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ABSTRACT 
Multiplayer digital games can use aim assistance to help people 
with diferent levels of aiming ability to play together. 

To dynamically provide each player with the right amount of 
assistance, an aim assistance algorithm needs a model of the player’s 
ability that can be measured and updated during gameplay. The 
model must be based on difculty parameters such as target speed, 
size, and duration, that can be adjusted in-game to change aiming 
difculty, and must account for player’s spatial and temporal aiming 
abilities. 

To satisfy these requirements, we present the novel dynamic 
spatiotemporal model of a player’s aiming ability, based on difculty 
parameters that can be manipulated in a game. In a crowdsourced 
experiment with 72 participants, the model was found to accurately 
predict how close to a target a player can aim and to converge 
rapidly with a small set of observations of aiming tasks. 
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• Human-centered computing → HCI theory, concepts and 
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1 INTRODUCTION 
Players of digital games typically difer in their success with game 
tasks such as aiming. This can be a result of diferences in play-
ers’ motor ability [65], familiarity with the type of game being 
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played [56], or their investment in “dedicated practice and determi-
nation” [31]. For example, children with cerebral palsy may have 
defcits in fne-motor control that make it difcult to aim with a 
joystick [48], while other players may be confused by a new game’s 
complex displays [56]. In this paper, we focus specifcally on dif-
ferences in aiming ability, which is infuenced by all of the factors 
listed above, including abilities in fne motor control, visual-motor 
integration, and visual-spatial processing [27]. 

It is important for games to provide techniques allowing peo-
ple with diferent abilities to play together. Social equity requires 
that persons with disabilities should be able to play with their 
friends [54]. More broadly, video game play has become an im-
portant form of social interaction; according to the Entertainment 
Software Association, 83% of game players play with others at least 
weekly, and 61% report that video games have helped them stay con-
nected to friends and family [15]. Friends or family members should 
not be excluded from such social interaction due to diferences in 
game-playing ability. 

One approach to accommodating such diferences is to reduce 
the difculty of a game for players with lower ability. This can 
even be done during gameplay, using a technique called dynamic 
difculty adjustment (DDA). In order to perform this adjustment for 
aiming, though, a DDA algorithm must understand what to adjust, 
and by how much. To do this, the algorithm must observe a player 
playing the game to be personalized, and then form a model of that 
player’s level of aiming ability, as illustrated in Figure 1. 

While there exist many DDA algorithms in existing literature, 
they emphasize the difculty adjustment itself, corresponding to 
the “adjust aiming tasks” step. There is a lack of a systematized way 
to calculate how much to adjust difculty, based on player ability. 

The core contribution of this paper addresses this problem by 
providing a new technique for dynamically modelling individual 
players’ spatial and temporal aiming abilities. Specifcally, we de-
veloped a dynamic spatiotemporal model of aiming ability, building 
upon the work of Huang et al. [29, 30] and Lee et al. [38]. Our 
model is not in itself a DDA algorithm, but a support tool for such 
algorithms, occupying the “model aiming ability” step in Figure 1. 
The model uses observations of a player performing aiming tasks 
to determine how to adjust the aiming tasks for that player. Our 
model possesses the following key properties: 

• Converges rapidly with small quantities of data allowing the 
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Figure 1: Diagram of the main loop of a dynamic difculty adjustment (DDA) algorithm. The algorithm observes player 
performance, models the player’s aiming ability, and adjusts the difculty of aiming tasks accordingly. This paper addresses 
the topmost box, “Model Aiming Ability”. 

• Requires only data that can be collected during play, allowing 
it to be trained directly within a game by presenting targets 
of varying difculty. 

To our knowledge, our spatiotemporal model is the frst to pos-
sess all these qualities. The paper is structured as follows. We frst 
review related work in aim assistance, dynamic difculty adjust-
ment, and modelling the difculty of aiming tasks. We then present 
our dynamic spatiotemporal model of aiming ability, including the 
method for training the model for an individual. We detail the de-
sign of a 72-participant online study, as well as 108-participant and 
36-participant pilot studies, and report the results of all three. We 
conclude with discussion of how these results inform the develop-
ment of dynamic balancing algorithms for aim assistance. 

2 RELATED WORK 
To allow groups of people to play together, games require mech-
anisms that account for diferences in players’ abilities. In this 
section, we review commonly used mechanisms, with particular 
focus on aim assistance algorithms and dynamic difculty adjust-
ment (DDA). Underlying these algorithms is the need to determine 
the abilities of individual players to allow personalization of the 
algorithms. We therefore complete this section with a review of 
existing models of the difculty of aiming tasks [28–30, 38]. 

Player balancing can be defned as “adjusting game parameters 
to boost performance of weaker players” [10, 23]. Player balanc-
ing is well-represented in existing research, but some aspects have 
received substantially more attention than others. In particular, 
the majority of the literature on aim assistance involves tasks with 
spatial constraints, such as clicking in a particular part of the screen 
(Section 2.1). In contrast, very little research has been published re-
garding aiming tasks that also have temporal constraints, in which 
the click or other selection action must also be performed at a par-
ticular time. Temporal aiming, or temporal pointing, can be defned 
as “a discrete selection of a target about to appear for a bounded 
time window.” [39]. For example, in the game Whac-a-Mole, the 
player must hit a mole between the time it pops up from its hole 

and the time it sinks back down [51]. This game involves a spatial 
aiming task (hit the right hole) and a temporal aiming task (hit 
when the mole is visible). 

Many algorithms have variable settings that must be tailored to 
the abilities of the players. If the balancing algorithm is applied too 
weakly, it will be insufcient to provide balance; too strongly, and 
the formerly weaker player may now have an unfair advantage. 
Additionally, the algorithm must be able to perform this adjustment 
rapidly, to both identify and adapt to a player’s initial level of skill, 
and to closely track changes in their performance over time [2]. The 
feld of dynamic difculty adjustment has produced techniques for 
accurately modelling player ability; however, these techniques often 
require signifcant training time [11, 40], address non-aiming forms 
of play [61], or are not easily mapped to the required strength of 
assistance [9]. To our knowledge, there have also been no previous 
attempts to model the temporal aiming ability of players for the 
sake of personalizing aim assistance. 

This section starts with an overview of aim assistance, partic-
ularly the distinction between approaches based on spatial con-
straints and the few approaches that apply to tasks with temporal 
constraints. We then give a brief review of DDA, with some ex-
amples of DDA algorithms. Afterward, we give an overview of 
models that estimate aiming difculty using mathematical parame-
ters, theoretically enabling their use to estimate player ability for 
the purpose of personalizing balancing algorithms. 

2.1 Aim Assistance 
Aim assistance, generally, refers to skill assistance intended to help 
with aiming tasks. Aiming can be defned as “the ability to hit a 
target” [45]. For example, hitting a moving or distant opponent in 
a shooting game requires aiming. Vicencio-Moreira et al. defne 
aim assistance as “algorithmic changes that alter the accuracy of 
targeting movements” [58]. 

The importance of games as a social activity motivates people 
to want to play together, even if they have diferent abilities [62]. 
Persons with motor disabilities can be particularly excluded from 
gaming with others [27, 65]. Aim assistance can allow players to 
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play together on a more even level in multiplayer games, or even to 
tailor the challenge of single player games to an appropriate level 
to players with more or less ability. 

Some degree of aim assistance is also included in nearly all 
shooter games intended to be played with a game controller instead 
of a mouse and keyboard, due to the lower aiming precision the 
gamepad afords [21, 47, 59]. Shooters employing aim assistance 
include the Halo series [24, 59], the Gears of War series [34, 59], 
the Modern Warfare series [25, 59], the Call of Duty series [25, 59], 
and Fortnite [8]. 

The above games also use aim assistance for the purposes of 
balancing. These games support cross-play between console players 
and PC players. The presence of analog stick aim assistance in these 
games therefore serves not only to increase the usability of game 
controllers in the abstract, but also to balance between players 
using diferent input hardware. 

In many games, aiming has both spatial and temporal aspects. 
For example, consider a game that simulates a pistol duel. A player 
might miss their opponent by clicking in the wrong part of the 
screen: a spatial miss. However, they may also take aim too slowly, 
leading to the opponent winning the draw and shooting frst: a 
temporal miss. 

In this section, we describe common types of spatial aim assis-
tance, as well as some algorithms that can apply to temporal aiming 
tasks.. 

2.1.1 Spatial Aim Assistance. The following lists major types of aim 
assistance, all of which function on spatial principles. For simplicity, 
we refer to the action of a player performing the selection part of 
aiming as “clicking,” even though these techniques can apply, for 
example, to touch-based interfaces. 

Area Cursor The player’s cursor is expanded in size to make 
it easier to successfully aim at a target. If a player’s cursor is 
not exactly on the target when the player clicks, area cursors 
allow it to nonetheless be close enough to score a hit. Area 
cursors can be applied in a variety of games, for both 2D and 
3D aiming tasks [4, 5, 35, 57–59]. 

Bullet Magnetism Projectiles veer toward nearby targets, as 
though drawn by a magnet. If the target is close enough, 
a projectile that would have missed on a straight path will 
instead score a hit [5, 35, 52, 57–59]. 

Sticky Targets Once a player has successfully aimed their cur-
sor at or near a target, Sticky Targets will slow the cursor 
if it begins to move away, as though the cursor were stuck 
to the target. This helps players avoid accidentally moving 
the cursor too far, and aiming past the target rather than at 
it [1, 4, 5, 35, 44, 52, 59]. 

Target Gravity When the player moves their cursor, Target 
Gravity steers the cursor toward nearby targets, as though 
attracted by a gravitational force [4, 5, 35, 52, 59]. It can also 
be called Reticule/Reticle Magnetism, in analogy to Bullet 
Magnetism [21, 25]. 

Target Lock The player’s cursor snaps directly to a target, and 
remains pointing at that target unless forced to switch to 
another [5, 23, 35, 52, 59]. Because of its power to make 
aiming easier, Target Lock is rare in shooter games, in which 
aiming is a primary component of gameplay. 

2.1.2 Temporal Aim Assistance. While there are ample examples 
of aim assistance algorithms that function on spatial principles, 
there are few designed to work for tasks with temporal constraints. 
However, there are existing algorithms which have efects in the 
temporal dimension, despite not being created for temporal balanc-
ing. The Comet variant on the Area Cursor technique, for example, 
increases the size of the target in the direction opposite its move-
ment [26]. Increasing the size of the target is a spatial modifcation, 
but the Comet helps players who click in the right place but too 
late, and therefore miss temporally. 

Overall, while spatial aim assistance algorithms are well-studied, 
algorithms that address temporal aiming are rare, and usually do 
so indirectly. 

2.2 Dynamic Difculty Adjustment 
Dynamic difculty adjustment (DDA) can be defned as “modulating 
in-game systems to respond to a particular player’s abilities over 
the course of a game session.” [33] Using DDA for balancing can 
raise the ceiling on how well the game is able to adapt to a player’s 
needs, through being able to keep pace with changes to a player’s 
performance during play. 

In “Extending Reinforcement Learning to Provide Dynamic Game 
Balancing,” authors Andrade et al. set out three requirements for a 
dynamic balancing algorithm to accomplish [2]: 

(1) adapt to a player’s initial level of ability as rapidly as possible 
(2) follow changes in a player’s ability as closely as possible 

over time 
(3) avoid having the balancing assistance be too obvious or 

jarring 

The third item has been found to be important to the reception 
of DDA-based assistance algorithms. Even if players are aware of 
the theoretical existence of DDA in a game, algorithms that too 
obviously show when they are active can be disruptive [3, 37]. 

DDA is a growing feld, as noted by Zohaib in “Dynamic Dif-
fculty Adjustment (DDA) in Computer Games: A Review” [68]. 
Many algorithms exists with a variety in focus and technique, some 
very diferent from what we are investigating. In the following 
section, we note a few DDA algorithms that, at least in part, are 
designed to answer questions similar to those that we address in 
this paper. 

Dynamic Level Generation Wheat et al. use DDA to proce-
durally build 2D platformer levels, tailored to the difculty 
needs of individual players [61]. This algorithm uses in-game 
measures to judge the ability level of players, such as how 
long a player takes to complete a level, and how many points 
they collect. 
The procedural level generator was able to consistently in-
crease rated enjoyment from players over the course of play, 
but it is not clear if it would be able to function outside its 
native environment of 2D platformers. 

Emotional Afect DDA Physiological data from players can 
be used to detect the emotional state of players, and to inform 
DDA. If the system detects that a player is bored, the dif-
culty of the game can be increased; likewise, when a player 
is stressed, the difculty of the game can be reduced [11, 40]. 
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These algorithms require extensive hardware for measur-
ing afect, including sensors for heart rate, galvanic skin 
response, body temperature, and brain activity, and also 
require substantial training time to correctly interpret indi-
viduals’ physiological data. 

Modelling Skill from Player Inputs Buckley et al. demon-
strate that a modelling algorithm using random forests (mul-
tiple decision trees working collaboratively) can use player 
inputs, like character movement and aiming, to train a model 
of player skill [9]. This algorithm uses only data that can be 
collected easily during play by the game itself, and achieved 
a 76% prediction accuracy with only one minute of training. 
However, the authors do not demonstrate a method of using 
these skill evaluations to judge how to adjust difculty in a 
DDA algorithm. Since the model is based on player inputs 
rather than anything that can be controlled by the game, 
the model itself is not designed to facilitate or direct such a 
conversion. 

Aim Assistance DDA Vicencio-Moreira et al. tested a method 
of using DDA for player balancing by directly applying aim 
assistance algorithms – area cursor and bullet magnetism – 
in a frst-person shooter game [57]. In testing, the matches 
did not become measurably more balanced between play-
ers. The authors note as a major reason that the DDA algo-
rithm required a player to fall behind before it took efect, 
often leaving players too far behind to catch up before being 
granted signifcant assistance. 
The fndings of this study suggest that using a proxy—here, 
score—for aiming may not be fast or accurate enough to char-
acterize ability for aiming-based DDA. Ideally, DDA for aim 
assistance should be able to measure aiming ability directly, 
for the sake of rendering the required level of assistance as 
soon as possible. 

Despite the considerable diversity of DDA algorithms, we are 
aware of none that meet our own requirements, including rapidly 
and accurately training a model of an individual’s aiming ability 
using difculty parameters that can be directly modifed to adjust 
difculty (as explained in Section 3). Insufciencies in existing al-
gorithms include lacking a treatment of temporal aiming, requiring 
extensive training (ex: [11, 40]), or not using directly modifable 
in-game parameters like target size and speed (ex: [9]). 

2.3 Modelling Difculty of Aiming Tasks 
Most aim assistance algorithms have parameters that can be ad-
justed: how large is an area cursor? What is the magnitude of bullet 
magnetism? How sticky is a sticky target? These parameters can 
be adjusted to personalize the algorithm to an individual. For those 
with weaker aiming ability, area cursors should be bigger, bullets 
more magnetic, or targets more sticky. 

Such personalization requires two things: a measure of the player’s 
ability, and a conversion from that measure to the numerical strength 
settings of the balancing algorithms. In many cases, this process is 
performed informally, for example, by a physiotherapist estimating 
a player’s ability through observation and iteratively fnding the 
appropriate personalization settings. To provide more accurate per-
sonalization, a mathematical model of an individual’s ability can be 

created, to weigh inputs and use them to determine an appropriate 
strength of assistance for an individual. 

Currently, we are aware of no model that serves this purpose for 
aim assistance. 

One obvious candidate for such a model might be Fitts’ Law [18, 
43]. Fitts’ Law states the difculty of an aiming tasks as follows: 

2� 
Difculty = log2 � 

in which � is movement amplitude – the initial distance between 
the target and the cursor – and � is the width of the target. How-
ever, prior research has found Fitts’ Law to be less applicable to 
aiming tasks with temporal constraints [53, 64, 66], while research 
by Huang et al. for their Ternary-Gaussian aiming model (see below) 
fnd that movement amplitude is not a predictor for the distribution 
of a player’s clicks around a moving target [28–30]. 

There are two models in the existing literature, however, that 
provide a starting point. These model difculty of aiming tasks, 
not individuals’ aiming ability. These existing models are Huang 
et al.’s Ternary-Gaussian aiming model [29], in particular its 2D 
variant [30], and Lee et al.’s Cue Integration aiming model [38]. 
The former estimates the difculty of clicking on moving targets – 
a spatial constraint – while the latter estimates the difculty of se-
lecting a moving target at a particular time – a temporal constraint. 
While these were not developed for modelling a person’s aiming 
ability, as we shall see in Section 3, the input parameters used by 
these models are a useful starting point for the development of a 
model suited to our purposes. 

Given that the Ternary-Gaussian model is focused only on spa-
tial constraints and the Cue Integration model only on temporal 
constraints, it should be possible to use them together to form a 
composite spatiotemporal model of aiming. Indeed, the authors of 
the models showed in a collaborative publication that the models 
are compatible [28]. This collaborative publication presented 12 
participants with a task requiring them to successfully click a mov-
ing target at a correct time. Each participant was presented with a 
targets of varying difculty over the course of the trial, with the 
results able to train the model to estimate the overall difculty of 
any given target. The authors successfully demonstrated that by 
multiplying the spatial and temporal predictions, the two models 
in conjunction were more accurate in predicting spatiotemporal 
accuracy – whether a participant clicks in the right place and at 
the right time – than either model alone [28]. 

2.3.1 Ternary-Gaussian Aiming Model. The Ternary-Gaussian aim-
ing model uses endpoint distribution as its measure of performance. 
A spatial endpoint is the location of a player’s click, relative to the 
target. If the distribution of the endpoints tightly clusters on top of 
the target, then that player is aiming accurately. 

It is well-established in target selection literature that endpoint 
distributions around a stationary target follow a Gaussian curve, 
with endpoints clustering around the target, both for 1-dimensional [12, 
13, 18–20, 41–43, 60, 63] and 2-dimensional [6, 7, 46, 67] aiming 
tasks. In developing the Ternary-Gaussian model, authors Huang 
et al. demonstrated that endpoint distribution is also Gaussian for 
moving targets [29]. In addition to endpoint distribution, the model 
can also predict error rate, by mapping the Gaussian curve onto the 
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size of the target, and computing the probability that an endpoint 
from that curve will fall within the target [29, 30]. 

The endpoint predictions are infuenced by a set of difculty 
parameters. In the original form of the model, these are the width 
and speed of the target. The 2D variant adds the height of the target 
as an additional parameter. 

2.3.2 Cue Integration Model. The Cue Integration model measures 
and predicts player performance on aiming tasks with temporal, 
rather than spatial, constraints [38]. Like the Ternary-Gaussian 
model, the Cue Integration model’s measure of performance is a 
Gaussian distribution of endpoints. A temporal endpoint is the spe-
cifc time that the player clicked, relative to the temporal target. The 
authors demonstrate that, as with spatial endpoints, the distribution 
of temporal endpoints follows a Gaussian curve. 

Similarly to the Ternary-Gaussian model, the Cue Integration 
model’s endpoint predictions can be used to predict error rate, 
through mapping the distribution onto the size of the temporal 
target. 

The difculty parameters for the Cue Integration model are 
the length of the time in which the target is clickable (temporal 
width), and the player’s ability to perceive when to click (efective 
temporal distance). The latter is constructed through integrating 
two temporal cues, giving the model its name: cue viewing time 
(time between the target appearing and becoming clickable) and 
period of input repetition (rate at which repeating targets appear). 

Our model uses a subset of these six difculty parameters (width, 
height, speed, temporal width, cue viewing time, period of input 
repetition) to defne the difculty of an aiming task, as described in 
Section 3.1. 

In this section, we have provided an overview of aiming and aim 
assistance, with an emphasis on the division between spatial aim 
and temporal aim. We also described dynamic difculty adjustment. 
Finally, we described two models for characterizing the difculty of 
aiming tasks, one for spatial aiming and one for temporal aiming. 
Despite the fact that they address difculty of aiming tasks rather 
than modeling individuals’ aiming ability, these two models infu-
enced the design of our own spatiotemporal model as described in 
the following section (Section 3). 

As the literature stands, we are aware of no previous model 
fully able to close the loop seen in Figure 1, rapidly modelling the 
aiming ability of an individual by observing aiming tasks based on 
parameters that can be directly adjust in-game. Existing approaches 
require extensive training time, require data that can not be gathered 
in-game, or use inputs that can not be manipulated to adjust difculty. 
As we shall see, our dynamic spatiotemporal model flls these gaps, 
while accounting for both spatial and temporal aiming ability. 

In the remainder of the paper, we fully describe this new model, 
as well as the study we conducted to assess it. 

3 THE DYNAMIC SPATIOTEMPORAL MODEL 
FOR ASSESSING AIMING ABILITY OF 
INDIVIDUAL GAME PLAYERS 

The core contribution of this paper is a new technique for dynam-
ically modelling individual players’ spatial and temporal aiming 

abilities. We experimentally demonstrate that the model’s predic-
tions are accurate and that it can be trained quickly, making it 
suitable for use in dynamic player balancing algorithms. Such a 
model of individuals’ aiming abilities is critical to the personaliza-
tion of aim assistance algorithms, such as presented in Section 2.1, 
so that people who are weaker at aiming receive enough assis-
tance to make them competitive, and not so much assistance as to 
imbalance the game. 

The model’s suitability for dynamic adaptation derives from two 
main properties, which will be demonstrated by the study reported 
in Section 4. 

First, the model requires only data that can be collected 
during play, by measuring the player’s performance aiming at 
targets of varying difculty. This permits the model to be trained 
dynamically during play by presenting targets of difering difculty 
until enough aiming actions have been observed. The model is also 
designed to be dynamically adaptable to changes in player ability, 
by incorporating newer data and discarding older data. 

Second, the model converges rapidly with small quantities 
of data. As we shall see, each component of the model – spatial 
and temporal – can be trained to near its peak accuracy using 
only 45 datapoints. The 90 datapoints required to train both the 
spatial and temporal components can be collected rapidly (e.g., 
only three minutes in our test game ChronoSwarm). This permits a 
dynamic balancing algorithm to become usable very quickly, and 
begin using live game data to refne its predictions after only a brief 
initial training session. 

In addition to these properties, our model is the frst to include 
individuals’ temporal aiming ability, making it suitable for spatial 
and temporal difculty adjustment. 

We developed this model through iterations of testing and re-
design, including two large-scale crowdsourced pilot studies de-
scribed in Appendix A. The fnal model is presented below, and is 
evaluated through a fnal study presented in Section 4. 

3.1 Difculty Parameters 
We model difculty of aiming through a set of difculty parameters, 
a subset of those proposed by Huang et al. and Lee et al. (Section 2.3). 
These difculty parameters are summarized in Table 1. Varying 
these parameters allows us to adjust the difcult of an aiming task; 
for example, making a target smaller, faster, or available for a briefer 
time makes the target harder to hit. As we shall see in Section 3.3, 
the model is trained by presenting players with aiming tasks that 
vary in difculty across these parameters. 

The parameters for the spatial aiming component of our model 
are the width of the target (called tangent width in the model), and 
the speed of the target (Table 1). Width is defned relative to the 
direction in which the target is moving. The width, or tangent axis, 
is parallel to the direction of movement, while the height, or normal 
axis, is perpendicular to the target’s movement. This coordinate 
system makes the target efectively stationary in the normal axis, 
permitting the efects of the two axes to be cleanly separated. 

In many games only one of width and height need be considered, 
since targets typically maintain the same height relative to width, 
merely growing or shrinking with distance. In this case, width is 
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Spatial Difculty Parameters Temporal Difculty Parameters 
Parameter Description Parameter Description 
Tangent Width Width of the target relative to its 

direction of movement 
Temporal Width Length of time the target is clickable 

Speed Rate of the target’s movement Cue Viewing Time Time between the target appearing and 
becoming clickable 

Table 1: Spatial difculty parameters drawn from the Ternary-Gaussian Aiming model [29, 30] and temporal difculty parame-
ters drawn from the Cue Integration model [38]. 

Tangent Width

Normal
Height

Movement Direction

Tangent W
idth

Normal

Height

Movement Direction

Figure 2: The horizontal “tangent” axis and vertical “normal” 
axis are defned relative to the direction of the target’s move-
ment. 

the preferred parameter, given that it has a much greater efect on 
difculty than height (see Section A.2). 

The parameters for the temporal aiming component of our model 
are: the length of the time during which the target is clickable 
(temporal width) and the time between the target appearing and 
becoming clickable (cue viewing time). Pilot testing showed that 
Lee et al.’s period of input repetition parameter had no signifcant 
predictive efect, so was omitted from our model (Section A.1). 

Pilot testing also showed that spatial parameters had little or 
no predictive efect on temporal aiming, and temporal parameters 
had little or no predictive efect on spatial aiming (Section A.2). 
This confrmed that spatial and temporal aiming are measurably 
distinct abilities, and therefore justifed separate training of spatial 
and temporal aiming in the model. As we shall see in Section 5.3, 
this insight is critical to the fast training of the model. 

3.2 The Dynamic Spatiotemporal Model 
The intended use for our model is to characterize the aiming ability 
of an individual. The model is trained by presenting that individual 
with aiming tasks of varying difculty. This is accomplished by 
varying the difculty parameters used by the model as predictors, 
allowing us to train the model to predict how closely that individual 
can aim at targets both spatially and temporally. 

This section provides the math behind the model, explaining how 
these observations of an individual’s play are turned into a function 
that predicts their success given a particular difculty of target. 
Success is expressed as a probability distribution representing the 
likelihood of hitting at a particular distance from the target. 

One of the major requirements of the mathematical form of 
our model was the need to model player performance in aiming 
tasks separately for spatial constraints (click in the right place) and 

temporal constraints (click at the right time). This we accomplished 
by using separate algorithms for the two components. 

In our new dynamic spatiotemporal model, the spatial compo-
nent of the model is the 2D Ternary-Gaussian model [30], while 
the temporal component is novel, combining elements of both the 
Ternary-Gaussian [29] and Cue Integration [38] models. 

First, the model of a player’s aim in the tangent axis (parallel to 
direction of movement) is in the form of a Gaussian distribution, 
with mean given as: 

� = �� + ��� + ��� 

in which � is speed, � is tangent width, and �� , �� , and �� are 
model parameters whose values are determined when training the 
model. Standard deviation for the tangent axis is given as:√ 

� = �� + ��� 2 + ��� 2 + �� 
� 
� 

in which � is speed, � is tangent width, and �� , �� , �� , and �� are 
the model parameters. 

In the normal axis (perpendicular to movement), the model as-
sumes that mean in the normal axis is zero, while standard deviation 
is given as: √ 

� = ℎ� + ��� 2 + �� � 2 

in which � is speed, � is normal height, and ℎ� , �� , and �� are the 
model parameters. 

While the difculty parameters for temporal aiming are sourced 
from the Cue Integration model [38], removing period of input 
repetition as a parameter requires a diferent structure. Our pilot 
testing showed that using the structure used in the spatial tangent 
axis gave comparable performance when used with the remaining 
temporal parameters. The mean and standard deviation for the 
temporal component of the model are given as: 

� = �� + ��� + ���� √ 
� 

� = �� + �� �2 + ��� 2 + �� � �� 
in which � is cue viewing time, �� is temporal width, and �� , �� , 
�� , �� , �� , �� , and �� are the model parameters. 

In the following section, we describe the process for training 
the model for an individual, and how it can be used to personalize 
aiming difculty for that individual. 

3.3 Training the Model 
Our dynamic spatiotemporal model is designed for use within a 
dynamic difculty adjustment (DDA) algorithm. To do this, the 
model follows three steps, as visualized in Figure 1. The frst two 
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steps are demonstrated experimentally (Section 4). The third step 
is specifc to the DDA algorithm being used, and therefore is not 
included in the study design. 

First, the model requires us to observe the player performing 
aiming tasks of diferent difculty levels. These difculty levels are 
defned using the difculty parameters laid out in Section 3.1. In 
defning the difculty levels, it is important to vary the difculty 
parameters independently, so the model can be sensitive to any 
interactions between them. Since the spatial and temporal compo-
nents of the model are independent, crossing the spatial parameters 
together and the temporal parameters together provides sufcient 
coverage of the condition-space. 

The second step is to model aiming ability using these obser-
vations, using a process drawn from Huang et al. [30]. The player’s 
endpoints for each combination of difculty parameters frst must 
be estimated as a Gaussian distribution; our tests use maximum 
likelihood estimation for this purpose (MATLAB’s “mle” function). 
These estimates are then used to ft the model parameters �� ... �� and 
�� ...�� ; our tests use nonlinear regression for this ftting (MATLAB’s 
“nlinft” function). By inputting arbitrary values of the difculty pa-
rameters into the model, it can now predict the player’s aim under 
those difculty conditions, in the form of Gaussian distributions 
of where (spatial) and when (temporal) the player is most likely to 
click. 

The third step is to adjust aiming tasks using the model’s 
understanding of the player’s aiming ability. If a player is struggling 
with aiming in a game, then the model can predict how much the 
player’s aim will improve if the value of a given difculty parameter 
is altered to be easier. By comparing several such easier values, the 
model is able to predict how much the difculty parameter must 
change for that player’s aiming performance to rise to the desired 
level. This can be accomplished separately for spatial and temporal 
aiming due to the independence of those components; if a player 
has good spatial aim but poor temporal aim, or vice versa, then the 
model can adjust the relevant difculty parameters only. 

3.4 Diferences from Ternary-Gaussian and Cue 
Integration Models of Aiming 

Our dynamic spatiotemporal model draws signifcantly from the 
Ternary-Gaussian model developed by Huang et al. [29, 30] and 
the Cue Integration model developed by Lee et al. [38], as well as 
Huang and Lee’s collaboration paper that used both models [28]. 
The model also difers in signifcant ways, as detailed below. 

The frst diference is in how the model is used. The Ternary-
Gaussian and Cue Integration models are both designed and tested 
for use in predicting the difculty of aiming tasks, by aggregating 
data across multiple participants. In contrast, our emphasis is on 
predicting the performance of individuals: we wish to characterize 
the difculty of aiming tasks for an individual rather than in general. 

The second diference is that our method is designed to increase 
the speed of training. Speed of training was not a priority for the 
Ternary-Gaussian or Cue Integration models. For example, while 
Huang and Lee do not specify how long participants required to 
complete the spatiotemporal collaboration study, each participant 
was required to perform 1,080 aiming tasks [28] which would be 
impractical for an algorithm that is to be trained in real-time. 

To emphasize speed in training, we tightly control the size of 
the condition-space by reducing the number of difculty parame-
ters and maintaining independence between spatial and temporal 
parameters. As we will see in Section 5.3, our model can be trained 
with 45 spatial and 45 temporal aiming tasks. 

The third diference applies specifcally to the temporal compo-
nent of our model. The spatial component of the dynamic spatiotem-
poral model uses Huang et al.’s 2D Ternary-Gaussian model [30]. 
However, while the temporal component of the model uses dif-
culty parameters drawn from Lee et al.’s Cue Integration model [38], 
the formulation of the temporal component is diferent. 

3.5 A Note on the Separation of Spatial and 
Temporal Components 

As noted in Section 3.2, one of our goals in designing our model 
was to be able to separately model spatial and temporal aiming. 
This separation is critical to being able to characterize a player’s 
ability in both spatial and temporal aiming. 

For example, consider the pistol duel game example from 2.1: a 
player must click in the right place—the location of the opponent— 
and at the right time—after the start of the duel but before the 
opponent can shoot back. Increasing the size of the opponent— 
spatial assistance—will have little to no beneft if the player has no 
trouble clicking on the opponent, but is unable to react in time to 
the start of the duel; such a player needs temporal assistance. By 
modelling spatial and temporal aiming separately, we are able to 
more precisely understand how players aim. 

The separation of the components is also critical to rapid training, 
in order to reduce the condition space of the training data. Using 
square targets, there are two spatial parameters—width and speed— 
and two temporal parameters—cue viewing time and temporal 
width. To train the model, each parameter must vary across multiple 
values. For example, in our study we use three values, representing 
easy, medium, and hard difculty. With three values of each of the 
four conditions, the total condition-space would be 81 conditions if 
fully crossed: 34 = 81. By separating the components, only 18 are 
needed to train both: 32 + 32 = 18. 

In the case that a combined spatiotemporal prediction is required, 
then the individual predictions can be multiplied together, as demon-
strated by Huang and Lee [28]. For example, a player with 90% 
spatial accuracy and 70% temporal accuracy has 90% × 70% = 63% 
spatiotemporal accuracy. As detailed in Section 3.1 and Appen-
dix A, this separation is justifed since spatial parameters have little 
predictive power over temporal aiming ability and vice versa. 

The next section describes the experiment we performed to 
assess this model’s performance. 

4 EXPERIMENTAL DESIGN 
We performed a crowdsourced experiment with 72 participants to 
address our core questions of: 

RQ1 How much do individuals vary in aiming ability? Given 
that our research is motivated by the presence of individual 
diferences in aiming ability, it behooves us to character-
ize how large that diference is in the population studied. 
Aim assistance is only necessary if there are, in fact, large 
diferences in people’s aiming ability that require balancing. 
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RQ2 How accurately does the model characterize a player’s aim-
ing ability? To be useful, our predictive model needs to pro-
duce accurate predictions. In analyzing it, we thus need to 
examine how much error occurs in the model between pre-
dictions of a person’s aiming success and test data capturing 
actual aiming success. 

RQ3 How much data is required to train the model? For the 
model to practically serve for player balancing, it needs to be 
possible to train the model quickly, both initially and to keep 
up with changes in player ability. It is therefore important 
to determine how many observations of aiming tasks are 
required to train the model. 

Participants played a bespoke game (called ChronoSwarm), which 
is based entirely on aiming at moving targets. The game’s difculty 
is designed to be adjustable by manipulating the difculty param-
eters used by the model described in Section 3.1. The game logs 
where and when players click, providing both test and training 
data for determining the accuracy of the model, and how quickly it 
model can be trained. 

The study materials, participants, procedures, and analysis tech-
niques are described in detail below. These apply both to this study, 
as well as the pilots reported in Appendix A. This study was regis-
tered with the Open Science Framework (OSF) prior to data collec-
tion1. 

4.1 Test Game: ChronoSwarm 
ChronoSwarm is a simple target-shooting game in which players 
are tasked with clicking on a series of rectangular blocks that move 
across the screen at a constant rate (Figure 3). Players must also time 
their clicks to occur when a sweeping clock hand is between two 
target lines. Thus, hitting in ChronoSwarm has a spatial component 
(clicking on top of the block) and a temporal component (clicking 
at the right time). Figure 4 shows examples of spatial and temporal 
hits and misses. The game was designed to emphasize the challenge 
of spatial and temporal aiming with minimal additional gameplay 
elements, isolating as much as possible the efect of difculty on 
aiming performance. 

ChronoSwarm runs in a web browser to allow participants to 
play it without an installation procedure. Once loaded the game 
runs entirely locally, to ensure network performance is not a factor 
in player performance. Players use their mouse or other pointing 
device to attempt to hit each target as it appears. Once a player at-
tempts to hit, feedback is shown (hit or miss); the target is removed 
from the display, and a new target is presented. ChronoSwarm’s 
gameplay is shown in the attached video fgure. 

The game’s difculty can be varied by adjusting the height and 
width of the target, the speed of its movement, and the positioning 
of the clock hands (Figure 5). 

4.2 Recruiting 
72 participants were recruited from the online crowdsourcing plat-
form Amazon Mechanical Turk [49]. The study was open to par-
ticipants at least 18 years old who had completed 1,000 or more 
Mechanical Turk tasks with an approval rate of at least 95%. 

1Link to registration: https://osf.io/dfsh2/?view_only= 
0a34b579e89e48129584736e305357d9 

Participants were also required to be familiar with fast-paced 
games involving timed actions, to be using a Windows computer 
with a pointing device and a screen of at least 12" or 30cm in 
diagonal size. These additional requirements were to help ensure 
that participants could complete the digital game pointing task that 
forms the core of the study. More detailed factors, such as whether 
a participant was using a mouse or a trackpad, are refected in the 
free parameters of the model (see Section 3.2 and [29]). 

4.3 Participant Flow 
The study was split into three sections, each completed within a web 
browser, with hyperlinks moving participants between the sections. 
The fow between these sections, and their sub-components, is 
illustrated in Figure 6. 

After initial recruitment through Mechanical Turk, participants 
linked to an demographic survey hosted on Qualtrics [50]. The 
survey tool randomly assigned participants into spatial and tem-
poral groups (as described in Section 4.4). After completing the 
demographic survey, each participant was given a custom link to 
the ChronoSwarm game, with conditions order-balanced between 
participants. 

Each participant was required to play a brief ChronoSwarm 
tutorial. Any participant that failed to achieve a ten percent success 
rate in the tutorial was excluded from analysis. 

Upon completion of the tutorial, the game began. Participants 
were presented with 540 ChronoSwarm targets (similar to those 
shown in Figures 3, 4, and 5), in sets of 30. In total, completing the 
ChronoSwarm task took approximately 20 minutes per participant. 

After completing the ChronoSwarm segment and saving their 
data, participants were prompted to save their results to the server, 
after which they were linked to a brief exit questionnaire asking 
the difculty of ChronoSwarm. 

On submitting the exit questionnaire, players were given a com-
pletion code to copy back to Mechanical Turk. 

4.4 Conditions 
To train the model, as described in Section 3.3, we required observa-
tions of the participants carrying out aiming tasks at diferent levels 
of difculty. Participants in the spatial and temporal conditions per-
formed aiming tasks varying over two difculty parameters, each 
with values representing easy, medium, and hard level of challenge. 
These parameters and values are summarized in Table 2. 

The specifc values for the spatial parameters were selected 
through iterative refnement in three ten-participant mini-pilots 
conducted before the pilots reported in Appendix A. Given the 
greater importance of width as a difculty parameter over height 
(see Section A.1), we were able to use square spatial targets, re-
moving the need to consider spatial width and height as separate 
parameters and therefore reducing the number of study conditions 
needed. 

We chose the parameters for cue viewing time and temporal 
width using Human Benchmark’s Aim Trainer [32], in which play-
ers click a series of 30 stationary targets as rapidly as possible. The 
program’s statistics take the form of a curve, showing most par-
ticipants average at least 250ms, and at most 700-800ms, to click 
on each target. We set the “hard” values of cue viewing time and 

https://osf.io/dfsh2/?view_only=0a34b579e89e48129584736e305357d9
https://osf.io/dfsh2/?view_only=0a34b579e89e48129584736e305357d9
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Temporal
Target

Spatial
Target

Targets move at a
constant rate across
the screen

Black hand sweeps clockwise
(like second hand of a clock)

Figure 3: Gameplay in ChronoSwarm. A target moves across the screen. The player must click the target box when the sweeping
black hand is between the blue and red lines. This combines both spatial aiming (hitting the box) and temporal aiming (hitting
at the right time).

(a) spatial miss, temporal miss (b) spatial miss, temporal hit (c) spatial hit, temporal miss (d) spatial hit, temporal hit

Figure 4: Examples of hitting and missing in ChronoSwarm.

Spatial Difficulty Parameters Temporal Difficulty Parameters
Easy Medium Hard Easy Medium Hard

Spatial Width 120px 84px 48px Temporal Width 250ms 200ms 150ms
Speed 96px/s 288px/s 480px/s Cue Viewing Time 500ms 375ms 250ms

Table 2: Study Conditions. Each difficulty parameter was tested at easy, medium, and hard settings. Difficulty parameters were
defined in Table 1.

temporal width to match the start and peak of the curve, with the
other values spaced out along the curve.

To keep the number of conditions tractable, participants were
split between a spatial group and a temporal group. Each group
had 9 conditions, formed by fully crossing the easy/medium/hard
values of both difficulty parameters: spatial width and speed for
the spatial group, cue viewing time and temporal width for the
temporal group. In addition, each of these condition sets were
crossed with the highest and lowest values of the opposite-axis
parameter that our pilot testing (Sections 3.1, A.2) showed had some
significance as a predictor: cue viewing time for the spatial group
and spatial width for the temporal group. In total, this resulted in 18

conditions for each group. These 18 conditions were order-balanced
between participants using a balanced Latin square. This required
that participants be in multiples of 18, with the figure we selected
being 36 participants in each group, for a total of 72 participants.

4.5 Data Collection
We collected three sources of data: demographic survey, ChronoSwarm
gameplay data, and exit questionnaire.

The primary data reported and analyzed in this paper are de-
rived from the ChronoSwarm gameplay logs, with a demographic
overview also reported in Section 5. For each target, these logs
record the difficulty parameter values (see Table 2), whether it
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Temporal
Width

Cue
Viewing
Time

Spatial Width

Figure 5: Three of the four parameters that are used to 
adjust the difculty of spatial and temporal aiming in 
ChronoSwarm. Not pictured is the speed at which the target 
moves. 

Demographic 
Survey

Randomly 
Assign Group

ChronoSwarm 
Tutorial

ChronoSwarm 
Gameplay

Exit 
Questionnaire

Spatial Temporal

308

271

140131

72

75

75

1

Figure 6: Participant fow through the study. Participants 
who entered nonsense data in the demographic question-
naire, participants who failed to complete the tutorial, and 
participants who did not complete all three sections were 
removed from the study. 

was successfully clicked (both spatially and temporally), and the 
distance from the target’s centre (i.e., the tangent, normal, and tem-
poral endpoint values – Section 4.6). After completing all conditions 
for their group (spatial or temporal), participants were prompted to 
press a button to upload the log to the ChronoSwarm server, where 
it was stored as a text fle. 

The demographic survey collected information about age, gen-
der, and gameplay experience. Participants were asked their level 
of gameplay experience in the two categories of “fast-paced shooter 
games” and “non-shooter action games that need both movement 

and timing.” For each, players were asked to identify as a casual, fre-
quent, or competitive player, and to name the game in that category 
with which they had the most experience. Finally, players were 
asked what clicking and display devices they were using to play 
ChronoSwarm and the diagonal size of their screen. Participants 
who provided nonsense information (e.g., random text for screen 
size) were removed from the study. 

The exit questionnaire asked players to rank the difculty of the 
game on a 7-point Likert scale. This was split into seven categories: 
overall difculty, difculty of the smallest and largest targets, dif-
fculty of the fastest and slowest targets, and difculty of clicking 
during the shortest and longest times. 

4.6 Measures 
Our outcome measures fall into three categories: the player’s game-
play success, the player’s aiming accuracy, and the model’s accuracy. 
These measures are detailed below. 

4.6.1 Player’s Gameplay Success. Success in the game is deter-
mined by the percentage of targets that the player hit. As shown in 
Figure 4, a player is considered to have hit a target if they click on 
top of the target’s rectangle (spatial hit) during the time that the 
sweeping hand is between the blue and red hands (temporal hit). 

Diferences in success between players are measured using the 
coefcient of variation (CoV), which is the ratio of standard devia-
tion to mean. CoV indicates the extent of variability in data relative 
to the mean, with a higher CoV indicating more dispersal in the 
dataset [36]. 

We use one metric to measure gameplay success, and one to 
measure diferences in success between players: 

Success Rate: A player’s success rate is calculated as the per-
centage of all targets hit across all trials within a given condi-
tion. Success rates are calculated separately for spatial hits – 
spatial success rate – and temporal hits – temporal success 
rate. 

Coefcient of Variation: The coefcient of variation (CoV) 
is the ratio of standard deviation to mean. We calculated the 
CoV for success rate across all 36 participants in a group, us-
ing participants’ average success rate. A high CoV indicates 
variation between the success rates of diferent players. 

4.6.2 Player’s Aiming Accuracy. Accuracy is measured in both the 
spatial and temporal dimensions, using the distance of a player’s 
click from the target. A larger distance means the player is less 
accurate in aiming for the target than if the click were very close 
to the target. For a given hit attempt: 

Spatial Endpoint is the location of the player’s click relative 
to the centre of the targeted block. Spatial endpoints are 
measured in pixels. 

Temporal Endpoint is the time at which the player clicks 
relative to the temporal width. Temporal endpoints are mea-
sured in milliseconds. 

4.6.3 Model’s Accuracy. The accuracy of the model captures how 
well the model predicts a player’s actual performance in playing 
the game. This is measured both in terms of prediction of endpoint 
accuracy and prediction of success rate. Success rate more directly 
addresses the question of how well a player aims, but requires 
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aggregation of multiple binary hit/miss datapoints. Endpoint data 
provide more granularity, with even a single endpoint giving a 
measure of distance. We calculate both accuracy measures for the 
sake of comparison. 

The quality of prediction is measured through the mean absolute 
error between the model’s predicted player performance and actual 
performance on test data. Whenever “error” appears in this paper, 
it refers to this use of mean absolute error. 

Given a collection of observations of hit attempts at a specifc 
difculty level and a model prediction of endpoint distribution for 
this difculty level, four measures are used to gauge the accuracy 
of the model’s predictions: 

Spatial Endpoint Error is calculated as the mean of the dif-
ferences between predicted and actual endpoint means, cal-
culated separately for both the tangent (width) and normal 
(height) axes. 

Temporal Endpoint Error is calculated as the mean of the 
diferences between predicted and actual endpoint means. 

Spatial Success Rate Error is calculated as the mean of the 
absolute values of diferences between predicted and actual 
spatial success rates. 

Temporal Success Rate Error is calculated as the mean of 
the absolute values of diferences between predicted and 
actual temporal success rates. 

4.7 Comparing Models 
Endpoint and success rate error are our measures of the model’s 
accuracy (RQ2). However, to analyze how increasing the number 
of training samples afects the accuracy of the model, we need to 
compare multiple models for each participant, each trained on a 
diferent number of samples (RQ3). 

To build and train these diferent versions of the model, partici-
pants were given 30 targets at each difculty condition. As shown 
in Figure 7, the frst 20 targets for each condition represented the 
available training data, with the last 10 targets for each condition 
forming the test dataset. 

For each model Model� , the model was trained on the frst � 
samples from each of the 18 conditions. For example, the training 
dataset for Model5 was the frst 5 samples from each condition – 
90 samples – while Model20 was trained on the frst 20 samples 
from each condition – 360 samples. We constructed Model5 through 
Model20, producing 16 models to compare. 

5 RESULTS AND ANALYSIS 
As shown in Figure 6, 308 participants were recruited and 72 suc-
cessfully completed the experiment. 148 participants were rejected 
for having failed to complete the survey or the ChronoSwarm tu-
torial. This step served to divert bots or unmotivated participants 
from the study, as recommended by Sharpe Wessling et al. [55]. An-
other 64 were eliminated for not completing the study, and 24 for 
providing nonsense data in the demographic survey. Nonsense sur-
vey data included, for example, entering random text when asked 
to provide the size of their display. 36 participants completed each 
of the spatial and temporal arms of the study. 

Participants ranged in age from 22 to 69, with a mean age of 
37. 47 participants identifed as male and 25 as female. Experience 

with shooter games ranged from casual (24 participants), through 
frequent (34 participants), and competitive (14 participants). 

We structure our results around our research questions of (RQ1) 
how much aiming ability varies between players, (RQ2) the accuracy 
of the dynamic spatiotemporal model, and (RQ3) how rapidly the 
model can be trained. Results are presented by research question 
and by spatial/temporal group. 

5.1 RQ1: How Much do Individuals Vary in 
Aiming Ability? 

This research question asks whether there are indeed diferences in 
aiming ability within the set of participants that were tested. Our 
measure for this question is to compare the diferences in success 
rate between players. This comparison uses the coefcient of varia-
tion (CoV), the ratio of standard deviation to mean (Section 4.6). 

CoV analysis captures how much variation there was between 
participants’ performances in both the spatial and temporal groups. 
A player with higher mean success rates is exhibiting higher aiming 
ability than a player with low mean success rates. When comparing 
success rates between players, a high CoV value indicates that there 
was indeed variation in participants’ aiming ability. 

For the CoV analysis, we compute each player’s success rate 
for each condition. For each participant, we compute the average 
success rate across all conditions. The CoV between participants is 
then calculated as the standard deviation of those averages divided 
by the mean. 

In the spatial group, mean success rate across all conditions was 
54.7%, with a standard deviation of 0.225. This corresponds to a 
spatial CoV of 0.411, or 41.1% of the mean. 

In the temporal group, mean success rate across all conditions 
was 43.7%, with a standard deviation of 0.227. This corresponds to 
a temporal CoV of 0.520, or 52.0% of the mean. 

For both the spatial group and the temporal group, CoV is over 
40%. Viewed as confdence intervals, these values show that ap-
proximately one third of participants have a success rate below or 
above the range 32%-77% for the spatial group, and 21%-66% for the 
temporal group. These results confrm our intuition that there is 
indeed variation in the aiming abilities of both spatial and temporal 
participants. 

5.2 RQ2: How Accurately does the Model 
Characterize a Player’s Aiming Ability? 

The goal for this question is to measure how accurately the model 
is able to predict player performance. 

The metric for this research question is mean absolute error 
between each model’s predictions and the actual outcomes from the 
test data. Error analyses were conducted separately for the spatial 
and temporal components of the model, and for both endpoints 
and success rates. Lower error indicates a more accurate prediction, 
with a baseline of 0 denoting perfect accuracy. In the case of success 
rate error, the maximum possible error is 100%. 

In each case—spatial/temporal and endpoint/success rate—there 
are a total of 16 values, representing the diferent training dataset 
sizes (Model5 through Model20, as described in Section 4.7). 
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Figure 7: 20 samples were collected for each condition to train the model, while 10 samples were collected to test the model. 16 
versions of the model were created using between 5 and 20 samples. For example, Model5 is trained with the frst 5 samples of 
the training data, while Model20 is trained with all 20 training data samples. 
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Figure 8: Mean absolute error graph for spatial endpoint 
predictions. Horizontal axis shows number of samples used 
to construct each model. Vertical axis is in pixels. From top 
to bottom, the horizontal lines represent the distance from 
the centre to the edge of the target at the “easy,” “medium,” 
and “hard” values of spatial width; these provide scale by 
showing the magnitude of the error compared to the sizes of 
the targets. 

5.2.1 Endpoint Error. As shown in Figure 8, in the spatial group, 
error for the tangent axis endpoint predictions ranged from a low of 
20px (at N=20) to a high of 23px (at N=6). Error for the normal axis 
is constant at 12px. The fgure provides scale by also showing the 
centre-to-edge size of the targets used in the study. The error values 
are smaller than the size of the smallest target (24px centre-to-edge) 
and considerably smaller than the size of the larger targets. 

Figure 9 shows that in the temporal group, error for the endpoint 
predictions ranged from a low of 51ms (at N=20) to a high of 68ms 
(at N=5). These values are smaller than the centre-to-edge temporal 
width of the smallest target (75ms). 

For both the spatial and temporal groups, endpoint error was 
less than the diference between the centre and edge of the smallest 
targets, suggesting error was small relative to the constraints of the 
aiming task. This is a highly encouraging result, suggesting that 
the endpoint predictions are accurate enough to model the aiming 
ability of game players. 

5.2.2 Success Rate Error. In the spatial group, error for spatial suc-
cess predictions ranged from 17.4% (N=7) to 18.0% (N=19), as shown 

Figure 9: Mean absolute error graph for temporal endpoint 
predictions. Horizontal axis shows number of samples used 
to construct each model. Vertical axis is in milliseconds. From 
top to bottom, the horizontal lines represent the distance 
from the centre to the edge of the temporal width at the “easy,” 
“medium,” and “hard” values of temporal width; these provide 
scale by showing the magnitude of the error compared to the 
sizes of the targets. 

in Figure 10. In the temporal group, error for temporal success 
predictions ranged from 14.2% (N=19) to 17.2% (N=5), as shown in 
Figure 10. These results suggest that the dynamic spatiotemporal 
model is able to predict player success, though less accurately than 
it predicts endpoint distribution. As we shall discuss in Section 6, 
this suggests that DDA algorithms should be based on endpoint 
predictions rather than success rate predictions. 

5.3 RQ3: How Much Data is Required to Train 
the Model? 

The results of this question address the model’s utility for a dynamic 
assistance algorithm. In particular, it addresses whether the initial 
training for the model can be conducted quickly, and by extension 
whether the model is responsive to changes in a player’s aiming 
ability over time. The metric for this research question is success 
rate error between the model’s predictions and the test data, as 
seen in Section 5.2. Again, a lower error indicates a more accurate 
prediction. 
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Figure 10: Mean absolute error graph for spatial and temporal 
success rate predictions. Horizontal axis shows number of 
samples used to construct each model. Vertical axis is success 
rate. 

In the spatial group, there is no apparent improvement over time 
for either endpoint error (Figure 8) or success rate error (Figure 10). 
In the temporal group, there is a decrease over time in endpoint 
error (Figure 9); the error at N=5 (68ms) is approximately 33% larger 
than at N=20 (51ms). There is also a decrease over time in success 
rate error (Figure 10); the error at N=5 (17.2%) is approximately 21% 
larger than at N=20 (14.3%). 

The analysis of error across increasing training dataset size N 
shows that, for both the spatial and temporal components of the 
model, training can be reasonably performed with as few as fve 
datapoints per condition. In particular, endpoint error values at 
N=5 are already lower than half the smallest width for both spa-
tial and temporal aiming. Temporal error drops as the number of 
observations increase, but at N=5 is already as low as the largely 
invariant spatial error. 

In summary, we fnd that there is considerable variation in both 
spatial and temporal aiming ability in our participant population, 
that the model is successfully able to predict the aiming perfor-
mance of individuals, and that the model can be trained with rela-
tively few observations. In the next section, we discuss the deeper 
implications of these results. 

6 DISCUSSION 
In this section, we summarize the results of the study assessing 
our dynamic spatiotemporal model, and discuss the implications 
of these results—combined with the outcomes of the pilot studies 
reported in Appendix A—on using the model for player balancing 
based on aim assistance and dynamic difculty adjustment (DDA). 

RQ1 asks how much individuals difer in their aiming ability, for 
both spatial and temporal aiming tasks. Analyzing player success 
rates, we found considerable variation in aiming ability between the 
participants in our study. The presence of variation between partic-
ipants justifes the need for aim assistance, in order to balance be-
tween players with diferences in aiming ability. The demographic 
questionnaire reveals a large enough spread of ages and gaming 
backgrounds that we can be confdent our online participants are 
reasonably refective of the general population of computer-users. 

RQ2 asks how accurately our dynamic spatiotemporal model is 
able to predict player aiming performance. Error analysis between 
model predictions and actual test observations showed that the 
model accurately predicted the distribution of where and when 
players tended to click. It also showed the model predicted how 
successful players will be at clicking targets, though less accurately 
than the direct endpoint distribution predictions. 

The results indicate that the model is able to perform its core 
function: individualized prediction of accuracy on aiming tasks 
defned by discrete difculty parameters, such as target speed, target 
size, and time the target is available. 

RQ3 asks how rapidly the dynamic spatiotemporal model can be 
trained, in terms of number of observations. Error analysis between 
models with diferent sizes of training data showed that 45 data-
points – 5 per difculty condition – were sufcient for the spatial 
component to converge on its accuracy peak. The same analysis for 
the temporal component showed that 45 datapoints were enough 
for the model to near its accuracy peak, but that increasing the 
number of samples could increase accuracy of predictions. 

The accuracy suggests that 90 observations is sufcient for train-
ing the model. While the temporal component shows modest im-
provement in accuracy as more observations are collected, 45 are 
already enough to reach the same accuracy as the spatial compo-
nent. 90 observations are few enough to be included, for example, 
in a tutorial, allowing initial training to be conducted even before 
the start of normal gameplay. 

We begin our discussion with the matter of extensibility: how 
well do the fndings from our crowdsourced ChronoSwarm study 
transfer to other games? We also describe the process of using the 
model in such a game as part of a dynamic balancing algorithm. 

6.1 Extensibility to Other Games 
In our study, participants played the bespoke ChronoSwarm game. 
ChronoSwarm is designed to focus on aiming tasks, while removing 
confounding gameplay elements such as strategy, luck, or quality 
of AI opponent. 

The difculty parameters used in ChronoSwarm are near uni-
versal in games involving aiming, including multiple popular game 
genres. A target could be another player in a multiplayer shooter 
game, a moving platform in a platformer game, or a narrow corridor 
in a driving game. These targets can all be characterized using our 
difculty parameters, using a size and a speed (which might be zero 
in some cases). 

In some games, the player’s perspective may infuence the mea-
sure of a difculty parameter. In a game with depth, some com-
putation may be needed to get width and speed from the player’s 
perspective. 

In a shooter game where the objective is to hit other players, 
there may be no explicit temporal width defning when an opponent 
can or cannot be hit. If an opponent is able to hide behind cover, it 
may nonetheless have an efective temporal width. If the opponent 
walks out from behind a wall, remains in the player’s range for half 
a second, and then moves back behind the wall, then as a target 
that opponent had a temporal width of 500ms. 
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Cue viewing time is relevant in games where the player uses a 
device like Splatoon 3’s sensor [16] that shows opponents behind 
walls. If the player can see an opponent before they move into 
range, then that corresponds to an efective cue viewing time. Some 
games may have no such mechanic to provide advance warning; in 
this case, the cue viewing time can be considered zero. 

In cases where a difculty parameter is not used in a game, 
the parameter can be omitted from the analysis, increasing the 
speed of training. This can be seen in our use of square targets in 
ChronoSwarm, for example, which removed the need to consider 
height. This optimization applies in many games, as targets typically 
maintain the same ratio of height and width; for example, a person 
gets bigger as they get closer, but still has the same ratio of width 
to height. If a game includes targets where width and height vary 
truly independently, a height parameter could be easily added back 
into the model, at the cost of increased training time. 

6.2 Performing DDA with the Dynamic 
Spatiotemporal Model 

While the model was successful in predicting player performance, 
the mean absolute error analysis suggested that the model is more 
accurate in predicting endpoint distributions than in predicting 
success rates. To use endpoint predictions in a dynamic balancing 
algorithm, a game designer should determine a goal accuracy for 
players, measured by their predicted endpoint distribution. For 
example, the goal may be for at least 50% of the player’s clicks to 
fall within 30 pixels of the target. 

In order to perform the difculty adjustment itself, the dynamic 
balancing algorithm should follow the steps laid out in Section 3.3: 
(1) observe the player aiming at targets of varying difculty, (2) 
use those observations to model aiming ability of that player, 
and (3) adjust aiming tasks until the model predicts the player’s 
accuracy will meet the goal (see Figure 1). 

Some games may have varied targets that appear often enough to 
quickly gather the needed observations during normal play. In gen-
eral, however, we recommend that the initial training be conducted 
during an opening tutorial. While the tutorial is explaining how 
to play the game, it can select targets with varying difculty for 
the player to practice against. Once this initial training is complete, 
the model can continue observing player performance for ongoing 
training, including testing independent variation in spatial width 
and height if appropriate for the game. 

The exact nature of the difculty adjustment will depend on what 
game is being balanced, and whether a player is having difculty 
with spatial aiming, temporal aiming, or both. If a player’s spatial 
aiming performance is below the goal, then the spatial constraints 
can be eased by making the targets wider or slower. Likewise, if a 
player’s temporal aiming performance is too low, then the game 
can adjust by lengthening the warning before a target appears 
(cue viewing time) or increasing the time that it remains targetable 
(temporal width). 

In some cases, it may be difcult to directly modify the difculty 
parameters of targets. For example, in a shooter game where the 
goal is to aim at other players, slowing down opponents to make 
them easier to hit will disrupt those opponents’ ability to play the 
game. In the same game, the temporal width may depend on when 

opponents leave and re-enter cover, which is likewise difcult to 
adjust without restricting those opponents. 

In cases like these, aim assistance can modify the difculty pa-
rameters indirectly. An area cursor [4, 5, 35, 57–59] can make a 
target efectively wider for the sake of clicking on it without actually 
changing the target’s size, or sticky targets [1, 4, 5, 35, 44, 52, 59] 
can help a player’s cursor track a fast target without actually slow-
ing it down. In the case of temporal width dictated by opponents 
moving behind cover, players can be given the temporary ability 
to see and shoot targets through cover: if a player can still hit the 
target 100ms after it enters cover, then the player has efectively 
been granted a 100ms increase to temporal window. 

6.3 Application Beyond Gaming 
Aiming is critical in many games, including shooter games like Fort-
nite, platformer games like the Super Mario series, and racing games 
like Mario Kart; therefore, this paper has the potential for high im-
pact in game development. Our model is primarily intended to make 
the play of digital games more fun and equitable by allowing per-
sons with diferent abilities to play together. Aim assistance occurs 
in other domains as well, such as in power wheelchairs [17] which 
are typically controlled by a joystick, and control of teleoperated 
robots [14] and unmanned aerial vehicles [22]. Such applications 
often provide assistance in targeting, and modeling the user of the 
system may help in providing the right level of assistance. 

6.4 Limitations 
One possible limitation of our study is our use of the Amazon 
Mechanical Turk [49] crowdsourcing platform. The online nature 
of the study limited our ability to observe participants and ensure 
they were giving a sincere efort. As shown in Figure 6, 236 of 308 
participants were excluded due to failing to complete the study or 
providing nonsense answers to written questions. This indicates 
that screening efectively removed insincere participants, but that 
surprisingly, sincere participants were the minority. 

The study has no control group for comparison of model accu-
racy. This is not possible, as there are no existing models that could 
act as comparators. Instead, we provide context by comparing the 
model’s error to the size of the targets presented in the game. 

The study was also based on a single game, designed to minimize 
the efect of any gameplay element other than spatial and temporal 
aiming, for the sake of isolating the efect of aiming difculty. We 
have argued above that this game’s core elements are also core 
elements of a wide range of game genres. However, further testing 
with other types of games would be suitable future work, including 
games demanding a wider range of abilities from players. 

In these discussions, we have laid the theoretical foundation for 
how to use our dynamic spatiotemporal model. We described both 
how, in a deployment in an actual game, an implementation of our 
model would be able to parameterize the difculty of game targets, 
as well as how to use targets of varying difculty to execute a DDA 
algorithm. Future work in this space would involve putting this 
foundation into practice in a game, and measuring how efectively 
the model functions in a real deployment compared to the testbed 
of ChronoSwarm. 
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7 CONCLUSION 
To use aim assistance for player balancing, a measure of each 
player’s ability is required to personalize the amount of assistance 
provided. Dynamic measurement based on the players’ ability to 
hit targets in a game allows the model to be trained during play. In 
this paper, we present and assess a novel model for characterizing 
spatial and temporal aiming ability of individual players, drawing 
from the work of Huang et al. [29, 30] and Lee et al. [38]. Our 
dynamic spatiotemporal model is trained using data that can be 
collected during play, and can be trained rapidly enough to be used 
in dynamic balancing aim assistance algorithms. 

The study we performed to assess the model confrmed that 
both spatial and temporal aiming ability vary between players. The 
model converges with a small number of samples per setting of 
target difculty, and the predictions of where and when players 
would click are accurate to distances smaller than the size of the 
smallest targets. 
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A APPENDIX 
This appendix describes the pilots performed before the study re-
ported in Section 4. The primary purpose of these pilots was to 

evaluate the six candidate difculty parameters for our spatiotem-
poral model: tangent width, normal height, speed, cue viewing time, 
temporal width, and period of input repetition (see Section 2.3). Our 
goal was to determine which of these parameters had the greatest 
efect on the difculty of aiming at a target. By selecting the most 
important input parameters for the model, the model can be trained 
more rapidly with fewer data points than would be the case using 
all parameters. 

The efect of each parameter was measured using linear multiple 
regression, using the parameters as predictors of success rate. If 
a parameter has a high correlation, then changing the value of 
that parameter has a large efect on how successfully players are 
able to aim; therefore, that parameter has a large impact on the 
difculty of aiming at a target. Likewise, a parameter that is a low 
or non-signifcant predictor of success is a parameter that has little 
to no efect on aiming difculty. 

Pilot 1 assessed how well the spatial parameters—tangent width, 
normal height, speed—predict spatial aiming success, and how well 
the temporal parameters—temporal width, cue viewing time, pe-
riod of input repetition—predict temporal aiming success. Pilot 
2 assessed which spatial parameters are signifcant predictors of 
temporal success, and vice versa. 

Except where explicitly noted, the ChronoSwarm pilots followed 
the same experimental design as used in the main study. For full 
details, see Section 4. 

A.1 Pilot 1 
In Pilot 1, each of the six parameters had three diferent values 
representing easy, medium, and hard difculty with values similar 
to those reported in Table 2. Normal height used the same values 
as tangent width, and period of input repetition used the values 
1500/2000/2500ms. 

Participants were split between spatial and temporal groups. The 
conditions for each group used the easy/medium/hard values fully 
crossed for each of its respective parameters: tangent width, normal 
height, and speed for the spatial group; cue viewing time, tempo-
ral width, and period of input repetition for the temporal group. 
This gave a total of 27 spatial conditions and 27 temporal condi-
tions. These conditions were order-balanced between participants 
using a balanced Latin square, requiring 54 spatial and 54 temporal 
participants for a total of 108 participants. Each participants was 
presented with a total of 675 ChronoSwarm targets in sets of 25, 
requiring approximately 25 minutes including the ChronoSwarm 
tutorial. 

The results of the multiple regression analysis for Pilot 1 are 
found in the upper part of Table 3. In summary, tangent width was 
the strongest predictor for spatial success rate with a standardized 
coefcient of � = 0.737, followed by speed at � = -0.487, with the 
weakest predictor being normal height at � = 0.373. Cue viewing 
time was the strongest predictor of temporal success rate with a 
standardized coefcient of � = 0.783, followed by temporal width 
at � = 0.544, with period of input repetition having no signifcant 
predictive efect. 

https://www.merriam-webster.com/dictionary/aim
https://www.merriam-webster.com/dictionary/aim
https://www.qualtrics.com/
https://doi.org/10.1109/SMC.2015.485
https://doi.org/10.1007/s10209-010-0189-5
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Pilot 1 Correlations Spatial Success 
�2 = 0.919, � < .001 

Temporal Success 
�2 = 0.922, � < .001 

Parameter Standardized Coefcient Standardized Coefcient 
Tangent Width 

Speed 
Normal Height 

Cue Viewing Time 
Temporal Width 

Period of Input Repetition 

� = 0.737, � < .001 
� = −0.487, � < .001 
� = 0.373, � < .001 

— 
— 
— 

— 
— 
— 

� = 0.783, � < .001 
� = 0.544, � < .001 
� = 0.114, � = .064 

Pilot 2 Correlations Spatial Success 
�2 = 0.954, � < .001 

Temporal Success 
�2 = 0.980, � < .001 

Parameter Standardized Coefcient Standardized Coefcient 
Tangent Width 

Speed 
Cue Viewing Time 
Temporal Width 

� = 0.933, � < .001 
� = −0.509, � < .001 
� = 0.331, � < .001 
� = 0.046, � = .520 

� = 0.194, � < .001 
� = 0.020, � = .624 
� = 0.780, � < .001 
� = 0.474, � < .001 

Table 3: Pilots 1 and 2 multiple correlation results for spatial and temporal success rate. 

A.2 Pilot 2 
In Pilot 2, the two least-predictive difculty parameters—normal 
height and period of input repetition—were not used. Fully crossing 
the easy/medium/hard values of tangent width and speed produced 
nine spatial conditions; likewise, crossing easy/medium/hard values 
of cue viewing time and temporal width produced nine temporal 
conditions. 

Unlike Pilot 1, participants in Pilot 2 were not split into spatial 
and temporal groups. Instead. each participant performed all nine 
spatial and all nine temporal conditions, for a total of 18 conditions 
order-balanced using a balanced Latin square. 36 participants were 
presented with a total of 270 ChronoSwarm targets in sets of 15, 
requiring approximately 11 minutes including the ChronoSwarm 
tutorial. 

The results of the multiple regression analysis for Pilot 2 are 
found in the lower part of Table 3. In summary, cue viewing time 
was a signifcant predictor of spatial success rate with a standard-
ized coefcient of � = 0.331, while temporal width did not predict 

spatial success. Tangent width was a signifcant predictor for tem-
poral success rate with a standardize coefcient of � = 0.194, while 
speed did not predict temporal success. 

The results of these pilots had two critical implications for de-
signing our spatiotemporal aiming model and the study reported 
in Section 4. In Pilot 1, we determined which parameters had the 
least efect on the difculty of a target: non-signifcant period of 
input repetition is omitted from the model and therefore the study; 
normal height is included in our model but has a much smaller 
efect than its counterpart tangent width (both measures of target 
size), allowing initial model training to be sped up by using tar-
gets with non-independent width and height variation (e.g. squares 
or geometrically similar rectangles). In Pilot 2, we confrmed that 
spatial and temporal difculty can be separately considered, given 
that spatial difculty parameters had low or no predictive efect for 
temporal difculty, and vice versa. 
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