x’ symbol, its location is chosen according to a
set of layout rules.

GVL uses the concept of a coordinate space in a way analogous to the concept of
scope in traditional programming languages. A coordinate space is simply an area of
display space. A display whose position is unconstrained is restricted to being
displayed within the coordinate space in which it is specified. Three language
constructs introduce a new coordinate space: function definitions, boxes and the cond
function. (Note that since boxes can be nested, so can coordinate spaces.)

GVL: VISUAL SPECIFICATION OF GRAPHICAL OUTPUT 33

/

/

*ello World

box
J, contents

r - - - - - - - - - -1
I

i box 1

; contents j
L----------I

r---------------~
I
I Sparm: I
i displayFunction [

~------_-------J

Line

Arrow

Text

Basic
Primitives

Constructors

Group

Application
I

Figure 7. GVL language primitives

8. Basic Primitives

There are three basic primitives: line, UWOW and text. Either end of a line or arrow
may be constrained with an ‘x’ symbol. If both ends are constrained, the line or
arrow is drawn exactly as it appears on the display. If either end is unconstrained, the
layout rules are free to place that end-point anywhere on the display. A completely
unconstrained line or arrow may be drawn as an arc or curve. Various style attributes
may be associated with a line or arrow. In the current implementation, lines may be
solid, dashed, dotted or invisible. It is possible to imagine many other attributes (such
as colour or thickness) that could be given to lines and arrows.

Text is displayed exactly as it is presented on the screen. If any vertex of the text is
constrained, then all four vertices will be constrained. If the location of text is
unconstrained, it may be drawn anywhere within the current coordinate space.

9. Boxes

A box primitive evaluates the contents of the box, and evaluates to a box surrounding
this display. If the box’s vertices are constrained, the resulting box always has the

34 J. R. CORDY & T. C. NICHOLAS GRAHAM

same dimensions; if the upper-right corner of the box is unconstrained, then the box
is sized to fit the contents. A box has a style attribute associated with it. While many
other useful styles could be envisioned, the current set includes outlined, invisible and
filled boxes.

10. Conditions

The cond primitive takes three arguments: a condition expression and two displays.
The condition is evaluated. If it is true, then the result of the cond is the display on
the left; if the condition is false then the result is the display on the right.

11. Functions

Figure 5 shows an example of a GVL display function definition. This example shows
an abstract function, i.e. one that has not yet been bound to any particular data
structure. A function definition consists of a parameter list and a body. A parameter
may be an expression, a list of expressions or another display function. GVL
functions can be higher order (i.e. they can take functional parameters) and
polymorphic (i.e. the type of parameters is not bound in an abstract function.) The
function body contains any sequence of primitives.

Display function application is specified with the ‘~3’ operator. In general,
application is of the form

6p:f

meaning that the GVL function f is to be applied to the parameter p, and the result is
to be merged into the current coordinate space. The result of applying f is a display,
which will may contain constrained and unconstrained primitives. The constrained
primitives are placed within the dashed box surrounding the application. Any
unconstrained primitives remain unconstrained in the current coordinate space, and
can therefore be placed anywhere in the coordinate space.

When evaluating the body of a GVL function, it is guaranteed that if the same
display is generated twice in a coordinate space, and the location of at least one of
them is unconstrained, the two displays will be drawn in the same location. Examples
following this section show how useful this property is in simplifying specifications.

Sometimes it is inconvenient to apply a GVL function directly to its arguments. At
other times, it may be known in advance that a function is to be applied to some class
of similar data structures. In these cases, it is helpful to be able to specialize a display
function to a particular data structure or class of data structures before the display
function is applied.

This specialization process consists of binding each parameter in the function to
some value; each value may be a textual expression from the application program, a
list of expressions or the name of a display function. Expressions may themselves be
parameterized. The binding creates a new specialized display function, with a new list
of parameters. Bound functions may themselves be specialized, allowing the creation
of a hierarchy of bound specifications [4]. A later section of this paper discusses the
details of the binding process.

GVL: VISUAL SPECIFICATION OF GRAPHICAL OUTPUT 35

12. An Example

An example that captures many of the features of the GVL language is the LinkedList
function (Figure 8). Figure 3 showed an example of output when this function is
applied to a list of strings. The function takes four parameters. The ff~~t parameter is
the value of the first item of the list; the rest parameter is all list elements that follow
the first. The end parameter is a condition which specifies when there are no more
elements in the list. Finally, the DisplayElementType parameter specifies what
function is to be used to display the items themselves.

In the main part of the LinkedList function, the first element of the list is drawn
in a box. An arrow is then drawn to a display of the remaining element of the list.
These remaining elements are drawn by recursively applying the LinkedList function
to the rest parameter. The first element of the list is displayed using the
DisplayflementType function, which is a parameter to the LinkedList function. In
this way, the same LinkedList function can be used to display a linked list of strings,
a linked list of integers or even a linked list of linked lists.

The display of the fht element is enclosed in a box. The lower-left corner of the
box is constrained with an ‘x’ symbol, meaning that the box is to be located in the
lower-left corner of the display. The upper-right corner is not constrained, meaning
that the box is to be sized to fit the display of the first element. The display of the
rest of the list is not constrained at all, meaning that the subsequent elements can be
drawn anywhere in the current coordinate space.

The display is surrounded by an application of the cond function, which states that
if the end of the list is reached (i.e. the end parameter evaluates to true) then a
terminator box is to be drawn (the display on the left), otherwise the main display
involving the recursive display of the list is to be used.

The LinkedList function can potentially be infinitely recursive. If the linked list is
malformed such that it has a loop in it, then the end condition will never evaluate to
true. This case is solved by the guarantee that if the same display is generated twice in
the same coordinate space, and if the position of at least one of them is unconstrained,
the pair will be drawn in the same location. In the case of a list with a loop, at some
point in the recursion, the result will consist only of elements that have already been
displayed. Since the location of the recursively generated items is not constrained, the
repeated items can be drawn in the same location as the items generated earlier. This
means that once all the items have been drawn once, the recursion can be terminated.

LinkedList (first, rest, end, DisplayElementType)

I cond end

Figure 8. GVL function to draw the linked lists shown in Figures 3 and 9

36 J. R. CORDY 81 T. C. NICHOLAS GRAHAM

(This is consistent with the traditional definition of recursion as being the fixed point
of an infinite sequence of recursive applications [8].) The implementation of infinite
recursion detection (discussed in Nicholas Graham [4]) is similar to the memoization
optimization performed in many other functional language implementations [7].
Figure 9 shows the result of applying the LinkedList function to a linked list
containing a cycle.

13. Binding

Figure 10 shows a Turing language data structure implementing a linked list. The data
structure is based on an array of text lines. In order to apply the LinkedList function to
this data structure, it is convenient to first bind the function to a form specialized to
the data structure. This binding is expressed using the following notation

LinkedListTextLine (~0s) is LinkedList where
first = “lines (!!pos).text :: string”,
rest = “lines (!!pos).nextLine :: lineReference”,
end = “!!pos = nilLine :: boolean”,
DisplayltemType = DisplayString

specializing LinkedList to LinkedListTextLine

This says that a new function, LinkedListTextLine, is to be created. The new function
takes one parameter @OS), and is defined as being LinkedList where the first three
parameters are bound to expressions referring to the data structure, and the fourth
parameter is bound to the Di~p/ayStrinS function.

tiring Interpreter V1.0
canning program...
xecuting program...

Figure 9. Result of applying the LinkedList GVL function to a broken (cyclical) linked list

GVL: VISUAL SPECIFICATION OF GRAPHICAL OUTPUT 37

const nilline := 0
const maxLlnes:= 1000

type lineReference : nilline . . maxlines

var lines : array lineReference of
record

text : string
nextLine : lineReference

end record
var rootline : lineReference := nilline

Figure 10. A Turing language data structure implementing a linked list as an array of records

The expressions used in the binding contain references to POS, the parameter to the
new bound function. These references are introduced by a ‘!!’ symbol that
distinguishes between the expression source text and references to the GVL
parameter. When the LinkedListTextLine function is applied, the value of the POS

parameter is textually substituted into the expression.
Each expression also has a type specifier in the application language that indicates

the type of the expression. These type specifiers are introduced by a ‘::’ symbol. Type
specifiers are required when the application programming language is statically typed
(such as Turing, Pascal, C, etc.) and are optional when the language is dynamically
typed. Existence of these type specifiers allows the polymorphism in GVL functions
to be resolved statically.

The second part of the binding is a specialization clause. This caluse says that in the
bound version of the function, all applications of LinkedList should in fact be
applications of LinkedListTextLine. Function references can only be specialized to
bound versions of the same function.

The following application displays the array data structure as a linked list

6 “currentLine :: lineReference”: LinkedListTextLine

The binding process can be modeled as a second order function over GVL
functions. We define the second order function bind such that

bind : GVL function x parmList x idlist x SpecializationList + GVL function

where the first GVL furtction is the function to be specialized, the parmUst is a list of
values to which the parameters of the function are to be bound, the idList is the list of
formal parameters to the new function, and the specializationList indicates what
functions are to be replaced in the definition of the function being bound. The
definition of bind can then be expressed as follows:
Let f’ be defined as

bind (f, (b,, . . . , b,), (i,, . , . , ik), ((f,, f,‘)), . . . , (f”, fA))l
then f’(a,, . . . , a,) =

ftf,/f;;. . .,; fJfA1
(b,[!!i,/a * * 11 iJak L , , . . . , . .

b;i!! i,/a ,; . . . ; !! iJa, I)

That is, the bound function is defined as the original function where all applications
of specialized functions are replaced, and where each formal in the bound function

38 J. R. CORLIY & T. C. NICHOLAS GRAHAM

(the ii) is replaced by the corresponding actual parameter to the bound function (the
a,) in the actuals to the bound function (the b,).

For example, the binding and application of the LinkedList display function can be
expressed as follows

LinkedListTextLine (pos) tS defined as

bind (LinkedList,
(“lines (!!pos).currentLine :: string”,

“lines (!!pos).nextLine:: lineleference”,
“!!pos = terminator :: boolean”),
(“pas)“,
(LinkedList/LinkedListTextLine)

(the function being bound)

(the actual5 to the bound function (6,))
(the formal of the bomd function (i,))
(the specialization list-replace all

uses of LinkedList with
LinkedListTextLine)

So that the application

has the meaning
LinkedListTextLine (“currentLine”

LinkedList [LlnkedList/LinkedListTextLine I
(“lines (!!pos).currentLine :: string” [“~~Pos”/“currentLine”l . .

“lines (!!pos).nextLine :: LineReference” [“!!pos”/“currentLine”i,
“!!pos = terminator:: boolean” [“~@os”/“currentLine”I) .*

by substituting the actual parameter “currentLine” into the definition of
LinkedListTextLine.

14. Other Examples

This section presents three more examples of output specifications to illustrate
additional points about GVL.

14.1. Doubly-linked List

Figure 11 shows the display of a doubly-linked list of strings as the list is constructed.
Figure 12 shows the GVL function used to display this list. The DoubleLinkedList
function is similar to that used to display a singly linked list: a cond function tests
for the end of the list; at the end, a terminator box is drawn. The list is drawn by
drawing the current element using the parameter function DisplayElementType. An
arrow is drawn to the list on the left, and another to the list on the right. Both of
these are doubly-linked lists also, and are therefore displayed recursively.

Because of the recursive description of the left and right references as doubly-linked
lists, the specification is infinitely recursive. When a given element (e.g. ‘jeremy ‘) is
drawn, the element to its right (‘Eileen’) is drawn as a doubly-linked list. The ‘Elieen’
element redraws the element to its left (‘jeremr’) as a doubly-linked list, thereby
starting an infinite recursion. As was seen in the singly-linked list example, the
recursion is resolved by drawing repeated instances of the display in the same location
as the original.

This detection and resolution of infinite recursion is a powerful specification device.
The DoubleLinkedList function is actually a specification of a general binary graph,
where the display shows the current node, and edges connecting to up to two other

GVL: VISUAL SPECIFICATION OF GRAPHICAL OUTPUT 39

Figure 11. A series of snapshots over time of a doubly-linked list being constructed

nodes in the graph. This specification can be extended to handle n-at-y graphs by
adding additional links.

14.2. Bar Graph

The second example is an output specification to draw a bar graph. Figure 2 shows the
output when a bar graph specification is applied to a list of real numbers. Figure 13
shows the GVL functions that produced this output. To show how specifications can
be built using a number of layered display functions, three functions are used to
construct this example. At the highest level, a bar graph is a list of labeled bars. Each
labeled bar is in turn a bar with a string label underneath it.

Applications within abstract functions pass only one parameter, which may be

DoubleLinkedList (first, left, right, end, DisplayElementType)

cond end

DisplayElementTyp

Figure 12. GVL function to display a doubly-linked list

40 j. R. CORDY & T. C. NICHOLAS GRAHAM

Bar (barHeight) LabeledBar (label, barHeight)

---- 1
I I

I I
, S bartieigM : Bar ,

I I

I I -----
l I
pL$g&, ,

BarGraph (firstBar, otherBars, noMoreBars)

I cond noMoreBars

r --- ---- -r I
I I I
1 6firstBar:

LabeledBar
, 6 ot&c$i;cw& ,

I
SC_--k---l

Figure 13. GVL functions to draw the bar graph shown in Figure 2

matched to several in the function being applied. These inconsistencies must be
resolved when the abstract functions are bound. For example, in the BarGraph
function, the first bar is displayed as a Labeledbar, while LabeledBar requires two
parameters. Before BarGraph can be applied, either the first&r parameter must be
bound to a list of two expressions, or the Labeled&r function must be specialized to
a function taking only one parameter. (To produce the given output, the first option
was used.)

The Bar function draws a filled box of fixed width. The box surrounds an
application of the o&etY function. This function draws an invisible line of the height
specified by its parameter. The filled box is sized to surround the parameter, and is
therefore made the required height. The ofsetY function (and the corresponding
oRseW function) can be defined recursively in terms of the primitives already given.
In the current implementation these functions are built in, and are implemented in a
more efficient manner.

14.3. Game Boards

Our final example illustrates the strong potential for generic re-use inherent in the
functional specification style. Figure 14 gives a set of GVL functions for drawing a
grid-like gameboard which might be the output of a Tic-Tat-Toe playing program.

GVL: VISUAL SPECIFICATION OF GRAPHICAL OUTPUT 41

Gamepiece (piece, DisplayPiece)

xi

GameColumn (board, col, row)

cond row = 1

I--- ---------,
; Gboard (roycol) : 1

GamepIece x __-__--____:

c-----------a
I 6 board, col. row-l : 1
1 GameColumn ’ L - - - - - - - - - - - I

----------,
: -6board (roycol) : 1

$(- - _G_a!ep.!! - - :

GameBoard (board, col, size)

~1

Figure 14. GVL functions to draw a generic grid-like game board

The specification consists of a number of mutually recursive layered functions. The
gameboard is specified as a horizontal sequence of gameboard columns separated by
bold vertical lines, where each gameboard column is specified as a vertical sequence of
game pieces separated by bold horizontal lines. The function DisplayPiece has
intentionally been left unspecified so that we can bind it to GVL functions for various
kinds of game pieces, depending on the game the program plays.

Unlike our previous examples, this set of functions is already partially bound to a
particular kind of application program data structure. In this case the functions
assume that the application program will be using an N x N matrix to represent the
game board, which will be bound to the parameter ‘board’ when the specification is
used. This specification may seem awkward when compared to the direct manipula-
tion style of tools such as HyperCard [9]. As we shall see, however, the GVL
functional specification is flexible and re-usable in ways that the simple direct drawing
of the Tic-Tat-Toe board cannot hope to be.

Figure 15 shows the result of binding the gameboard specification to a simple 3 X 3
Tic-Tat-Toe playing program, with the function DisplayPiece bound to the new
GVL function XOpiece shown in the figure. Because the GVL gameboard
specification is a functional visual specification of how to draw gameboards in general
rather than simply a drawing of a 3 x 3 one, this same binding of the specification
automatically adapts to changes in the board size: if the Tic-Tat-Toe program changes

42 J. R. CORDY & T. C. NICHOLAS GRAHAM

XOpiece (piece)

cond piece = ‘X’

x 0

0
X

ox
Figure 15. A GVL function to draw the pieces of a Tic-Tat-Toe game, and the result

Gameboard function of Figure 14 to a 3 x 3 Tic-Tat-Toe playing program
of binding the

Figure 16. The result of changing the size of the board in the Tic-Tat-Toe playmg program

ScrabbleBoard (board, size)
ScrabblePiece (piece)

Figure 17. A GVL function to draw the pieces of a Scrabble game, and the use ot the GameBoard function
to specify a new function for drawing a Scrabble board

GVL: VISUAL SPECIFICATION OF GRAPHICAL OUTPUT 43

Figure 18. The result of binding the ScrabbleBoard function of Figure 17 to a Scrabble playing program

to use a 4 x 4 or 9 x 9 board, the unchanged GVL specification automatically adapts,
as shown in Figure 16.

Adapting the gameboard specification of Figure 14 to drawing a Scrabble board is
similarly easy. Since Scrabble pieces consist of arbitrary letters enclosed in a tile, we
bind the DisplayPiece function to a new function, ScrabblePiece, which specifies
that (Figure 17). And since Scrabble boards normally have a border to the grid, we
invoke the GameBoard function from within a new GVL function Scrabb/eBoard
that draws a bold border around the gameboard (also in Figure 17). The result of
binding this combined specification to a Scrabble-playing program is shown in Figure
18. As before, the specification automatically adapts to changes in the board size.

15. Implementation
The Weasel environment is a prototype implementation of the conceptual view model.
The environment consists of a front end that deals with the user, and a back end that

Figure 19. High level structure of the Weasel prototype implementation of the conceputal view model

44 J. R. CORDY & T. C. NICHOLAS GRAHAM

executes the application program and displays views (Figure 19). The back end has
been implemented, and was used to generate all of the output shown in this paper.
(The implementation of the back end is described in detail in an earlier report [4]. A
protoype front end has been designed [lo] but is as yet unimplemented.)

The front end (the Weasel User Interface) consists of a number of loosely integrated
tools. A graphical editor allows the user to draw and edit conceptual view
specifications. A binding tool allows the specifications to be specialized to a particular
data structure. Specifications can be placed in a library for later re-use. A text editor is
used to allow the programmer to develop the application program.

The back end (the Weasel Executor) interacts with the execution of the application
program, and applies the bound form of conceptual view specifications to the running
program. Currently, two versions of the Executor have been implemented; the first
interprets application programs written in the Turing language [5], the second is based
on compiled applications written in Turing Plus.

The interface between the front and back end consists of three components: the
application program to be executed, a set of conceptual view specifications written in
GVL, and control information to guide the binding and execution. Conceptual view
specifications are presented in a textual form generated by the front end from the
graphical representation. The translation is straightforward: for each primitive in the
graphical mapping language, there is a corresponding textual primitive. The semantics
of this textual language and the details of the translation process are described in an
earlier report [4]. Since the implementation of the Weasel Interface is incomplete, the
examples of output shown in this paper were generated by entering the textual version
of the GVL functions directly.

16. Related Work

The development of the conceptual view model and the GVL specification language
was influenced by a number of different sources. Shaw has proposed a new model for
input and output in programming languages [l 11. This model recognizes the need for
an output model to support two-dimensional display devices and the output of
abstract data types. The conceptual view model extends some of these ideas by
demonstrating how such a model might be realized.

Systems to aid in designing and implementing user interfaces are generally referred
to as User Interface Management Systems (UIMSs); a good overview of the field can
be found in Pfaff [I2]. The conceptual view model can be thought of as describing the
output component of a UIMS.

Other language systems have used methodologies similar to the conceptual view
model. Both the Smalltalk Model View Controller (MVC) methodology [I 31 and the
use of active values in Loops [14] allow the user to encode conceptual views in the
application programming language.

Work in tools to aid in program debugging [15, 161, program visualization [IT, 181
and systems to support graphical output [l, 131 have contributed toward the design of
the conceptual view model. The two stage functional model used by Roman and Cox
[2O] in their work on visualizing concurrent computations is similar to the conceptual
view model’s three stages, although their ‘intervention semantics’ lacks an independent
synchronization criterion.

GVL: VISUAL SPECIFICATION OF GRAPHICAL OUTPUT 45

There have been a number of earlier graphical languages used in different problem
domains. The ThingLab system included a graphical sublanguage used to express
graphical constraints [21]. The Pitt programming language is an imperative language
based on flowcharts [6]. FPL is a graphical representation of the Pascal language [22].
Other such languages are described by Myers [2].

The advantages of applying a graphical notation to functional languages have been
demonstrated by a number of other systems. The Prograph language and program-
ming environment [23] is based largely on FP and provides an elegant variable-free
syntax. In this syntax, data flow is represented using directed arcs, but the functional
nature of the language means that these arcs are restricted and therefore more readable
than Prograph’s imperative counterparts. The Show and Tell system [24] is also based
on a declarative, hierarchical box syntax. The language is relational, where parts of the
program are left unspecified and are filled in as a result of ‘execution’. Cardelli [25]
has demonstrated a graphical syntax for a language similar to ML [26].

Other languages have been tailored to expressing output mappings. The FDL
language used in the VIPS debugger [15] is a textual, Ada-like language with support
for output. The GRINS language [27] is a textual language used to express program
input and output. Both of these languages, while introducing the flexibility of a
language tailored to output, have the disadvantage of trying to encode two-
dimensional information into a one-dimensional notation.

Other systems have used graphical languages designed to express output. The
Descartes system [l] allows the user to draw the desired output. It does not, however,
contain any mechanisms for selection or repetition. The Garden environment [l9]
allows the user to draw output using a set of high-level primitives. There is no facility
to build new primitives, however. The authors, for example, point out that it would
be impossible to express the display of an array data structure in Garden.

The Peridot user interface management system [2] also uses a graphical language to
express output. These facilities include iterations and conditionals to support
repetition and selection. Because it is intended to be a convenient interface in a UIMS,
Peridot’s language is intentionally higher level and hence less flexible than the
language presented in this paper. For example, iterations are tied ultimately to Lisp
lists, and operate at one level only. There is no way of naming a part of a specification
and using it recursively.

17. Conclusion

This paper has described a visual functional language designed to support the
conceptual view model of output. This model of output is based on the separation of
the output specification of a program from the program itself, and the use of implicit
synchronization to allow the data state of the program to be continuously mapped to
a display view. The visual functional language GVL is used to express this mapping
from the program’s data state to the display.

It was argued that a notation with the full power of a programming language is
necessary for this task, and it was shown that a functional language using graphical
notation allows compact, convenient specification of data structure mappings. High
level features such as infinite recursion detection were shown to simplify these
specifications.

46 J. R. CORDY & T. C. NICHOLAS GRAHAM

Earlier graphical programming languages have had problems that flow of control
can become tangled in a graphical system, that variables are hard to represent
graphically, and that it can be hard to combine two graphical programs with certainty
that they do not interfere with each other. These problems are avoided using the
functional paradigm.

18. Acknowledgements

The back end of the Weasel prototype was developed by the authors as part of the
Programming Language Technology project at Queen’s University, Kingston, Can-
ada. Troy Spetz has designed a front end for the Weasel environment [lo]. Stefan
Huge1 has implemented the Weasel binding tool. The development of the protoype
was greatly aided by the helpful support of Mark Mendell and the Turing language
group at the University of Toronto. This work was supported in part by the Natural
Sciences and Engineering Research Council of Canada and the Information Technol-
ogy Research Centre.

Work on Weasel, GVL and the conceptual view model is still in progress. At GMD
Karlsruhe, GVL is bieng extended to support full user interface construction with the
addition of interactor-based input functions, user-specifiable layout styles and
automatic synchronization of mixed-control user interfaces without explicit program-
ming by the user. At Queen’s University, the graphical output capabilities of
Weasel/GVL are being extended to support automatic program visualization, and in
particular automatic non-intrusive animation of concurrent systems, and GVL
capabilities are being integrated into a dialect of the Turing programming language as
built-in language features. At IIEF Berlin, GVL is being adapted to provide view
programmability to the CAS system for generating documentation-quality views of
VLSI circuits [28].

References

1. M. Shaw, E. Borison, M. Horowtiz, T. Lane, D. Nichols & R. Pausch (1983) Descartes:
a programming-language approach to interactive display interfaces. SIGPLAN Notices
M(6), 100-111.

2. B. A. Myers (1987) Creating user interfaces by demonstration. Technical report CSRI-196.
Computer Systems Research Institute, University of Toronto, Canada.

3. T. C. Nicholas Graham & J. R. Cordy (1989) Conceptual views of data structures as a
model of output in programming languages. In: Proceedings of HZCSS-22, Hawaii
International Conference on Systems Sciences. Hawaii, pp. 1064-1074.

4. T. C. Nicholas Graham (1988) Conceptual views of data structures as a programming aid.
Technical report 88-225. Department of Computing and Information Science, Queen’s
University at Kingston, Canada.

5. R. C. Holt & J. R. Cordy (1988) The T
the ACM 31, 1410-1423.

uring programming language. Communications of

6. E. P. Glinert & S. L. Taminoto (1984) PICT: an interactive graphical programming
environment. IEEE Computer 17(1 l), 7-25.

7. S. L. Peyton-Jones (1986) Th e m Z pl
Prentice-Hall, London.

ementation of Functional Programming Languages

8. E. C. R. Hehner (1984) The Logic of P YO g
Cliffs, New Jersey.

ramming Prentice Hall International, Englewood

9. Apple Computer (1987) The HyperCard User’s Guide Apple Computer Inc., Cupertino,
California.

GVL: VISUAL SPECIFICATION OF GRAPHICAL OUTPUT 47

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

T. D. Spetz (1990) WeaselUI: a user-interface design for the weasel programming
environment. M.Sc. Thesis. Department of Computing and Information Science, Queen’s
University at Kingston, Canada.
M. Shaw (1986) An input-output model for interactive systems. In: Proceedings of CHZ
86: Conference on Human Factors in Computing Systems. Boston.
G. E. Pfaff (ed.) (1983) User Interface Management Systems Springer-Verlag, Berlin.
G. E. Krasner & S. T. Pope (1988) A cookbook for using the model-view-controller
interface paradigm in Smalltalk-80. / ournal of Object-Oriented Programming l(3), 26-49.
M. J. Stefik, D. G. Brobow & K. M. Kahn (1986) Integrating access-oriented programming
into a multiparadigm environment. IEEE Software 3(l), 10-18.
S. Isoda, T. Shimomura & Y. Ono (1987) VIPS: a visual debugger. IEEE Software 8(3),
8-19.
A. Myers (1983) Incense: a system for displaying data structures. Computer Graphics 17(3),
115-125.
M. H. Brown (1988) Perspectives on algorithm animation. In: Proceedings of CHZ 88,
Conference on Human Factors in Computing Systems. Washington, D.C., pp. 33-38.
M. H. Brown & R. Sedgewick (1985) T ec m h ‘q ues for algorithm animation. IEEE Software
2(l), 28-39.
S. P. Reiss & J. N. Pato (1987) Displaying programs and data structures. In: Proceedings of
HZCSS-20, Hawaii International Conference on Systems Sciences. Hawaii, pp. 391-401.
G.-C. Roman & Kenneth C. Cox (1989) A declarative approach to visualizing
concurrent computations. ZEEE Computer 22(10), 25-36.
A. Borning (1986) Defining constraints graphically. In: Proceedings of CHZ 86, Conference
on Human Factors in Computing Systems. Boston, pp. 137-143.
N. Cunniff, R. P. Taylor & J. B. Black (1986) D
of conceptual bugs in beginners’

oes programming language affect the type
programs ? A comparison of FPL and Pascal. In:

Proceedings of CHZ 86, Conference on Human Factors in Computing Systems. Boston, pp.
175-182.
T. Pietrzykowski & S. Matwin (1985) Prograph: a preliminary report. Computer
Languages 10,91-126.
T. D. Kimura, J. W. Choy & J. M. Mack (1986) A visual language for keyboardless
programming. Technical report 86-6. Washington University, Washington.
L. Cardelli (1983) Two-dimensional syntax for functional languages. In: Proceedings of
Integrated Znteractive Computing Systems, pp. 107-119.
R. Milner (1985) The standard ML core languages. Polymorphism 2(2), l-28.
D. R. Olsen Jr., E. P. Dempsey & R. Rogge (1985) Input-output linkage in a user interface
management system. Proceedings of SIGGRAPH ‘85. Computer Graphics 19(3), 225-234.
A. Iwainsky, S. Kaiser & M. May (1990) Computer graphics and layout design in
documentation processes. Computers and Graphics 14(3), 127-135.

